
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AdapMTL: Adaptive Pruning Framework for Multitask Learning
Model

Anonymous Authors

ABSTRACT
In the domain of multimedia and multimodal processing, the ef-
ficient handling of diverse data streams—such as images, video,
and sensor data—is paramount. Model compression and multitask
learning (MTL) are crucial in this field, offering the potential to
address the resource-intensive demands of processing and interpret-
ing multiple forms of media simultaneously. However, effectively
compressing a multitask model presents significant challenges due
to the complexities of balancing sparsity allocation and accuracy
performance across multiple tasks. To tackle the challenges, we pro-
pose AdapMTL, an adaptive pruning framework for MTL models.
AdapMTL leverages multiple learnable soft thresholds indepen-
dently assigned to the shared backbone and the task-specific heads
to capture the nuances in different components’ sensitivity to prun-
ing. During training, it co-optimizes the soft thresholds and MTL
model weights to automatically determine the suitable sparsity
level at each component in order to achieve both high task accu-
racy and high overall sparsity. It further incorporates an adaptive
weighting mechanism that dynamically adjusts the importance of
task-specific losses based on each task’s robustness to pruning. We
demonstrate the effectiveness of AdapMTL through comprehensive
experiments on popular multitask datasets, namely NYU-v2 and
Tiny-Taskonomy, with different architectures, showcasing superior
performance compared to state-of-the-art pruning methods.

CCS CONCEPTS
• Computing methodologies→ Image manipulation; Image
processing.

KEYWORDS
pruning, multitask learning

1 INTRODUCTION
In the landscape of multimedia and multimodal processing [2, 40],
Deep Neural Networks (DNNs) [46] have emerged as a pivotal tech-
nology, powering advancements across a spectrum of applications
from image and video analysis to natural language understanding
and beyond. Their profound ability to learn and abstract complex
features from a range of media forms underpins their utility in di-
verse domains, including content categorization, recommendation
systems, and interactive interfaces. However, as the complexity

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Input

Task1 Task2

(a) Dense

Task3

Shared

Backbone

Task-specific

Head

Input

Task1 Task2

(b) Sparse

Task3

Shared

Backbone

Task-specific

Head

Enforce

sparsity

Figure 1: Overview of pruning a dense multitask model. The
red parts represent the shared backbone, and the leaf boxes
represent the task-specific heads. In the sparse model, the
blank spaces indicate the pruned parameters.

of tasks grows, so does the demand for larger and more powerful
models, which in turn require substantial computational resources,
memory usage, and longer training times. This trade-off between
performance and model complexity has led to a continuous pursuit
of more efficient and compact CNN [24] architectures, as well as
innovations in pruning techniques that can maintain high perfor-
mance without compromising the benefits of the model’s scale.

Pruning techniques [13, 19, 23, 25–27, 36, 48] have emerged as a
promising approach to compress large models without significant
loss of performance. These techniques aim to reduce the size of
a model by eliminating redundant or less important parameters,
such as neurons, connections, or even entire layers, depending on
the method employed [9, 28, 61]. Parameter-efficient pruned mod-
els can provide significant inference time speedups by exploiting
the sparsity pattern [14, 31, 56, 60]. These models are designed
to have fewer parameters, which translates into reduced memory
footprint and lower computational complexity (FLOPs) [31]. By
leveraging specialized hardware and software solutions that can
efficiently handle sparse matrix operations, such as sparse matrix-
vector multiplication (SpMV), these models can achieve faster infer-
ence times [14, 39, 55]. Additionally, sparse models can benefit from
better cache utilization, as they require less memory bandwidth,
thereby reducing the overall latency of the computation [41, 60].

Although many techniques have been proposed in the past for
pruning a single-task model, there are much fewer works in prun-
ing a multitask model. Multitask models, which are designed to
simultaneously handle multiple tasks, have become increasingly
popular due to their ability to share representations and learn more
effectively from diverse data sources [16, 64, 67]. These models
have found wide-ranging applications where tasks are often related
and can benefit from shared knowledge [65]. A compact multitask
model, which is shown in Figure 1, has the potential to deliver

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

high performance across various tasks while minimizing resource
requirements, making it well-suited for deployment on resource-
constrained devices or in real-time scenarios.

Traditional pruning techniques, which are primarily focused on
single-task models, may not be directly applicable or sufficient for
multitask settings. Recent work has started to explore the intersec-
tion of multitask learning and pruning. Disparse [51] considered
each task independently by disentangling the importance measure-
ment and taking the unanimous decisions among all tasks when
performing parameter pruning and selection. A parameter is re-
moved if and only if it’s shown to be not critical for any task.
However, as the number of tasks increases, it becomes challenging
to achieve unanimous selection agreement among all tasks, which
could negatively affect the average performance across tasks. Thus,
there is a need for novel compression approaches that are catered
to the complexities of multitask models, taking into account the
inter-dependencies between tasks, the sharing of representations,
and the different sensitivity of task heads. Addressing these chal-
lenges is essential for advancing the development and deployment
of efficient, compact multitask models.

To tackle the challenges, we conduct extensive experiments that
reveal two valuable insights on designing an effective multitask
model pruning strategy. First, the shared backbone and the task-
specific heads have different sensitivity to pruning and thus should be
treated differently. However, current state-of-the-art approaches do
not adequately recognize this aspect, leading to equal treatment of
each component during pruning, rather than accounting for their
varying sensitivities. Second, the change in training loss could serve
as a useful guide for allocating sparsity among different components.
If the training loss of a specific task tends to be stable, we can prune
more aggressively on that component, as the task head is robust
to pruning. On the contrary, if the loss of a specific task fluctuates
significantly, we should consider pruning less on that component
since the training is less likely to converge at higher sparsity levels.

Motivated by these observations, we propose AdapMTL, an adap-
tive pruning framework for MTLmodels. AdapMTL dynamically ad-
justs sparsity across different components, such as the shared back-
bone and task-specific heads based on their sensitivity to pruning,
while preserving accuracy for each task. This is achieved through
a set of learnable soft thresholds [10, 23] that are independently
assigned to different components and co-optimized with model
weights to automatically determine the suitable sparsity level for
each component during training. Specifically, we maintain a set of
soft thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } in each component, where
𝛼𝐵 represents the threshold for the shared backbone and 𝛼𝑡 repre-
sents the threshold for the 𝑡-th task-specific head. In the forward
pass, only the weights larger than the threshold 𝛼 will be counted
in the model, while others are set to zero. In the backward pass, we
automatically update all the component-wise thresholds 𝛼 , which
will smoothly introduce sparsity. Additionally, AdapMTL employs
an adaptive weighting mechanism that dynamically adjusts the im-
portance of task-specific losses based on each task’s robustness to
pruning. AdapMTL does not require any pre-training or pre-pruned
models and can be trained from scratch.

