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Abstract

Recommender systems (RS) help to capture users’ person-
alized interests and are increasingly important across social
media, e-commerce, and various online applications. Since
users are free to choose items to rate, the collected ratings
are a missing-not-at-random subset of all user-item pairs, and
there is a systematic distributional shift between observed and
unseen ratings, which is also called the selection bias. There
have been emerging quantities of methods to address the se-
lection bias. The error-imputation-based, inverse propensity
score, and doubly robustness methods try to improve the pre-
diction accuracy by introducing the imputation model and
propensity model. However, most of these methods cannot
achieve nonparametric efficiency in estimating the ideal loss or
lack theoretical guarantees for robustness and efficiency when
learning the prediction model. To bridge this gap, this paper
uses a neural network based architecture to model the propen-
sity and prediction model and jointly train the two models
with a target learning approach. Specifically, we add a targeted
regularization that guides the optimization in the most effi-
cient direction. Experiments on three widely used real-world
datasets show the effectiveness of our method.

Introduction

Recommender systems (RS) is an effective tool to address
information overload in the modern era, which has be-
come increasingly important and widely applied in social
e-commerce, entertainment, social media, and other online
applications (Shi, Larson, and Hanjalic 2014; Zhang et al.
2023; Wang et al. 2020a). The RS aims to combine the fea-
tures of users and items with the collected historical behaviors
or feedback to provide personalized recommendations. How-
ever, as users are free to choose items to rate and the collected
data is easily affected by item popularity differences and user
rating preferences, the observed ratings or interactions have
an inherent distributional shift from the target population,
i.e., the ratings for all user-item pairs (Marlin et al. 2007;
Marlin and Zemel 2009; Wang et al. 2024; Yang et al. 2023;
Xiao et al. 2024; Wang et al. 2021). The bias due to the
missing-not-at-random (MNAR) ratings is called selection
bias. Training a prediction model from these MNAR ratings
using empirical risk minimization (ERM) cannot achieve
optimal prediction performance on all user-item pairs.
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Many debiasing methods have been proposed to address
selection bias. The error-imputation-based (EIB) methods
tackle the selection bias by using an imputation model to
estimate the missing labels and then minimizing the error be-
tween the observed and imputed pseudo-labels (Steck 2010).
However, the performance of EIB highly relies on the accu-
rate imputation. Instead, the inverse propensity score (IPS)
methods address the selection bias by using a reweighting
strategy to adjust the distribution of observed data to that
of the missing data (Saito et al. 2020; Schnabel et al. 2016;
Wang et al. 2022). Though the IPS method does not rely on
an extrapolation model like EIB, due to the data sparsity, it
is difficult to accurately estimate the propensity scores and
may suffer from large variance when there exist small propen-
sity scores. The doubly robust (DR) methods utilize both the
imputation model and the propensity models (Saito 2020;
Wang et al. 2019). It possesses advantages for (1) obtaining
unbiased estimations when either the imputation model or
the propensity model is correctly specified, which is known
as the double robustness property, and (2) possessing lower
variance than IPS. However, though doubly robust, the DR
methods may still suffer from low efficiency and have large
variances inherited from IPS modules due to the data spar-
sity. Furthermore, the double robustness of DR only holds
under the strict correctness of either model, in other words,
if the propensity model is slightly incorrect, the DR meth-
ods will suffer from a large bias (Kang and Schafer 2007;
Molenberghs et al. 2014; Vermeulen and Vansteelandt 2015;
Seaman and Vansteelandt 2018).

To address the above concerns and improve efficiency and
robustness, we proposed a targeted learning method to re-
duce the asymptotic variance and guarantee robustness under
model misspecification. Targeted learning aims to train the
model that can meet different requirements like debiasing,
variance control, or covariate balancing (Van der Laan, Rose
etal. 2011), which is a flexible framework that has wide appli-
cations. The EIB, IPS, and DR methods have multiple models,
like the prediction models, the propensity models, and the
imputation models. Thus, it is hard to correctly specify all
models. Meanwhile, it is important to reduce the variance
and guarantee robustness simultaneously.

