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ABSTRACT

Linear attention methods provide a strong alternative to softmax attention as they
allow for efficient recurrent decoding. Recent research has focused on enhancing
standard linear attention by incorporating gating while retaining its computational
benefits. Such Gated Linear Attention (GLA) architectures include highly competi-
tive models such as Mamba and RWKYV. In this work, we examine the in-context
learning capabilities of the GLA model and make the following contributions. We
show that a multilayer GLA can implement a general class of Weighted Precondi-
tioned Gradient Descent (WPGD) algorithms with data-dependent weights. These
weights are induced by the gating and allows the model to control the contribution
of individual tokens to prediction. To further understand the mechanics of weight-
ing, we introduce a novel data model with multitask prompts and characterize the
optimization landscape of the problem of learning a WPGD algorithm. We identify
mild conditions under which there is a unique (global) minimum up to scaling
invariance, and the associated WPGD algorithm is unique as well. Finally, we
translate these findings to explore the optimization landscape of GLA and shed
light on how gating facilitates context-aware learning and when it is provably better
than vanilla linear attention.

1 INTRODUCTION

The Transformer architecture (Vaswani, 2017) has become the de facto standard for language
modeling tasks. The key component of the Transformer is the self-attention mechanism, which
computes softmax-based similarities between all token pairs. Despite its success, the self-attention
mechanism has quadratic complexity with respect to sequence length, making it computationally
expensive for long sequences. To address this issue, a growing body of work has proposed near-linear
time approaches to sequence modeling. The initial approaches included linear attention and state-
space models, both achieving O(1) inference complexity per generated token, thanks to their recurrent
form. While these initial architectures typically do not match softmax-attention in performance, recent
recurrent models such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), mLSTM (Beck et al., 2024),
GLA Transformer (Yang et al., 2023), and RWKV-6 (Peng et al., 2024) achieve highly competitive
results with the softmax Transformer. Notably, as highlighted in Yang et al. (2023), these architectures
can be viewed as variants of gated linear attention (GLA), which incorporates a gating mechanism
within the recurrence of linear attention.

Given a sequence of tokens (z;)], C R and associated query, key, and value embeddings
(qi, ki, V)L, C R4, with d being the embedding dimension, the GLA recurrence is given by

Si=G;08,_1 + Vik;r, and o, = Siqi' (1)

Here, S; € R™ represents the 2D state variable, o; € RY represents the i’th output token, and the
gating variable G; := g(z;) € R™ is applied to the state through the Hadamard product ©. When the
gating is removed, the model reduces to causal linear attention (Katharopoulos et al., 2020).

The central objective of this work is to enhance the mathematical understanding of the GLA mecha-
nism. In-context learning (ICL), one of the most remarkable features of modern sequence models,
provides a powerful framework to achieve this aim. ICL refers to the ability of a sequence model
to implicitly infer functional relationships from the demonstrations provided in its context window
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(Brown, 2020; Min et al., 2022). It is inherently related to the model’s ability to emulate learning
algorithms. Notably, ICL has been a major topic of empirical and theoretical interest in recent years.
More specifically, a series of works have examined the approximation and optimization characteris-
tics of linear attention, and have provably connected linear attention to the preconditioned gradient
descent algorithm (Von Oswald et al., 2023; Ahn et al., 2024; Zhang et al., 2024). Given that the
GLA recurrence in (1) has a richer design space, this leads us to ask:

Q: What are the ICL capabilities of the GLA mechanism? What learning algorithm
does it emulate when presented with an ICL task?

Contributions: The GLA recurrence in (1) enables the sequence model to weight past information
in a data-dependent manner through the gating mechanism (G;)_ ;. Building on this observation, we
demonstrate that GLA models can implement a data-dependent Weighted Preconditioned Gradient
Descent (WPGD) algorithm. Specifically, a one-step version of this algorithm with scalar gating,
where all entries of G; are identical, is described by the prediction:

$=x"PX (y 0 w). )

Here, X € R is the input feature matrix; y € R" is the associated label vector; x € R represents the
test/query input to predict; P € R¥ is the preconditioning matrix; and w € R" weights the individual
samples. When w is fixed, we drop “data-dependent” and simply refer to this algorithm as the WPGD
algorithm. However, for GLA, w := w(X,y) depends on the data through recursive multiplication of
the gating variables. Building on this formalism, we make the following specific contributions:

e ICL capabilities of GLA (§3): Through constructive arguments, we demonstrate that
a multilayer GLA model can implement data-dependent WPGD iterations, with weights
induced by the gating function. This construction sheds light on the role of causal masking
and the expressivity distinctions between scalar- and vector-valued gating functions.

e Landscape of 1-step WPGD (§4): The GLA©WPGD connection motivates us to ask:
How does WPGD weigh demonstrations in terms of their relevance to the query? To address
this, we study the fundamental problem of learning an optimal WPGD algorithm: Given a
tuple (X, y,x,y) ~ D, with y being the label associated with the query, we investigate the
population risk minimization:

2
Livep = min Lypep(P, ) where  Lipp(P, w) = Ep [(y -x"PX(w©® y))

G,

As our primary mathematical contribution, we characterize the loss landscape under a
general multitask data setting, where the tasks associated with the demonstrations (X, y)
have varying degrees of correlation to the target task (x, y). We carefully analyze this loss
landscape and show that, under mild conditions, there is a unique (global) minimum (P, w)
up to scaling invariance, and the associated WPGD algorithm is also unique.

o Loss landscape of 1-layer GLA (§5): The landscape is highly intricate due to the recursively
multiplied gating variables. We show that learning the optimal GLA layer can be connected
to solving (3) with a constraint w € C, where the restriction C is induced by the choice
of gating function and input space. Solidifying this connection, we introduce a multitask
prompt model under which we characterize the loss landscape of GLA and the influence of
task correlations. Our analysis and experiments reveal insightful distinctions between linear
attention, GLA with scalar gating, and GLA with vector-valued gating.

1.1 RELATED WORK

We discuss prior literature under two topics.

Efficient sequence models. Recent sequence model proposals — such as RetNet (Sun et al., 2023),
Mamba (Gu & Dao, 2023), xLSTM (Beck et al., 2024), GLA Transformer (Yang et al., 2023), RWKV-
6 (Peng et al., 2024) — admit efficient recurrent forms while being increasingly competitive with
the transformer architecture with softmax-attention. However, we have a rather limited theoretical
understanding of these architectures, especially, when it comes to their optimization landscape and
ICL capabilities. Park et al. (2024); Grazzi et al. (2024) demonstrate that Mamba is effective in
competitive with a transformer of similar size in various ICL tasks whereas Arora et al. (2024);
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Jelassi et al. (2024) establish theoretical and empirical shortcomings of recurrent models for solving
recall tasks. It is worth mentioning that, GLA models also connect to state-space models and linear
RNNs (De et al., 2024; Orvieto et al., 2023; Gu et al., 2021; Fu et al., 2022), as they could be
viewed as time-varying SSMs (Dao & Gu, 2024; Sieber et al., 2024). Finally, GLA models are also
closely related to implicit self-attention frameworks. For example, the work by Zimerman et al.
(2024) on unified implicit attention highlights how models such as Mamba (Gu & Dao, 2023) and
RWKYV (Peng et al., 2023) can be viewed under a shared attention mechanism. Additionally, Zong
et al. (2024) leverage gated cross-attention for robust multimodal fusion, demonstrating another
practical application of gated mechanisms. Both approaches align with GLA’s data-dependent gating,
suggesting its potential for explainability and stable fusion tasks.

Theory of in-context learning. The theoretical aspects of ICL has been studied by a growing body
of works during the past few years (Xie et al.; von Oswald et al., 2023; Gatmiry et al.; Li et al., 2023;
Collins et al., 2024; Wu et al., 2023; Fu et al.; Lin & Lee, 2024; Akyiirek et al., 2023; Zhang et al.,
2023). A subset of these follow the setting of Garg et al. (2022) which investigates the ICL ability of
transformers by focusing on prompts where each example is labeled by a task function from a specific
function class, such as linear models. Akyiirek et al. (2023) focuses on linear regression and provide a
transformer construction that can perform a single step of GD based on in-context examples. Similarly,
Von Oswald et al. (2023) provide a construction of weights in linear attention-only transformers that
can replicate GD steps for a linear regression task on in-context examples. Notably, they observe
similarities between their constructed networks and those resulting from training on ICL prompts for
linear regression tasks. Building on these, Zhang et al. (2024); Mahankali et al. (2023); Ahn et al.
(2024) focus on the loss landscape of ICL for linear attention models. For a single-layer model trained
on in-context prompts for random linear regression tasks, Mahankali et al. (2023); Ahn et al. (2024)
show that the resulting model performs a single preconditioned GD step on in-context examples in a
test prompt, aligning with the findings of Von Oswald et al. (2023). More recent work (Ding et al.,
2023) analyzes the challenges of causal masking in causal language models (causalLM), showing
that their suboptimal convergence dynamics closely resemble those of online gradient descent with
non-decaying step sizes. Additionally, Li et al. (2024) analyzes the landscape of the H3 architecture,
an SSM, under the same dataset model. They show that H3 can implement WPGD thanks to its
convolutional/SSM filter. However, their WPGD theory is limited to the trivial setting where all
weights are same as they utilize the standard prompt model with IID examples and shared task.
Departing from prior works, we introduce novel multitask dataset and prompt models under which
nontrivial weighting is provably optimal. Through this, we both characterize the loss landscape of
WPGD and also study more sophisticated GLA models and connect them to data-dependent WPGD
algorithms.