We conduct extensive experiments on two popular multitask
datasets: NYU-v2 [47] and Tiny-Taskonomy [62], using different
architectures such as Deeplab-ResNet34 and MobileNetV2. When

compared with state-of-the-art pruning and MTL pruning methods,
AdapMTL demonstrates superior performance in both the training
and testing phases. It achieves lower training loss and better nor-
malized evaluation scores on the test set across different sparsity
levels. The contributions of this paper are summarized as follows:

(1) We conduct extensive experiments that reveal valuable in-
sights in designing effective MTL model pruning strategies.
These findings motivate the development of novel pruning
strategies specifically tailored for multitask scenarios.

(2) We propose AdapMTL, an adaptive pruning framework for
MTL models that dynamically adjusts sparsity levels across
different components to achieve high sparsity and task ac-
curacy. AdapMTL features component-wise learnable soft
thresholds that automatically determine the suitable sparsity
for each component during training and an adaptive weight-
ing mechanism that dynamically adjusts task importance
based on their sensitivity to pruning.

(3) We demonstrate the effectiveness of AdapMTL through ex-
tensive experiments on popular multitask datasets with dif-
ferent architectures, showcasing superior performance com-
pared to state-of-the-art pruning and MTL pruning methods.
Our method does not require any pre-training or pre-pruned
models.

2 RELATEDWORK
Multitask Learning.Multitask learning (MTL)[1, 4, 12, 64] aims
to learn a single model to solve multiple tasks simultaneously by
sharing information and computation among them, which is es-
sential for practical deployment. Over the years, various MTL ap-
proaches have been proposed, including hard parameter sharing[3],
soft parameter sharing [58], and task clustering [22]. In hard pa-
rameter sharing, a set of parameters in the backbone model are
shared among tasks while in soft parameter sharing, each task
has its own set of parameters, but the difference between the pa-
rameters of different tasks is regularized to encourage them to
be similar. MTL has been successfully applied to a wide range of
applications, such as natural language processing [8, 18, 29], com-
puter vision [17, 30, 44, 57], and reinforcement learning [42, 53].
Subsequently, the integration of neural architecture search (NAS)
with MTL has emerged as a promising direction. NAS for MTL,
exemplified by works like MTL-NAS [15], Learning Sparse Sharing
Architectures for Multiple Tasks [50], and Controllable Dynamic
Multi-Task Architectures [43], focuses on discovering optimal archi-
tectures that can efficiently learn shared and task-specific features.
These approaches, including Adashare [52] and AutoMTL [63],
demonstrate the potential of dynamically adjusting architectures
to the requirements of multiple tasks, optimizing both performance
and computational efficiency.

Pruning. Pruning techniques have been widely studied to re-
duce the computational complexity of deep neural networks while
maintaining their performance. Early works on pruning focused on
unstructured weight pruning [20, 25], where unimportant weights
were removed based on a given criterion, and the remaining weights
were fine-tuned. There are different kinds of criterion metrics,
such as magnitude-based [20, 27], gradient-based [36, 37], Hessian-
based [21], connection sensitivity-based [26, 33, 48], and so on.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Other works explored structured pruning [56, 66], which removes
entire filters or channels, leading to more efficient implementa-
tions on hardware platforms. Recently, the lottery ticket hypothe-
sis [13] has attracted considerable attention, suggesting that dense,
randomly-initialized neural networks contain subnetworks (win-
ning tickets) that can be trained to achieve comparable accuracy
with fewer parameters. This has led to follow-up works [13, 32, 38]
that provide a better understanding of the properties and initializa-
tion of winning tickets. Single-Shot Network Pruning (SNIP) [26]
is a data-driven method for pruning neural networks in a one-shot
manner. By identifying an initial mask to guide parameter selection,
it maintains a static network architecture during training. Some
other work, like the layer-wise pruning method [23], inspiringly
attempts to learn a layer-wise sparsity for individual layers rather
than considering the network as a whole. This approach allows for
fine-grained sparsity allocation across layers. To reduce the total
time involved in pruning and training, pruning during training
techniques [11, 35, 39] have been proposed to directly learn sparse
networks without the need for an iterative pruning and finetuning
process. These methods involve training networks with sparse con-
nectivity from scratch, updating both the weights and the sparsity
structure during the training process.

Pruning forMultitask Learning.Recently, attention has shifted
to the intersection of MTL and pruning techniques. A compact mul-
titask model has the potential to deliver high performance across
various tasks while minimizing resource requirements, making
it well-suited for deployment on resource-constrained devices or
in real-time scenarios. For example, MTP [6] focuses on efficient
semantic segmentation networks, demonstrating the potential of
multitask pruning to enhance performance in specialized domains.
Similarly, the work by Cheng et al.[7] introduces a novel approach
to multi-task pruning through filter index sharing, optimizing
model efficiency through a many-objective optimization frame-
work. Additionally, Ye et al.[59] propose a global channel pruning
method tailored for multitask CNNs, highlighting the importance
of performance-aware approaches in maintaining accuracy while
reducingmodel size. Disparse [51] proposes joint learning and prun-
ing methods to achieve efficient multitask models. However, these
methods often neglect the importance of the shared backbone, lead-
ing to equal treatment of each component during pruning, rather
than accounting for their varying importance. Our work aims to
address this limitation by adaptively allocating sparsity across the
shared backbone and task-specific heads based on their importance
and sensitivity.

3 METHODOLOGY
In this section, we first present the notations and the definition
of the multitask model pruning We then introduce the proposed
adaptive multitask model pruning framework in Section 3.2 and
describe the adaptive weighting mechanism in Section 3.3.

3.1 Preliminary
We formulate multitask model pruning as an optimization problem.
Given a dataset D = {(𝑥𝑖 ; 𝑦1𝑖 , 𝑦

2
𝑖
, ..., 𝑦𝑇

𝑖
), 𝑖 ∈ [1, 𝑁]}, a set of T

tasks T = {𝑡1 𝑡2 ..., 𝑡𝑇 }, and a desired sparsity level 𝑠 (i.e. the per-
centage of zero weights), the multitask model pruning aims to find

Figure 2: Difference between hard and soft thresholding.
Hard thresholding causes abrupt weight discontinuities dur-
ing training, while soft thresholding ensures a smooth rela-
tionship for consistent learning.

a sparse weight𝑊 that minimizes the sum of task-specific losses.
Mathematically, it is formulated as:

min
𝑊

L(𝑊 ;D) = min
𝑊

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

L𝑡 (𝑓 (𝑊,𝑥𝑖);𝑦𝑡𝑖)

s. t. 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,

(1)

where the L(·) is the total loss function, L𝑡 (·) is the task-specific
loss for each individual task 𝑡 , 𝑊 are the parameters of neural
network to be learned, 𝑃 is the total number of parameters and
∥ · ∥0 denotes the ℓ0-norm, i.e. the number of non-zero weights.
The key challenge here is how to enforce sparsity on weight𝑊
while minimizing the loss. This involves finding an optimal balance
between maintaining the performance of each task and pruning the
model to achieve the desired sparsity level. We next describe our
proposed adaptive pruning algorithm that can effectively handle the
unique characteristics of multitask models and efficiently allocate
sparsity across different components to preserve the overall model
performance.

