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Abstract

Demand for efficient onboard object detection is increasing due to its key role
in autonomous navigation. However, deploying object detection models such as
YOLO on resource constrained edge devices is challenging due to the high com-
putational requirements of such models. In this paper, an compressed object detec-
tion model named Squeezed Edge YOLO is examined. This model is compressed
and optimized to kilobytes of parameters in order to fit onboard such edge devices.
To evaluate Squeezed Edge YOLO, two use cases - human and shape detection -
are used to show the model accuracy and performance. Moreover, the model is
deployed onboard a GAPS processor with 8 RISC-V cores and an NVIDIA Jetson
Nano with 4GB of memory. Experimental results show Squeezed Edge YOLO
model size is optimized by a factor of 8x which leads to 76% improvements in
energy efficiency and 3.3x faster throughout.

1 Introduction

Interest in Machine Learning (ML) is dramatically increasing as it provides a promising solution for
various applications such as autonomous navigation [1, 2]. Object detection models in particular can
significantly assist in autonomous navigation by detecting obstacles and pre-defined objects of inter-
est in the environment [3]. However, object detectors have high computational requirements due to
the need for accuracy and the ability to detect various object categories. GPUs with significant com-
putational capacity are often mandatory to train such complex models, yet onboard processing and
edge computing necessitates low-power and low-computation algorithms as a result of the limited
power and computational capacity available [4].

Object detectors are trained classifiers that can identify and locate multiple objects within an image.
These detectors are trained on a set of annotated images, and their accuracy is evaluated on unseen
datasets. There are two commonly used object detector paradigms: single-shot and two-shot. Single-
shot-based methods such as You Only Look Once (YOLO) [5], Single Shot Detector (SSD) [6], etc.,
directly predict the class probabilities and Bounding Box (BBox) coordinates for objects in an im-
age. In contrast, two-shot architectures such as R-CNN [7], Faster R-CNN [8], etc., generate a set
of region proposals and then classify and refine them to output the final object detection. Moreover,
two-shot object detection methods have several advantages over other methods, including robustness
to scale and size variations, accurate localization, flexibility, and improved object recognition [9].
However, these advantages come at the expense of inference speed, with single-shot object detectors
generally being faster than two-shot object detectors. Despite this, even single-shot objector models
are difficult to deploy to resource constrained edge devices due to their high computational com-
plexity. Therefore, it is important to improve object detection models to meet power consumption
and real-time requirements on such devices [10, 11].

In recent years, researchers have presented optimized object detection models [10, 12, 13, 14, 15,
16, 17, 18] to enable onboard object detection on edge devices. Work in [13, 14, 15] proposed an
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optimized model for collision avoidance and obstacle detection to enable autonomous navigation
for a tiny drone with a GAPS8 processor. An Automatic License Place Recognition (ALPR) is pro-
posed on [18] which leverages a GAPS8 processor. TinyissimoYOLO is proposed in [17] which is
deployed on different microcontrollers, achieving an accuracy of 58.5% for three objects. In [10], an
optimized YOLO model, EdgeYOLO, is presented that achieves a reduction in model size by about
10x from around 250 MB to 25 MB. They deployed their proposed model on an NVIDIA Jetson
board for system-level verification. In [16] a metareasoning framework is proposed for an efficient
goal-oriented autonomous navigation by switching between an optimized YOLO model, Squeezed
Edge YOLO, and a lighter Convolutional Neural Network (CNN) based model.

In this work, the focus is on the Squeezed Edge YOLO [16] with detailed implementation and more
experimental results. Then, we compare the model with the state-of-the-art work in [10] which
have similar accuracy when we deployed both models on a JetBot equipped with an NVIDIA Jetson
Nano board to show the latency and energy improvement. Moreover, we deploy the Squeezed Edge
YOLO model on extremely resource constrained devices such as the GAP8 processor while meeting
real-time requirements. The main contribution of this work is as follows:

* A detailed implementation of an energy efficient Squeezed Edge YOLO as a tiny Machine
Learning (tinyML) model is provided in this work for tiny edge devices.

* Onboard YOLO-based model deployment and edge computing on resource constrained
edge devices such as the GAPS and NVIDIA Jetson Nano.

* Power and latency analysis on GAP8 processor and NVIDIA Jetson Nano as a result of the
memory hierarchy and onboard data transmission overhead.

To evaluate the Squeezed Edge YOLO[16], we deployed it on the GAPS8 processor. Moreover, we
compared the throughput and energy efficiency of the model on an NVIDIA Jetson Nano board with
state-of-the-art-works. Experimental results show a 3.3x faster throughput while achieving a 76%
energy efficiency improvement.

2 Proposed Approach

In this section, we describe challenges in deploying object detection neural networks to resource-
constraint edge devices as a motivation. Then, we propose a hardware-aware optimized object
detection model named Squeezed Edge YOLO for onboard processing.

