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Abstract

Model interpretability, fairness, and recourse for
end users have increased as machine learning
models have become increasingly popular in ar-
eas including criminal justice, finance, healthcare,
and job marketplaces. This work presents a novel
method of addressing these issues by producing
meaningful counterfactuals that are aimed at pro-
viding recourse to users and highlighting potential
model biases. A meaningful counterfactual is a
reasonable alternative scenario that illustrates how
input data perturbations can influence the model’s
output. The CounteRGAN method generates mean-
ingful counterfactuals for a target classifier by uti-
lizing a novel Residual Generative Adversarial
Network (RGAN). We compare our method against
leading state-of-the-art approaches on image and
tabular datasets over a variety of performance met-
rics. The results indicate a significant improvement
over existing techniques in combined metric per-
formance, with a latency reduction of 2 to 7 or-
ders of magnitude which enables providing real-
time recourse to users. The code for reproducibil-
ity can be found here: https://github.com/gan-
counterfactuals/countergan.

1 INTRODUCTION

A growing number of domains use machine learning (ML)
predictive models on a daily basis, such as criminal justice
for predicting recidivism [Tollenaar and van der Heijden,
2013], healthcare for diagnosing patients [Miotto et al.,
2018], job marketplaces for hiring candidates [Faliagka
et al., 2012], and finance for loan approvals [Addo et al.,
2018]. The pervasiveness of this technology has resulted
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Figure 1: The CounteRGAN method applied to an example
from MNIST. Three neural nets are employed: a residual
generator, a discriminator that distinguishes the real data,
and a target classifier. The loss function of the generator uses
both the classifier and discriminator output. In the example,
residuals are being produced by the generator, which, when
added to the input, creates realistic images of a "4".

in a growing need for model interpretability as well as dis-
cussions regarding "the right to explanation" in the legal
and machine learning communities [Wachter et al., 2017a,
Selbst and Powles, 2017, Goodman and Flaxman, 2016].
Consequently, considerable resources have been allocated
not only to improve prediction explainability, but also to
provide recourse to users to enhance fairness and opportu-
nity.

A number of leading explainability methods [Ribeiro et al.,
2016, Lundberg and Lee, 2017, Sundararajan et al., 2017,
Selvaraju et al., 2019, Chattopadhay et al., 2018] have shown
promise in shedding light on the opaque logic and feature
influences behind a prediction model. By answering why a
model predicted the result it did, explainability methods are
useful for validating training and identifying possible racial,
social, and gender biases. Alternatively, recourse aims to
provide the user with actionable feedback by showing how
a prediction can be altered or reversed. By recommending
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certain changes to the input data, recourse can inform a user
how to improve their chances of receiving a better diagnosis,
getting a loan, or getting hired.

Alternative hypothetical scenarios that rely on perturbations
to the original input values are known as counterfactuals.
The impacts on a prediction from the changes suggested
by counterfactuals can be useful for model interpretability
as well as for providing recourse to users. If, for instance,
one’s gender or race are suggested to be changed to alter the
prediction result, then predictor biases could be suspected.
In contrast, recourse relies on providing interpretable feed-
back users can act upon and which helps them change the
prediction result in their favor. Counterfactuals should be
meaningful in order to provide recourse. Meaningful coun-
terfactuals must be realistic, computationally efficient, and
able to provide actionable feedback to the user that would
help them achieve the desired prediction outcome.

Unlike computing efficiency and prediction outcomes which
can be quantified by examining latency and predictor score,
realism and actionability are fundamentally more subjective.
A counterfactual is said to be realistic when it closely re-
sembles or "fits in" with the known distribution of data. For
example, a house with a negative number of bedrooms is ev-
idently unrealistic. A less obvious example, however, would
be of a house with a seemingly extreme layout but where
realism is dependent upon the location and society.1By con-
trast, actionability pertains to whether proposed changes are
interpretable and reasonable for a user to take action. For
instance, increasing one’s body mass index, learning a new
programming language, or reducing outstanding debt are all
actionable changes (although some are more difficult than
others). The proximity and sparsity of a counterfactual can
serve as an intuitive but imperfect proxy for actionability
since they indicate the magnitude and number of potential
perturbations in the counterfactual. A realistic counterfac-
tual doesn’t necessarily result in actionable change. As an
example, it is not reasonable to reduce one’s age or edu-
cation even if it results in a counterfactual which is very
similar to a realistic individual. Moreover, depending on
the use case, actionable changes may result in unrealistic
counterfactuals. For instance, manipulating pixels and text
or fixing features to specific values can confuse the target
classifier in a manner similar to adversarial attacks which
exploit seldom used regions of a classifier’s decision bound-
ary.