In this paper, we propose a joint training approach for
propensity and prediction models via targeted learning, called
TLNet. We propose a two-headed neural network to simul-



taneously learn the propensity and prediction models. We
share the feature representation module across two models,
which effectively addresses the data sparsity issue. We then
propose a targeted regularization to impose the empirical ef-
ficient influence curve to 0, which guarantees robustness and
efficiency for the estimation of the prediction model based on
the theory of targeted learning. Specifically, we jointly learn
the propensity model and prediction model with a combined
loss of the targeted regularization and the prediction loss. The
main contributions of this paper are as below:

* We propose a target learning network to reduce the vari-
ance and guarantee robustness and estimation efficiency
simultaneously.

* In this network, we learn the sharing representation be-
tween the propensity and prediction models and propose
a targeted regularization to impose the empirical efficient
influence curve to 0

» Extensive experiments are conducted on three public
datasets, demonstrating the superiority of applying tar-
get learning for debiasing recommender systems.

Related Work
Causal Recommendation

The causal recommendation aims to formulate the recommen-
dation as a causal problem and debias the recommendation
from the causal perspective (Wang et al. 2023; Yang et al.
2021, 2023). Causal recommendation plays an important
role in debiased recommendations due to its good theoretical
properties. There have been various causal recommendation
methods proposed for unbiased recommendation under differ-
ent types of bias, such as popularity bias (Zhang et al. 2021),
user self-selection bias (Saito 2020), position bias (Ai et al.
2018), and model selection bias (Yuan et al. 2019). Most of
them are IPS-based or DR-based methods.

IPS methods address the bias by adjusting the distribution
of observed data to the distribution of unseen data, elimi-
nating the distribution shift that is the major cause of bias.
Schnabel et al. (2016) formulated the recommendation as
treatment and denoised the prediction models with IPS and
self-normalized IPS (SNIPS). Saito et al. (2020) further ex-
tended the IPS method to implicit recommendations. How-
ever, IPS methods are easily affected by misspecified propen-
sity models and have large variances due to data sparsity
issues. The DR methods have better properties like double
robustness and lower variance. A series of enhanced DR meth-
ods have been proposed, including Multi-DR (Zhang et al.
2020), MRDR (Guo et al. 2021), DR-MSE (Dai et al. 2022),
BRD-DR (Ding et al. 2022), SDR (Li, Zheng, and Wu 2023),
DR-V2 (Li et al. 2023b), CDR (Song et al. 2023), KBDR (Li
et al. 2024d), N-DR (Li et al. 2024b), DCE-DR (Kweon and
Yu 2024), DT-DR (Zhang et al. 2024), UIDR (Li et al. 2024c),
and OME-DR (Li et al. 2024d). Most of the existing enhanced
methods aim to achieve a better bias-variance trade-off and
are less robust, while we proposed the TLNet to guarantee
the efficiency and robustness with targeted learning.

Targeted Learning

Targeted learning is a flexible framework in causal infer-
ence that can apply to multiple fields and lead to many
field-specific approaches to address scientific problems in
different fields, including survival analysis, genomics, and
epidemiology. Targeted learning serves as a general frame-
work and is model agnostic. Shi, Blei, and Veitch (2019)
proposed Dragonnet to adapt the neural networks to estimate
the treatment effects based on targeted learning and proved
that the targeted learning could be well combined with the
neural networks and achieve satisfying performance. TDR
was the first method that extended the target learning to the
field of debiased recommendation (Li et al. 2023a). TDR
debiased the prediction model by dealing with the estima-
tor and learning problem simultaneously. However, the TDR
only considered applying targeted learning on the imputation
model, which cannot directly guarantee efficiently estimating
the prediction model that is the ultimate goal. The TLNet
extended a more fine-grained targeted learning neural net-
work to recommender systems and theoretically guarantees
efficient estimation for the ideal loss and robust learning for
the prediction model.