2  PROBLEM SETUP

Notations. R? is the d-dimensional real space, with R? and R?, as its positive and strictly positive
orthants. [n] denotes {1,--- ,n}. Bold letters, e.g., a and A, represent vectors and matrices. The
identity matrix of size n is I,,. 1 and 0 denote the all-one and all-zero vectors or matrices of proper
size. N(u, X) is the Gaussian distribution with mean y and covariance X. The symbol © denotes the
Hadamard product and @ denotes Hadamard division. Given @y, ,a; € R?, we use a;. ; to denote
a1 ©---0ajfori< j,and a;; = 1, is the d-dimensional all ones vector.

The objective of this work is to develop a theoretical understanding of GLA through ICL. The
optimization landscape of standard linear attention has been a topic of significant interest in the ICL
literature (Ahn et al., 2024; Li et al., 2024). Following these works, we consider the input prompt

)
X e X X
Z=lz ~~-znzn+1f=[y: Y "0+1] € RODX@D), 4

where tokens encode the input-label pairs (x;, y;)7, C R? x R. We aim to enable ICL by training
a sequence model F € R+*DX@+D 5 R that predicts the label y := y,,; associated with the query
X := X,11. This model will utilize the demonstrations (x;, y;)?_, to infer the mapping between x and y.
Assuming that the data is distributed as (v, Z) ~ D, the ICL objective is defined as

L(F) = Bp |y - F(2))*]. 5)
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Linear attention and shared-task distribution. Central to our paper is the choice of the
function class F. When F is a linear attention model, the prediction F(Z) takes the form
=12, ,WW!ZTZW,h where W\, W, W, € R@+Dx(@+) are attention parameters, and h € R9*!
is the linear prediction head. We assume that the in-context input-label pairs follow a shared-task
distribution, where B ~ N(0,Xg), x; are 1.i.d. withx; ~ N(0,X,), and y; ~ N(B x;, o?), where o > 0
represents the noise level. Under this shared-task distribution, it is shown (Von Oswald et al., 2023;
Ahn et al., 2024; Zhang et al., 2024) that the optimal one-layer linear attention predictor 3 coincides

with the one-step optimal preconditioned gradient descent. In particular, we have 8 = P*X Ty, where

Y1

2
P* = arg min ED[(y—xTPXTy)] with X := [xl xn]T and y:=|:|. (6)
PcRdxd .
Yn

Linear attention and gating. Given the input prompt Z, let Q = ZW,, K = ZW; and V = ZW,
be the corresponding query, key, and value embedding matrices, respectively. The output of causal
linear attention at time i can be computed in a recurrent form as §; = S;_; + vikiT and o; = S;q; where
i, ki,v; € R%! are the query, key, value embeddings of z; and Sy = 0. This recurrent form implies
that linear attention has O(d?) cost, that is independent of N, to generate per-token. As presented in
(1), GLA follows the same structure as linear attention but with a gating mechanism, which equips
the model with the option to pass or supress the history. As discussed in Yang et al. (2023), the
different choices of the gating function correspond to different popular recurrent architectures such as
Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024), RWKYV (Peng et al., 2024), etc.

We will show that GLA can weigh the context window through gating, thus, its capabilities are linked
to the WPGD algorithm described in (7). This will in turn facilitate GLA to effectively learn multitask
prompt distributions described by y; ~ N(B] x;, o) with ;s not necessarily identical.

3 WHAT GRADIENT METHODS CAN GLA EMULATE?

In this section, we investigate the ICL capabilities of gated linear attention (GLA) and show that
under suitable instantiations of model weights, GLA can implement data-dependent WPGD.

3.1 GLA as A DATA-DEPENDENT WPGD PREDICTOR

Data-Dependent WPGD. Given X and y as defined in (6), consider the weighted least squares
objective L(B) = Y, Q; - (yi — BT x;)? with weights Q € R". To optimize this, we use gradient
descent (GD) starting from zero initialization, Bo = 0 with a step size of n = 1/2. One step of
standard GD is given by

Bi =Bo—1VL(Bo) = D Qi xiyi = X (QOy).

i=1

Given a test/query feature x, the corresponding prediction is § = xTﬁ where ﬁ = ;. Additionally,
if we were using preconditioned GD with a preconditioning/projection matrix P € R™?, one step
iteration would take the form

$=x"B, where B=PB =PX (QOy).

Above is the basic scalar-weighted WPGD predictor which weights individual datapoints. It turns out,
vector-valued gating can facilitate a more general estimator which weights individual coordinates.
To this aim, we introduce an extension as follows: Let Py, P, € R? denote the preconditioning
matrices, and let Q € R™ denote the vector-valued weighting matrix. Note that  is now a matrix
rather than vector to facilitate coordinate-wise weighting and will remain consistent throughout the
paper. We can similarly define

B(P1, P2, Q) := PA(XP1 0 )Ty (7a)
as one-step of (generalized) WPGD. Its corresponding prediction on a test query X is:

9=x"B, where B=pP,P)0Q). (7b)



Under review as a conference paper at ICLR 2025

We note that by removing the preconditioning matrices P, P,, and the weighting matrix  in (7a),
it reduces to standard GD. We also note that Li et al. (2024) demonstrates that H3-like models
implement one-step WPGD, where the weighting is example-wise, i.e., setting Q = w1, and they
focus on the shared-task distribution where B; = B. In contrast, our work considers a more general
data setting where tasks within an in-context prompt are not necessarily identical.

We first introduce the following model constructions under which we establish the equivalence
between GLA (c.f. (1)) and WPGD (c.f. (7)) with the weighting matrix induced by the input data
and the gating function. Inspired by previous works (Von Oswald et al., 2023; Ahn et al., 2024), we
consider the following restricted attention matrices:

P 0 PT 0 0 0
Wk:[()k 0}, qu[o‘l O} and sz[‘gd 1},

where Py, P, € R%4_Here note that we set the (d+1,d+1)’th entry of W, to be one for simplification.
More generally, it can be any nonzero number, e.g., v € R. Then parameterizing W, with P, /v returns
the same output as from (8).

®)

Theorem 1. Recall the GLA from (1) and input sequence Z from (4), and suppose that at time i,
gating function has the form of g(z;) = G; € R4V Considering model construction in (8) and
prediction head h = 1, the single-layer GLA prediction returns

faa(Z) =0}, ,h=B"x where B=p(P, P, Q).

Here, ﬁ‘?’d() is a one-step WPGD feature predictor defined in (7a), Py, P, correspond to attention
weights following (8), and = [g1ns1 8rms1 ~ -+ 8nns1l’ € R™ where gj.,.1,1 € [n] is given by

% %
Zin+1 = (i1 O Ziva - Gns1) € R and G = [g,T *} ©)

Here and throughout, we use * to fill the entries of the matrices that do not affect the final output, and
based on the model construction given in (8), these entries can be assigned any value.

Observe that, crucially, since g; (or G;) is associated with z;, z; influences the weighting of all history
Zj<i- We defer the proof of Theorem 1 to the Appendix B.1. It is noticeable that only d of the total
(d + 1)? entries in each gating matrix G; are useful due to the model construction presented in (8).
However, if we relax the weight restriction, e.g., W, = [0(z+1)x¢ 14+1], then the weighting matrix £ in
Theorem 1 is associated with all rows of the G; matrices. We defer the discussion to Appendix B.1.

3.2 CAPABILITIES OF MULTI-LAYER GLA

Ahn et al. (2024) demonstrated that, with appropriate construction, an L-layer linear attention model
performs L-step preconditioned gradient descent on the dataset (x;,y;)?_, provided within the prompt.
In this work, we study multi-layer GLA and analyze the associated algorithm class it can emulate.
It is worth mentioning that Ahn et al. (2024) does not consider causal masking which is integral to
multilayer GLA due to its recurrent nature described in (1). Our analysis will capture the impact of
gating and causal mask through n separate gradient descent trajectories that are coupled.

Consider an L-layer GLA model. For ¢ € [L], let Z; and O, denote the input and output of the £’th
layer. In practice, residual connections are commonly applied. Hence, we define the updated output
of the £’th layer (after applying the residual connection) as Oy := Z, + O,. Note that Oy also serves
as the input to the (¢ + 1)’th layer, i.e., Z,y; = Oy. In the following, we focus on (d + 1)’th entries of
each token’s output at each layer, denoted by ;¢ := (O¢); 441 fori € [n + 1], € € [L].