Existing recourse methods [Wachter et al., 2017b, Van Loov-
eren and Klaise, 2019, Mothilal et al., 2020] employ varia-
tions of regularized gradient descent to perform the counter-
factual search. As a result, these are severely constrained by
latency since a counterfactual search is required for every

1One of the authors recalls the wonderment of seeing the tall
and narrow Dutch houses neatly packed into picturesque rows
lining idyllic canals. Consider how surreal such homes would
appear in the Andean mountain villages or vice versa.

unique input data point. A lack of counterfactual realism
also affects algorithms that do not explicitly consider realism
constraints [Wachter et al., 2017b] or conflate realism with
actionability [Mothilal et al., 2020]. Latency constraints and
the distinction between realism and actionability are key
to framing the counterfactual search problem as a natural
fit for Generative Adversarial Networks (GANs). GANs
[Goodfellow et al., 2014a] are a class of ML models capa-
ble of producing strikingly realistic synthetic data with low
and fixed latencies.These models formulate the training of
two artificial neural networks, a generator and a discrim-
inator, as an adversarial game. While the discriminator is
trained to recognize realistic data, the generator is trained to
synthesize data that can fool the discriminator. Effectively
trained generators produce realistic data requiring a single
forward-pass through the neural network.

In this work, we formalize a Residual GAN (RGAN) ar-
chitecture, useful for generating perturbations directly and
alleviating mode collapse. The latter issue can occur during
training when the generator model begins to consistently
produce similar or identical outputs regardless of the inputs.
The RGAN is used in conjunction with a fixed target classi-
fier to generate meaningful counterfactuals that are suitable
for providing recourse to users and improving model inter-
pretability and fairness. This new approach, referred to as
CounteRGAN, produces counterfactuals that meet or exceed
the predictive gain and actionability of two state-of-the-art
methods while improving realism and decreasing latency
by 2-7 orders of magnitude. Figure 1 provides a clarifying
illustration of the CounteRGAN architecture applied to an
example from MNIST. The proposed technique can be used
to provide real-time recourse to users of ML predictors em-
ployed in a wide range of industries. Our goal is to facilitate
improved opportunities, transparency, and fairness associ-
ated with ML prediction. The main contributions of this
work include:

• The application of GANs to produce meaningful coun-
terfactuals that can provide real-time recourse to users
as well as improved model interpretability and fairness.

• Formalizing a novel Residual Generative Adversarial
Network (RGAN) that trains the generator to produce
residuals that are intuitive to the notion of perturbations
used in counterfactual search. This model is also shown
to alleviate mode collapse.

• The CounteRGAN method which applies an RGAN
model in conjunction with a target classifier to produce
meaningful counterfactuals 2 to 7 orders of magnitude
faster than existing methods. A second variant is also
introduced for when the target classifier’s gradients or
architecture is unknown (e.g., a black-box model).



2 RELATED WORK

Influential and relevant previous work comes from both the
counterfactual and GAN domains.

2.1 COUNTERFACTUALS

Borrowing from philosophy and causality [Lewis, 1973,
Pearl, 2009, Karimi et al., 2020], counterfactuals were in-
troduced as explanations for ML predictors by Wachter et
al. [Wachter et al., 2017b]. The authors formulated coun-
terfactual search as a minimization problem with an added
regularization term to enforce feature perturbation sparsity.
Given an original data point x and a ML classifier C, the
counterfactual xcf is produced using iterations of gradient
descent to increase the classifier’s prediction Ct (xcf) for a
given target class t. This approach is useful for producing
counterfactuals of the desired class but tends to be slow and
results may be unrealistic.

