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ABSTRACT
In the domain of multimedia and multimodal processing, the ef-
ficient handling of diverse data streams—such as images, video,
and sensor data—is paramount. Model compression and multitask
learning (MTL) are crucial in this field, offering the potential to
address the resource-intensive demands of processing and interpret-
ing multiple forms of media simultaneously. However, effectively
compressing a multitask model presents significant challenges due
to the complexities of balancing sparsity allocation and accuracy
performance across multiple tasks. To tackle the challenges, we pro-
pose AdapMTL, an adaptive pruning framework for MTL models.
AdapMTL leverages multiple learnable soft thresholds indepen-
dently assigned to the shared backbone and the task-specific heads
to capture the nuances in different components’ sensitivity to prun-
ing. During training, it co-optimizes the soft thresholds and MTL
model weights to automatically determine the suitable sparsity
level at each component in order to achieve both high task accu-
racy and high overall sparsity. It further incorporates an adaptive
weighting mechanism that dynamically adjusts the importance of
task-specific losses based on each task’s robustness to pruning. We
demonstrate the effectiveness of AdapMTL through comprehensive
experiments on popular multitask datasets, namely NYU-v2 and
Tiny-Taskonomy, with different architectures, showcasing superior
performance compared to state-of-the-art pruning methods.

CCS CONCEPTS
• Computing methodologies→ Image manipulation; Image
processing.

KEYWORDS
pruning, multitask learning

1 INTRODUCTION
In the landscape of multimedia and multimodal processing [2, 40],
Deep Neural Networks (DNNs) [46] have emerged as a pivotal tech-
nology, powering advancements across a spectrum of applications
from image and video analysis to natural language understanding
and beyond. Their profound ability to learn and abstract complex
features from a range of media forms underpins their utility in di-
verse domains, including content categorization, recommendation
systems, and interactive interfaces. However, as the complexity
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Figure 1: Overview of pruning a dense multitask model. The
red parts represent the shared backbone, and the leaf boxes
represent the task-specific heads. In the sparse model, the
blank spaces indicate the pruned parameters.

of tasks grows, so does the demand for larger and more powerful
models, which in turn require substantial computational resources,
memory usage, and longer training times. This trade-off between
performance and model complexity has led to a continuous pursuit
of more efficient and compact CNN [24] architectures, as well as
innovations in pruning techniques that can maintain high perfor-
mance without compromising the benefits of the model’s scale.

Pruning techniques [13, 19, 23, 25–27, 36, 48] have emerged as a
promising approach to compress large models without significant
loss of performance. These techniques aim to reduce the size of
a model by eliminating redundant or less important parameters,
such as neurons, connections, or even entire layers, depending on
the method employed [9, 28, 61]. Parameter-efficient pruned mod-
els can provide significant inference time speedups by exploiting
the sparsity pattern [14, 31, 56, 60]. These models are designed
to have fewer parameters, which translates into reduced memory
footprint and lower computational complexity (FLOPs) [31]. By
leveraging specialized hardware and software solutions that can
efficiently handle sparse matrix operations, such as sparse matrix-
vector multiplication (SpMV), these models can achieve faster infer-
ence times [14, 39, 55]. Additionally, sparse models can benefit from
better cache utilization, as they require less memory bandwidth,
thereby reducing the overall latency of the computation [41, 60].

Although many techniques have been proposed in the past for
pruning a single-task model, there are much fewer works in prun-
ing a multitask model. Multitask models, which are designed to
simultaneously handle multiple tasks, have become increasingly
popular due to their ability to share representations and learn more
effectively from diverse data sources [16, 64, 67]. These models
have found wide-ranging applications where tasks are often related
and can benefit from shared knowledge [65]. A compact multitask
model, which is shown in Figure 1, has the potential to deliver

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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high performance across various tasks while minimizing resource
requirements, making it well-suited for deployment on resource-
constrained devices or in real-time scenarios.

Traditional pruning techniques, which are primarily focused on
single-task models, may not be directly applicable or sufficient for
multitask settings. Recent work has started to explore the intersec-
tion of multitask learning and pruning. Disparse [51] considered
each task independently by disentangling the importance measure-
ment and taking the unanimous decisions among all tasks when
performing parameter pruning and selection. A parameter is re-
moved if and only if it’s shown to be not critical for any task.
However, as the number of tasks increases, it becomes challenging
to achieve unanimous selection agreement among all tasks, which
could negatively affect the average performance across tasks. Thus,
there is a need for novel compression approaches that are catered
to the complexities of multitask models, taking into account the
inter-dependencies between tasks, the sharing of representations,
and the different sensitivity of task heads. Addressing these chal-
lenges is essential for advancing the development and deployment
of efficient, compact multitask models.

To tackle the challenges, we conduct extensive experiments that
reveal two valuable insights on designing an effective multitask
model pruning strategy. First, the shared backbone and the task-
specific heads have different sensitivity to pruning and thus should be
treated differently. However, current state-of-the-art approaches do
not adequately recognize this aspect, leading to equal treatment of
each component during pruning, rather than accounting for their
varying sensitivities. Second, the change in training loss could serve
as a useful guide for allocating sparsity among different components.
If the training loss of a specific task tends to be stable, we can prune
more aggressively on that component, as the task head is robust
to pruning. On the contrary, if the loss of a specific task fluctuates
significantly, we should consider pruning less on that component
since the training is less likely to converge at higher sparsity levels.