2.1 Motivation

While we were able to deploy EdgeYOLO [10] to the Jetson Nano, our attempt to deploy the base
EdgeYOLO model onboard the GAPS resulted in failure. Due to the model’s size, it would overflow
the limited stack space available on the GAP8 and crash. Therefore, we applied hardware-aware
model optimizations by profiling EdgeYOLO, and working to reduce memory consumption while
attempting to retain an acceptable level of inference accuracy. For this aim, in the next section we
discussed relevant hardware features and presented an optimized Squeezed Edge YOLO.

2.2 GAPS Hardware Architecture

The GAPS is a microcontroller designed specifically with tinyML in mind [19], and as shown in
Figure 1, it contains one main processor core capable of running at up to 250 MHz, and an octacore
cluster capable of running at up to 175 MHz. In addition, it contains a variety of hardware accel-
erators including a convolution engine, as well as a 3-layer memory hierarchy composed of 64KB
of L1 RAM, 512 KB of L2 RAM, and an off-chip L3 memory composed of many megabytes of
RAM and flash. Past work with the GAP8 has demonstrated that it is primarily constrained by its
memory hierarchy [20], rather than its computational capabilities. Most modern microprocessors
go to great lengths to mask memory latency, such as by having multiple layers of caches on top of
RAM, hardware-prefetching, out of order execution, etc. The GAP8’s memory hierarchy is entirely
software-managed, L1 memory is the fastest, needing only a single cycle to access, L2 memory
takes multiple cycles to access, while L3 memory is the slowest - it is not memory mapped, requir-
ing Direct Memory Access (DMA) transfers from the off-chip L3 RAM into L2 memory in order
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Figure 1: GAP8 processor architecture and custom GreenWaves toolchain. As the figure shows, the
GAPS has a variety of hardware features in order to make the most of its limited power budget and
be able to run neural networks on the edge [19, 21, 16].

Table 1: Backbone feature extraction [16] Table 2: Neck feature enhancement [16]
Layer Type Size/Stride  Filters Output Layer Type Size/Stride  Filters Output
0 Conv 3x3/2 16 64x64x16 0 Conv 3x3/1 64 16x16x64
1 Conv 3x3/2 32 32x32x32 1 Conv 3x3/2 128 8x8x128
2 SE - - 32x32x32 2 SE - - 8x8x128
3 Conv 3x3/1 16 32x32x16 3 Conv 1x1/1 256 8x8x256
4 SE - - 32x32x16 4 SE - - 8x8x256
5 Conv 3x3/1 16 32x32x16 5 Conv 1x1/1 256 8x8x256
6 SE - - 32x32x16 6 Conv 3x3/1 128 8x8x128
7 Route Input: [6, 4] 32x32x32 7 Route Input: [5,] 8x8x256
8 Conv 3x3/1 32 32x32x32 8 Conv 3x3/1 64 8x8x128
9 SE - - 32x32x32 9 Upsample 2x2 - 16x16x128
10 Route Input: [2, 9] 32x32x64 1 Conv 1x1/1 64 16x16x64
11 SE - - 32x32x64 11 Route Input: [10, 0] 16x16x128
12 MaxPool 2x2/2 16x16x64 12 Conv 3x3/1 128 16x16x128
13 SE - - 16x16x128
14 Conv 1x1/1 128 16x16x128
15 SE - - 16x16x128
16 Conv 3x3/1 64 16x16x64
17 Detect Input: [6, 16]

to read and modify data stored within. Thus, it is the responsibility of applications to arrange their
data in an optimal layout around the memory hierarchy to minimize stalls by the GAP8’s in-order
processor cores and accelerators.

2.3 Squeezed Edge YOLO

Given this information, our first step was to shrink EdgeYOLQO’s original input image size specif-
ically when running on the GAPS. As the Al-deck expansion board (which includes the GAPS
processor) can only capture images at a resolution of 324x244, we shrunk the input image size from
416x416x3 to 128x128x3. Besides this though, 128x128x3 images only require 49152 bytes, or less
than the whole of L1 memory. In practice, the image will almost never be stored in its entirety within
L1 RAM - network parameters also need to be stored in L1 memory for efficient retrieval, although
the smaller size does make moving various data tiles much easier. We briefly considered using a
higher image resolution, albeit in gray scale, for object detection, however we ended up deciding
against this, given that we wanted to identify specific colored objects for reinforcement learning
purposes. Fortunately, the smaller size still manages to achieve a good trade-off between inference
latency and accuracy for object detection.