Problem Setup

LetU = {uy, -+ ,um} be the users set, Z = {iy, - ,in}
be the item set, and D = U x Z be the set of all user-item
pairs. The rating matrix is denoted as R € R™*™ with r,, ;
as element. Let o, ; € {0,1} be the observation indicator
indicating whether the ,, ; is observed and z,, ; be the feature.
We denote the prediction model as fy(-) parameterized by 6
and the predicted ratings as 7, ; = fp(z,,;). The goal is to
accurately predict r,, ; for all user-item pairs, which can be
achieved by minimizing the ideal loss
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where L(-,-) is the training loss function such as cross-
entropy loss. However, in practice, we cannot obtain the
complete rating matrix. We denote the set of user-item pairs
with observed ratings as O = {(u,%) | 0y,; = 1}. The naive
method optimizes the average loss over the observed samples

Lx(0) = L Z Cuyi-
IO' (u,i)€eO

Due to the selection bias, E{LN(0)} # Lidea(f) (Schn-
abel et al. 2016; Wang et al. 2019). Several methods were
proposed to unbiasedly estimate the ideal loss, including the
EIB, IPS, DR, and their variants. Because EIB and IPS can be
regarded as a special case of DR, we only introduce the DR
methods here. The loss function of the vanilla DR method is
formulated as

Lon(®) = 751 3

(u,i)€D
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where p,, ; is the estimated propensity score for the true
exposure probability p,; = Pr(oy; = 1 | %4,), and
éy,; is the error for the imputation model m(z, ;; @), i.e.,
éu,?ﬂ = E(m(zu,ﬁ ¢)a f’u,z)



Proposed Method

We propose a joint training method for the propensity and pre-
diction model via targeted learning, called TLNet, to enhance
the debiasing performance on data MNAR. Different from
Dragonnet, TLNet is adapted to recommender systems where
there are no observations for negatively treated samples. The
TLNet can simultaneously guarantee efficiency with low vari-
ance and robustness under the misspecification of models
using targeted learning.

First, we design a two-headed neural network to learn the
prediction model and propensity model simultaneously. Start-
ing from x,, ;, we use a shared feature representation module,
i.e., zy,i = ®(xy,;). The hope is that the representation mod-
ule can distill the covariates into the features relevant to the
ratings and observation indicator. We then model the predic-
tion model and propensity model with two different heads.
Following previous notations, we denote the prediction model
by fo(xy,i), in which 6 includes the parameters of both the
representation module and head for prediction model, and we
denote the propensity model by gy (., ;), in which ¥ includes
the parameters of both the representation module and head
for propensity model.

We expect that the prediction model can estimate the rat-
ings well and the propensity model can estimate the obser-
vation indicators well. Thus, a straightforward loss function
can be derived as

R0 = L 3 Enni)ra)
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where o € R™ is a hyperparameter weighting the loss com-
ponents, and £ and L is the training loss function (such as
cross-entropy loss) for prediction and propensity model, re-
spectively. However, the above combined loss cannot guaran-
tee the efficiency of the estimation for the prediction model.

We turn to find a target to control the efficiency of the
estimation for the ideal loss. An intuitive way is to find the
efficient influence curve for the ideal loss function and impose
it as 0. We denote the expectation of the ideal loss by 7, i.e.,

Y = Ep [L(fo(TuisTui))] s

and Ligea1(0) is equivalent to ¢ under finite samples. The
efficient influence curve for 1) can be derived as

Oy, i
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Thus, the target is to impose the sum of ¢(xy, ;, 7.5 6,9, )
to be 0, that is,
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However, the optimization of the above target function is
intractable. Thus, the optimization is modified to an equiva-
lent form that is easier to optimize following Shi, Blei, and

Veitch (2019). We first introduce an auxiliary learnable pa-
rameter € and a regularization term +,, ; defined by

0.
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The target is to let ﬁ 2 wiyeo V(@uis Ouyis Tuis 0,0, €) =
0. We train it as a regularization. The final loss is
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where [ is a hyperparameter as the penalty coefficient. We
learn parameters by minimizing the combined loss,

0,9, = arg ;n;n Lcombined (8,9, €).
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We define the following estimators,
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Thus, minimizing the combined loss would force the esti-
mated parameters satisfy the target function Eq. (1), which is
the nonparametric influence curve for the ideal loss. Based
on the nonparametric theory, we can conclude that our esti-
mation will achieve nonparametric efficiency. By imposing
the target function as Eq. (1), even when both fy(z, ;) and
go(z,,;) are misspecified, the bias of the loss are enforced to
be close to 0, thus, leading to the robustness of TLNet under
misspecifications of models.