Motivated by these observations, we propose AdapMTL, an adap-
tive pruning framework for MTLmodels. AdapMTL dynamically ad-
justs sparsity across different components, such as the shared back-
bone and task-specific heads based on their sensitivity to pruning,
while preserving accuracy for each task. This is achieved through
a set of learnable soft thresholds [10, 23] that are independently
assigned to different components and co-optimized with model
weights to automatically determine the suitable sparsity level for
each component during training. Specifically, we maintain a set of
soft thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } in each component, where
𝛼𝐵 represents the threshold for the shared backbone and 𝛼𝑡 repre-
sents the threshold for the 𝑡-th task-specific head. In the forward
pass, only the weights larger than the threshold 𝛼 will be counted
in the model, while others are set to zero. In the backward pass, we
automatically update all the component-wise thresholds 𝛼 , which
will smoothly introduce sparsity. Additionally, AdapMTL employs
an adaptive weighting mechanism that dynamically adjusts the im-
portance of task-specific losses based on each task’s robustness to
pruning. AdapMTL does not require any pre-training or pre-pruned
models and can be trained from scratch.

We conduct extensive experiments on two popular multitask
datasets: NYU-v2 [47] and Tiny-Taskonomy [62], using different
architectures such as Deeplab-ResNet34 and MobileNetV2. When

compared with state-of-the-art pruning and MTL pruning methods,
AdapMTL demonstrates superior performance in both the training
and testing phases. It achieves lower training loss and better nor-
malized evaluation scores on the test set across different sparsity
levels. The contributions of this paper are summarized as follows:

(1) We conduct extensive experiments that reveal valuable in-
sights in designing effective MTL model pruning strategies.
These findings motivate the development of novel pruning
strategies specifically tailored for multitask scenarios.

(2) We propose AdapMTL, an adaptive pruning framework for
MTL models that dynamically adjusts sparsity levels across
different components to achieve high sparsity and task ac-
curacy. AdapMTL features component-wise learnable soft
thresholds that automatically determine the suitable sparsity
for each component during training and an adaptive weight-
ing mechanism that dynamically adjusts task importance
based on their sensitivity to pruning.

(3) We demonstrate the effectiveness of AdapMTL through ex-
tensive experiments on popular multitask datasets with dif-
ferent architectures, showcasing superior performance com-
pared to state-of-the-art pruning and MTL pruning methods.
Our method does not require any pre-training or pre-pruned
models.

2 RELATEDWORK
Multitask Learning.Multitask learning (MTL)[1, 4, 12, 64] aims
to learn a single model to solve multiple tasks simultaneously by
sharing information and computation among them, which is es-
sential for practical deployment. Over the years, various MTL ap-
proaches have been proposed, including hard parameter sharing[3],
soft parameter sharing [58], and task clustering [22]. In hard pa-
rameter sharing, a set of parameters in the backbone model are
shared among tasks while in soft parameter sharing, each task
has its own set of parameters, but the difference between the pa-
rameters of different tasks is regularized to encourage them to
be similar. MTL has been successfully applied to a wide range of
applications, such as natural language processing [8, 18, 29], com-
puter vision [17, 30, 44, 57], and reinforcement learning [42, 53].
Subsequently, the integration of neural architecture search (NAS)
with MTL has emerged as a promising direction. NAS for MTL,
exemplified by works like MTL-NAS [15], Learning Sparse Sharing
Architectures for Multiple Tasks [50], and Controllable Dynamic
Multi-Task Architectures [43], focuses on discovering optimal archi-
tectures that can efficiently learn shared and task-specific features.
These approaches, including Adashare [52] and AutoMTL [63],
demonstrate the potential of dynamically adjusting architectures
to the requirements of multiple tasks, optimizing both performance
and computational efficiency.

Pruning. Pruning techniques have been widely studied to re-
duce the computational complexity of deep neural networks while
maintaining their performance. Early works on pruning focused on
unstructured weight pruning [20, 25], where unimportant weights
were removed based on a given criterion, and the remaining weights
were fine-tuned. There are different kinds of criterion metrics,
such as magnitude-based [20, 27], gradient-based [36, 37], Hessian-
based [21], connection sensitivity-based [26, 33, 48], and so on.
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Other works explored structured pruning [56, 66], which removes
entire filters or channels, leading to more efficient implementa-
tions on hardware platforms. Recently, the lottery ticket hypothe-
sis [13] has attracted considerable attention, suggesting that dense,
randomly-initialized neural networks contain subnetworks (win-
ning tickets) that can be trained to achieve comparable accuracy
with fewer parameters. This has led to follow-up works [13, 32, 38]
that provide a better understanding of the properties and initializa-
tion of winning tickets. Single-Shot Network Pruning (SNIP) [26]
is a data-driven method for pruning neural networks in a one-shot
manner. By identifying an initial mask to guide parameter selection,
it maintains a static network architecture during training. Some
other work, like the layer-wise pruning method [23], inspiringly
attempts to learn a layer-wise sparsity for individual layers rather
than considering the network as a whole. This approach allows for
fine-grained sparsity allocation across layers. To reduce the total
time involved in pruning and training, pruning during training
techniques [11, 35, 39] have been proposed to directly learn sparse
networks without the need for an iterative pruning and finetuning
process. These methods involve training networks with sparse con-
nectivity from scratch, updating both the weights and the sparsity
structure during the training process.

