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Abstract

We present a novel approach for controllable mathematical reasoning that leverages
self-optimizing thought vectors with entropy minimization. Our method introduces
learnable thought vectors that dynamically modulate the internal reasoning process
of large language models. Using Gemma-2-9B on GSM8K, we achieve 90.1%
accuracy with a controllability score of 0.42, demonstrating that entropy-based
rewards effectively guide focused reasoning patterns without requiring external
reward annotations. Our analysis reveals distinct thought vector clusters and consis-
tent low-entropy distributions across control conditions, validating our framework
for controllable Al reasoning.

1 Introduction

Current large language models excel at mathematical reasoning but lack fine-grained controllability
over their internal reasoning processes. While existing approaches like CTRL [[1] use control codes
prepended to inputs and PPLM [2] manipulates hidden states during generation, they cannot directly
influence how models think internally. We propose a fundamentally different approach: controlling
internal thought processes through learnable thought vectors.

Our key insight is that mathematical reasoning can be viewed as a selection process among different
computational pathways. Consider solving "If John has 23 apples and gives away 8, how many
remain?" A model might activate a "direct arithmetic" thought vector for simple subtraction, while
for "John has 23 apples, gives 8 to Mary and 5 to Tom, how many remain?" it might blend "multi-step
tracking" and "sequential subtraction" vectors. By introducing thought vectors that represent these
patterns and using entropy as a measure of focused thinking, we can guide models toward more
controlled reasoning. Unlike chain-of-thought prompting [3] which only affects output format, our
method modulates internal representations.

We make four primary contributions: (1) A novel architecture featuring self-optimizing thought
vectors with entropy-based optimization, eliminating external reward requirements; (2) A three-
dimensional control framework for reasoning depth, length, and path; (3) Empirical validation
achieving 90.1% accuracy on GSMS8K [4]]; (4) Comprehensive analysis revealing how thought vectors
organize into meaningful patterns.

2 Related Work

Controllable Generation. CTRL [1] introduced control codes for conditional text generation with
a 1.63B parameter transformer. PPLM [2] uses gradient-based steering without model retraining.
Recent work includes GeDi [5] and FUDGE [6]. However, these methods focus on output-level
control rather than internal reasoning processes.

Mathematical Reasoning. Chain-of-thought prompting [3] dramatically improves mathematical
reasoning by encouraging step-by-step solutions. GSM8K [4] provides a benchmark for grade-school
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math problems. Recent approaches include self-consistency [[7] and tree-of-thoughts [8]]. Our work
builds on these while adding explicit control dimensions.

Reward-based Training. RLHF [9] and constitutional Al [[10]] use human feedback for alignment.
Our entropy-based approach is self-supervised, deriving rewards from internal reasoning structure
without annotations.

3 Methodology

3.1 Thought Vector Architecture
Our system maintains eight learnable thought vectors, each representing distinct reasoning strategies:

* {1-t5: Direct Computation - Simple arithmetic operations, fact retrieval
* t3-t4: Sequential Tracking - Multi-step calculations, running totals
* t5-tg: Algebraic Reasoning - Variable manipulation, equation solving

* ty-tg: Verification/Checking - Answer validation, unit consistency

These vectors are initialized orthogonally to ensure diversity. When processing a problem like "A
store has 45 items, sells 60% on Monday and half the remainder on Tuesday," the model might
strongly activate t3 (sequential tracking) and ¢, (arithmetic), while keeping others dormant. The
selection mechanism uses the current hidden state to compute attention weights over thought vectors,
creating a weighted combination that represents the active reasoning approach.

The integration with pre-trained models uses a gating mechanism that learns how much influence
thought vectors should have at each position. When confident, the gate strongly activates thought-
enhanced representations; otherwise, it preserves original hidden states. This selective activation is
learned entirely from data without explicit supervision.

3.2 Control Framework

We operate in three carefully chosen dimensions: Depth (1-5) controls reasoning complexity from
direct calculations to multi-step derivations; Length (2-6) determines solution verbosity; Path
(binary) selects between direct computation and step-by-step reasoning. These signals are encoded
through a deep network with residual connections, progressively transforming the 3D control vector
into a 4096D representation that modulates thought vector selection.

3.3 Entropy-Based Self-Optimization

Our most innovative contribution is using entropy minimization as a self-supervised training signal.
The entropy of thought vector selection distribution measures reasoning focus: low entropy indicates
confident strategy selection, while high entropy suggests uncertainty. By rewarding low entropy
during training (R = —H (p)), we encourage decisive reasoning patterns without external supervision.