3.2 Adaptive Multitask Model Pruning
Multitask models typically have a backbone that is shared across
tasks and task-specific heads. We observe that these different model
components have different sensitivities to pruning and thus should
be treated differently. The challenge lies in how to automatically
capture the sensitivity of each model component to pruning and
leverage the signal to automatically allocate sparsity across com-
ponents. To address the challenge, we propose a component-wise
pruning framework that assigns different learnable soft thresh-
olds to each component to capture its sensitivity to pruning. The
framework then co-optimizes the thresholds with model weights
to automatically determine the suitable sparsity level for each com-
ponent during training.

Specifically, we introduce a set of learnable soft thresholds 𝛼 =

{𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } for each component, where 𝛼𝐵 represents the
threshold for the shared backbone and 𝛼𝑡 represents the threshold
for the 𝑡-th task-specific head. The thresholds 𝛼 are determined
based on the significance and sensitivity of the respective compo-
nents and are adaptively updated using gradient descent during the
backpropagation process. The soft threshold 𝛼𝑡 and sparse weight
𝑊𝑡 for each component can be computed as follows:

𝑆 (𝑊𝑡 , 𝛼𝑡) = 𝑠𝑖𝑔𝑛(𝑊𝑡) · 𝑅𝑒𝐿𝑈 (|𝑊𝑡 |−𝛼𝑡)
𝛼𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init),

(2)

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

where 𝜃init is a learnable parameter that controls the initial pruning
threshold 𝛼𝑡 . We will discuss the choice of 𝜃init in the supplemen-
tary material. The 𝑅𝑒𝐿𝑈 (·) function here is used to set zero weights.
In other words, if some weights |𝑊𝑡 | are less than the threshold 𝛼𝑡 ,
then the sparse version of this weight 𝑆 (𝑤𝑡 , 𝛼𝑡) is set to 0. Other-
wise, we obtain the soft-thresholding version of this weight.

The reason why we choose soft thresholding [54] rather than
hard thresholding is illustrated in Figure 2. Soft parameter sharing is
the best fit for our approach as it allows us to calculate the gradient
and perform the backpropagation process more effectively.

AdapMTL reformulates the pruning problem in Equation 1 to find
a set of optimal thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } across different
components as follows:

min
𝑊,𝛼

L(𝑊,𝛼 ;D) = min
𝑊𝑡 ,𝛼𝑡

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝛽𝑡 · L𝑡 (𝑓 (𝑆 (𝑊𝑡 , 𝛼𝑡), 𝑥𝑖);𝑦𝑡𝑖)

s. t. 𝛼 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init), 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,
(3)

where the 𝛽𝑡 represents the adaptive weighting factor for 𝑡-th task,
which will be elaborated in Section 3.3.

We next describe howAdapMTL optimizes the problem in Equan-
tion 3. Considering a multitask model with T tasks, we divide the
weight parameters into𝑊 = {𝑊𝐵,𝑊1,𝑊2, ...,𝑊𝑇 }, where𝑊𝐵 rep-
resents the weight parameters for the shared backbone and𝑊𝑡

represents the weight parameters for the 𝑡-th task-specific head.
We derive the gradient descent update equation at the 𝑛-th epoch
for𝑊𝑡 as follows:

𝑊 𝑛+1
𝑡 =𝑊 𝑛

𝑡 − 𝜂𝑛
𝜕L(𝑊,𝛼 ;D)

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡)

⊙
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡)

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡)

⊙ B𝑛
𝑡 ,

(4)

where 𝜂𝑛 is the learning rate at the 𝑛-th epoch. We use the partial
derivative to calculate the gradients. As mentioned earlier, different
task heads may have varying sensitivities to pruning and, conse-
quently, may require different levels of sparsity to achieve the best
accuracy. By setting a set of learnable parameters for each com-
ponent and treating them separately during the backpropagation
process, our component-wise pruning framework can effectively
account for these differences in sensitivity and adaptively adjust
the sparsity allocation for each component.

Although 𝜕𝑆 (𝑊 𝑛
𝑡 ,𝛼𝑛

𝑡)
𝜕𝑊 𝑛

𝑡
is non-differentiable, we can approximate

the gradients using the sub-gradient method. In this case, we in-
troduce B𝑡𝑛 , an indicator function that acts like a binary mask.
The value of B𝑡𝑛 should be 0 if the sparse version of the weight
𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡) is equal to 0. This indicator function facilitates the ap-

proximation of gradients and the update of the sparse weights and
soft thresholds during the backpropagation process. Mathemati-
cally, the indicator function is:

B𝑛
𝑡 =

{
0, if 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡) = 0 ,

1, otherwise.
(5)

Figure 3: Breakdown of component-wise sparsity allocation
during training. We use the ResNet34 backbone and achieve
90% overall sparsity in the end.

By updating the sparse weights𝑊𝑡 , and similarly the soft thresh-
olds 𝛼𝑡 , for each component in this manner (the derivation process
is provided in the supplementary material), the framework can ef-
fectively and discriminatively allocate sparsity across the multitask
model. By taking into account the significance and sensitivity of
each component, this approach ultimately leads to more efficient
and accurate multitask learning.

3.3 Adaptive Weighting Mechanism
This subsection introduces the adaptive weighting mechanism that
dynamically adjusts the weight of each task loss based on each
task’s robustness to pruning. The adaptive weighting mechanism
determines the 𝛽𝑡 for the 𝑡-th task in Equation 3 during training.

The rationales behind the proposed adaptive weighting mech-
anism are two folds. First, if the training loss of a specific task 𝑡

tends to be stable, then we can assign a higher weighting factor 𝛽𝑡
and subsequently prune more aggressively on that component, as
the task head is robust to pruning. On the contrary, if the loss of a
specific task fluctuates significantly, we should consider pruning
less on that component by lowering the weighting factor since
the training is less likely to converge at higher sparsity levels. The
weighting factor is learned in an adaptive way, eliminating the need
for manual effort to elaborately fine-tune the hyper-parameters.