Pruning forMultitask Learning.Recently, attention has shifted
to the intersection of MTL and pruning techniques. A compact mul-
titask model has the potential to deliver high performance across
various tasks while minimizing resource requirements, making
it well-suited for deployment on resource-constrained devices or
in real-time scenarios. For example, MTP [6] focuses on efficient
semantic segmentation networks, demonstrating the potential of
multitask pruning to enhance performance in specialized domains.
Similarly, the work by Cheng et al.[7] introduces a novel approach
to multi-task pruning through filter index sharing, optimizing
model efficiency through a many-objective optimization frame-
work. Additionally, Ye et al.[59] propose a global channel pruning
method tailored for multitask CNNs, highlighting the importance
of performance-aware approaches in maintaining accuracy while
reducingmodel size. Disparse [51] proposes joint learning and prun-
ing methods to achieve efficient multitask models. However, these
methods often neglect the importance of the shared backbone, lead-
ing to equal treatment of each component during pruning, rather
than accounting for their varying importance. Our work aims to
address this limitation by adaptively allocating sparsity across the
shared backbone and task-specific heads based on their importance
and sensitivity.

3 METHODOLOGY
In this section, we first present the notations and the definition
of the multitask model pruning We then introduce the proposed
adaptive multitask model pruning framework in Section 3.2 and
describe the adaptive weighting mechanism in Section 3.3.

3.1 Preliminary
We formulate multitask model pruning as an optimization problem.
Given a dataset D = {(𝑥𝑖 ; 𝑦1𝑖 , 𝑦

2
𝑖
, ..., 𝑦𝑇

𝑖
), 𝑖 ∈ [1, 𝑁 ]}, a set of T

tasks T = {𝑡1 𝑡2 ..., 𝑡𝑇 }, and a desired sparsity level 𝑠 (i.e. the per-
centage of zero weights), the multitask model pruning aims to find

 

Figure 2: Difference between hard and soft thresholding.
Hard thresholding causes abrupt weight discontinuities dur-
ing training, while soft thresholding ensures a smooth rela-
tionship for consistent learning.

a sparse weight𝑊 that minimizes the sum of task-specific losses.
Mathematically, it is formulated as:

min
𝑊

L(𝑊 ;D) = min
𝑊

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

L𝑡 (𝑓 (𝑊,𝑥𝑖 );𝑦𝑡𝑖 )

s. t. 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,

(1)

where the L(·) is the total loss function, L𝑡 (·) is the task-specific
loss for each individual task 𝑡 , 𝑊 are the parameters of neural
network to be learned, 𝑃 is the total number of parameters and
∥ · ∥0 denotes the ℓ0-norm, i.e. the number of non-zero weights.
The key challenge here is how to enforce sparsity on weight𝑊
while minimizing the loss. This involves finding an optimal balance
between maintaining the performance of each task and pruning the
model to achieve the desired sparsity level. We next describe our
proposed adaptive pruning algorithm that can effectively handle the
unique characteristics of multitask models and efficiently allocate
sparsity across different components to preserve the overall model
performance.

3.2 Adaptive Multitask Model Pruning
Multitask models typically have a backbone that is shared across
tasks and task-specific heads. We observe that these different model
components have different sensitivities to pruning and thus should
be treated differently. The challenge lies in how to automatically
capture the sensitivity of each model component to pruning and
leverage the signal to automatically allocate sparsity across com-
ponents. To address the challenge, we propose a component-wise
pruning framework that assigns different learnable soft thresh-
olds to each component to capture its sensitivity to pruning. The
framework then co-optimizes the thresholds with model weights
to automatically determine the suitable sparsity level for each com-
ponent during training.

Specifically, we introduce a set of learnable soft thresholds 𝛼 =

{𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } for each component, where 𝛼𝐵 represents the
threshold for the shared backbone and 𝛼𝑡 represents the threshold
for the 𝑡-th task-specific head. The thresholds 𝛼 are determined
based on the significance and sensitivity of the respective compo-
nents and are adaptively updated using gradient descent during the
backpropagation process. The soft threshold 𝛼𝑡 and sparse weight
𝑊𝑡 for each component can be computed as follows:

𝑆 (𝑊𝑡 , 𝛼𝑡 ) = 𝑠𝑖𝑔𝑛(𝑊𝑡 ) · 𝑅𝑒𝐿𝑈 ( |𝑊𝑡 |−𝛼𝑡 )
𝛼𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init),

(2)
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where 𝜃init is a learnable parameter that controls the initial pruning
threshold 𝛼𝑡 . We will discuss the choice of 𝜃init in the supplemen-
tary material. The 𝑅𝑒𝐿𝑈 (·) function here is used to set zero weights.
In other words, if some weights |𝑊𝑡 | are less than the threshold 𝛼𝑡 ,
then the sparse version of this weight 𝑆 (𝑤𝑡 , 𝛼𝑡 ) is set to 0. Other-
wise, we obtain the soft-thresholding version of this weight.