Experiments

Datasets. To evaluate the debiasing performance, we con-
ducted experiments on three real-world datasets, Coat (Schn-
abel et al. 2016), Yahoo! R3 (Schnabel et al. 2016), and
KuaiRec (Gao et al. 2022), which are widely used in debi-
ased RS because all of them include both biased data and
unbiased data. Coat dataset consists of 6,960 biased ratings in
the training set and 4,640 unbiased ratings in the test set from
290 users and 300 items. The Yahoo! R3 dataset includes
311,704 biased ratings in the training set from 15,400 users
and 1,000 items and 54,000 unbiased ratings from the first
5,400 users. Each rating in both datasets are five-scale. We
binarize them by letting ratings less than three to 0 and 1 oth-
erwise. Additionally, we use an industrial dataset KuaiRec
with 4,676,570 records for video watching ratio of 1,411
users and 3,327 videos. We randomly split 100 videos for
each user for unbiased evaluation. We binarize the records by
letting values less than two be 0 and 1 otherwise.

Baselines. We use the neural collaborative filtering (NCF)
method as base model, and we compare our method with



Table 1: Performance on AUC, Recall@K, and NDCG @K on the unbiased test set of Coat, Yahoo! R3, and KuaiRec. The best
results are bolded and the best baseline is underlined. * means statistical significance with p-value < 0.05.

| COAT | YAHOO! R3 | KUAIREC

Method ‘ AUC R@5 N@5 ‘ AUC R@5 N@5 ‘ AUC R@50 N@50

NCF 076210011 044110010 0.62310.011 | 0.68210001 045140002 0.67410.002 | 0.83510.001 0.691+0.007 0.64310.004
CVIB 0.75910.002  0.45510.006 0.63610.003 | 0.69610.001 0.45240.003 0.683+0.002 | 0.79210.003 0.64110.004 0.58410.004
DIB 0.74710.004 0.45510.007 0.64310.004 | 0.69710.003 043610006 0.671+0.005 | 0.800+0.006 0.64310.006 0.57610.005
IPS 0.75810.006 0.44810.012 0.63610.011 | 0.690+0.004 045240004 0.674+0.004 | 0.83610.004 0.69210.010 0.64710.005
SNIPS 0.75910.011 044910006 0.64410.00s | 0.69210.001 045010002 0.677+0.002 | 0-83410.001 0.70310.001  0.650+0.001
AS-IPS 0.759+0.005 0.44610.004 0.63310.006 | 0.688+0.007 045410000 0.674+0.007 | 0.83610.004 0.69410.004 0.64410.003
IPS-V2 0.75010.007 044110004 0.61910.005 | 0.69410.007 045640003 0.673+0.005 | 0.83810.005 0.69810.006 0.64910.005
DR-JL 0.76810.011 0.44610.005 0.63310.007 | 0.69610.003 0.45310.003 0.678+0.002 | 0.83710.001 0.69810.003 0.64910.003
MRDR-DL | 0.76810.000 0.45710.012 0.64210.013 | 0.695:0.002 0.45310.003 0.679+0.003 | 0.83510.002 0.69710.005 0.64910.003
DR-BIAS | 0.76310.010 0.44910.005 0.63910.007 | 0.69910.001 045610003 0.677+0.003 | 0.83310.004 0.68710.007 0.64110.002
DR-MSE 0.764 0.011  0.45210.005 0.63510.007 | 0.69810.003 0.45640.002 0.684+0.002 | 0.83310.003 0.69210.005 0.64310.005
TDR-JL 0.770£0.008  0-45510.017 0.65310.024 | 0.70140.004 045610005 0.684+0.006 | 0-83910.002 0.69610.004 0.651+0.009
DR-V2 0.76110.004 0.45210.007 0.63510.005 | 0.690+0.004 045110004 0.682+0.005 | 0.83610.003 0.700+0.007 0.64910.005
KBDR 0.769+0.008 0.45310.005 0.6401+0.006 | 0.69210.007 0.45310.008 0.676+0.004 | 0.838+0.006 0.699+0.008 0.651+0.004
TLNet ‘ 0.77610.000 04775014 0.692% 011 ‘ 0.70240.003 0.458% 001 0.687% g0 ‘ 0.852% ) 002  0.716% 005  0.6597% 503