Several approaches have targeted increasing counterfac-
tual realism. These include a graph-based density approach
[Poyiadzi et al., 2019] and applying an autoencoder recon-
struction error term to constrict the counterfactual from
straying too far from the observed feature space [Dhurand-
har et al., 2018, Joshi et al., 2019, Pawelczyk et al., 2020].
An alternative approach [Mothilal et al., 2020] focuses on
producing multiple diverse counterfactuals for each query
instance such that the user can select the most relevant. A
novel technique proposed utilizing class prototypes [Kim
et al., 2016] to guide the counterfactual search toward high-
density regions of the feature space [Van Looveren and
Klaise, 2019]. While the aforementioned methods are lim-
ited to differentiable classifiers, a heuristic search involving
"growing spheres" is used [Laugel et al., 2017] to produce
sparse counterfactuals for non-differentiable or black-box
models. This method, however, does not further address
realism nor latency concerns. All of the approaches men-
tioned above suffer from high computational latencies. The
proposed CounteRGAN method, however, is able to pro-
duce meaningful counterfactuals within real-time latency
constraints for both differentiable and non-differentiable
models.

Counterfactuals are also produced in adversarial perturba-
tion techniques [Goodfellow et al., 2014b]. For example,
modifying a single pixel in an image of a horse to fool a
classifier into predicting it is an image of a frog [Su et al.,
2017]. In general, these methods are aimed at confusing
a target classifier without necessarily providing meaning-
ful recourse to users; a task that requires balancing desired
prediction with realism and actionability.

2.2 GENERATIVE ADVERSARIAL NETS (GANS)

The introduction of GANs [Goodfellow et al., 2014a]
marked a milestone in the field of generative models. The
elegance of a GAN lies in its formulation of training as an
adversarial minimax game between two differentiable mod-
els able to approximate probability distributions utilizing
backpropagation and gradient descent. Interest in GANs has
since intensified and several novel approaches have been
proposed towards improving training [Salimans et al., 2016,
Arjovsky et al., 2017] and architecture [Radford et al., 2015,
Denton et al., 2015, Zhang et al., 2016]. Providing addi-
tional input such as label information to condition GANs,
for example, to generate specific MNIST digits, has been
previously proposed [Mirza and Osindero, 2014, Odena
et al., 2017]. GANs have also been applied to problems
that share intuitive notions with counterfactuals such as rep-
resentation learning [Chen et al., 2016, Tran et al., 2017],
image-to-image translation [Isola et al., 2016, Zhu et al.,
2017a,b], style transfer [Huang and Belongie, 2017, Karras
et al., 2020], and illumination [Wang et al., 2017, Zhang
et al., 2019]. The use of GANs with residual images has
been proposed for attribute manipulation in images [Shen
and Liu, 2016]. These methods are domain-specific and of-
ten target realism instead of reverting decisions of existing
classifiers and providing actionable feedback to users. An
unrelated but similarly termed "Residual GAN" [Tavakolian
et al., 2019] uses a deep residual convolutional network to
a generator to magnify subtle facial variations. In contrast,
we define and use a Residual GAN, where the generator is
trained to synthesize residuals directly. Unlike prior work,
and to the best of our knowledge, we are the first to apply
GANs towards the generation of meaningful counterfactuals
for recourse.

3 GAN-BASED COUNTERFACTUAL
GENERATION

To overcome the mode collapse and actionability limitations
of applying standard GANs to counterfactual generation,
we formalize the Residual GAN (RGAN) as a special case
of GAN. The CounteRGAN, by contrast, is the proposed
technique that couples an RGAN with a target classifier to
synthesize meaningful counterfactuals.

3.1 RESIDUAL GAN (RGAN)

Similar to how conditional GANs [Mirza and Osindero,
2014], though initially motivated by image synthesis, have
been generalized to be applicable to several domains, we
also introduce a generalized RGAN formulation, whose
original motivation stemmed from generating counterfac-
tuals, but could also be applied to other domains including
image synthesis and photo editing [Zhang et al., 2019]. The



generalized RGAN is a special instance of a GAN where
the generator generates residuals rather than a complete syn-
thetic data point. As in standard GANs, a discriminator D
and a generator G are trained in a minimax game framework
where the generator seeks to minimize and the discriminator
aims to maximize the following value function:

VRGAN(D,G) =Ex∼pdata
logD(x)

+ Ez∼pz
log (1−D(z +G(z))) ,

(1)

where the generator’s input z ∈ Z is a latent variable sam-
pled from a probability distribution pz. The input to the
RGAN discriminator is z + G(z), as opposed to the stan-
dard GAN which utilizes G(z) directly.