The reason why we choose soft thresholding [54] rather than
hard thresholding is illustrated in Figure 2. Soft parameter sharing is
the best fit for our approach as it allows us to calculate the gradient
and perform the backpropagation process more effectively.

AdapMTL reformulates the pruning problem in Equation 1 to find
a set of optimal thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } across different
components as follows:

min
𝑊,𝛼

L(𝑊,𝛼 ;D) = min
𝑊𝑡 ,𝛼𝑡

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝛽𝑡 · L𝑡 (𝑓 (𝑆 (𝑊𝑡 , 𝛼𝑡 ), 𝑥𝑖 );𝑦𝑡𝑖 )

s. t. 𝛼 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init), 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,
(3)

where the 𝛽𝑡 represents the adaptive weighting factor for 𝑡-th task,
which will be elaborated in Section 3.3.

We next describe howAdapMTL optimizes the problem in Equan-
tion 3. Considering a multitask model with T tasks, we divide the
weight parameters into𝑊 = {𝑊𝐵,𝑊1,𝑊2, ...,𝑊𝑇 }, where𝑊𝐵 rep-
resents the weight parameters for the shared backbone and𝑊𝑡

represents the weight parameters for the 𝑡-th task-specific head.
We derive the gradient descent update equation at the 𝑛-th epoch
for𝑊𝑡 as follows:

𝑊 𝑛+1
𝑡 =𝑊 𝑛

𝑡 − 𝜂𝑛
𝜕L(𝑊,𝛼 ;D)

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

⊙
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

⊙ B𝑛
𝑡 ,

(4)

where 𝜂𝑛 is the learning rate at the 𝑛-th epoch. We use the partial
derivative to calculate the gradients. As mentioned earlier, different
task heads may have varying sensitivities to pruning and, conse-
quently, may require different levels of sparsity to achieve the best
accuracy. By setting a set of learnable parameters for each com-
ponent and treating them separately during the backpropagation
process, our component-wise pruning framework can effectively
account for these differences in sensitivity and adaptively adjust
the sparsity allocation for each component.

Although 𝜕𝑆 (𝑊 𝑛
𝑡 ,𝛼𝑛

𝑡 )
𝜕𝑊 𝑛

𝑡
is non-differentiable, we can approximate

the gradients using the sub-gradient method. In this case, we in-
troduce B𝑡𝑛 , an indicator function that acts like a binary mask.
The value of B𝑡𝑛 should be 0 if the sparse version of the weight
𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) is equal to 0. This indicator function facilitates the ap-

proximation of gradients and the update of the sparse weights and
soft thresholds during the backpropagation process. Mathemati-
cally, the indicator function is:

B𝑛
𝑡 =

{
0, if 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) = 0 ,

1, otherwise.
(5)

Figure 3: Breakdown of component-wise sparsity allocation
during training. We use the ResNet34 backbone and achieve
90% overall sparsity in the end.

By updating the sparse weights𝑊𝑡 , and similarly the soft thresh-
olds 𝛼𝑡 , for each component in this manner (the derivation process
is provided in the supplementary material), the framework can ef-
fectively and discriminatively allocate sparsity across the multitask
model. By taking into account the significance and sensitivity of
each component, this approach ultimately leads to more efficient
and accurate multitask learning.

3.3 Adaptive Weighting Mechanism
This subsection introduces the adaptive weighting mechanism that
dynamically adjusts the weight of each task loss based on each
task’s robustness to pruning. The adaptive weighting mechanism
determines the 𝛽𝑡 for the 𝑡-th task in Equation 3 during training.

The rationales behind the proposed adaptive weighting mech-
anism are two folds. First, if the training loss of a specific task 𝑡

tends to be stable, then we can assign a higher weighting factor 𝛽𝑡
and subsequently prune more aggressively on that component, as
the task head is robust to pruning. On the contrary, if the loss of a
specific task fluctuates significantly, we should consider pruning
less on that component by lowering the weighting factor since
the training is less likely to converge at higher sparsity levels. The
weighting factor is learned in an adaptive way, eliminating the need
for manual effort to elaborately fine-tune the hyper-parameters.

Second, the adaptive weighting mechanism should automatically
consider different multitask model architectures as well. The ratio
of backbone to task head weights, 𝑊𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

𝑊ℎ𝑒𝑎𝑑
, matters because it may

be beneficial to focus more on pruning the task heads instead if the
backbone is already highly compact. For example, in MobileNet-V2,
the backbone has only 2.2M parameters, which is 25 times fewer
than the task head.

We define a set of adaptive weights 𝛽 = {𝛽𝐵, 𝛽1, 𝛽2, ..., 𝛽𝑇 }, where
𝛽𝐵 represents the weighting factor for the shared backbone, 𝛽𝑡
represents the weighting factor for the 𝑡-th task-specific head. The
weighting factor can be formulated as follows:

𝛽𝑡 =

(
ΔLwindow

𝑡

/
L𝑡

1
T
∑T
𝑡=1 (ΔLwindow

𝑡

/
L𝑡 )

)−1
· 𝜆 |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒∑T

𝑡=1 |𝑊𝑡 |ℎ𝑒𝑎𝑑
. (6)
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Here, ΔLwindow
𝑡 is the average deviation of the loss within the

sliding window for the 𝑡-th task, which is divided by L𝑡 to normal-
ize the scale. We then divide it by the sum of all tasks to normalize
between different tasks. The (·)−1 is a multiplicative inverse. 𝜆 is a
scaling factor, and we will discuss the choice of 𝜆 for different ar-
chitectures in the supplementary material. |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 , |𝑊𝑡 |ℎ𝑒𝑎𝑑
represent the weight parameters of shared backbone and 𝑡-th task-
specific head, separately. The right ratio in the equation reveals
the importance of each component by considering their relative
parameterizing contributions to the overall model structure. The
weighting factor 𝛽𝑡 is used to guide the pruning for the task-specific
head, depending on the stability of its loss and its contribution to
the model.