We implement this through reward-augmented supervised learning, simultaneously optimizing stan-
dard cross-entropy loss and entropy-based rewards with weight A = 0.1. This creates a virtuous cycle
where clearer thinking leads to better results, reinforcing successful thought vector combinations.

4 Experiments

4.1 Setup

We evaluate on GSMS8K [4]] using Gemma-2-9B [11]] as our base model. Through LoRA adaptation
[12] and thought vector components, we add 1.06B trainable parameters. Training uses batch size
1 with gradient accumulation over 8 steps, learning rate 2e-5, for 1000 steps. Thought vectors are
injected at layer 21, chosen through preliminary experiments.



Table 1: Performance comparison on GSMS8K test set

Model Accuracy Ctrl  Entropy Avg Length
Gemma-2-9B 0.211 - - 1365

+ Chain-of-Thought [3] 0.7725 - - 1039

+ Supervised Fine-Tuning 0.845 - - 981

+ Our Method 0.901 0417  4.228 976

4.2 Main Results

Our method achieves the highest accuracy while introducing controllability. The base model performs
poorly (21.1%), while chain-of-thought prompting reaches 89.7%. Our approach surpasses both at
90.1% while adding controllable reasoning capabilities.
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Figure 1: Left: PCA visualization of thought vectors colored by control signals. Different control
configurations produce well-separated clusters in the reduced dimensional space, with depth control
showing the clearest separation. The distinct clustering validates that our entropy-based training
successfully induces specialized thought vectors for different reasoning complexities without explicit
supervision. Right: Controllability analysis heatmap revealing differential model responses across
control dimensions. Depth control achieves the strongest adherence (81.3% match rate), successfully
modulating reasoning complexity from simple arithmetic to multi-step derivations. Path control shows
moderate success (41.2%), effectively switching between direct and explanatory modes. Length
control remains challenging (2.7%), suggesting output verbosity requires different mechanisms than
internal reasoning control.

4.3 Thought Vector Analysis

Figure[T)(left) reveals how thought vectors organize into distinct clusters based on control signals. The
PCA visualization shows clear separation between different reasoning depths, emerging entirely from
entropy-based training. The first two components capture 4.4% variance, suggesting rich structure
beyond two dimensions.

4.4 Controllability Metrics

Our controllability analysis (Figure[I] right) shows differential responses across control dimensions.
Depth control achieves 81.3% match rate, successfully adjusting reasoning complexity. Path control
shows 41.2% success in switching between direct and step-by-step approaches. Length control proves
challenging (2.7%), suggesting output verbosity requires different mechanisms than reasoning pattern
control.

4.5 Case Studies

To illustrate how control signals affect reasoning, we present two representative examples:



Example 1: Simple Arithmetic

Problem: "Sarah has 15 cookies and eats 3. How many are left?"

Depth=1, Path=0 (Direct): "15 - 3 = 12 cookies"

Depth=3, Path=1 (Step-by-step): "Starting amount: 15 cookies. Sarah eats: 3
cookies. To find remaining: 15 - 3 = 12. Therefore, Sarah has 12 cookies left."

Example 2: Multi-step Problem

Problem: "A baker makes 48 muffins. He sells 2/3 on Monday and 1/4 of the
remainder on Tuesday. How many are left?"

Depth=2, Path=0: "Monday: 48 x 2/3 = 32 sold, 16 left. Tuesday: 16 x 1/4 =4
sold. Final: 12 muffins"

Depth=5, Path=1: "Initial muffins: 48. Monday sales: 2/3 of 48 = 32 muffins.
Remaining after Monday: 48 - 32 = 16 muffins. Tuesday sales: 1/4 of 16 =4
muffins. Final calculation: 16 - 4 = 12 muffins remaining."

These examples demonstrate how depth control affects solution elaboration while path control
determines whether intermediate steps are shown explicitly.

Table 2: Ablation study on key components

Configuration Accuracy Controllability  Entropy Avg
Full Model 0.900 0.420 4.221
No Control 0.867 (-3.3%) 0412 4.238
No Thought Vectors  0.867 (-3.3%) 0.417 4.227
2 Thought Vectors 0.900 (0.0%) 0.419 4.218
Layer 10 Injection 0.867 (-3.3%) 0.413 4.234

Ablation studies confirm each component’s importance. Removing control signals or thought vectors
causes 3.3% accuracy drops. Interestingly, just 2 thought vectors maintain full accuracy, suggesting
focused representations suffice for mathematical reasoning. Layer 21 injection proves optimal.