The generalized RGAN formulation restricts the dimen-
sionality of the latent (input) space to be the same as the
data feature (output) space (Z = X).2 and forces the gen-
erator to learn contingent relationships between its input
and output. This constraint enables fine-grained regulariza-
tion directly on the residuals 3 and helps to alleviate mode
collapse caused when the GAN generates similar output
regardless of its input which it learns to ignore.

3.2 COUNTERGAN

The proposed counterfactual search method, termed Coun-
teRGAN, utilizes an RGAN and a fixed target classifier C to
produce meaningful counterfactuals for providing recourse
to users and improved interpretability. The method is capa-
ble of producing counterfactuals that are of the desired target
class, realistic, actionable, and require low computational
latency. Below we present two variants of the CounteRGAN
value function for when the classifier’s gradients are and are
not known. The search process seeks to maximize the value
function with respect to the discriminator D and minimize
it with respect to the generator G.

If the classifier is known and differentiable, then the follow-
ing CounteRGAN value function can be used:

VCounterRGAN(G,D) = VRGAN(G,D) + VCF(G,C, t)

+ Reg(G(x)), (2)

where t is the target class. The first term (VRGAN) uses a
2This constraint could be overcome by utilizing an autoencoder.

The synthesized data point z + G(x) ∈ Z can then be decoded
to a new data point in the same space as the input data, such that
decoder(z +G(x)) ∈ X

3Note that the activation function for the generator’s output
layer constrains the residuals and therefore their impact on the
final synthesized output. Thus, depending on the scenario, it is
recommended to use a symmetric activation function (e.g., linear,
tanh) capable of outputting positive and negative values within the
same order of magnitude as the input features.

specialized RGAN that reads:

VRGAN(D,G) = Ex∼pdata
logD(x)

+ Ex∼pdata
log (1−D(x+G(x))) ,

(3)

where both the generator G and discriminator D use in-
puts samples x from the same probability distribution pdata.
In isolation, this formulation would result in the generator
learning to systematically output null residuals since the in-
puts are already realistic data. However, since the generator
is also required to account for the classifier’s loss term VCF,
this formulation helps to enforce counterfactual realism.

The term (VCF) drives the counterfactual toward the desired
class t, it reads:

VCF(G,C, y) = Ex∼pdata
log (1− Ct(x+G(x))) , (4)

where Ct is the classifier’s prediction function for the de-
sired class.

The last term of the CounteRGAN value function,
Reg(G(x)), can be any weighted combination of L1 and L2
regularization terms and helps to control the sparsity and
amplitude of the residuals (i.e., feature perturbations) which
serves as a proxy for counterfactual actionability.

While most existing counterfactual search methods target
differentiable models, the target classifiers used in produc-
tion settings may often be non-differentiable or unknown
(black-box).4 To account for such scenarios, we introduce a
second CounteRGAN value function termed CounteRGAN-
bb for black-box models. Instead of computing a classifier’s
gradients, this variant weighs the first term of the RGAN
value function by the classifier’s prediction score Ct(xi)
such that the corresponding value function reads

VCounteRGAN−bb(D,G) =

∑
i Ct(xi) logD(xi)∑

i Ct(xi)

+
1

N

∑
i

log (1−D(xi +G(xi))) + Reg(G, {xi}),

(5)
where Reg(G, {xi}) is analogous to the regularization term
introduced previously and samples xi are drawn from the
entire data distribution.

Reg (G, {xi}) = α
∑
i

∥G(xi)∥1 + β
∑
i

∥G(xi)∥22.

The specific form of this value function is motivated by
the resulting convergence properties, formalized by Theo-
rem 1 below. The proof of convergence is provided in the
supplementary material.

4For example, while a bank employee may have access the a
loan classifier’s architecture, the same cannot necessarily be said
about the customer or a third-party service.



Theorem 1 If the discriminator is systematically allowed
to reach its optimum, and the generator has sufficient capac-
ity, then the minimax optimization of the value function from
equation 5 converges to the Nash equilibrium. The full gen-
erator’s output distribution pg+ converges to a distribution
pCt

defined by

pCt
(x) = Nt Ct(x) pdata(x), (6)

where Nt is a normalization constant.5

Using either value function variant, the CounteRGAN dis-
criminator learns to discriminate between real and synthetic
data points, while the generator aims to balance the desired
classification with realism and sparsity (actionability) con-
straints. As a result, the generator learns to produce residuals
that, when added to the input, produce realistic and sparse
counterfactuals that are classified by C to be as close to 1
for the desired class as possible. Once trained, the generator
can produce counterfactuals quickly via a single forward
pass through the neural network.