Second, the adaptive weighting mechanism should automatically
consider different multitask model architectures as well. The ratio
of backbone to task head weights, 𝑊𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

𝑊ℎ𝑒𝑎𝑑
, matters because it may

be beneficial to focus more on pruning the task heads instead if the
backbone is already highly compact. For example, in MobileNet-V2,
the backbone has only 2.2M parameters, which is 25 times fewer
than the task head.

We define a set of adaptive weights 𝛽 = {𝛽𝐵, 𝛽1, 𝛽2, ..., 𝛽𝑇 }, where
𝛽𝐵 represents the weighting factor for the shared backbone, 𝛽𝑡
represents the weighting factor for the 𝑡-th task-specific head. The
weighting factor can be formulated as follows:

𝛽𝑡 =

(
ΔLwindow

𝑡

/
L𝑡

1
T
∑T
𝑡=1 (ΔLwindow

𝑡

/
L𝑡)

)−1
· 𝜆 |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒∑T

𝑡=1 |𝑊𝑡 |ℎ𝑒𝑎𝑑
. (6)

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Here, ΔLwindow
𝑡 is the average deviation of the loss within the

sliding window for the 𝑡-th task, which is divided by L𝑡 to normal-
ize the scale. We then divide it by the sum of all tasks to normalize
between different tasks. The (·)−1 is a multiplicative inverse. 𝜆 is a
scaling factor, and we will discuss the choice of 𝜆 for different ar-
chitectures in the supplementary material. |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 , |𝑊𝑡 |ℎ𝑒𝑎𝑑
represent the weight parameters of shared backbone and 𝑡-th task-
specific head, separately. The right ratio in the equation reveals
the importance of each component by considering their relative
parameterizing contributions to the overall model structure. The
weighting factor 𝛽𝑡 is used to guide the pruning for the task-specific
head, depending on the stability of its loss and its contribution to
the model.

To make the multitask pruning more robust, we incorporate
a sliding window mechanism that tracks the past loss values to
calculate the average ΔLwindow in Equation 6 instead of relying
solely on the variance between two adjacent epochs. This approach
provides a more stable and reliable estimation of the fluctuations in
the task losses, as it accounts for a larger number of samples and
reduces the impact of potential outliers or short-term variations.

4 EXPERIMENTS
In this section, we first present an overview of the experiment set-
tings, including datasets, tasks, evaluation metrics, loss functions,
baselines for comparison, and training details in Section 4.1. Sub-
sequently, we provide comprehensive quantitative experimental
results in Section 4.2, comparing our approach with other state-of-
the-art methods to demonstrate the superiority of our proposed
method.We also analyze the sensitivity of different components and
computational cost in Section 4.3. Finally, we add ablation studies
to verify the effectiveness of the proposed method in Section 4.4.

4.1 Experiment Settings
4.1.1 Datasets and tasks. We conduct the experiments on two pop-
ular multi-task datasets: NYU-v2 [47], and Tiny-Taskonomy [62].
The NYU-v2 dataset is composed of RGB-D indoor scene images
and covers three tasks: 13-class semantic segmentation, depth es-
timation, and surface normal prediction. The training set consists
of 795 images, while the testing set includes 654 images. For the
Tiny-Taskonomy dataset, the experiments involve joint training
on five tasks: Semantic Segmentation, Surface Normal Prediction,
Depth Prediction, Keypoint Detection, and Edge Detection. The
training set includes 1.6 million images, while the test set comprises
0.3 million images. The training set includes 1.6 million images from
25 different classes, while the test set comprises 0.3 million images
across 5 classes.

4.1.2 Evaluation Metrics and Loss Functions. We adopt a range of
evaluation metrics for different tasks, evaluating the model perfor-
mance at different sparsity levels to provide a comprehensive view
of the model’s effectiveness and robustness across tasks. On the
NYUv2 dataset, there are totally three tasks. For Semantic Segmen-
tation, we employ the mean Intersection over Union (mIoU) and
Pixel Accuracy (Pixel Acc) as our primary evaluation metrics and
use cross-entropy to calculate the loss. Surface normal prediction
uses the inverse of cosine similarity between the normalized pre-
diction and ground truth, and is performed using mean and median

angle distances between the prediction and the ground truth. We
also report the percentage of pixels whose prediction is within the
angles of 11.25°, 22.5°, and 30° to the ground truth. Depth estimation
utilizes the L1 loss, with the absolute and relative errors between
the prediction and ground truth being calculated. Again, We also
present the relative difference between the prediction and ground
truth by calculating the percentage of 𝛿 =𝑚𝑎𝑥 (𝑦𝑝𝑟𝑒𝑑𝑦𝑔𝑡

,
𝑦𝑔𝑡

𝑦𝑝𝑟𝑒𝑑
) within

the thresholds of 1.25, 1.252, and 1.253. On the Taskonomy dataset,
there are two more tasks. In the context of both Keypoint and Edge
Detection tasks, the mean absolute error compared to the provided
ground-truth map serves as the main evaluation metric.

In multitask learning scenarios, tasks involve multiple evaluation
metrics with values potentially at different scales. To address this,
we compute a single relative performance metric following the
common practice [34] [49].

△𝑇𝑖 =
1
|𝑀 |

|𝑀 |∑︁
𝑗=1

(−1)𝑙 𝑗 · (𝑀𝑇𝑖 , 𝑗 −𝑀𝐷𝑀,𝑗)/𝑀𝐷𝑀,𝑗 ∗ 100% (7)

where 𝑙 𝑗 = 1 if a lower value shows better performance for the
metric𝑀𝑗 and 0 otherwise.𝑀𝑇𝑖 , 𝑗 , 𝑀𝐷𝑀,𝑗 are the sparse and dense
model value of metric 𝑗 , respectively. The △𝑇𝑖 is defined to compare
results with their equivalent dense task values and the overall
performance is obtained by averaging the relative performance
across all tasks, denoted as △𝑇 = 1

𝑇

∑𝑇
𝑖=1 △𝑇𝑖 , This metric provides

a unified measure of relative performance across tasks. Eventually,
by employing these diverse evaluation metrics, we can effectively
assess the performance of our method as well as the counterparts
across various tasks and datasets.