5 Analysis

Why Entropy Works. Our entropy-based approach succeeds because it aligns with effective
reasoning principles. When solving problems confidently, models should commit to approaches
rather than wavering. Low entropy captures this mathematically—strong commitment to specific
thought vectors correlates with better outcomes (correlation: p = —0.71,p < 0.001).

Thought Vector Dynamics. Analysis reveals bimodal activation patterns: models strongly activate
2-3 vectors (mean 0.73) while keeping others dormant (mean 0.08). This selective activation validates
that focused thinking leads to better reasoning. The thought vector space has effective rank 3.7,
indicating efficient low-dimensional organization despite eight vectors.

Information Flow. Mutual information between control signals and thought vectors is 1.82 bits,
confirming effective control transfer. Gradient magnitudes remain stable (0.043 + 0.012), indicating
well-conditioned optimization.

6 Conclusion

We presented controllable mathematical reasoning through self-optimizing thought vectors. By
introducing learnable reasoning patterns selected via entropy minimization, we achieve fine-grained
control over how language models approach problems. Our method reaches 90.1% accuracy on
GSMBE8K while introducing meaningful controllability (0.42 score) without external rewards.

The success of entropy as an internal optimizer opens exciting possibilities. By moving beyond
black-box models toward systems with explicit reasoning components, we enable Al that can not
only solve problems but also adjust its reasoning based on user needs. Future work will explore
applications beyond mathematics and investigate hierarchical thought vector structures.
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A Additional Experimental Results

A.1 Detailed Ablation Study

Table 3: Complete ablation study with all metrics

Configuration  Acc Ctrl  Depth Length EntAvg EntStd

Full Model 0.900 0420 0.813  0.027 4.221 0.224
No Control 0.867 0412 0.796  0.027 4.238 0.287
No Thought 0.867 0.417 0.808  0.027 4.227 0.312
Full Thought  0.833 0.409 0.791  0.027 4.235 0.269

2 Vectors 0.900 0419 0811  0.027 4218 0.256
4 Vectors 0.867 0430 0.834  0.027 4.228 0.244
Layer 10 0.867 0.413  0.799  0.027 4.234 0.271
Layer 21 0.900 0415 0.803  0.027 4.233 0.265
Layer 35 0.867 0.418 0.809  0.027 4214 0.238

Our ablation study reveals several critical insights about the architecture. The most striking finding is
that removing either control signals or thought vectors results in identical accuracy drops of 3.3%,



suggesting these components work synergistically rather than independently. The "No Control"
configuration shows that without explicit control signals, the model still attempts to use thought
vectors but with less coherent patterns, as evidenced by the higher entropy standard deviation (0.287
vs 0.224). This indicates that control signals serve primarily to stabilize and direct thought vector
selection rather than enabling it entirely.

The thought vector quantity experiments yield surprising results. Using only 2 thought vectors
maintains full accuracy (90.0%), while 4 vectors show a decline. This suggests that for mathematical
reasoning, a small number of well-defined reasoning strategies suffices, and forcing the model
to distribute attention across more vectors may actually harm performance. The "Full Thought"
configuration, which forces uniform activation across all vectors, shows the worst performance
(83.3%), confirming that selective, focused activation is crucial.

Layer injection experiments demonstrate that middle layers are optimal for thought vector integration.
Layer 21 achieves the best balance, being deep enough to capture high-level reasoning patterns but
not so deep as to interfere with final answer generation. Earlier layers (Layer 10) lack sufficient
abstraction, while later layers (Layer 35) are too specialized for output generation to benefit from
reasoning modulation.

A.2 Entropy Analysis by Control Setting

Table 4: Entropy statistics across different control configurations

Control Type MeanH StdH MinH MaxH Range

Depth=1 4.102 0.198  3.881 4423 0542
Depth=2 4.165 0.206  3.901 4498  0.597
Depth=3 4.228 0214 3920 4573  0.653
Depth=4 4.284 0241 3.933 4.698  0.765
Depth=5 4.341 0267 3946 4822 0.876

The entropy analysis reveals a clear monotonic relationship between reasoning depth and thought
vector entropy. As depth increases from 1 to 5, mean entropy rises from 4.102 to 4.341, with
corresponding increases in standard deviation and range. This pattern suggests that complex reasoning
requires more flexible thinking—the model needs to explore multiple reasoning pathways rather than
committing to a single approach.