4 EXPERIMENTS

We compare the proposed CounteRGAN approach against
two state-of-the-art counterfactual search methods [Wachter
et al., 2017b, Van Looveren and Klaise, 2019]. As far as
possible, our experiments mirror the experimental setups
used in those proposals including the evaluation datasets
and model architectures. With the exception of [Wachter
et al., 2017b] which is a foundational work and conventional
baseline, other counterfactual search methods mentioned in
the Related Work are not included either because they do not
address realism [Mothilal et al., 2020, Laugel et al., 2017] or
because their latency is prohibitive for real-time applications
[Poyiadzi et al., 2019]. The first experiment is conducted
using the MNIST handwritten digit dataset [LeCun and
Cortes, 2010] which lends to providing visual clarity of
each method’s approach. The second experiment makes use
of the COMPAS recidivism dataset [ProPublica, 2017] to
highlight how meaningful counterfactuals can be helpful for
improving model interpretability and fairness. We added a
third experiment in the supplementary material, which uses
an Indian diabetes dataset [Smith et al., 1988] and helps
to demonstrate that the CounteRGAN is also effective on
tabular data when some of the features are immutable.

Methods Given an input data point xi, all methods de-
scribed below aim to produce a counterfactual xcf

i that a
target classifier C will predict as the desired class.

5Explicitly, Nt =
(∫

Ct(x) pdata(x)dx
)−1 but it doesn’t

need to be computed for our purpose.

Metric Formula

Counterfactual prediction gain E
[
C(xcf

i )− C(xi)
]

Realism E
[∥∥AE

(
xcf
i

)
− xcf

i

∥∥2

2

]
Actionability (Sparsity & proximity) E

[∥∥xcf
i − xi

∥∥
1

]
Latency E [δti]

Table 1: Evaluation metrics summary. C is the target classi-
fier and xi denotes the data point for which a counterfactual
(xcf

i ) is sought. An autoencoder (AE) is used to reconstruct
xcf
i . Expectations are computed over the test sets.

• Regularized Gradient Descent (RGD): a gradient de-
scent based counterfactual search [Wachter et al.,
2017b] that minimizes the sums of the squared dif-
ferences between the desired outcome and the coun-
terfactual. A regularization term is used to enforce
sparsity.6

• Counterfactual Search Guided by Prototypes (CSGP):
this method [Van Looveren and Klaise, 2019] extends
RGD by using class prototypes to push the counter-
factual towards a more realistic data point of the de-
sired class. The value function is modified to include a
distance measure from the counterfactual to the class
prototype in latent space (Lproto).

• Standard GAN (GAN): This method applies a standard
GAN [Goodfellow et al., 2014a], in conjunction with
the target classifier C. The generator is modified to use
real data points as input (as opposed to random latent
variables) and synthesize complete counterfactuals.

• CounteRGAN: The proposed method from section 3
that uses the specialized RGAN together with the tar-
get classifier C. The value function from Equation 2
is used when C is a white-box model (i.e., known gra-
dients) and Equation 5 is used when C is a black-box
model (i.e., unknown or undefined gradients).

Evaluation metrics To evaluate the relative performance
of the methods, we identify four desirable properties of
counterfactual generation and propose the corresponding
metrics detailed below (see Table 1 for a summary). These
metrics are based on those found in related work and we
have also added established measures of realism and action-
ability. All metric results from the experiments, except for
batch latency, are based on averages of individually com-
puted counterfactuals using the test data. Batch latency is the
total computation time necessary to produce counterfactuals
for an entire batch. Each table presents the results of the

6For this method and the next, we use the implementations
(including gradient approximating versions for black-box models)
provided by https://github.com/SeldonIO/alibi.

https://github.com/SeldonIO/alibi


(a) RGD (b) CSGP (c) Standard GAN (d) CounteRGAN (e) CounteRGAN-bb

Figure 2: Comparison of counterfactual examples produced by different methods on MNIST. Given two separate digit
images (7 and 9), each method is tasked with producing counterfactuals that the classifier will predict as a "4". The first row
shows the original input image. The second row highlights the perturbations that the counterfactual produces (residuals in
the case of CounteRGAN). Negative perturbation values are black, positive values are white, and null or zero values are
grey. The third row shows the final counterfactual produced after adding the input with the perturbations. The fourth and
final row displays the autoencoder reconstruction error with brighter points representing less realism. Existing methods (a)
and (b) result in less realistic counterfactuals. Method (c) lacks realism as well as actionability due to mode collapse. The
CounteRGAN methods (d) and (e) (black-box) result in the most realistic counterfactuals.