4.1.3 Baselines for Comparison. We compare ourworkwith LTH [13],
IMP [19], SNIP [26], and DiSparse [51]. For LTH, we first train a
dense model and subsequently prune it until the desired sparsity
level is reached, yielding the winning tickets (sparse network struc-
ture). We then reset the model to its initial weights to start the
sparse training process. For IMP, we remove the least important
weights, determined by their magnitudes, iteratively. For SNIP and
IMP, we directly use the official implementation provided by the au-
thors from GitHub. For DiSparse, the latest multitask pruning work
and first-of-its-kind, we utilize the official PyTorch implementation
and configure the method to use the DiSparse dynamic mechanism,
which is claimed as the best-performing approach in the paper. We
also train a fully dense multitask model as our baseline, which will
be used to calculate a single relative performance metric Norm.
Score.

We use the same backbonemodel at the same sparsity level across
all methods for a fair comparison. In our work, we define overall
sparsity as the percentage of weights pruned from the entire MTL
model, which includes both the shared backbone and task-specific
heads.We utilize Deeplab-ResNet34 [5] andMobileNetV2 [45] as the
backbone models, and the Atrous Spatial Pyramid Pooling (ASPP)
architecture [5] as the task-specific head. Both of them are popular
architectures for pixel-wise prediction tasks. We share a common
backbone for all tasks while each task has an independent task-
specific head branching out from the final layer of the backbone,
which is widely used in multitasking scenarios.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the Deeplab-ResNet34 backbone.
Each pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all
three tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity
allocation for each component.

Model
𝑇1 : Semantic Seg. 𝑇2 : Surface Normal Prediction 𝑇3 : Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle \theta, within ↑ △𝑇2↑
Error ↓ \triangle, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model (baseline) 25.54 57.91 0.00 17.11 14.95 36.35 72.25 85.44 0.00 0.55 0.22 65.21 89.87 97.52 0.00 - 0.00
SNIP [26] 24.09 55.32 -10.15 16.94 14.93 36.17 72.39 86.98 2.63 0.61 0.23 60.61 87.88 96.77 -25.49 85.46 90.24 92.28 91.17 -11.00
LTH [13] 25.42 57.98 -0.35 16.73 15.08 35.20 72.35 87.22 0.41 0.57 0.22 60.93 88.64 96.20 -12.92 78.32 90.54 95.21 95.49 -4.29
IMP [19] 25.68 57.86 0.46 16.86 15.18 35.53 71.96 86.26 -1.77 0.56 0.22 65.23 89.29 97.53 -3.82 74.98 92.34 97.23 95.15 -1.71
DiSparse [51] 25.71 58.08 0.96 17.03 15.23 35.10 71.85 86.22 -4.48 0.57 0.22 64.93 88.64 97.20 -5.76 75.07 90.41 98.51 94.86 -3.10
AdapMTL w/o adaptive thresholds 25.59 57.53 -0.46 17.26 15.75 36.21 71.53 85.91 -7.06 0.58 0.22 62.52 87.12 96.50 -13.68 79.12 89.37 96.85 95.74 -7.07
AdapMTL (ours) 26.28 58.29 3.55 16.92 14.91 36.36 72.97 86.29 3.41 0.55 0.22 65.39 89.93 97.58 0.38 71.74 93.18 99.26 96.22 2.45

50 60 70 80 90 95 99
Overall sparsity (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

 te
st

 sc
or

e

Dense Model
Ours
LTH
Disparse
SNIP
IMP

(a) ResNet34

50 60 70 80 90 95 99
Overall sparsity (%)

0.80

0.85

0.90

0.92

0.94

0.96

0.98

1.00

N
or

m
al

iz
ed

 te
st

 sc
or

e

Dense Model
Ours
LTH
Disparse
SNIP
IMP

(b) MobileNetV2

Figure 4: Comparison of state-of-the-art methods, including DiSparse [51], LTH [13], SNIP [26], and IMP [19], on the NYUv2
dataset, evaluated with different MTL backbones and under various sparsity settings.

4.2 Experiment Results
4.2.1 Results on NYU-V2. We first present the comparison results
with state-of-the-art methods on the NYU-V2 dataset in table 1.
Overall, AdapMTL outperforms all other methods by a significant
margin across most metrics and achieves the highest △𝑇 . Recall
that the major difference between our method and the baselines
lies in our ability to adaptively learn the sparsity allocation across
the components adaptively, maintaining a dense shared backbone
(71.74%) while keeping the task-specific heads relatively sparse.
Within the scope of our research, we characterize overall sparsity
as the percentage of weights pruned from the entire MTL model,
which includes both the shared backbone and task-specific heads.

SNIP [26] exhibits the lowest performance in the multi-task sce-
nario because its pruning mask is determined from a single batch of
data’s gradient, which treats all components, including the shared
backbone, equally. Since all input information passes through the
shared backbone, accuracy loss in the shallow layers is inevitable,
regardless of how well the task heads perform with relatively high

density. LTH’s [13] winning tickets do not sufficiently focus on
the backbone, as they intentionally create a dense surface normal
prediction task head. Although this approach performs well on this
specific task, the bias still causes an imbalance in the metrics across
all tasks, resulting in a lower △𝑇 score. IMP [19] achieves a good
normalized score across all tasks. However, this method is trained in
an iterative manner and prunes the model step-by-step, resulting in
a significantly longer training time. DiSparse [51] learns an effective
dense backbone by adopting a unanimous decision across all tasks.
However, it falls short of differentiating the relative sensitivities
between specific task heads, leading to an imbalanced normalized
score among all tasks. Here, we add an additional row, AdapMTL
without adaptive thresholds, to demonstrate the effectiveness of
our approach. Rather than using multiple adaptive thresholds, this
version utilizes a single shared threshold for all components. As
expected, performance significantly deteriorates because a uniform
threshold makes it hard to capture the nuances in different compo-
nents’ sensitivity.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the MobileNetV2 backbone. Each
pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all three
tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity allocation
for each component.

Model
𝑇1 : Semantic Seg. 𝑇2 : Surface Normal Prediction 𝑇3 : Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle \theta, within ↑ △𝑇2↑
Error ↓ \triangle, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model [5] (baseline) 19.94 48.71 0.00 17.85 16.21 29.77 72.19 86.19 0.00 0.64 0.24 58.93 86.27 96.16 0.00 - 0.00
SNIP [26] 18.96 46.93 -8.57 18.33 16.97 28.93 71.21 85.78 -12.03 0.64 0.25 56.75 85.71 95.33 -9.38 78.46 88.19 92.08 90.25 -9.99
LTH [13] 19.14 47.25 -7.01 17.67 16.32 29.67 72.15 86.22 -0.03 0.65 0.25 57.68 85.89 96.13 -8.32 71.32 88.34 92.19 90.52 -5.12
IMP [13] 18.76 48.12 -7.13 18.71 16.68 29.63 71.76 85.91 -9.11 0.64 0.23 59.75 86.52 96.31 6.00 68.49 88.07 95.13 87.74 -3.41
DiSparse [51] 19.87 48.83 -0.10 17.92 16.79 29.87 71.76 85.64 -4.87 0.65 0.24 58.42 85.72 96.28 -2.94 65.22 87.21 93.55 90.53 -2.64
AdapMTL w/o adaptive thresholds 18.93 47.51 -7.53 18.16 16.87 28.37 71.53 86.63 -10.91 0.65 0.24 58.26 85.82 95.92 -3.47 73.61 88.64 92.37 89.82 -7.30
AdapMTL (ours) 20.16 49.14 1.99 17.53 15.96 30.16 72.36 86.51 5.25 0.64 0.24 59.03 86.57 96.38 0.75 52.74 86.18 94.72 90.76 2.66