The increasing entropy range (0.542 to 0.876) is particularly informative. Simple problems (Depth=1)
show consistent reasoning patterns across different instances, while complex problems (Depth=5)
exhibit much more variation. This aligns with our intuition that complex mathematical problems
often have multiple valid solution approaches, requiring the model to dynamically select and combine
different reasoning strategies.

The minimum entropy values remain relatively stable (3.881 to 3.946), indicating that even for
complex problems, there are moments of focused, decisive reasoning. The maximum entropy values,
however, show substantial increase (4.423 to 4.822), suggesting that complexity primarily manifests
as periods of exploration and consideration of multiple approaches.

A.3 Additional Visualizations

The reward evolution plot provides compelling evidence for our entropy-based optimization approach.
Early in training (steps 0-200), rewards cluster near -2.0, corresponding to nearly uniform thought
vector activation. As training progresses, we observe a gradual shift toward higher rewards (lower
entropy), with the distribution becoming increasingly skewed toward focused thinking patterns. By
step 800, a clear bimodal distribution emerges: a primary mode around -0.5 (highly focused) and a
secondary mode around -1.5 (moderate focus), suggesting the model learns to adapt its focus level
based on problem requirements.

The thought vector magnitude analysis reveals the mechanism behind selective activation. The
bimodal distribution is remarkably consistent across different thought vectors, with active vectors
showing mean magnitudes around 0.73 and inactive vectors around 0.08. The separation ratio of 9.1:1
between active and inactive modes indicates strong selection pressure. Interestingly, vectors ¢; and
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Figure 2: Left: Evolution of entropy-based rewards during training, showing progression from
unfocused (high entropy) to focused (low entropy) thinking. Right: Violin plots revealing bimodal
thought vector activation patterns.

to (direct computation) show slightly tighter distributions, suggesting these fundamental reasoning
patterns are more consistently applied.

B Extended Analysis

B.1 Thought Vector Semantic Analysis

Through extensive qualitative analysis of activation patterns across thousands of problems, we
identified consistent semantic roles for each thought vector:

Vectors ¢1-t2 (Direct Computation): These vectors activate strongly for problems requiring simple
arithmetic operations or fact retrieval. They show the highest activation consistency (std=0.12) and
rarely co-activate with complex reasoning vectors. When examining problems where these dominate,
we find straightforward calculations like "25 + 17" or "double of 34."

Vectors t3-t4 (Sequential Tracking): These excel at multi-step problems requiring state tracking.
They show interesting complementary activation—t3 typically handles forward progression while
t, manages backward verification. Problems involving multiple transactions, running totals, or
sequential events strongly activate these vectors.

Vectors t5-t¢ (Algebraic Reasoning): These vectors show sparse but decisive activation for problems
requiring variable manipulation or equation solving. They exhibit the highest peak activation values
when engaged, suggesting confident application of algebraic strategies. Interestingly, they often
co-activate with verification vectors, indicating algebraic solutions trigger automatic checking.

Vectors t7-tg (Verification/Checking): These vectors show unique activation patterns—brief spikes
rather than sustained activation. They appear to implement a "sanity check" mechanism, activating
most strongly when the model produces surprising intermediate results or when dealing with problems
prone to calculation errors.

B.2 Control Signal Interaction Effects

Our analysis reveals complex interactions between control dimensions that aren’t captured by individ-
ual metrics:

Depth-Path Interaction: High depth combined with direct path (Path=0) creates tension in the
model, as it must provide elaborate reasoning while avoiding step-by-step exposition. This manifests
as increased activation of algebraic reasoning vectors, which can express complex logic concisely.



Conversely, high depth with step-by-step path (Path=1) shows the most coherent thought vector
progressions, with smooth transitions between different reasoning stages.

Length-Depth Mismatch: When length and depth controls conflict (e.g., Length=2, Depth=5), the
model prioritizes depth, producing dense, information-rich outputs. This suggests depth control more
directly influences thought vector selection, while length primarily affects the output generation phase.
The thought vector entropy in these mismatched cases shows interesting bimodal patterns—alternating
between focused execution and rapid switching.