White-box classifier Black-box classifier

RGD CSGP GAN CounteRGAN RGD CSGP CounteRGAN

↑ Prediction gain 0.83 ± 0.01 0.43 ± 0.00 0.69 ± 0.01 0.80 ± 0.01 0.45 ± 0.01 0.41 ± 0.00 0.85 ± 0.01

↓ Realism 4.56 ± 0.01 4.58 ± 0.01 4.50 ± 0.00 3.95 ± 0.01 3.94 ± 0.01 3.58 ± 0.01 4.37 ± 0.01

↓ Actionability 20.63 ± 0.41 54.24 ± 0.60 151.98 ± 0.43 79.47 ± 0.47 31.86 ± 0.61 48.79 ± 1.69 72.99 ± 0.52

↓ Latency (ms) 4,129.57 ± 3.33 5,359.58 ± 2.72 13.05 ± 0.04 13.33 ± 0.04 8,464.10 ± 42.54 30,235.47 ± 553.47 13.52 ± 0.04

↓ Batch latency (s) 4,129,570 5,359,580 45 45 84,641,012 302,354,681 45

Table 2: MNIST test data results (mean and 95% confidence interval). The arrows indicate whether larger ↑ or lower ↓ values
are better, and the best results are in bold. The realism metric typically ranges from 3.89 (mean reconstruction error on the
test set) to 11.99 (reconstruction error random uniform noise [0, 1]). Computations are performed using the entire test set
(10,000 samples).

methods assuming that the target classifier’s gradients are
known (white-box model) or unknown (black-box model).

• Prediction gain: the difference between the classifier’s
prediction on the counterfactual (Ct(x

cf
i )) and the input

data point (Ct(xi)), for the target class t. Since the
maximum score classifier C can predict is 1, the range
for prediction gain is [0, 1] with higher gain indicating
more improvement.

• Realism: a measure of how well a counterfactual "fits
in" with the known data distribution. We adopt a strat-
egy inspired by [Van Looveren and Klaise, 2019, Dhu-
randhar et al., 2018], in which we train a denoising
autoencoder AE (·) on the training set and use the L2
norm of the reconstruction error as a measure of real-
ism. A lower value represents higher realism.

• Actionability (sparsity & proximity): Sparsity and prox-
imity are commonly used [Mothilal et al., 2020],

though imperfect, proxies for true actionability which
is inherently difficult to quantify. We follow existing
methods which have measured actionability as a func-
tion of the number and magnitude of perturbations
present in the counterfactual (xcf

i ) relative to the in-
put data point (xi) using the L1 norm. Lower values
indicate fewer changes and therefore a higher degree
of actionable feedback. Weighting the sparsity penalty
according to the degree of feature mutability could be
promising for future work. In the supplemental mate-
rials, an experiment using the Pima Indian Diabetes
dataset [Smith et al., 1988] is provided as an example.

• Latency: the computational latency needed to gener-
ate counterfactuals. Individual counterfactual computa-
tions can impact real-time applicability. Batch results
are useful to highlight scalability limitations since large
amounts of counterfactuals may be desired to be gener-
ated without real-time constraints but within practical



latency and cost budgets. Lower values are better and
subsecond latencies are necessary for real-time appli-
cability.

4.1 EXPERIMENT USING MNIST IMAGE
DATASET

MNIST consists of 70,000 images of handwritten digits
(28x28 black and white pixels, that we normalize to have
values between 0 and 1) with equal amounts of samples for
each digit class. The images are split for training and testing
with 60,000 and 10,000 samples respectively, both of which
are balanced in terms of labels.