the following debiasing methods, including: (1) propensity- RecallOK — 1 Z Recall,, QK.

independent methods: CVIB (Wang et al. 2020b), DIB (Liu
et al. 2021) and AS-IPS (Saito 2020); (2) IPS-based methods:
IPS (Schnabel et al. 2016) and SNIPS (Schnabel et al. 2016),
and IPS-V2 (Li et al. 2023b); (3) DR-based methods: DR-
JL (Wang et al. 2019), MRDR-DL (Guo et al. 2021), DR-
BIAS (Dai et al. 2022), DR-MSE (Dai et al. 2022), TDR-
CL (Li et al. 2023a), DR-V2 (Li et al. 2023b), and KBDR (Li
et al. 2024a).

Training Protocols and Details. We train all the methods
on Pytorch with Adam as the optimizer. We tune the learning
rate in [0.005,0.1], and A in [le — 6, 5¢ — 3]. We tune the
trade-off parameter o and 3 in {0.1,0.5, 1,5, 10}. The batch
size is chosen as 128 for Coat and 2048 for Yahoo! R3 and
KuaiRec. We evaluate the prediction performance with three
widely adopted evaluation metrics: AUC, NDCG@K (N@K),
and Recall@K (R@K). The N@K and R@K are popular
in recommender systems as they can assess the quality of
ranking tasks. Specifically, NDCG @K evaluates the quality
of recommendations by considering the importance of each
item’s position based on discounted gains:

s <
icDY, 0g(Zui +1)
1 DCG,QK
NDCGQK = — e
ce U] uer IDCG,QK’

where IDCG represents the best possible DCG, D¢, denotes
the the cardinality of all ratings of the user w in test data, and
Zy,; represents the ranking of item ¢ in the recommended
list for user u. In addition, the formula of Recall@K is as
follows:

ZieDu I(éuyi < k)
Recall , QK = et ,
min (K, | Digy)

|U| uelU

We set K = 5 for Coat and Yahoo! R3, and K = 50 for
KuaiRec.

Experiment Results. We show the performance compar-
isons of all baselines and the proposed TLNet in Table 1. The
DR-based methods consistently outperform the IPS-based
methods and the propensity-independent methods, suggest-
ing the strong ability of the DR method for debiasing and
the necessity of guaranteeing the robustness of the debias-
ing model. TDR obtains the optimal performance among
baselines due to the use of targeted learning. It highlights
that targeted learning is useful to improve prediction perfor-
mance. Nevertheless, TDR only imposes the target learning
on the imputation model while we directly apply target learn-
ing to the ideal loss. Note that among all three datasets, the
proposed TLNet consistently outperforms TDR and other
baseline methods in AUC, NDCG @K, and Recall @K met-
rics. These findings underscore the robustness and superior
performance of our proposed TLNet method in both rank-
ing and retrieval tasks, demonstrating its strong potential for
real-world applications in recommender systems.

Conclusions

This paper proposes the TLNet, a novel method that jointly
train the propensity and prediction models and improve the
efficiency and robustness of the prediction model in RS via
the target learning. Specifically, we add a target function,
which is the efficient influence curve of the ideal loss, to guide
the optimization in the most efficient direction. Meanwhile,
the proposed target function forces the bias of the loss to be
sufficiently small, even under the misspecification of both
the prediction and propensity models. TLNet possesses good
properties such as robustness and efficiency inherited from
the target learning. Experimental results on three real-world
datasets demonstrate the superiority of TLNet.
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