To make the multitask pruning more robust, we incorporate
a sliding window mechanism that tracks the past loss values to
calculate the average ΔLwindow in Equation 6 instead of relying
solely on the variance between two adjacent epochs. This approach
provides a more stable and reliable estimation of the fluctuations in
the task losses, as it accounts for a larger number of samples and
reduces the impact of potential outliers or short-term variations.

4 EXPERIMENTS
In this section, we first present an overview of the experiment set-
tings, including datasets, tasks, evaluation metrics, loss functions,
baselines for comparison, and training details in Section 4.1. Sub-
sequently, we provide comprehensive quantitative experimental
results in Section 4.2, comparing our approach with other state-of-
the-art methods to demonstrate the superiority of our proposed
method.We also analyze the sensitivity of different components and
computational cost in Section 4.3. Finally, we add ablation studies
to verify the effectiveness of the proposed method in Section 4.4.

4.1 Experiment Settings
4.1.1 Datasets and tasks. We conduct the experiments on two pop-
ular multi-task datasets: NYU-v2 [47], and Tiny-Taskonomy [62].
The NYU-v2 dataset is composed of RGB-D indoor scene images
and covers three tasks: 13-class semantic segmentation, depth es-
timation, and surface normal prediction. The training set consists
of 795 images, while the testing set includes 654 images. For the
Tiny-Taskonomy dataset, the experiments involve joint training
on five tasks: Semantic Segmentation, Surface Normal Prediction,
Depth Prediction, Keypoint Detection, and Edge Detection. The
training set includes 1.6 million images, while the test set comprises
0.3 million images. The training set includes 1.6 million images from
25 different classes, while the test set comprises 0.3 million images
across 5 classes.

4.1.2 Evaluation Metrics and Loss Functions. We adopt a range of
evaluation metrics for different tasks, evaluating the model perfor-
mance at different sparsity levels to provide a comprehensive view
of the model’s effectiveness and robustness across tasks. On the
NYUv2 dataset, there are totally three tasks. For Semantic Segmen-
tation, we employ the mean Intersection over Union (mIoU) and
Pixel Accuracy (Pixel Acc) as our primary evaluation metrics and
use cross-entropy to calculate the loss. Surface normal prediction
uses the inverse of cosine similarity between the normalized pre-
diction and ground truth, and is performed using mean and median

angle distances between the prediction and the ground truth. We
also report the percentage of pixels whose prediction is within the
angles of 11.25°, 22.5°, and 30° to the ground truth. Depth estimation
utilizes the L1 loss, with the absolute and relative errors between
the prediction and ground truth being calculated. Again, We also
present the relative difference between the prediction and ground
truth by calculating the percentage of 𝛿 =𝑚𝑎𝑥 ( 𝑦𝑝𝑟𝑒𝑑𝑦𝑔𝑡

,
𝑦𝑔𝑡

𝑦𝑝𝑟𝑒𝑑
) within

the thresholds of 1.25, 1.252, and 1.253. On the Taskonomy dataset,
there are two more tasks. In the context of both Keypoint and Edge
Detection tasks, the mean absolute error compared to the provided
ground-truth map serves as the main evaluation metric.

In multitask learning scenarios, tasks involve multiple evaluation
metrics with values potentially at different scales. To address this,
we compute a single relative performance metric following the
common practice [34] [49].

△𝑇𝑖 =
1
|𝑀 |

|𝑀 |∑︁
𝑗=1

(−1)𝑙 𝑗 · (𝑀𝑇𝑖 , 𝑗 −𝑀𝐷𝑀,𝑗 )/𝑀𝐷𝑀,𝑗 ∗ 100% (7)

where 𝑙 𝑗 = 1 if a lower value shows better performance for the
metric𝑀𝑗 and 0 otherwise.𝑀𝑇𝑖 , 𝑗 , 𝑀𝐷𝑀,𝑗 are the sparse and dense
model value of metric 𝑗 , respectively. The △𝑇𝑖 is defined to compare
results with their equivalent dense task values and the overall
performance is obtained by averaging the relative performance
across all tasks, denoted as △𝑇 = 1

𝑇

∑𝑇
𝑖=1 △𝑇𝑖 , This metric provides

a unified measure of relative performance across tasks. Eventually,
by employing these diverse evaluation metrics, we can effectively
assess the performance of our method as well as the counterparts
across various tasks and datasets.