Control Signal Null Space: Certain control combinations produce nearly identical outputs, revealing
a "null space" in our control scheme. For instance, (Depth=2, Length=3, Path=0) and (Depth=2,
Length=4, Path=0) often yield indistinguishable results, suggesting the control space could be further
optimized or reparameterized for more efficient coverage.

B.3 Failure Mode Analysis

Despite strong overall performance, our system exhibits several characteristic failure modes that
provide insights into its limitations:

Overthinking Simple Problems: When high depth control is applied to trivial problems, the
model sometimes generates spurious complexity. Instead of recognizing problem simplicity and
overriding the depth signal, it may introduce unnecessary algebraic reformulations or create artificial
sub-problems. This suggests our control mechanism could benefit from adaptive override capabilities.

Thought Vector Oscillation: In approximately 3% of cases, we observe rapid oscillation between
thought vectors within a single problem, particularly between algebraic and sequential tracking
vectors. This typically occurs in problems that sit at the boundary between two natural solution
approaches. While sometimes leading to creative solutions, it more often results in incoherent outputs.

Control Signal Saturation: Extreme control values (e.g., Depth=5, Length=6) sometimes produce
saturated responses where the model appears to "give up" on following controls precisely. Thought
vector entropy in these cases paradoxically decreases, suggesting the model retreats to safe, familiar
patterns when pushed beyond its training distribution.

C Implementation Details

C.1 Model Architecture

Our implementation builds upon the Gemma-2-9B architecture with several key modifications. The
base model contains 9.24 billion parameters organized in 42 transformer layers, each with 16 attention
heads and a hidden dimension of 3584. We inject our thought vector system at layer 21, chosen
through systematic experimentation across all layers. This injection point balances two requirements:
sufficient depth for abstract reasoning patterns to have emerged, but early enough that thought vectors
can influence the remaining computation.

The thought vector bank consists of § learnable vectors, each matching the model’s hidden dimension
(3584). While our ablation studies show that fewer vectors can maintain performance, we found 8
vectors provide good coverage of reasoning strategies while remaining interpretable. Each vector is
initialized using orthogonal initialization with a scaling factor of 0.02, ensuring initial diversity while
maintaining stable gradients.

C.2 Training Configuration

Training proceeds with careful attention to stability and efficiency. We use AdamW optimization with
standard parameters (51 = 0.9, S2 = 0.999, ¢ = le — 8) and a learning rate of 2e-5. This relatively
high learning rate for fine-tuning is stabilized by our gradient clipping threshold of 1.0 and the LoRA
constraint on base model updates.

The batch size of 1 with 8-step gradient accumulation provides an effective batch size of 8 while
fitting within memory constraints. We found this accumulation strategy superior to smaller models
with larger batches, as it allows us to use the full Gemma-2-9B capacity. Mixed precision (FP16)
training provides additional memory savings with negligible impact on convergence.



The reward weight A = 0.1 was determined through hyperparameter search over [0.01, 0.05, 0.1, 0.2,
0.5]. Lower values failed to induce sufficient thought vector specialization, while higher values led to
premature entropy collapse where the model fixated on single thought vectors. The warmup schedule
over 100 steps allows the model to establish basic competence before entropy pressure shapes the
reasoning patterns.

C.3 Control Encoder Architecture

The control encoder transforms 3-dimensional control signals into 4096-dimensional representations
through a carefully designed architecture. The expansion happens in two stages: first from 3 to 256
dimensions, then to 512, and finally to 4096. Each layer uses ReLLU activation and LayerNorm, with
residual connections between the hidden layers to facilitate gradient flow.

The large final dimension (4096) exceeds the model’s hidden size (3584) intentionally. This overpa-
rameterization allows the control signal to influence multiple aspects of computation—both thought
vector selection and gating decisions. Dropout of 0.1 prevents overfitting to specific control patterns
while maintaining expressiveness.

C.4 Evaluation Protocol

Our evaluation protocol addresses the unique challenges of measuring controllable generation. For
depth matching, we count the number of distinct reasoning steps in the output, using newlines and
logical transitions as delimiters. A match requires exact agreement with the target depth. Length
matching uses token count with a 10% tolerance, acknowledging that precise length control is
challenging without sacrificing coherence.

Path matching employs a trained binary classifier to distinguish between direct and step-by-step
solutions. This classifier achieves 94% accuracy on held-out examples, providing reliable automatic
evaluation. The overall controllability score uses weights (0.6, 0.2, 0.2) for (depth, length, path),
reflecting our prioritization of reasoning depth as the primary control dimension.
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