A convolutional neural network (CNN) is used as the target
classifier which is trained to correctly classify the digits
(98.6% accuracy on the test set). In addition to the classifier,
we train a denoising convolutional autoencoder that is used
to gauge counterfactual realism. Each method is tasked with
generating counterfactuals that the classifier should predict
as a "4" digit. All results are based on the averages from
generating counterfactuals for all of the 10,000 samples
from the test set.

Examples of counterfactuals for two digits are shown in
Figure 2. All methods succeed in producing counterfactuals
that the classifier labels as "4", with predicted probabilities
ranging from 0.55 to 1. In RGD (Figure 2a), counterfactuals
resemble adversarial attacks in that they are composed of
subtle perturbations that lead to the desired classification,
but are highly unrealistic. The CSGP algorithm (Figure 2b)
seems to perform better visually, affecting relevant pixels
to turn the digits into the desired "4" but still lacks realism.
The counterfactual search with a regular GAN (Figure 2c)
saliently exhibits mode collapse. Without the residual for-
mulation, the generator simply learns to generate the same
image regardless of the input. The two CounteRGAN for-
mulations (Figures 2d and 2e) output visually convincing
counterfactuals, as corroborated by the large classifier scores
(0.97 to 1) and low autoencoder reconstruction errors.

The complete metrics results for the MNIST dataset are
presented in Table 2. While all methods largely increase
the prediction of the target class, CSGP is noticeably less
impactful. The RGD method outputs sparser counterfactuals
at the significant cost of realism. The two CounteRGAN
variants, by contrast, generate the most realistic counter-
factuals with high actionability and prediction gain. No-
tably, the GAN and proposed CounteRGAN approaches
also achieve >300x and >600x latency improvements over
existing methods when generating single counterfactuals on
white-box and black-box classifiers respectively. On a batch
of the full 10000 samples from the test set, the GAN based
methods achieve an impressive 5 to 7 orders of magnitude
improvement.

4.2 EXPERIMENT USING COMPAS RECIDIVISM
DATASET

Predictive models can have life-changing effects on individ-
uals in certain situations. In the United States, for example,
recidivism prediction models such as the COMPAS score
[ProPublica, 2017] are used to guide sentencing for crimes
in several states and major cities. As this experiment demon-
strates, meaningful counterfactuals can be used to improve
model interpretability and fairness by exposing harmful
biases such as racial and gender biases.

The COMPAS dataset consists of 7,214 arrests logged in
Broward County, Florida, and contains 29 features describ-
ing the demographics and criminal history of the defendants.
The binary target label is positive if the defendant did not re-
offend within two years after the arrest (55% of the data) and
negative if they did (45% of the data). Numerical features are
standardized and categorical variables are one-hot-encoded.
The one-hot-encoded features are then perturbed in the same
fashion as the numerical features and then rounded to the
closest binary value for the final residuals.7 We randomly
assign 80% of samples to the train set and the remaining
20% to the test set. A neural network with three hidden lay-
ers is trained and reaches an accuracy of 69.72% on the test
set. A threshold of 0.5 is chosen for determining whether an
individual will recidivate (<0.5) or not (≥0.5).

Table 3 presents the results for the counterfactual search
methods on the COMPAS test set. Similar to previous exper-
iments, the RGD approach tends to produce unrealistic coun-
terfactuals with large increases to the classifier’s prediction.
Conversely, CSGP typically leads to small increases of the
classifier score but outputs sparser and more realistic pertur-
bations. The regular GAN method achieves decent gains in
prediction score and realism but suffers greatly with respect
to sparsity and hence actionability. The CounteRGAN meth-
ods proposed in this work are more satisfying than RGD
in terms of realism and sparsity. They also achieve similar
increases of the classifier prediction as CSGP and produce
counterfactuals >1,000x faster than RGD and CSGP.

Specific examples are relevant for investigating what, if
any, biases a classifier has learned. Table 4 presents one
such data point from the test set. Each method is able to
generate a counterfactual that successfully reverts the pre-
diction although they propose very different perturbations
to the features. Interestingly, the counterfactuals produced
by the GAN and CounteRGAN methods for black-box clas-
sifiers find that changing the race to "Caucasian" instead of
"Black" contributes to reversing the prediction. In addition,
the GAN counterfactual also suggests changing the gender
from "Male" to "Female". These insights signal that the re-
cidivism predictor likely holds unfair biases. By extension,

7An alternative approach would be to handle categorical fea-
tures using pairwise distance measures and multi-dimensional
scaling [Van Looveren and Klaise, 2019].