Theorem 2. Consider an L-layer GLA with residual connections, where Wy and W, in the €’th layer
are parameterized by Pi¢, Py, € R4 following (8), for € € [L). Let the gating be a function of the
features, e.g., G; = g(x;), and let Q be defined as in Theorem 1. Additionally, denote the masking as

M; = [f) 8] € R™™, and let By, Bio = 0 for i € [n).
Then the (d + 1)’th entry of the i’th token at the €’th layer outputs:

e Fori<n, oir =yi—x;Bic where Bic = Bir-1 + Pyr (Vig © gins1),
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® Opi1c = —x"Prwhere Br = (1 +a)Br-1 + Pyt (Ve @ gns1) and a¢ = x Py P x.

Here, letting By = [B1s -+ Busl’, X, = XPi 0, and y; = (X © By_1)1, we define

Vie=XM;($c-y).

We defer the proof of Theorem 2 to the Appendix B.2. Theorem 2 states that an L-layer GLA
implements L steps of WPGD but with gradient in a recurrent form. To recap, glven data (X, y)
and prediction ﬂ the gradient with respect to the squared loss takes the form XT(Xﬂ y), up to
some constant c¢. In comparison, P, (V¢ @ gi:n+1) similarly acts as a gradient but incorporates
layer-wise feature preconditioners (P, ¢, Py ), data weighting (€2), and causality (g;..+1, M;). Here,
M; represents causal masking, ensuring that at time 7, only inputs from j < i are used for prediction.
Notably, the recurrent structure of GLA allows the gating mechanism to apply context-dependent
weighting strategies. These results are consistent with Ding et al. (2023), which demonstrate that
causal masking limits convergence by introducing sequence biases, akin to online gradient descent
with non-decaying step sizes.

To simplify the theorem statement, we assume that the gating function depends only on the input
feature, e.g., G; = g(x;), ensuring that the corresponding data-dependent weighting is uniform across
all layers. This assumption is included solely for clarity in the theorem statement, and the complete
result is provided in Appendix B.2. Note that our inclusion of the additional term a, captures the
influence of the last token’s output on the next layer’s prediction, which is not addressed by Ahn et al.
(2024). Based on the above multi-layer GLA result, we have the following corollary for multi-layer
linear attention network with causal mask in each layer.

Corollary 1. Consider an L-layer linear attention model with causal mask and residual connection
in each layer. Let €’th layer be parameterized by Py, Py ¢ as in (8) and define P; := P, P; » te[L]
Let o, Bio =0 fori € [n]. Then, the (d + 1)’th entry of the i’th token of the {’th layer outputs satisfies:

e Fori<n, 0ir =yi—x/Bic where Bic = Bic1 + P(Vig,
° 5n+1’g = —xTBg whereﬁg =+ CZ[)B[_I + P[V,,)g and ay = xTng.
Here, we define Vip = X" M; (3, — y) with $¢, M; following the same definitions as in Theorem 2.

Our theoretical results in Theorem 2 focus on multi-layer GLA without Multi-Layer Perceptron
(MLP) layers to isolate and analyze the effects of the gating mechanism. However, MLP layers, a
key component of standard Transformers, facilitate further nonlinear feature transformations and
interactions, potentially enhancing GLA’s expressive power. Future work could explore the theoretical
foundations of integrating MLPs into GLA and analyze the optimization landscape of general gated
attention models, aligning them more closely with conventional Transformer architectures (Gu &
Dao, 2023; Dao & Gu, 2024; Peng et al., 2024).

3.3 GLA WITH SCALAR GATING

Theorem 1 establishes a connection between 1-layer GLA (c.f. (1)) and one-step WPGD (c.f. (7)),
where the weighting in WPGD corresponds to the gating g(z;) = G; in GLA, as detailed in Theorem 1.
Now let us consider the widely used types of gating functions, such as G; = a;1],, (Yang et al., 2023;
Katsch, 2023; Qin et al., 2024; Peng et al., 2024) or G; = y; 1441 ld+1 (Dao & Gu, 2024, Beck etal.,

2024; Peng et al., 2021; Sun et al., 2024) where @; € R%! and v; € R. In both cases, the gating
matrices in (9) take the form of [g ;T :}, thus simplifying the predictor to a sample-weighted PGD,
itd
as given by
foa(2)=BTx, with B=PX (woy) (10)

where P = PqP; and w = [g1ns1 * guns1]’ € R In the remainder, we will mostly focus on the
1-layer GLA with scalar gating as presented in (10).
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4 OPTIMIZATION LANDSCAPE OF WPGD

In this section, we explore the problem of learning the optimal sample-weighted PGD algorithm
described in (10), a key step leading to our analysis of GLA. The problem is as follows. Recap from
(6) that we are given the tuple (x,y, X,y) ~ D, where X € R™ is the input matrix, y € R" is the
label vector, x € R is the query, and y € R is its associated label. The goal is to use X, y to predict y
given x via the 1-step WPGD prediction $ = x73, with 8 as in (10). The algorithm learning problem
is given by (3) which minimizes the WPGD risk Ep[(y — xT PX(w O y))].

Prior research (Mahankali et al., 2023; Li et al., 2024; Ahn et al., 2024) has studied the problem of
learning PGD when input-label pairs follow an IID distribution. It is worth noting that while Li et al.
(2024) establishes a connection between H3-like models and (10) similar to ours, their work assumes
that the optimal w consists of all ones and does not specifically explore the optimization landscape of
o when in-context samples are non-IID. Departing from this, we introduce a realistic model where
each input-label pair is allowed to come from a distinct task.

Definition 1 (Correlated task model). Suppose B; € RY ~ N(0, I) are jointly Gaussian for i € [n + 1].
Define the pairwise correlations ri; = E[B]B;1/d for i, j € [n + 1], and the task and correlation
matrices

1 1
B:=Bu1, B=[B1...B8], R= EE[BBT], and r= EE[B'B]' (11)
Additionally, for any i, j € [n + 1], B; — ri;B; is independent of B;.

Note that in (11), we have B € R™4 R € R™", and r € R", with normalization ensuring that the
entries of R and r lie in the range [—1, 1], corresponding to correlation coefficients.

Definition 2 (Multitask distribution). (B,-)f:ll are drawn according to the correlated task model of
Definition 1, (xi)?:ll € R? are IID following x; ~ N(0,X) and y; ~ N(xiTﬂi, o) forien+1]
Definition 3. Let the eigen decompositions of £ and R be denoted by X = Udiag(s)U™ and R =
Ediag(A)E™, where s = [s1,...,54]T € R, and A = [Ay,...,4,]7 € R". Let spmin and spax denote
the smallest and largest eigenvalues of X, respectively. Further, let Ay and Amax denote the nonzero
smallest and largest eigenvalues of R. Define the effective spectral gap of T and R, respectively, as

Ay := Smax — Smin» and  Ag := Apax — Amin- (12)

Assumption A. For the correlation vector r from (11), we have r = Ea for some a = [ay, . ..,a,]" €
R”™ with at least one nonzero a;.

Assumption A essentially ensures that r (representing the correlations between in-context tasks) can
be expressed as a linear transformation of a vector a of nonzero values. This guarantees that the
correlation structure is non-degenerate, meaning that all elements of r are influenced by meaningful
correlations. Assumption A avoids trivial cases where there are no correlations between tasks. By
requiring at least one nonzero element in a, the assumption ensures that the tasks are interrelated.

The following theorem characterizes the stationary points (P, w) of the WPGD objective in (3).

Theorem 3. Consider independent linear data as described in Definition 2. Suppose Assumption A
on the correlation vector r holds. Let the functions h : R, — R, and g : R, — R, be defined as

N - B
M%:=2;0+A$f[g;a+3ﬁf) ’ (o
4 §? a g 7Y
gw”zp+MZ%M+»G+m4;hM+&G+mJ ]’ (5

n

where {si}fl:1 and {4;}!_, are the eigenvalues of X and R, respectively; {a;}!_, are as given in Assump-

tionA; and M = o2 + Z?:] .
The risk function L(P, w) in (3) has a stationary point (P*, w*), up to rescaling, defined as
*+1 - 1 -1
Pr=xi (=L .xi1| £, and o =(g0")-R+1) 1, 14
(ﬁ+U@) w* = (2r") ) (14)
where y* is a fixed point of composite function h(g(y)).
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Theorem 3 characterizes the stationary points (P*, w*), which exist up to re-scaling. This result
presents the first landscape analysis of GLA for the joint learning of (P, w), while also exploring the
stationary points (P*, w*). In the following, we provide mild conditions on effective spectral gaps of
R and X under which a unique (global) minimum (P*, w*) exists.

Theorem 4 (Uniqueness of the WPGD Predictor). Consider independent linear data as given in
Definition 2. Suppose Assumption A on the correlation vector r holds, and

A)Z : AR <M+ Smin> (15)

where Ay and Ag denote the effective spectral gaps of £ and R, respectively, as given in (12); Spin is
the smallest eigenvalue of ¥; and M = o + Z?:] Si.

T1 The composite function h(g(y)) is a contraction mapping and admits a unique fixed point y = y*.

T2 The function L(P,w) has a unique (global) minima (P*, w*), up to re-scaling, given by (14).