4.1.3 Baselines for Comparison. We compare ourworkwith LTH [13],
IMP [19], SNIP [26], and DiSparse [51]. For LTH, we first train a
dense model and subsequently prune it until the desired sparsity
level is reached, yielding the winning tickets (sparse network struc-
ture). We then reset the model to its initial weights to start the
sparse training process. For IMP, we remove the least important
weights, determined by their magnitudes, iteratively. For SNIP and
IMP, we directly use the official implementation provided by the au-
thors from GitHub. For DiSparse, the latest multitask pruning work
and first-of-its-kind, we utilize the official PyTorch implementation
and configure the method to use the DiSparse dynamic mechanism,
which is claimed as the best-performing approach in the paper. We
also train a fully dense multitask model as our baseline, which will
be used to calculate a single relative performance metric Norm.
Score.

We use the same backbonemodel at the same sparsity level across
all methods for a fair comparison. In our work, we define overall
sparsity as the percentage of weights pruned from the entire MTL
model, which includes both the shared backbone and task-specific
heads.We utilize Deeplab-ResNet34 [5] andMobileNetV2 [45] as the
backbone models, and the Atrous Spatial Pyramid Pooling (ASPP)
architecture [5] as the task-specific head. Both of them are popular
architectures for pixel-wise prediction tasks. We share a common
backbone for all tasks while each task has an independent task-
specific head branching out from the final layer of the backbone,
which is widely used in multitasking scenarios.
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Table 1: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the Deeplab-ResNet34 backbone.
Each pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all
three tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity
allocation for each component.

Model
𝑇1 : Semantic Seg. 𝑇2 : Surface Normal Prediction 𝑇3 : Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle \theta, within ↑ △𝑇2↑
Error ↓ \triangle, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model (baseline) 25.54 57.91 0.00 17.11 14.95 36.35 72.25 85.44 0.00 0.55 0.22 65.21 89.87 97.52 0.00 - 0.00
SNIP [26] 24.09 55.32 -10.15 16.94 14.93 36.17 72.39 86.98 2.63 0.61 0.23 60.61 87.88 96.77 -25.49 85.46 90.24 92.28 91.17 -11.00
LTH [13] 25.42 57.98 -0.35 16.73 15.08 35.20 72.35 87.22 0.41 0.57 0.22 60.93 88.64 96.20 -12.92 78.32 90.54 95.21 95.49 -4.29
IMP [19] 25.68 57.86 0.46 16.86 15.18 35.53 71.96 86.26 -1.77 0.56 0.22 65.23 89.29 97.53 -3.82 74.98 92.34 97.23 95.15 -1.71
DiSparse [51] 25.71 58.08 0.96 17.03 15.23 35.10 71.85 86.22 -4.48 0.57 0.22 64.93 88.64 97.20 -5.76 75.07 90.41 98.51 94.86 -3.10
AdapMTL w/o adaptive thresholds 25.59 57.53 -0.46 17.26 15.75 36.21 71.53 85.91 -7.06 0.58 0.22 62.52 87.12 96.50 -13.68 79.12 89.37 96.85 95.74 -7.07
AdapMTL (ours) 26.28 58.29 3.55 16.92 14.91 36.36 72.97 86.29 3.41 0.55 0.22 65.39 89.93 97.58 0.38 71.74 93.18 99.26 96.22 2.45
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Figure 4: Comparison of state-of-the-art methods, including DiSparse [51], LTH [13], SNIP [26], and IMP [19], on the NYUv2
dataset, evaluated with different MTL backbones and under various sparsity settings.

4.2 Experiment Results
4.2.1 Results on NYU-V2. We first present the comparison results
with state-of-the-art methods on the NYU-V2 dataset in table 1.
Overall, AdapMTL outperforms all other methods by a significant
margin across most metrics and achieves the highest △𝑇 . Recall
that the major difference between our method and the baselines
lies in our ability to adaptively learn the sparsity allocation across
the components adaptively, maintaining a dense shared backbone
(71.74%) while keeping the task-specific heads relatively sparse.
Within the scope of our research, we characterize overall sparsity
as the percentage of weights pruned from the entire MTL model,
which includes both the shared backbone and task-specific heads.

SNIP [26] exhibits the lowest performance in the multi-task sce-
nario because its pruning mask is determined from a single batch of
data’s gradient, which treats all components, including the shared
backbone, equally. Since all input information passes through the
shared backbone, accuracy loss in the shallow layers is inevitable,
regardless of how well the task heads perform with relatively high

density. LTH’s [13] winning tickets do not sufficiently focus on
the backbone, as they intentionally create a dense surface normal
prediction task head. Although this approach performs well on this
specific task, the bias still causes an imbalance in the metrics across
all tasks, resulting in a lower △𝑇 score. IMP [19] achieves a good
normalized score across all tasks. However, this method is trained in
an iterative manner and prunes the model step-by-step, resulting in
a significantly longer training time. DiSparse [51] learns an effective
dense backbone by adopting a unanimous decision across all tasks.
However, it falls short of differentiating the relative sensitivities
between specific task heads, leading to an imbalanced normalized
score among all tasks. Here, we add an additional row, AdapMTL
without adaptive thresholds, to demonstrate the effectiveness of
our approach. Rather than using multiple adaptive thresholds, this
version utilizes a single shared threshold for all components. As
expected, performance significantly deteriorates because a uniform
threshold makes it hard to capture the nuances in different compo-
nents’ sensitivity.
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Table 2: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the MobileNetV2 backbone. Each
pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all three
tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity allocation
for each component.