More broadly, besides input image size, we focused our attention on other aspects contributing to
high memory usage, which more often than not was a combination of convolutional layers and
residual blocks. By default, the base Edge YOLO model produces many output channels for each
convolutional layer, while this assists feature extraction in images, these output channels must be
stored somewhere. Besides the large number of channels, another challenge for the GAPS8 with these
convolutional layers is the size of the weights required. While 1x1 convolutions are not as great for
extracting features present within an image, they require 9x less weights than a 3x3 convolution.
Thus, as depicted in Table 1 and 2, where possible, we attempted to either reduce the number of
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Figure 2: A JetBot used for experimentation as well as a power measurement setup for the GAPS.
(a) The JetBot contains a Jetson Nano as well as various peripherals including a camera. (b) The
INA 219 and Arduino are used in this paper to measure the GAP8 processor power consumption
when the model is deployed onboard.

input and output channels present in EdgeYOLO convolutional layers, or if that was still not enough,
switch to using 1x1 convolutional layers.

Residual blocks [22] are quite common in modern computer vision networks, as they both ameliorate
the problem of vanishing gradients, and reduce total parameter count. However, despite using less
parameters than a network with many layers stacked over each other, they are taxing on the GAP8’s
memory hierarchy. This is because in addition to the weights and activations of the current neural
network layer being operated on, intermediate activations in skip connections need to be stored
somewhere in memory until they are fed into another layer. The base EdgeYOLO model, and most
modern YOLO implementations generally speaking, often contain deeply nested skip connections
covering dozens of layers, some of which contain their own skip connections. Shuffling these around
the memory hierarchy in tandem with the regular execution of the neural network is challenging, and
so we removed many residual blocks, and simplified others to only covering a few layers. In addition,
we removed one of the three detection heads; we figured that as the images we were operating on
were already quite small, and the detection heads are primarily for performing object detection at
different scales, it would be somewhat redundant. By extension, this also removed the longest skip
connection, along with its associated inner skip connections.

3 Experimental Results

In this section, we describe our evaluation of Squeezed Edge YOLO deployed on two target edge
devices: an NVIDIA Jetson Nano with 4GB of RAM shared between the CPU and GPU, and an Al-
deck with a GAP8 microcontroller onboard. Moreover, we specifically focus on: inference latency
on each processor, power consumption, and inference accuracy in comparison with the state-of-the-
art-work in [10].

3.1 Experimental Setup

For experiments, we used a JetBot with an NVIDIA Jetson Nano containing 4GB of RAM as shown
in Figure 2 (a), as well as a Crazyflie drone with an Al-deck expansion board, which contains a
GAPS8 microcontroller. The Jetson Nano contains hardware onboard for measuring the power draw
of the Tegra X1’s CPU and GPU cores. Meanwhile, the GAPS required the use of external hardware.
Figure 2 (b) shows an INA219 and an Arduino connected to the Al-deck’s power pins in order to
measure average power usage during the runtime of the network. As we were primarily interested
in autonomous navigation, we created a custom dataset for testing, composed of 1500 images of
various shapes captured from our deployment platforms. We additionally created a separate mixed
dataset of human images using 3500 images taken from CrowdHuman [23], and 3500 more images
we captured using the Al-deck.
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Figure 3: (a) Squeezed Edge YOLO object detection images (first two column), along with hu-
man detection images (last three column) captured using the Crazyflie’s Al-deck expansion board.
(b) Object detection images captured using the RGB camera on the JetBot. The overlaid labels show
the classification and detected accuracy by Squeezed Edge YOLO model.

Table 3: For a fair comparison, models are re-implemented. The size, power consumption, and
inference latency of YOLOvS5s [9], EdgeYOLO [10], and the Squeezed Edge YOLO [16] is
extracted. Squeezed Edge YOLO is successfully deployed to the GAPS processor which is about
8x smaller than YOLOVS5s. The shapes dataset is used for this experiments.

Model Parameters Accuracy Model Size Power Inference Latency
YOLOVS5s [9] 73 M 0.96 mAP | 237 Mb (32-bit) N/A N/A
EdgeYOLO [10] 8.1 M 0.99 mAP 65 Mb (8-bit) Failed due to memory limitations
Squeezed Edge YOLO [16] | 931 K (~8x smaller) | 0.95mAP | 7.5 Mb (8-bit) | 541 mW \ 130 ms

3.2 Model Optimization and Onboard Object Detection

Once we had our final object detection model, it achieved an acceptable inference latency for our
purposes aboard the Al-deck: roughly 8 inferences a second, displayed in Table 3, and as shown
in Figure 3 achieving an acceptable level of accuracy for object detection tasks. Upon examining
hardware utilization in the cycle-accurate GAP8 simulator, named GVSOC [24], we found it had
relatively low micro-DMA usage as a percentage of total runtime, as well as few CPU stalls on the
cluster cores. This indicates that the memory hierarchy is being used effectively, the cores are being
kept busy with crunching through the neural network, as the data is where it needs to be when the
processor begins operating on it.