Moreover, we extended our experiments to different model archi-
tectures to assess the model-agnostic nature of our method, using
MobileNetV2 as an alternative architecture. The results, detailed
in Table 2, show how AdapMTL adeptly manages the dense repre-
sentation of MobileNetV2’s compact backbone, ensuring it remains
sufficiently dense (52.74%) while enforcing higher sparsity in the
task-specific heads. This is very important, especially with such
backbone compact architectures where over-pruning the backbone
can easily lead to significant degradation in accuracy. Our approach
ensures that the backbone remains dense enough, thereby preserv-
ing overall performance.

4.2.2 Results under various sparsity settings. We show a compari-
son of results under different sparsity settings using different back-
bones, namely ResNet34 andMobileNetV2, as illustrated in Figure 4,
where AdapMTL consistently demonstrates superiority over other
methods. The normalized test score, following the common prac-
tice [34] [49], is obtained by averaging the relative performance
across all tasks with respect to the dense model. We observe a
slightly better performance for medium sparsity levels(from 50% to
80%), which even surpasses dedicated dense multitask learning ap-
proaches despite the high sparsity enforced. This observation aligns
with our assumptions and motivates the research community to
further explore and develop sparse models. The score of SNIP drops
significantly as higher sparsity levels (>90%) are enforced. This is
because it fails to maintain the density of the shared backbone
effectively.

4.2.3 Results on Tiny-Taskonomy. On the Tiny-Taskonomy dataset,
which encompasses five distinct tasks, AdapMTL exhibits a more
consistent performance across all tasks, as detailed in Table 3. Our
method consistently achieved the highest scores in each task, unlike
other methods which exhibited noticeable biases. The DiSparse
method struggles to achieve unanimous decisions, particularly as
the number of tasks increases, highlighting a key limitation in its
approach.

The consistent superiority of AdapMTL across both NYUv2 and
Tiny-Taskonomy datasets, and with different backbone architec-
tures, highlights the effectiveness of our approach in achieving
high sparsity with minimal performance degradation for multi-
task models. More results on the other datasets, using the different
architectures, can be found in the supplementary material.

Table 3: Results on Tiny-Taskonomy dataset. T1: Semantic
Segmentation, T2: Surface Normal Prediction, T3: Depth Pre-
diction, T4: Keypoint Estimation, T5: Edge Estimation.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇4↑ △𝑇5↑ △𝑇 ↑
SNIP -11.2 -15.7 -9.4 +1.2 -2.8 -7.58
LTH -9.9 -1.3 -10.7 +0.5 +3.1 -3.66
IMP -6.3 -9.7 +3.1 -1.1 +2.4 -2.32
DiSparse -1.6 +1.2 -3.9 -1.5 +4.2 -0.32
AdapMTL w/o adaptive thresholds -8.7 -12.6 -4.7 +0.2 -1.4 -5.44
AdapMTL (ours) +2.8 +4.7 +1.5 +0.5 +4.9 +2.88

x: Backbone sparsity

0.50
0.60

0.70
0.80

0.900.950.99

y: H
ea

d s
pa

rsi
ty

0.90

0.93
0.95

0.97
0.99

z:
 N

or
m

al
ize

d
sc

or
e

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Figure 5: Visualization comparing the sensitivity of the back-
bone and task head in a MobileNetV2 backbone MTL model.
The y-axis represents the total sparsity of all task heads.

4.3 Analysis
4.3.1 Pruning sensitivity. AdapMTL results in different sparsity for
backbone parameters and task-specific parameters, indicating that
it captures their different sensitivity to pruning. To compare the
sensitivity to pruning between the shared backbone and task heads,
we create a 3D plot, as shown in Figure 5. The x-axis represents
the shared backbone sparsity from 50% to 99%, while the y-axis
represents the total head sparsity for all three tasks from 90% to
99%. The z-axis represents the normalized score.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Computational cost of AdapMTL under various spar-
sity levels

Method Sparsity (%) Params △𝑇 ↑ FLOPs ↓
Deeplab-ResNet34 0 197.6M - 56.32G
AdapMTL 79.83 39.52M 6.7 9.04G
AdapMTL 85.01 29.64M 4.3 7.84G
AdapMTL 90.03 19.77M 2.45 5.32G
MobileNetV2 0 155.2M - 37.32G
AdapMTL 80.12 31.04M 7.8 5.79G
AdapMTL 85.03 23.28M 5.2 4.21G
AdapMTL 89.93 15.51M 2.66 2.98G

From the xz-plane, we can observe that the normalized score
drops significantly when we prune the backbone at sparsity lev-
els of 90% and higher. In contrast, from the yz-plane, we can see
that the task heads are highly robust to pruning, as they maintain
a good normalized score even when extreme sparsity levels are
reached. This observation highlights the importance of preserving
the shared backbone’s density and suggests that pruning strategies
should prioritize maintaining the backbone’s performance while ag-
gressively pruning the task-specific heads to achieve overall model
sparsity.

4.3.2 Computational cost. The computational cost of the AdapMTL
under varying sparsity levels is detailed in Table 4, which illustrates
a significant reduction in both parameters and FLOPs as sparsity
increases. These reductions highlight not only the adaptability of
AdapMTL across different architectures but also its capability to
maintain a balance between performance, measured by △𝑇 , and
efficiency, evidenced by the substantial decrease in FLOPs. This bal-
ance is crucial for deploying high-performance models in resource-
constrained environments. By leveraging specialized hardware and
software solutions that can efficiently handle sparse matrix oper-
ations, such as sparse matrix-vector multiplication (SpMV), these
models can achieve faster inference times [14, 39, 55].