Model
𝑇1 : Semantic Seg. 𝑇2 : Surface Normal Prediction 𝑇3 : Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle \theta, within ↑ △𝑇2↑
Error ↓ \triangle, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model [5] (baseline) 19.94 48.71 0.00 17.85 16.21 29.77 72.19 86.19 0.00 0.64 0.24 58.93 86.27 96.16 0.00 - 0.00
SNIP [26] 18.96 46.93 -8.57 18.33 16.97 28.93 71.21 85.78 -12.03 0.64 0.25 56.75 85.71 95.33 -9.38 78.46 88.19 92.08 90.25 -9.99
LTH [13] 19.14 47.25 -7.01 17.67 16.32 29.67 72.15 86.22 -0.03 0.65 0.25 57.68 85.89 96.13 -8.32 71.32 88.34 92.19 90.52 -5.12
IMP [13] 18.76 48.12 -7.13 18.71 16.68 29.63 71.76 85.91 -9.11 0.64 0.23 59.75 86.52 96.31 6.00 68.49 88.07 95.13 87.74 -3.41
DiSparse [51] 19.87 48.83 -0.10 17.92 16.79 29.87 71.76 85.64 -4.87 0.65 0.24 58.42 85.72 96.28 -2.94 65.22 87.21 93.55 90.53 -2.64
AdapMTL w/o adaptive thresholds 18.93 47.51 -7.53 18.16 16.87 28.37 71.53 86.63 -10.91 0.65 0.24 58.26 85.82 95.92 -3.47 73.61 88.64 92.37 89.82 -7.30
AdapMTL (ours) 20.16 49.14 1.99 17.53 15.96 30.16 72.36 86.51 5.25 0.64 0.24 59.03 86.57 96.38 0.75 52.74 86.18 94.72 90.76 2.66

Moreover, we extended our experiments to different model archi-
tectures to assess the model-agnostic nature of our method, using
MobileNetV2 as an alternative architecture. The results, detailed
in Table 2, show how AdapMTL adeptly manages the dense repre-
sentation of MobileNetV2’s compact backbone, ensuring it remains
sufficiently dense (52.74% ) while enforcing higher sparsity in the
task-specific heads. This is very important, especially with such
backbone compact architectures where over-pruning the backbone
can easily lead to significant degradation in accuracy. Our approach
ensures that the backbone remains dense enough, thereby preserv-
ing overall performance.

4.2.2 Results under various sparsity settings. We show a compari-
son of results under different sparsity settings using different back-
bones, namely ResNet34 andMobileNetV2, as illustrated in Figure 4,
where AdapMTL consistently demonstrates superiority over other
methods. The normalized test score, following the common prac-
tice [34] [49], is obtained by averaging the relative performance
across all tasks with respect to the dense model. We observe a
slightly better performance for medium sparsity levels(from 50% to
80% ), which even surpasses dedicated dense multitask learning ap-
proaches despite the high sparsity enforced. This observation aligns
with our assumptions and motivates the research community to
further explore and develop sparse models. The score of SNIP drops
significantly as higher sparsity levels (>90%) are enforced. This is
because it fails to maintain the density of the shared backbone
effectively.

4.2.3 Results on Tiny-Taskonomy. On the Tiny-Taskonomy dataset,
which encompasses five distinct tasks, AdapMTL exhibits a more
consistent performance across all tasks, as detailed in Table 3. Our
method consistently achieved the highest scores in each task, unlike
other methods which exhibited noticeable biases. The DiSparse
method struggles to achieve unanimous decisions, particularly as
the number of tasks increases, highlighting a key limitation in its
approach.

The consistent superiority of AdapMTL across both NYUv2 and
Tiny-Taskonomy datasets, and with different backbone architec-
tures, highlights the effectiveness of our approach in achieving
high sparsity with minimal performance degradation for multi-
task models. More results on the other datasets, using the different
architectures, can be found in the supplementary material.

Table 3: Results on Tiny-Taskonomy dataset. T1: Semantic
Segmentation, T2: Surface Normal Prediction, T3: Depth Pre-
diction, T4: Keypoint Estimation, T5: Edge Estimation.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇4↑ △𝑇5↑ △𝑇 ↑
SNIP -11.2 -15.7 -9.4 +1.2 -2.8 -7.58
LTH -9.9 -1.3 -10.7 +0.5 +3.1 -3.66
IMP -6.3 -9.7 +3.1 -1.1 +2.4 -2.32
DiSparse -1.6 +1.2 -3.9 -1.5 +4.2 -0.32
AdapMTL w/o adaptive thresholds -8.7 -12.6 -4.7 +0.2 -1.4 -5.44
AdapMTL (ours) +2.8 +4.7 +1.5 +0.5 +4.9 +2.88
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Figure 5: Visualization comparing the sensitivity of the back-
bone and task head in a MobileNetV2 backbone MTL model.
The y-axis represents the total sparsity of all task heads.