Proof Sketch. Let y := %. Note that y > 0 since R is positive semi-definite. From the first-order

optimality condition, the solution to (3) takes the following form:

P(y) = C(r,w, L) - £ ((%trl(z) .>:+1) 1>:-%, (16a)
wy) =cr,wX)- (g(y) ‘R + I)ilr, (16b)
for some constants C(r, w, X) and c(r, w, X).
Substituting the expression for w(y) into y = %, and applying Assumption A, we obtain the

equation y = h(g(y)). We then show that whenever Ay - Ag < M + spin, the mapping A(g(y)) is a
contraction (see Lemma 1). By the Banach Fixed-Point Theorem, this guarantees the existence of
a unique fixed point y = y*, where y* = h(g(y*)). Finally, substituting y* into (16) implies that
(P*, w*), as given in (14), is a unique (global) minima of (3), up to re-scaling. See Appendix C.2 for
the complete proof of Theorem 4. O

Theorem 4 establishes mild conditions under which a unique (global) minimum (P*, w*) exists, up
to scaling invariance, and guarantees the uniqueness of the associated WPGD algorithm. It provides
the first global landscape analysis for GLA and generalizes prior work (Li et al., 2024; Ahn et al.,
2024) on the global landscape by extending the optimization properties of linear attention to the more
complex nonconvex GLA with joint (P, w) optimization.

Remark 1 An interesting observation about the optimal gating parameter w* is its connection to the
correlation matrix R, which captures the task correlations in a multitask learning setting. Specifically,
the optimal gating given in (14) highlights how w* depends directly on both the task correlation
matrix R and the vector r, which encodes the correlations between the tasks and the target task.
Remark 2 Condition (15) provides a sufficient condition for the uniqueness of a fixed point. This
implies that whenever Ay - Ag < M + syin, the mapping A(g(y)) is a contraction, ensuring the existence
of a unique fixed point. However, there may be cases where the mapping h(g(y)) does not satisfy
Condition (15), yet a unique fixed point (and a unique global minimum) still exists. This is because
the Banach Fixed-Point Theorem does not provide a necessary condition.

Corollary 2. Suppose £ = I. Then, Ay = 0, satisfying Condition (15), and we have g(y*) = ——

which yields
P =1 and " =(R+d+c>+DI) r. 17)
Thus, the optimal risk Ly, defined in (3) is given by
o =d+o®—d-r (R+@+o>+DI) r. (18)

5 OPTIMIZATION LANDSCAPE OF GLA

In Section 3, we demonstrated that GLA implements a data-dependent WPGD algorithm. Building
on this, in Section 4, we analyze the optimization landscape for minimizing the 1-step WPGD risk
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(c.f. (3)) and show that a unique solution achieves the global minimum of the WPGD algorithm.
However, in GLA, the search space for w is restricted and data-dependent, meaning that £, in
(3) represents the best possible risk a GLA model can achieve. In this section, we analyze the loss
landscape for training a 1-layer GLA model and explore the scenarios under which GLA can reach
the optimal WPGD risk.

5.1 MULTI-TASK PROMPT MODEL

We consider the following multi-task prompts setting with K correlated tasks (,Bk),’f:l, and 1 query

task . For each correlated task, draw a length 7, prompt with IID input-label pairs {(x(,k), yl(.k) )k }le

to obtain sequences (Zk)kK:1 and the query example is given by z := (x,y ~ N(x7B,0?)). Let
n:= Zf: 1 nk. These sequences (Z k),{(:] as well as query token z are concatenated to form a single
prompt Z. Recap the GLA prediction from (1) and let fg4(Z) be the GLA prediction as defined in
Theorem 1. Additionally, consider the model construction as presented in (8) with P, P, € Rdxd
being the trainable parameters. Then the GLA optimization problem is described as follows:

Lawi=min Laa(PiPyg) where  Lan(PiPp.g) =Ep 0= fau@)].  (19)

Here, g € G represents the gating function.

Note that 1) the task vectors (ﬂk)kK: , are not explicitly shown in the prompt, 2) examples (xl(.k), yf.k))

are randomly drawn, and 3) the gating function is applied to the tokens/input samples (Z k),’f: |- Given
the above three evidences, the implicit weighting induced by the GLA model varies across different
prompts, and it prevents the GLA from learning the optimal weighting.

To address this, we introduce delimiters to mark the boundary of each task. Let (dk)f:1 be the
delimiters that determine stop of the tasks. Specifically, the final prompt is given by

z=|z] & - z} d¢ 7| . (20)

Additionally, to decouple the influence of gating and data, we envision that each token is z; = [x;, y;, ¢;]
where ¢; # 0 € R? is the contextual features with p being its dimension and (x;,y;) are the data
features.

e For task prompts Z,: Contextual features are set to a fixed vector d # 0.

e For delimiters dy: Data features are set to zero (e.g., x; = 0 and y; = 0) so that d; = [0, d]
where dj, denotes the context vector.

Note that explicit delimiters have been utilized to address real-world problems (Wang et al., 2024;
Asai et al., 2022; Dun et al., 2023) due to their ability to improve efficiency and enhance generalization,
particularly in task-mixture or multi-document scenarios. To further verify our claim and motivate the
introduction of (dk)f: I in Figure 1, we present the results of GLA training with and without delimiters,
shown by the red and green curves, respectively. The black dashed curves represent the optimal
WPGD loss Ly, under different scenarios, and training GLA without delimiters (the green solid
curve) performs strictly worse. In contrast, training with delimiters can achieve optimal performance
under certain scenarios (see Figures la, 1b, and 1c). Theorem 5 in the next section provides a
theoretical explanation for these observations, as well as the misalignment seen in Figure 1d. Further
discussion and experimental details are provided in Section 5.2 and Appendix A.

5.2 Loss LANDSCAPE OF 1-LAYER GLA

Given the input tokens with extended dimension, to ensure that GLA still implements WPGD as in
Theorem 1, we propose the following model construction.

v _ Wi 0 = (W, 0 = [w, 0

w0 w=| o we w0 @
Here, Wy, € RUTP+DXUp+D) and Wy, € R@DXE*D are constructed via (8). The main idea is to

set the last p rows and columns of attention matrices to zeros, ensuring that the delimiters do not
affect the final prediction.
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Figure 1: We consider four different types of model training: LinAtt (blue solid): Standard linear attention
training. GLA (red solid): GLA training using prompts with delimiters (see (20)) and scalar gating. GLA-wo
(green solid): GLA training using prompts without delimiters and with scalar gating. GLA-vector (cyan solid):
GLA training using prompts with delimiters and vector gating. The blue and black dashed curves represent the
optimal linear attention and WPGD risks from (25) and (18), respectively, as the number of in-context examples
n increases. Implementation details are provided in Appendix A.

Assumption B. Delimiters dy, - - - ,dy are linearly independent, and activation function ¢(z) : R —
[0, 1] is continuous, satisfying ¢(—o0) = 0 and ¢(+c0) = 1.

Assumption C. The correlation between context tasks (ﬂk)llfz1 and query task B satisfies E[B] B;] = 0
and E[B]B] < E[ﬁ?ﬁ]for I<i<j<Kk

(k) (k))m-

Given context examples {(Xi, yi) := (x;7,y;7).%, K

4 1» define the concatenated data (X, y) as follows:
X=[x7 - Xp|"er™ and y=[y] - yi| ern (22)

Based on the assumptions above, we are able to establish the equivalence between optimizing 1-layer
GLA and optimizing 1-step WPGD predictor under scalar gating.

Theorem 5 (Scalar Gating). Recap the loss function Lypep(P, w) from (3) with dataset (X,y) defined
in (22). Suppose Assumption B holds and consider GLA with scalar gating g(z) = (;S(W(;z)llT where
W, is the trainable parameter. Consider input prompt Z defined in (20) and model constructions
described in (21). Then the optimal risk L’G*,_ 4 defined in (19) obeys

* W *W . _ ;
ea=Lipey where Li0:=  min  Lypep(P, ). (23)
PR e W

Here, W := {[wll,; wKIIK]T ER"|0<w<w;<1,VI<i<j< K}.Additionally, suppose

Assumption C holds and n; = nj, for any i, j € [K]. Let Ly, be the optimal WPGD risk (c.f. (3)).
Then L7, , satisfies

LELA = L;IPGD' 24

Assumption B ensures that any w in ‘W can be achieved by an appropriate choice of gating parameters.
Furthermore, Assumption C guarantees that the optimal choice of w under the WPGD objective lies
within the search space ‘W. The proof is provided in Appendix D.1.

In Figure 1, we conduct model training to validate our findings. Consider the setting where K = 2
and let (r,r) = (E[ﬂfﬁ]/d,]E[ﬂ;ﬂ]/d). In Figures 1a, 1b, and 1c, Assumption C holds, and the
GLA results (shown in solid red) align with the optimal WPGD risk (represented by the dashed black
curves), validating (24). However, in Figure 1d, since r| > r,, Assumption C does not hold, and as a
result, the optimal GLA loss LgL , obtained from (23) is lower than the optimal WPGD loss £

*
WPGD*
Further experimental details are deferred to Appendix A.