3.3 Onboard Model Implementation

In this section, we describe the steps involved in deploying both EdgeYOLO and the Squeezed
Edge YOLO model we developed to the target hardware platforms, the GAP8 and Jetson Nano.
Additionally, the process of extracting power and latency measurements is described.

GAPS Processor. GreenWaves Technologies [19], the company that developed the GAPS, publishes
a custom toolchain [25] to ease deploying neural networks to the GAPS. This toolchain, depicted
in Figure 4 consists of a modified GCC compiler with GAP8 support added in, the Neural Network
Tool (NNTOOL), and AutoTiler. NNTOOL is responsible for converting adjusting ONNX and
TFLite models to replace unsupported operations, as well as to export the weights into a ROM
image. AutoTiler, takes care of converting the models execution graph into C code making use of
optimized compute kernels, as well as tiling to manage memory transfers for memory locality.

The GAPS8 does not contain any floating point units [20], and so we quantized the Squeezed Edge
YOLO model to 8-bit integers, which also has the side effect of reducing RAM usage. We then used
GreenWaves’ toolchain to convert the model into C code which we then compiled and benchmarked
both in GVSOC and on the Al-deck. As GVSOC is designed to be a cycle-accurate emulator of the
GAPS, we were able to extract performance info, as well as hardware utilization in the form of VCD
traces, whereas deployment to the Al-deck allowed extracting energy utilization. The VCD traces
found in Figure 4 showed that Squeezed Edge YOLO made efficient use of the memory hierarchy.
While the much larger, and much slower Squeezed Edge YOLO models that we designed, made
heavy use of L3 RAM.

NVIDIA Jetson Nano 4GB. To show the efficiency of the Squeezed Edge YOLO in comparison
with the proposed model in [10], we deployed both models on the NVIDIA Jetson Nano as EdgeY-
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Figure 4: Inference phase recorded in VCD traces for different size of Squeezed Edge YOLO model
on GAPS: (a) Squeezed Edge YOLO [16] (b) an enlarged Squeezed Edge YOLO (2x parameters)
(c) an enlarged Squeezed Edge YOLO (4x parameters). The green portion represents hardware
utilization. Cluster-DMA (CDMA) and Micro-DMA (MDMA) are responsible for data transfer
between L1, L2 and L3 memories in GAPS, respectively.

Table 4: Hardware implementation results that compare Squeezed Edge YOLO with the work pre-
sented in [10]. As EdgeYOLO was unable to be deployed to the GAP8, we used the Jetson Nano as
our baseline hardware for comparison purposes.

Metric/Approach EdgeYOLO [10] | Squeezed Edge YOLO [16]
Inference Latency (ms) 231 70
Throughput (Inference/Sec) 42 14.2 (3.3x faster)
CPU Power Consumption (mW) 777 1158
GPU Power Consumption (mW) 3846 2434
Performance (GOPS) 198.2 94.3
Energy Efficiency (GOPS/J) 185.7 788.5
Energy/Inference (mlJ) 1068 251.5 (76 % improvement)

OLO does not meet GAP8 resource constraints. The Jetson Nano is much closer to the workstations
and servers typically used for training and deploying machine learning models, given that it has an
ARMvVS CPU, and NVIDIA Maxwell architecture GPU with CUDA support, along with supporting
both FP16 and FP32 representations. Thus, it can directly execute PyTorch and TensorFlow models
on both its CPU and GPU. However, NVIDIA provides a machine learning framework named Ten-
sorRT [26], which applies GPU-specific optimizations in order to boost the performance of models
during execution. Thus, we converted our models to TensorRT before executing them on-device.
Additionally, as the Jetson Nano does not face the same memory constraints as the GAP8, we tested
all models aboard the Jetson Nano using a 3 channel 416x416 input image size. The Jetson Nano is
able to monitor power going to both the CPU and GPU respectively, obviating the need for the same
setup we used for measuring power on the GAPS8 as reported in Table 4. Experimental results show
Squeezed Edge YOLO used less CPU and GPU power consumption in comparison EdgeYOLO [10].

4 Conclusion

In this work, we examined an optimized YOLO model named Squeezed Edge YOLO for onboard
processing on resource constrained edge devices containing limited sources of power and compu-
tational capacity. In order to achieve this, a baseline YOLO model was optimized in terms of its
number of parameters and computations to reduce the model size. Evaluation was carried out on a
drone known as the Crazyflie with a GAPS processor containing 8 RISC-V cores, and a JetBot with
an NVIDIA Jetson Nano containing 4 GB of memory. The experimental results show that Squeezed
Edge YOLO is about 8x smaller than existing edge focused YOLO model. We measured power
consumption and latency upon deploying Squeezed Edge YOLO to the target devices, and found
that by optimizing the YOLO model, it achieves a 76% and 3.3x energy efficiency and throughput
improvement on the Jetson Nano board.
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