4.3 Analysis
4.3.1 Pruning sensitivity. AdapMTL results in different sparsity for
backbone parameters and task-specific parameters, indicating that
it captures their different sensitivity to pruning. To compare the
sensitivity to pruning between the shared backbone and task heads,
we create a 3D plot, as shown in Figure 5. The x-axis represents
the shared backbone sparsity from 50% to 99%, while the y-axis
represents the total head sparsity for all three tasks from 90% to
99%. The z-axis represents the normalized score.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Computational cost of AdapMTL under various spar-
sity levels

Method Sparsity (%) Params △𝑇 ↑ FLOPs ↓
Deeplab-ResNet34 0 197.6M - 56.32G
AdapMTL 79.83 39.52M 6.7 9.04G
AdapMTL 85.01 29.64M 4.3 7.84G
AdapMTL 90.03 19.77M 2.45 5.32G
MobileNetV2 0 155.2M - 37.32G
AdapMTL 80.12 31.04M 7.8 5.79G
AdapMTL 85.03 23.28M 5.2 4.21G
AdapMTL 89.93 15.51M 2.66 2.98G

From the xz-plane, we can observe that the normalized score
drops significantly when we prune the backbone at sparsity lev-
els of 90% and higher. In contrast, from the yz-plane, we can see
that the task heads are highly robust to pruning, as they maintain
a good normalized score even when extreme sparsity levels are
reached. This observation highlights the importance of preserving
the shared backbone’s density and suggests that pruning strategies
should prioritize maintaining the backbone’s performance while ag-
gressively pruning the task-specific heads to achieve overall model
sparsity.

4.3.2 Computational cost. The computational cost of the AdapMTL
under varying sparsity levels is detailed in Table 4, which illustrates
a significant reduction in both parameters and FLOPs as sparsity
increases. These reductions highlight not only the adaptability of
AdapMTL across different architectures but also its capability to
maintain a balance between performance, measured by △𝑇 , and
efficiency, evidenced by the substantial decrease in FLOPs. This bal-
ance is crucial for deploying high-performance models in resource-
constrained environments. By leveraging specialized hardware and
software solutions that can efficiently handle sparse matrix oper-
ations, such as sparse matrix-vector multiplication (SpMV), these
models can achieve faster inference times [14, 39, 55].

4.4 Ablation Studies
We conducted ablation studies to validate the effectiveness of the
proposed adaptive multitask model pruning (Section 3.2), and the
adaptive weighting mechanism (Equation 6). We tested variations
including models without adaptive thresholds, where all compo-
nents share a single threshold, and models with only two adaptive
thresholds, where the backbone has a unique threshold while other
task heads share another. The results, presented in Table 5, highlight
the critical role of adaptive thresholding. Models without adaptive
thresholds showed significantly poorer performance, with a drastic
decrease in △𝑇 , especially affecting tasks with higher sensitivity to
pruning, such as Depth Prediction. Conversely, the full AdapMTL
configuration, employing independent thresholds for each compo-
nent, achieved the best △𝑇 score. These variations help illustrate
the impact and necessity of differentiated thresholding in multitask
environments. The results confirm that our full AdapMTL setup,
with all components active, performs superiorly across different
settings, underscoring the indispensable nature of each proposed
component.

Table 5: Ablation Study on NYU-V2. T1: Semantic Segmenta-
tion, T2: Surface Normal Prediction, T3: Depth Prediction.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇 ↑
w/o 𝜆 (=5) 1.26 1.74 -1.83 0.39
w/o sliding window 3.07 2.84 -0.49 1.81
w/o adaptive thresholds -0.46 -7.06 -13.68 -7.07
only 2 adaptive thresholds -0.32 -3.28 -9.74 -4.45
AdapMTL 3.55 3.41 0.38 2.45

0 100 200 300 400 500 600 700 800
Sliding Window Size

1.8

2.0

2.2

2.4

2.6

2.8
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Figure 6: Choice of sliding window size

We have implemented a sliding window mechanism to enhance
the robustness and accuracy of our pruning strategy. This mecha-
nism is pivotal in tracking the loss values over a sequence of epochs
to compute the average change in loss, ΔLwindow, as formalized in
Equation 6. By integrating this approach, we significantly mitigate
the influence of abrupt variations and potential outliers that may
occur in task-specific loss calculations. The sliding window, set at
a size of 400 as demonstrated in Figure 6, represents an optimal
balance between computational memory demands and the need
for a comprehensive data scope. This size ensures that the model
captures sufficient temporal loss information without excessive
memory consumption, thereby maintaining efficiency.

5 CONCLUSION
In this paper, we propose a novel adaptive pruning method designed
specifically for multitask learning (MTL) scenarios. Our approach
effectively addresses the challenges of balancing overall sparsity
and accuracy for all tasks in multitask models. AdapMTL introduces
multiple learnable soft thresholds, each independently assigned to
the shared backbone and task-specific heads to capture the nuances
in different components’ sensitivity to pruning. Our method co-
optimizes the soft thresholds and model weights during training,
enabling automatic determination of the ideal sparsity level for
each component to achieve high task accuracy and overall sparsity.
Furthermore, AdapMTL incorporates an adaptive weighting mecha-
nism that dynamically adjusts the importance of task-specific losses
based on each task’s robustness to pruning. The effectiveness of
AdapMTL has been extensively validated through comprehensive
experiments on the NYU-v2 and Tiny-Taskonomy datasets with
different architectures. The results demonstrate that our method
outperforms state-of-the-art pruning methods, thereby establishing
its suitability for efficient and effective multitask learning.
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