Loss landscape of vector gating. Till now, much of our discussion has focused on the scalar gating
setting. It is important to highlight that, even in the scalar-weighting context, analyzing the WPGD
problem remains non-trivial due to the joint optimization over (P, w). However, as demonstrated in
Theorem 5, scalar gating can only express weightings within the set ‘W. If Assumption C does not
hold, L(*;L » cannot achieve the optimal WPGD loss (see the misalignment between red solid curve,
presenting L7 ,, and black dashed curve, presenting L., in Figure 1d). We argue that vector gating
overcomes this limitation by applying distinct weighting mechanisms across different dimensions,
facilitating stronger expressivity.

10
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Theorem 6 (Vector Gating). Recall input prompt Z from (20) and model constructions from (21)
but with W,, = [0g+1yxq u]. Suppose Assumption B holds and consider GLA with vector gating
8(z) = ¢(W,2)1". Here, u and W, are trainable parameters. Consider Problem (19), where we
employ a vector gating g(z) = ¢(Wy2)17. Let L7,  denote its optimal risk, and L., be defined as
in (3). Then, the optimal risk obeys L7, = L.

In Theorem 5, the equivalence between Lg; , and Ly, is established only when both Assumptions B
and C are satisfied. In contrast, Theorem 6 demonstrates that applying vector gating requires only
Assumption B to establish L5, = L5 Specifically, under the bounded activation model of
Assumption B, scalar gating is unable to express non-monotonic weighting schemes. For instance,
suppose there are two tasks: Even if Task 1 is more relevant to the query, Assumption B will assign a
higher weight to examples in Task 2 resulting in sub-optimal prediction. Theorem 6 shows that vector
gating can avoid such bottlenecks by potentially encoding tasks in distinct subspaces. To verify these
intuitions, in Figure 1d, we train a GLA model with vector gating and results are presented in cyan
curve, which outperform the scalar gating results (red solid) and align with the optimal WPGD loss
(black dashed).

Loss landscape of 1-layer linear attention. Inspired by the fact that linear attention implements
all ones gating, that is, G; = 1. Consider training a single-layer linear attention and let fyr7(Z) :=
Jfaa(Z,G; = 1) be its prediction. Let L3, be the corresponding optimal risk following (19).
Corollary 3. Consider a single-layer linear attention following model construction in (8) and
consider linear data as given in Definition 2. Let R, r be the corresponding correlation matrix and
vector as defined in Definition 1. Suppose £ = 1. Then the optimal risk obeys

d(17r)?
nd+o?+1)+1TR1’

Lirr:= min Lipo(P,w =1)=d+0? - (25)

Corollary 4 (Benefit of Gating). Consider the same setting as discussed in Corollary 3, and suppose
Assumption B holds. Then, we have that Ly > L7, .. Additionally, if Assumption C holds, we obtain

17

Lir—Liy=d-r’ (RII TR

)rZO, where R, :=R+(d+o-2+1)1.

The proof of this corollary is directly from (18), (24) and (25). In the Figure 1, blue solid curves
represent the linear attention results and blue dashed are the theory curves following (25). The two
curves are aligned in all the subfigures, which validate our Corollary 3. More implementation details
are deferred to Appendix A.

6 DiscussioN

To summarize, this work offers a fresh theoretical perspective on gated linear attention models
through in-context learning by showing that they can emulate data-dependent weighted preconditioned
gradient descent (WPGD) algorithms. Our work also reveals how gating is crucial for achieving ICL
with stronger data/context adaptivity by demonstrating clear separations between linear attention,
scalar-valued gating, and vector-valued gating. We study the optimization landscape of GLA through
a connection to the WPGD formulation (3). We have advocated that (3) is a problem of fundamental
mathematical interest in its own right, developed the first characterization of its optimization landscape,
and showed that it enjoys unique global minima and no other stationary point under mild conditions.

Limitations and Future Work. Our analysis is currently limited to characterizing the landscape of
scalar gating in GLA models. Extending this framework to vector-valued gating and exploring when
delimiters are necessary for learning, as well as investigating the GLA landscape where gates depend
on input features, are promising directions for future research.
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A IMPLEMENTATION DETAIL

Data generation. Consider ICL problem with input in the form of multi-task prompt as described in
Section 5.1. In the experiments, we set K = 2, dimensions d = 10 and p = 5, uniform context length

ny = ny = i1, and vary 7 from 0 to 50. Let (ry, ) := (]E[Bfﬂ] /d, E[ﬁ;ﬁ]/d) denote the correlations
between in-context tasks S, 8, and query task 8. We generate task vectors as follows:

Bi.B ~NO,1I;) and B~ NP +rfa, (1 —ri —r)ly).

Input features are randomly sampled xfk) ~ N(,1,) and ygk) = ﬂTxEk) (o =0), k € {1,2}. Addition-
ally, delimiters dy, - - - , dg are randomly sampled from N(0, 1,).

Implementation setting. We train 1-layer linear attention and GLA models for solving multi-
prompt ICL problem as described in Section 5.1. For GLA model, we consider sigmoid-type gating
function given by scalar gating: g(z) = ¢(w;z)11T, or vector gating: g(z) = ¢(W,2z)1" where
#(2) = (1 +e7%)7! is the activation function. Note that although the theoretical results are based on the
model constructions (c.f. (8) and (21)), we do not restrict the attention weights in our implementation.
We train each model for 10000 iterations with batch size 256 and Adam optimizer with learning
rate 1073, Similar to the previous work (Li et al., 2024), since our study focuses on the optimization
landscape, ICL problems using linear attention/GLA models are non-convex, and experiments are
implemented via gradient descent, we repeat 10 model trainings from different model initialization
and data sampling (e.g., different choice of delimiters) and results are presented as the minimal test
risk among those 10 trails. Results presented have been normalized by d.

Experimental results. Based on the experimental setting, we can obtain the correlation matrix and
vector following Definition 1

1,17 0 T
R= [ 0" 1,11,1] and r=[nl] nll] .
Then dotted curves display our theoretical results derive using £ = I and R, r above. Specifically,
in Figure 1, black dashed curves represent L, following (18) and blues dashed curves represent

L7, following (25). We consider scenarios where (r1,72) € {(0,1),(0.2,0.8),(0.5,0.5),(0.8,0.2)}
and results are presented in Figures (1a), (1b), (1c) and (1d), respectively.
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Figure 2: Multi-layer GLA experiments with (1, 7,) = (0, 1).

e GLA-wo achieves the worst performance among all the methods. We claim that it is due to the
randomness of input tokens as discussed in Section 5.1. Thanks to the introduction of delimiters as
described in (20), data and gating is decoupled and a task-dependent weighting is learnt. Hence, GLA
is able to achieve comparable performance to the optimal one (L3, red dashed). Note that GLA-wo
performs even worse than LinAtt. It comes from the fact the weighting induced by GLA-wo varies
over different input prompts and it can not implement all ones weight.

e The alignments between LinAtt (blue solid) and blue dashed curves validate our Corollary 3.
In Figures 1a, 1b and lc, the alignments between GLA (red solid) and Lypep (black dashed) verify
our Theorem 5, specifically, Equation 24. While in 1c and 1d, GLA achieves the same performance
as LinAtt. It is due to the fact that GLA can not weight the history higher than its present. Then
the equal-weighting, e.g., w = 1, is the optimal weighting given such constraint. What’s more, the
alignment between GLA-vector (cyan curves) and red dashed in Figure 1d validates our vector
gating theorem in Theorem 6.

A.1 MULTI-LAYER EXPERIMENTS

In this section, we present additional experiments on multi-layer GLA models. We adopt the same
experimental setup as described in Figure 1a and Appendix A, with parameters set to (ry, r2) = (0, 1).
The results are displayed in Figure 2, where the blue, red, and green curves correspond to the
performance of one-, two-, and three-layer GLA models, respectively, with the y-axis presented in
log-scale. According to Theorem 2, an L-layer GLA performs L steps of WPGD, suggesting that
deeper models should yield improved predictive performance. The experimental findings in Figure 2
align with the theoretical predictions of Theorem 2.