White-box classifier Black-box classifier

RGD CSGP GAN CounteRGAN RGD CSGP CounteRGAN

↑ Prediction gain 0.38 ± 0.01 0.06 ± 0.01 0.29 ± 0.01 0.07 ± 0.01 0.38 ± 0.01 0.06 ± 0.01 0.12 ± 0.01

↓ Realism 1.60 ± 0.08 0.78 ± 0.06 0.57 ± 0.00 0.85 ± 0.09 1.60 ± 0.08 0.77 ± 0.06 0.93 ± 0.09

↓ Sparsity 2.07 ± 0.05 0.53 ± 0.08 7.32 ± 0.16 0.85 ± 0.05 2.07 ± 0.05 0.50 ± 0.08 1.48 ± 0.08

↓ Latency (ms) 1,704.62 ± 2.12 3,312.14 ± 5.46 1.39 ± 0.01 1.43 ± 0.01 3,005.13 ± 2.35 9,894.08 ± 51.75 1.42 ± 0.12

↓ Batch latency (s) 2,459.76 4,779.42 2.00 2.06 4,336.40 14,277.15 2.04

Table 3: COMPAS test data results (mean and 95% confidence interval). The arrows indicate whether larger ↑ or lower ↓
values are better, and the best results are in bold. The realism metric typically ranges from 0.87 (mean reconstruction error
on the test set) to 5.43 (reconstruction error of random uniform noise in [0, 1]).

Initial values
White-box classifier Black-box classifier

RGD CSGP GAN CounteRGAN RGD CSGP CounteRGAN
age 24 - +1 +23 +6 - +2 +12
priors_count 3 -9 -1 -4 -2 -9 -1 -1
days_b_screening_arrest -1 -1 - -3 - -1 - -12
sex_Male 1 - - -1 - - - -
c_charge_degree_M 0 - - +1 - - - -
c_charge_desc_Pos Cannabis W/Intent Sel/Del 1 - - -1 - - - -1
c_charge_desc_Possession of Cocaine 0 - - - - - - +1
race_Caucasian 0 - - +1 - - - +1
Classifier Prediction (prob of not recidivating) 0.36 0.99 0.50 0.87 0.71 0.99 0.52 0.54

Table 4: Comparison of counterfactual examples produced by different methods given a sample data point from the COMPAS
recidivism dataset. Some of the counterfactuals suggest changing the race and gender indicating potentially unfair biases.

these biases can also be manifest in the COMPAS dataset.
This is not necessarily certain, however, since it may have
been by chance that the training subset was unbalanced
and the model simply picked up on these spurious biases.
Though general conclusions should be based on subsequent
analysis of complete datasets, counterfactuals such as these
can help to probe a classifier’s decision boundary in the
vicinity of individual data points. Insights such as these il-
lustrate the potential counterfactuals have in helping to audit
the fairness of ML systems which should be of paramount
relevance to all practitioners.

5 DISCUSSION

The proposed CounteRGAN approach applies a novel Resid-
ual GAN (RGAN) together with a fixed target classifier to
produce realistic and actionable counterfactuals that achieve
favorable prediction increases at low fixed latencies. Coun-
teRGAN’s separate value functions allow it to be effective
even when the target classifier is non-differentiable or a
black-box model. In experiments on two diverse datasets,
the CounteRGAN produces counterfactuals between 2 and
7 orders of magnitude faster than two state-of-the-art meth-
ods. The drop from seconds to milliseconds opens up the
possibility of real-time applications. Overall, the resulting
counterfactuals are more realistic than competing methods
and generally match or exceed prediction gain and action-
ability. This approach has also shown promise for probing a

classifier’s decision boundaries and highlighting potentially
unfair biases in use cases such as criminal justice that can
have significant stakes for users. Meaningful counterfactu-
als, such as those produced using the CounteRGAN method,
can provide real-time recourse to users and help improve
model interpretability and fairness. Together, these form
the critical foundations for building effective, scalable, and
trustworthy ML systems.

Several promising areas outside the scope of this work are
left for future research. These include investigating addi-
tional techniques to quantify and ensure actionability, ad-
dressing partially mutable features, applying the RGAN and
CounteRGAN to additional domains, and experimenting
with iteratively improving the counterfactuals by creating a
feedback loop to the generator.
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