4.4 Ablation Studies
We conducted ablation studies to validate the effectiveness of the
proposed adaptive multitask model pruning (Section 3.2), and the
adaptive weighting mechanism (Equation 6). We tested variations
including models without adaptive thresholds, where all compo-
nents share a single threshold, and models with only two adaptive
thresholds, where the backbone has a unique threshold while other
task heads share another. The results, presented in Table 5, highlight
the critical role of adaptive thresholding. Models without adaptive
thresholds showed significantly poorer performance, with a drastic
decrease in △𝑇 , especially affecting tasks with higher sensitivity to
pruning, such as Depth Prediction. Conversely, the full AdapMTL
configuration, employing independent thresholds for each compo-
nent, achieved the best △𝑇 score. These variations help illustrate
the impact and necessity of differentiated thresholding in multitask
environments. The results confirm that our full AdapMTL setup,
with all components active, performs superiorly across different
settings, underscoring the indispensable nature of each proposed
component.

Table 5: Ablation Study on NYU-V2. T1: Semantic Segmenta-
tion, T2: Surface Normal Prediction, T3: Depth Prediction.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇 ↑
w/o 𝜆 (=5) 1.26 1.74 -1.83 0.39
w/o sliding window 3.07 2.84 -0.49 1.81
w/o adaptive thresholds -0.46 -7.06 -13.68 -7.07
only 2 adaptive thresholds -0.32 -3.28 -9.74 -4.45
AdapMTL 3.55 3.41 0.38 2.45

0 100 200 300 400 500 600 700 800
Sliding Window Size

1.8

2.0

2.2

2.4

2.6

2.8

T

Datasets
NYU-V2
Tiny-Taskonomy

Figure 6: Choice of sliding window size

We have implemented a sliding window mechanism to enhance
the robustness and accuracy of our pruning strategy. This mecha-
nism is pivotal in tracking the loss values over a sequence of epochs
to compute the average change in loss, ΔLwindow, as formalized in
Equation 6. By integrating this approach, we significantly mitigate
the influence of abrupt variations and potential outliers that may
occur in task-specific loss calculations. The sliding window, set at
a size of 400 as demonstrated in Figure 6, represents an optimal
balance between computational memory demands and the need
for a comprehensive data scope. This size ensures that the model
captures sufficient temporal loss information without excessive
memory consumption, thereby maintaining efficiency.

5 CONCLUSION
In this paper, we propose a novel adaptive pruning method designed
specifically for multitask learning (MTL) scenarios. Our approach
effectively addresses the challenges of balancing overall sparsity
and accuracy for all tasks in multitask models. AdapMTL introduces
multiple learnable soft thresholds, each independently assigned to
the shared backbone and task-specific heads to capture the nuances
in different components’ sensitivity to pruning. Our method co-
optimizes the soft thresholds and model weights during training,
enabling automatic determination of the ideal sparsity level for
each component to achieve high task accuracy and overall sparsity.
Furthermore, AdapMTL incorporates an adaptive weighting mecha-
nism that dynamically adjusts the importance of task-specific losses
based on each task’s robustness to pruning. The effectiveness of
AdapMTL has been extensively validated through comprehensive
experiments on the NYU-v2 and Tiny-Taskonomy datasets with
different architectures. The results demonstrate that our method
outperforms state-of-the-art pruning methods, thereby establishing
its suitability for efficient and effective multitask learning.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

AdapMTL: Adaptive Pruning Framework for Multitask Learning Model ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2006. Multi-

task feature learning. Advances in neural information processing systems 19
(2006).

[2] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2018. Multi-
modal machine learning: A survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence 41, 2 (2018), 423–443.

[3] Rich Caruana. 1993. Multitask learning: A knowledge-based source of inductive
bias. In Machine Learning Proceedings 1993. Elsevier, 41–48.

[4] Rich Caruana. 1997. Multitask learning. Machine learning 28 (1997), 41–75.
[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. 2017. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence 40, 4 (2017), 834–848.

[6] Xinghao Chen, Yiman Zhang, and Yunhe Wang. 2022. MTP: multi-task prun-
ing for efficient semantic segmentation networks. In 2022 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 1–6.

[7] Hanjing Cheng, Zidong Wang, Lifeng Ma, Xiaohui Liu, and Zhihui Wei. 2021.
Multi-task pruning via filter index sharing: A many-objective optimization ap-
proach. Cognitive Computation 13 (2021), 1070–1084.

[8] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning. ACM, 160–167.

[9] Xiaohan Dong, Huizi Mao, Tianchen Liu, Yiming Yang, Ji Huang, Sen Chen,
Zhang Yang, Geng Yuan Tong, Zhen Lin, Song Tang, et al. 2021. HAWQ: Hessian
AWare Quantization of Neural Networks with Mixed-Precision. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 9234–9243.

[10] David L Donoho. 1995. De-noising by soft-thresholding. IEEE transactions on
information theory 41, 3 (1995), 613–627.

[11] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen, Jakob
Uszkoreit, and Avital Dubey. 2020. Rigging the lottery: Making all tickets winners.
In International Conference on Learning Representations.

[12] Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi–task
learning. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. 109–117.

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2020. The lottery ticket hypothesis at scale. International Conference on Learning
Representations (2020).

[14] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The State of Sparsity in Deep
Neural Networks. In arXiv preprint arXiv:1902.09574.

[15] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. 2020. Mtl-nas:
Task-agnostic neural architecture search towards general-purpose multi-task
learning. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition. 11543–11552.

[16] Siddhant Garg, Lijun Zhang, and Hui Guan. 2023. Structured Pruning for Multi-
Task Deep Neural Networks. arXiv preprint arXiv:2304.06840 (2023).

[17] Ross Girshick. 2015. Fast R-CNN. In Proceedings of the IEEE international confer-
ence on computer vision. 1440–1448.

[18] Hui Guan, Xipeng Shen, and Hamid Krim. 2017. Egeria: A framework for auto-
matic synthesis of HPC advising tools through multi-layered natural language
processing. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[19] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[20] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135–1143.

[21] Babak Hassibi and David Stork. 1992. Second order derivatives for network
pruning: Optimal brain surgeon. Advances in neural information processing
systems 5 (1992).

[22] Laurent Jacob, Francis R Bach, and Jean-Philippe Vert. 2009. Clustered multi-task
learning: A convex formulation. In Advances in neural information processing
systems. 745–752.

[23] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameter-
ization for learnable sparsity. In International Conference on Machine Learning.
PMLR, 5544–5555.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[25] Yann LeCun, John S Denker, and Sara A Solla. 1990. Optimal brain damage.
Advances in neural information processing systems (1990), 598–605.

[26] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. Snip:
Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340 (2018).

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

[28] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang
Zhang. 2020. HRank: Filter Pruning using High-Rank Feature Map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1529–
1538.

[29] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
2015. Representation learning usingmulti-task deep neural networks for semantic
classification and information retrieval. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing. 912–921.