B GLA & WPGD

B.1 Proor orF THEROEM 1

Recap the problem settings from Section 2 where in-context samples are given by
T
Z=tz - mzal =[5 T
and let the value, key and query embeddings at time i be
vi=Wzi, ki=Wgz;, and gq;=W,z,.
Then we can rewrite the GLA output (c.f. (1)) as follows:
0;=S8;¢q; and S, =G;08;-1 + V,'k;r

i
= ZG]';,' @ij}—
j=1

16
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where we define
Gj;,'ZG]q.] @Gj+2"'G,‘, Jj<i, and G;,; = 117,

Consider the prediction based on the last token, then we obtain

n+l

T
Onyl = Sn+1qn+l and S, = ZGj:nJrl @ijj .
J=1

Construction 1: Recall the model construction from (8) where

T T
wi= |6 0 wa=lot g e wo=|% d] (26)

—

Then, given each token z; = [x[.T vi]T, i € [n], single-layer GLA returns
_ |0 _|Plx B P;xi
vi—[yl], ki—[ 0 ] and qi—[ E
and we obtain

0 0
T _ dxd . T _
vik; = [}’ix,-TPk 0} , i<n, and vk, = 0@enx@+n)-

Therefore, since only d entries in v;k] matrix are nonzero, given © as the Hadamard product, only
the corresponding d entries in all G; matrices are useful. Based on this observation, let

ES ES % %
Gi = [gl‘r *} and Gj:i = [g;l *]

where g = gj.1 © gju2 -+ g € R for j <iand g;; = 1.
Combing all together, and letting X = [x; x> --- x,]" andy = [y; y2 --- 4], we obtain
g _ 0d><d 0 PqTx _ 0
Op+1 = On+1qn+1 = Z.’;:] ijJTPk 0) g;n+] 0 0 = xTPq (XPk 1) Q)Ty

where
Q= [glzn+l 82n+l gn:n+l] e R™,

Then if taking the last entry of 0, as final prediction, we get
$:= Opr1as1 =X B where B=P,(XP,0OQ)"y.
It completes the proof of Theorem 1.

Construction 2: Based on the construction given in (26), only d elements of G; matrices are useful.
One might ask about the effect of other entries of G;. Therefore, in the following, we introduce
an other model construction showing that different row of G; implements WPGD with different
weighting. Similarly, let Wy, W, be the same as (26) but with W, constructed by

W, = [0(d+l)><d u] where w = [uy uy -+ ugr]” € R
Then the value embeddings have the form of v; = y;u, which gives

vk =u [y,»xiTPk 0].

Next, let
O (gl';,')T *
(g?)T * (g5)"
i= ) and Gj; = . )
(gd+l)T * (gd+1)T *

Jei

17
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where g/ € R corresponds to the /'-th row of G; and g’ = g’J ., 0O g’] ., -~ &' . Then we get the
output

Y myxPeo (g, )" 0 XTP,(XP,oQ)y
Yisuwyixi Pro(gr,,)" OfrpTy x"P,(XP,OQ)"y
On+1 = : 6 - :
Yoy tany X[ PO (g555)" 0 TP (XP 0Qu) y
where
Qi = U [gllszrl g[2:n+1 e g:urwl] € RﬂXd, i< d+1.

Therefore, consider (d + 1)-dimensional output o,,;. Each entry implements a 1-step WPGD with
same preconditioners Py, P, and different weighting matrices €’s. The weighting matrix of i’th entry
is determined by the i’th row of all gating matrices. Note that if consider the last entry of 0, as
prediction, it returns the same result as Construction 1 above, where only last rows of G;’s are useful.

Additionally, suppose that the final prediction $ is given after a linear head h, that is, $ = A" 0,1, and
leth=[h; hy - hgey]T € R Then

9=hT0, =xP(XP0R) y 27)
where
d+1 d+1
Q= Z i = Z hiui [gllzn+1 81 giz:n+1] € R™. (28)
i=1 i=1

Then, single-layer GLA still returns 1-step WPGD with updated weighting matrix.

B.2 Proor oF THEOREM 2

Theorem 7 (Extended version of Theorem 2). Consider an L-layer GLA with €’th layer parameterized
by Pre, Py € R4 gs in (8) and with corresponding gating vectors gf, i€[n+1],¢€[L] Let§;, be
the (d + 1)’th entry of the i’th token of the €’th layer input (or (€ — 1)’th layer output after residual).
Additionally, denote Q, = [g‘;:nJrl gfmm]T and X; = XPr; © Q. Let By = [Big -+ Bucl” where

Bio=0foric[n+1]and M; = [f)’ g] € R™", Then it satisfies that for

o i<n P, =yi—xBie-1 where Bir = Bic-1 + Py (Vi,é’ %) g,{,,ﬂ)
eandy,, = x"Be-1 where Br = (1 + ap)Br-1 + Py (V,,,g %) gﬁ+1) and a; = xTPq,ngT,[x.

Here, we define V;y = X[TMI- (X0 B, )1 -y).

Proof. Recapping the model construction from (8) and following the same analysis in Appendix B.1,
for i < n, we obtain

g - | 04a 0
! le:lij}—Pk@g;i 0]°

Additionally, recap that we have

I, 0
M; = [0 0] and Q= [gi:n+l gn:n+l] .

Let © denote Hadamard division. Then

i i
ZyjP;xj ©gji= (ZyjP];rxj © gj:n+l] Q@ &in+l

J=1 J=1
= (XPOQ) "My ? gins,

18
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Therefore,

0; =Siq; = Oaca 0} [PqT

X 0
(XP,0Q) ™My gins1) Of| O ]_[xiTPq(XTMiJ’@gi:nH)]' @

where we define X := X P, © Q. Similarly, we can get the last token output

0
Opt1 = [xTPq (XTy o g;m)} . (30)

Next, we consider the multi-layer GLA model. To begin with, let us define the input and output of
{’th layer as

-

Z{’:[Zl,[ U Ry zn+l,f] € RU XD,
T

O[:[Ol,ﬁ Y on+1,€] € RUHIX@D,

where Z| = Z. Then, given the residual connection of each layer, the input of (£ + 1)’th layer is given
by

Z[+| = Z(+0[. (31)

Note that Z,, is also the output of £’th layer after residual. Recall (29) which implies that the first d
dimension of the output o; for all tokens i € [n + 1] is zero. Therefore, the first d dimension of z, ,

keeps the same as x; and let us write the input of £’th layer (also the output of (£ — 1)’th layer after
residual) as

.
X1 Xn X

Z,=|. S 32

‘ [)’1,5 o e yn+l,(’] 32)

and ;; = y; fori € [n] and ,.,1,1 = 0. Suppose that the £’th layer is parameterized by (P, Py¢) and
let Z, be its input. Additionally, suppose the gating matrices for £’th layer, i’th token is

¢ _ * *

o We first study y;, for i < n. Following (29), we obtain the output at time i
0
0;,,= > N
B xITP‘]»g (X;Miyf © gf:n+l)
where X, := XP;, © Q; and
A N T b7
Ye= [)71,[ Yn,[] eR",
_[at ¢ ¢ T d
Qf - [gl:n+1 8rn1 T gn:nJrl] € R™

Following the residual connection as in (31), we have z.

el =% T 0, and hence

Diver =Fic+ X Por (XTMF i 0 8',.,).- (33)

Now consider the algorithm given in the theorem statement where §, , = y; — x]Bic-1 and Bi; =
Bie-1+ Pgc (X;Mi((x OBrN1-y)o gfml), which gives
5’,‘,{41 =)Yi— x;ﬂi,[
Yie = Yi—X] Bie-1. (34)
Then
Dienr = I = % Bir = Bir-1)
= —x/ P (X M(X OB, )1 -y) 0 gl,,,)
=x] Py (X Mpc @ gl,...). (35)
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The last equation uses (34), that
XOBr)1=[x[Bis - x,Buell = (XOBr)l-y=-J, (36)
The equality between (33) and (35) completes the proof for i € [n].

e Next, we consider the last token output, thatis i = n + 1. In the following, we remove the subscript
n + 1 from some notations for simplification.

Similarly, we get the (n + 1)’th output of {’th layer
0 0
Oneie = [xTPq’f (X75c0 gﬁﬂ)} ’ [xTPwPZ,ex ' yn+1,t’}
where the second term comes from the fact that y,,, , # 0 for £ # 0.

Let ap := xTPq,gP,I[x. Given Z,1 = Z; + Oy, we obtain

N & T oT o 14 N
Vurre1 = nsre X Py (Xe Ye@ gn+1) T Ve
~ ST A ¢
=(1+ a0+ X P (X900 8L,,). (37)
Now, consider the algorithm given in the theorem statement where ., , = —x"B,:1,¢-1 and By1¢ =

(1+ a)Busret + Por (X[ (X © Bo)1 - y) @ g',, ), which gives

n+1

N S
Vet err = =X Burre

PN _ T
Spire = =% Burie-1-

Then
Fetesr — A+ @030 = =x7 Busre = (L + @)Bus1e-1)
= —x Py (X[ (X0 B )1-y) 0 gl,)
=x"P (X[ 5 08.)
which is the same as (37) by using the fact from (36). m]

C OprimizatioN Lanpscape oF WPGD

C.1  Proor ofF THEOREM 3
Proof. Recapping the objective from (3) and following Definition 2, we have
2
LP.w)=E [(y ~ X PX(@0y)) ]
= E[’] - 2E[x" PX(w o) + B [(xTPX(w S y))z] .
Lety=x"B+¢&andy; = x] B + &, for i € [n], where &,& ~ N(0,0) are i.i.d. Then,
ED’] = E[(x "B+ &)’ = tr (D) + o7,

and

E[yx"PX(wOoy)| =E l(ﬁTx +EXTP Y wixi(x] i + &)
i=1

=E lﬂTxxTPZ wixixiTﬁ,}
i=1

=tr [Z‘.PZ Z wE [ﬂ,ﬂT]]
i=1

=tr (2‘.2 P) o'r.
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Here, the last equality comes from the fact that since B8; — 7;;8; is independent of 8; for i, j € [n + 1]
following Definition 1, we have E [B;8" ] = riy+1ly and Y| w,E[B;f" ] returns w ' r - 1.

Hence,
) n n
E [(xTPX(w ©y)) ] =E|x"P (Z wi(x] Bi + §i)x,-] (Z wix] (x] B + gi)) PTx
i=1 i=1
=tr (PTEPE [Z W (x] Bi + f;)zx,»xiTD
i=1
+ tr [PTZPE Z a)ia)j(x?ﬂi + f,-)xiij(ijﬂj + fj) J ,
i+
where
tr (PTZPE Z w(x] Bi + f,«)zxixiTD =tr (PTZPE Z W (x] BT xi + a’z)xixiTD
i=1 i=1
= llwl, tr (PTZP (E|xx"xx" | + 0°E))
= llwl, (tr (EPTZP) (tr (X)+ 0'2) +tr (ZZPTZP)),
and
ir| PTEPE Z wiw;(x] B; + E)xix [ (xTB; + ) ] =1tr (PTEPE Z w,-wjx,'x,TBiﬁijijD
i#j i#j
=tr (EZPTEP) o' Row.

Combining all together and letting M := tr (X) + o2, we obtain
L(P.w) =M -2tr (£?P)o’r
+ M ||}, tr (EPTEP) + (lll}, + @" Rw)tr (Z2PTEP). (38)
For simplicity, and without loss of generality, let
P = VEPVI. (39
Then, we obtain

L(P,w) =M -2tr (Zi’) o'r

. . (40)
+ Mo}, tr (PTP) + (lol?, + @ Rw)tr (Z‘.PTP) )
Further, the gradients can be written as
VpL(P,w) = 20" rE + 2M |||}, P + (|||}, + ©" Rw)EP, (41)
V,L(P,w) = —2tr (zﬁ) r+2Mtr (PTP) w +2tr (ZPTP) I, + R)w. (42)

Using the first-order optimality condition, and setting V£(P, w) = 0 and V, £L(P, w) = 0, we obtain
- -1
P= (Mol I+ (lol}, + " R)Z) Zo'r
o' [||a)||?2 +w"Rw _1]_1

2 2
M2, Ml

T +1 !
-_er (—7 -I+Z‘l) ,
Mllwlf, \ M
%)

(43a)

where y = " Rw/ ||w||%2.
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Further,
= ((Mtr (PTP)+ tr (2PTP))I + tr (SPTP)R)  tr(ZP)r
tr (2P) tr (ZP7P) - (43b)
= — —— | I + — ——R| r.
Mtr(PTP)+tr(2PTP)\  Mtr(PTP)+tr(ZP7P)
Let
1
NP I 5
M
Then, we get
tr (2P7P) tr(PTP) )
— —— = |1+ M—=
Mtr (PTP)+ tr (ZPTP) tr (ZP7P)
-1
tr (X2
=|1+M (—72)]
tr(2Z;?)
-1
d 2 d 3 -1
s 5
={1+M : :
Z (M +(y+ Ds;? [Z M+ (y+ 1)s,»)2] ]
=1 8(y).
Here, the last equality follows from eigen decomposition X = Udiag(s)U" with s = [s1,...,s4]" €
RY,.
Now, plugging P defined in (43a) within w given in (43b), we obtain
tr (Zf’)
w= — — - (g(y)-R+I)'r. (44)
Mtr (PTP) + tr (ZPTP)
Using the above formulae for w, we rewrite y = o' Rw/ IIa)II%2 as
_rT@R+D'RER+D'r
- rT(gR+D72r
i=1 (1 + g(Y)/lt)z i=1 (l + g(‘)/)/ll)2
=th(g),
where the second equality follows from Assumption A and the fact that R = Ediag(4)E™ denotes the
eigen decomposition of R, with 2 = [1;,...,4,]T € R:.

Now, let y* denote a fixed point of composite function A(g(y)). From (43a) and (44), we obtain

~ v+ 1
P=C@r,wX)-
(rw )( ]

-1
T+ 21) , and
(46)

-1
w=crwX)- (g(y*) R+ I) r.

tr(2P)

for some C(r,w, X) = ﬁ and c(r,w,X) =
)

Now, using the our definition P= P \/)E we obtain

v+ 1

-1
1
Y yxiq| =%, and
o+ tr (%) ) an

P(y)=Cr,w,X) X1 (

w0 = c(r,0, D) (50" R+1) 7.

This completes the proof. O
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C.2 Proor oF THEOREM 4

We first provide the following Lemma.

Lemma 1. Let the functions h: R, — R, and g : Ry — R, be defined as

1 Aa? ! a2 -l
hm:;(lwlﬂoz ;<1+lw,»)2] ’ “n
§2 d 3 -y
g(Y)—[1+MZ(M+(y+])s1)2 (Z (M+(yl+1)s)2] ] , (48)

_ 52 d
where M = 0 + 31, Si.

Suppose Ay - Agp < M + Smin, where Ay and Ag denote the effective spectral gaps of ¥ and R,
respectively, as given in (12); and Smiy is the smallest eigenvalue of X. We have that

g ah’< A Ag

8’}/ 6g h (M+ Smin)2
Proof. Let
3 5; 5 C(y)
By)= y ————t , Ay =1+ M=—=,
® Z‘ (M + (y + 1)s)? €= Z (M + (y + 1)sl)2 =1+ B(y)
The derivatives of B(y) and C(y) are
d
B'(y)= -2 , C'(y)=
”) Z(M+(y+1) o cw= Z(M+<y+1>s)3
The gradient of g(y) is
% _ —M(;)z (C’B(y) = C(y)B'()) (49)
oy~ U \AmBey) T T ERR
It can be seen that
1 2 d s3 *(d s.2 2
- M—2 i i ,
(A(?’)) = [; (M +(y + 1)si)2] {Z‘ (M +(y + 1)si)2J
which implies that
1 2 ) d 2 -2
— | <M — | . 50
(A()’)B()’)) = [; (M +(y + 1)s,-)2] 0
Further, we have
S S
C'(9)B(y) - CB (y) = -2 Z UESTERISE Z UEICERI:
d S4
Z‘( +(7+1)s)ZZ(M+(7+l)s,)3
- (50b)

(M + (y + Ds)>(M + (y + Ds;)?

Ma.

5

i

J=

—_

s7s5(si = 8:)°

d
; M+ (y+ Dsi)3(M + (y + 1)s))*’

e

M -
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where

=3
I

ST(M + (v + D)s))s| + st55(M + (y + Ds))
s?si(M +(y+ Ds)) - s?(M +(y + l)s,-)sif (50¢)

2.2 2, 2 2, 2 )
=575 (M-(sj + 57— 28i8) + (v + 1)(s,-sj + 578 = 8is; = S sj)).

Thus, substituting (50a) and (50b) into (49), we obtain

-2
5] 3(51' - s5j)?
‘—‘ . Z . - (5D
(M+ (y+ Dsy) M+ (y + 1)Si) M+ (y+ Ds))
Next, we derive g—;. Let
1 /1,'(12 1 a.2
Dy => —_ Emp=) —1 .
D=L PV Dy
We have
D7 Z E®#) = 22 e
(7) (1+’)//1)3’ (7)—_ - (1+7/ll)3
The derivative of & with respect to ¥ is given by
oh 1V )
A o (E()D'(y) - DE'(¥)). (52)

Substituting into (52), we get

1 2 1 ai2 -2
(W) :(;m] ’ (532)
and

22 n a_2

E®)D'(7) - DA)E' () = 22 T Z Ty

1 /L'Cl- 1 ag/li
-2 i i
Z (1 +y4,)* & Z (1T +y4)3

_Zz(l+y/l)3(l+y/l)3

i=1 j=1

(53b)

n 2(2+ 22 -220))
B Z (1+y4)3(1+74)*‘

Here,
Ty = Ga;a;(1 + 7)) + a;(1 + yA)a;
— Aia; (1 +yA)a;a; — ?A-Aa.(uyﬂj) (53¢)
= @@ (R +74) + (1 + 742 = (1 + 704, = 4,(1 +74,)).

Hence, substituting (53a) and (53b) into (52) gives

n -2 g 2200 _1.)2
oy S i (54)
Ph A +y0? ] A A +yP A+ 74,
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Now, for the combined derivative, we have

dg 6h' (Z ; ]_2 Zd: 2(si = s))
Iy I T\G M+ 00 e+ sy M+ +Ds))
" 2 P, @d - )7
[Z (1 +alm-)2) JZI (1 +173i(>3<1 +j;ﬂj)3'
Note that M + (y + 1)s; and 1 + ¥4 are nonnegative for all i, j. Hence,

% o) is$<M+(y+1>s,-> -
oy oy~ (M+(y+1)s,,)3

45252 Ar- (M o+ (y + Ds;) (M + (y + Dsy)

A M+ + l)s (M + (v + 1)s,)

" a1+ 7))
L1+ 743
ad’- Ay - (1+7) (1 +74;)

. i,jeS (1+ ’7/1,‘)3 (1 + ’7/1]')3

s

where 5 5
i =S Ai— 4
A := max (5 = 5)) A= max BT (55)
(Mt (y + 1)s;) (M + (y + Dsy) ijeS (1 +y4)(1 +74;)
Here, S = {i € [n]|A; # 0} C [n].
Finally, setting ¥ = g(y), we obtain
ag Oh A3 - Ay

/4 = <A A —— <.