[30] Yinglu Liu, Mingcan Xiang, Hailin Shi, and Tao Mei. 2021. One-stage Context
and Identity Hallucination Network. In Proceedings of the 29th ACM International
Conference on Multimedia. 835–843.

[31] Zehao Liu, Haoliang Li, Shuicheng Shen, Junjie Yan, Xiaolin Zhang, and Nenghai
Wang. 2019. MetaPruning: Meta Learning for Automatic Neural Network Channel
Pruning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 3296–3305.

[32] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018.
Rethinking the value of network pruning. In Proceedings of the IEEE International
Conference on Computer Vision. 7002–7012.

[33] Jian-Hao Luo and Jianxin Wu. 2020. Neural network pruning with residual-
connections and limited-data. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 1458–1467.

[34] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. 2019. Attentive
single-tasking of multiple tasks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1851–1860.

[35] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. 2018. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science. In
Proceedings of the 35th International Conference on Machine Learning. 1125–1143.

[36] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. 2017. Variational
dropout sparsifies deep neural networks. In International Conference on Machine
Learning. PMLR, 2498–2507.

[37] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019.
Importance estimation for neural network pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 11264–11272.

[38] Ari S Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. 2019. One ticket
to win them all: generalizing lottery ticket initializations across datasets and
optimizers. In Advances in Neural Information Processing Systems. 11644–11655.

[39] Hesham Mostafa, Xiaoxiao Wang, and Decebal Constantin Mocanu. 2019. Pa-
rameter efficient training of deep convolutional neural networks by dynamic
sparse reparameterization. In Proceedings of the 36th International Conference on
Machine Learning. 4648–4657.

[40] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drewYNg. 2011. Multimodal deep learning. In Proceedings of the 28th international
conference on machine learning (ICML-11). 689–696.

[41] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. Patdnn: Achieving real-time dnn execution on mobile
devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 907–922.

[42] Emilio Parisotto, Jimmy Lei Ba, and Antoine Bordes. 2016. Actor-mimic: Deep
multitask and transfer reinforcement learning. In International Conference on
Learning Representations.

[43] Dripta S Raychaudhuri, Yumin Suh, Samuel Schulter, Xiang Yu, Masoud Faraki,
Amit K Roy-Chowdhury, and Manmohan Chandraker. 2022. Controllable dy-
namic multi-task architectures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10955–10964.

[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[46] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[47] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. ECCV (5) 7576 (2012),
746–760.

[48] Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang,
and Jason D Lee. 2020. Sanity-checking pruning methods: Random tickets can
win the jackpot. Advances in Neural Information Processing Systems 33 (2020),
20390–20401.

[49] Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, and Rayadurgam Srikant. 2020.
The global landscape of neural networks: An overview. IEEE Signal Processing
Magazine 37, 5 (2020), 95–108.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu, Hang Yan, Xipeng Qiu, and
Xuanjing Huang. 2020. Learning sparse sharing architectures for multiple tasks.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 8936–8943.

[51] Xinglong Sun, Ali Hassani, Zhangyang Wang, Gao Huang, and Humphrey Shi.
2022. DiSparse: Disentangled Sparsification for Multitask Model Compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12382–12392.

[52] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. 2020. Adashare:
Learning what to share for efficient deep multi-task learning. Advances in Neural
Information Processing Systems 33 (2020), 8728–8740.

[53] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James
Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral:
Robust multitask reinforcement learning. In Advances in Neural Information
Processing Systems. 4496–4506.

[54] Antoine Vanderschueren and Christophe De Vleeschouwer. 2023. Are Straight-
Through gradients and Soft-Thresholding all you need for Sparse Training?. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
3808–3817.

[55] Yulong Wang, Yifan Xu, Siyuan Qiao, Hanxiao Liu, Zhijian Yang, Chao Xu, Daiyi
Lin, Tong Wang, Xinyu Dai, Yichen Huang, et al. 2020. EagleEye: Fast Sub-
net Evaluation for Efficient Neural Network Pruning. In Proceedings of the 37th
International Conference on Machine Learning. 10016–10026.

[56] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[57] Mingcan Xiang, Yinglu Liu, Tingting Liao, Xiangyu Zhu, Can Yang, Wu Liu,
and Hailin Shi. 2021. The 3rd grand challenge of lightweight 106-point facial
landmark localization on masked faces. In 2021 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW). IEEE, 1–6.

[58] Yu Yang and Timothy M Hospedales. 2016. Trace norm regularized deep multi-
task learning. In Proceedings of the IEEE conference on computer vision and pattern

recognition. 4333–4341.
[59] Hancheng Ye, Bo Zhang, Tao Chen, Jiayuan Fan, and Bin Wang. 2023.

Performance-aware Approximation of Global Channel Pruning for Multitask
CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[60] Ruichi Yu, Ang Li, Chun-Fu Chen, Jiwen Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. 2018. NISP: Pruning Networks
using Neuron Importance Score Propagation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 9194–9203.

[61] Yujia Yu, Shuaishuai Liu, Anfeng Zhang, and Chunhua Shen. 2019. Playing
Lottery Tickets with Vision and Language. In arXiv preprint arXiv:1912.04488.

[62] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik,
and Silvio Savarese. 2018. Taskonomy: Disentangling task transfer learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
3712–3722.

[63] Lijun Zhang, Xiao Liu, and Hui Guan. 2022. Automtl: A programming framework
for automating efficient multi-task learning. Advances in Neural Information
Processing Systems 35 (2022), 34216–34228.

[64] Lijun Zhang, Xiao Liu, and Hui Guan. 2022. A Tree-Structured Multi-Task Model
Recommender. In International Conference on AutomatedMachine Learning. PMLR,
10–1.

[65] Lijun Zhang, Qizheng Yang, Xiao Liu, and Hui Guan. 2023. An Alternative Hard-
Parameter Sharing Paradigm for Multi-Domain Learning. IEEE Access 11 (2023),
10440–10452.

[66] Shaokai Zhang, Shanhe Du, Wentai Wang, Yiran Chen, and Hai Li. 2018. A
systematic DNN weight pruning framework using alternating direction method
of multipliers. In Proceedings of the European Conference on Computer Vision
(ECCV). 184–199.

[67] Yu Zhang and Qiang Yang. 2018. A Survey on Multi-Task Learning. arXiv preprint
arXiv:1707.08114 (2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminary
	3.2 Adaptive Multitask Model Pruning
	3.3 Adaptive Weighting Mechanism

	4 Experiments
	4.1 Experiment Settings
	4.2 Experiment Results
	4.3 Analysis
	4.4 Ablation Studies

	5 Conclusion
	References