I (g(y) - &'l = P A S e <
where Ay and Ap are the spectral gaps of X and R; and sy, is the smallest eigenvalue of X; and
M=c%+ Zle S;. ]

Proof of Theorem 4. Lemma 1 shows that [0h(g(y))/dy| < 1, and as a result, the mapping h(g(y))
on R, is a contraction mapping. Therefore, by the Banach fixed-point theorem, this guarantees the
existence of a unique root, denoted as y = y*. This completes the proof of T1. In the following, we

provide the proof of T2. Substituting the unique y* into (16) and using the fact that P = VZP VI,
we obtain (P*, w*), as given in (14), as a global minima of (3).

Next, we claim that (P*, w*) is the unique global minimizer of £(P, w) up to rescaling, i.e., any
other minimizer (P, ®) must be related to (P*, w*) by scaling factors « and 8, such that P = aP*
and @ = Bw*, for some a, B > 0.

The loss function is given by
L(P.w) = M - 2tr (£P) ' + M|jw|’tr (EPTZP) + (|0l + " Rw)tr (Z’PTLP)
Now, consider the effect of rescaling the variables P and w by introducing scalars @ and 3, i.e., we
substitute @ P and Bw into the loss function
L(@P,fw) = M - 2aBtr(E*P)w " r + Ma*B?|\w|*tr(EPTEP) + o*B*(|w|* + @ Rw)tr(Z*PTZP).
Define
A:=u@’P)w'r, B:=tr(ZP'XP), C:=|w|’>, D:=w Rw, E:=uE’P LP).
Thus, the rescaled loss function becomes

L(aP,Bw) = M - 2aBA + Ma*B*BC + o*B*(C + D)E.
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For (P*, w*) to be a minimizer, the partial derivatives of the loss function with respect to P and w
must vanish at (P*, w*). However, we consider the effect of the rescaling in terms of « and 8. To
find the stationary points of L(aP, fw), we differentiate with respect to @ and S:

0
a—L = —2BA + 2MaB’BC + 2a8*(C + D)E,
o
9L 2 2
P —2aA + 2Ma*BBC +20?B(C + D)E.
Setting these to zero, we obtain the system

af(MBC + (C + D)E) = A. (56)
This condition must hold for any minimizer. Now, suppose there exists another minimizer (P, &) that
also minimizes the loss function. By the first-order optimality conditions, @8 must remain constant.
This implies that any other minimizer (P, @) must be proportional to the original minimizer (P*, w*),
meaning

P=aP* and & =pw*
for some scalars a, 8 > 0 satisfying (56).
Thus, any global minimizer (13, @) is a scaled version of (P*, w*), and no other distinct minimizer
exists. This proves uniqueness up to rescaling. o

C.3 Proor orF COROLLARY 2

Proof. Since by assumption X = 1, it follows from (13b) that

-1
d d

-1
*\ 2 1 !
807 = 1-’_(d-’-a-)z:(d+o-2+y*+1)2 Z(d+0'2+7*+1)2] ]

i=1 i=1

_ 1

Cd+or+ 1
Substituting this into (14) gives

-1
P*=1 and o*= (R+(d+o-2+ 1)1) r.
Now, recall that the objective function is given by
Lw) =M -2u(Z*P)w"r + M ||wll;, tEPTEP) + (|w|* + @' Ro)tr(E*PTLP),

and, by assumption, M = o + d.

-1
Substituting P* = I and w* = (R +(d+0o?+ 1)1) r into the objective (38), and using X = I, we
get:

Lw)=@+d)-2-d rw* + (> +d)- ||w*||§2 d+d(lw*|? + ©"Rw*).
The expression simplifies as
L) =@ +d)-2d-r" (R+d+0" + 1)1)’1 r+ (02 + d)d||w*||§2 +d(llw*|? + 0* T Rw).

*|I?> and @™ Rw*. By definition, we have

lo*2 = r" (R+(d+0>+ DI) r,

Next, we compute ||w

and
W*TR* =" (R+(d+0>+ DI) R(R+(d+0>+DI) .

Thus,

(d+0” + Dlw*|* + @* T Rw* =" (R+(d+0” + 1)1)_1 (@+0?+ DI+ R)(R+(d+0” + 1)1)_l r
= r (R+@+>+DI) r.

Substituting this result back into the objective function gives

L@ =@ +d)-d-r" (R+@d+0>+DI) r.
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D Loss LaNpscAPE oF 1-LAYER GLA

D.1 Proor oF THEOREM 5

Proof. We first prove that under Assumption B, £, = minpegixa yew Lipep(P, @) where W is the
search space of weighting vector w € R" defined as

Wm{font], oty [ e

O<w<w <l v1§i§jsK}.

Define a set ‘W := {[w1 < wy]T ER”

0w sw;<1, VlSiSan}andwehave‘VVe(W.

Given scalar gating G; = [g ;T :}, following (10), the weighting vector returns

w = [gl:n+1 tte gn:n+l]T~

Since GLA with scalar gating valued in [0, 1] following Assumption B, that is, g; € [0, 1]. Therefore,
we have g1 < gjsr for 1 <i < j < n. Therefore, any weighting vector implemented by GLA

gating should be inside “W.

Next, we will show that

w* €W where o* =arg min Lypg(P,w).
P.weW

Define the weighting vector w = [w] --- wg]" € R" where we have w; = [(u(k) . (k)]T € R™. For

® < (k) . Given gradient in (42), we have that

any w ¢ W, there exist (i, j, k), i = j — 1 such that w;
\Y% qu =c- a)( )+ ¢y and V m.E =cy- a)( )+ ¢, with for some ¢y, ¢, withe; > 0. V <k)£ <V m.[
Therefore either increasing a)( b Gf v (k)L < 0) or decreasing w(k) ifv (k).£ > 0) will reduce the loss

This results in showing that w* € W.
Finally, we will show that any w € ‘W can be obtained via the GLA gating. Let w =

[a)II,Tl cuKlT 1" be any vector in ‘W and assume that wx = @ < 1 without loss of general-
ity. Then such sample weighting can be achieved via the gating

[1;} LLqro e T wK]T.

M wrk K wkk

Let a)k : and let w, be in the form of

0
Wg — [ g+l c Rd+p+l.
We

Then it remains to show that there exists W, satisfying:

- [=1 k=0
,.,Td ’

¢, k){: . kelK]
Assumption B implies the feasible of the problem, which completes the proof of (23).

Recap the optimal weighting from (14) which takes the form of

-1
= (g(y*) R+ 1) r.
Since Assumption C holds and n; = ny = -+ = ng := i1, w* takes the form of w* = cr for some

positive constant c. Therefore, the optimal weighting (up to a scalar) is inside the set /. Combining
it with (23) completes the proof.
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D.2 Proor oF THEOREM 6

Proof. Following the similar proof of Theorem 5, and letting ‘W := { [a)l 1 - wKI,TK]T € R"}, we

obtain
min Lypep(P, ) = min Lypep(P, w).
P.weW P
Therefore, it remains to show that any w € ‘W can be implemented via some gating function. Let
w = [w 1;[ e wKI,TK] be arbitrary weighting in W. Theorem 5 has shown that if w; < wp < -+ <
wg, GLA with scalar function can implement such increasing weighting.

Now, inspired from Appendix B that all dimensions in the output implement individual WPGD. We
can decouple the weighting into K separate weighting:

w] = 0‘)1[1;{1 s IIK]

Wy = (wy—w)[0, 1, -1, ]

w3 = (w3 —w)[0; 07 1, - 1] ]

wi = (w3 —w)[0, 07 07 -+ 07 17 ]

and we have w = Zle wy. Recap from Appendix B and consider the construction W, = [0+ 1)xa #].
Assumption B implies that K < p <d+p+ 1.

From (27) and (28), let /’th dimension implements the weighting w; for i € [K]. Specifically, let

g' implement weighting [0, --- 0, 1] --- 1, ] (which is feasible due to Theorem 5) and set
u; = w; — w; with wy = 0. Then the composed weighting following (28) returns w, which completes
the proof. o

D.3 Proor or COROLLARY 3
Proof. Recap from (43a) that givenX = I and w =1,
P*=(d+cPnl+m+1"RDI) 1r
— 1Tr I o—
Cnd+o?+1)+17R1
Then taking it back to the loss function (c.f. (38)) obtains
LIP*w=1)=d+0>=2cdl"r+ (d +0>)c*nd + (n + 1" R1)*d

=d+0*—cdlr.

cl.

It completes the proof. O
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