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Abstract001

As the modern tool of choice for question an-002
swering, large language models (LLMs) are003
expected to deliver answers with up-to-date004
knowledge. To achieve such ideal question-005
answering systems, locating and then editing006
outdated knowledge in the natural language007
outputs is a general target of popular knowl-008
edge editing methods. However, this target009
is challenging, as both identifying which to-010
kens to edit in the reasoning steps and en-011
suring the coherence of the revised reason-012
ing chain are difficult tasks. We argue that013
these challenges stem from the unstructured na-014
ture of natural language outputs. To address015
the above challenges, we propose Structural016
Editing (STRUEDIT), an improved baseline for017
knowledge editing. We first prompt LLMs to018
produce structured outputs consisting of rea-019
soning triplets. Then, STRUEDIT removes any020
potentially outdated knowledge and efficiently021
refills the structured outputs with up-to-date in-022
formation in a single step. Experimental results023
show that STRUEDIT consistently delivers the024
highest accuracy with lowest latency compared025
with other knowledge editing methods.026

1 Introduction027

With the widespread deployment of large language028

models (LLMs; OpenAI, 2022, 2023; Touvron029

et al., 2023a,b; Song et al., 2024), their reliabil-030

ity in answering questions is crucial, which en-031

tails accurately responding to queries with up-to-032

date knowledge. However, the knowledge used for033

pre-training LLMs cannot guarantee ongoing time-034

liness because the world is constantly changing.035

Knowledge editing (KE; Sinitsin et al., 2020; Zhu036

et al., 2020; De Cao et al., 2021) has been proposed037

to update the knowledge for LLMs.038

The main process of existing KE methods can be039

summarized as Locate-Then-Edit, which requires040

accurately reflecting specific edited facts within the041
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Figure 1: Comparison of performance between
model editing (ME), in-context editing (ICE), and our
STRUEDIT on multi-hop editing tasks, showing editing
accuracy and average inference speed. Our STRUEDIT
demonstrates the highest editing accuracy while main-
taining the lowest latency.

natural language reasoning steps. In a chain-of- 042

thought (CoT) (Zhang et al., 2022) process, this 043

means adjusting certain natural language reasoning 044

steps based on new knowledge and accurately infer- 045

ring the final result using that updated information. 046

Model editing (ME; Meng et al., 2022a,b; Mitchell 047

et al., 2022; Yao et al., 2023b; Xu et al., 2024) lo- 048

cates the position of knowledge to be edited, such 049

as neurons in the FFN or matrix regions, and modi- 050

fies them. In-context editing (ICE; Madaan et al., 051

2022; Zhong et al., 2023; Zheng et al., 2023; Wang 052

et al., 2024; Bi et al., 2024a,d) locates relevant 053

passages in the edit memory, prompting LLMs to 054

utilize new knowledge to answer questions. 055

However, it is difficult to identify the tokens that 056

need editing within the natural language reason- 057

ing steps, and incorrectly modifying parameters or 058

providing inaccurate knowledge can directly result 059

in editing failure. Additionally, editing the tokens 060

while ensuring the coherence of the output rea- 061

soning chain is challenging, as conflicts between 062

new knowledge and parametric knowledge (Petroni 063
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Figure 2: Differences between ME, ICE methods, and our structural editing. ME and ICE first locate the position of
edited facts within the natural language reasoning steps (ME identifies modification regions, while ICE retrieves
relevant new knowledge) before editing. Both face challenges with incorrect localization and inconsistent reasoning
due to the natural language output format. In contrast, structural editing removes LLMs’ parametric knowledge and
reasons over up-to-date knowledge structures using structured output logic to derive the final answer.

et al., 2020; Si et al., 2023; Xie et al., 2024) can064

lead to hallucinations during the reasoning process065

(Zhang et al., 2023; Huang et al., 2023a; Wang066

et al., 2023a) or make stubborn knowledge difficult067

to edit (Bi et al., 2024a).068

In this paper, we argue that existing KE methods069

pose risks due to the Locate-Then-Edit approach070

based on natural language reasoning. We propose a071

new paradigm, structural editing, which structures072

the natural language outputs. Instead of relying073

on the two-step process of locating and editing,074

we directly remove all information potentially af-075

fected by new knowledge and refill the output based076

on the updated information. This approach elim-077

inates the challenges caused by the coupling of078

different reasoning steps, enabling multi-step edits079

to be completed in a one-shot manner. Figure 2080

shows the differences between structural editing081

and previous methods. To assess these approaches,082

we observe their performance on multi-hop edit-083

ing tasks. We found that ME and ICE methods084

perform poorly when batch_size=full, with accu-085

racy dropping significantly as the number of hops086

increases, indicating their difficulty in thoroughly087

editing knowledge. In contrast, the new structural088

editing demonstrates a high success rate and robust-089

ness, showcasing its potential.090

Building on these insights, we propose an ef-091

fective improved baseline for knowledge editing,092

called STRUEDIT. STRUEDIT edits LLM outputs093

through knowledge structures without the need to094

locate outdated knowledge and also the correspond- 095

ing model parameters or input context. We use 096

LLMs to refill new knowledge into the triplet rea- 097

soning structure based on specific logical rules, 098

which accelerates reasoning speed and eliminates 099

issues like hallucinations. Specifically, we extract 100

the source entity and sequential relations from the 101

reasoning chain, perform entity matching, and se- 102

lect relations in the knowledge structure to infer 103

the reasoning path and obtain the final answer. 104

Experimental results demonstrate that our 105

STRUEDIT consistently achieves the highest edit- 106

ing accuracy and the fastest speed compared 107

to existing KE methods, as shown in Figure 1. 108

STRUEDIT maintains robust editing capabilities as 109

the number of reasoning hops and edited instances 110

increases. Our work provides an improved KE 111

baseline for LLMs with higher accuracy, faster per- 112

formance, and greater robustness, paving the way 113

for further advancements in KE. 114

2 Knowledge Editing on Multi-Hop 115

Editing Tasks 116

In this paper, we focus on multi-hop editing tasks. 117

Single-hop fact editing, such as modifying a fact 118

triplet (s, r, t) to (s, r, t′), has been effectively ad- 119

dressed (Wang et al., 2023b). However, in real- 120

world knowledge question answering (QA), chang- 121

ing one fact can trigger a “ripple effect” requiring 122

updates to additional related facts (Cohen et al., 123

2024). Therefore, in multi-hop editing tasks, it is 124
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Model Method
batch_size=1 batch_size=full

2-hop 3-hop 4-hop avg. 2-hop 3-hop 4-hop avg.

ROME♠ (Meng et al., 2022a) 35.4 20.3 16.2 23.9 4.2 2.5 0.7 2.5

LLAMA2-
MEMIT♠ (Meng et al., 2022b) 27.3 13.5 8.2 16.3 5.7 2.8 1.1 3.2

7B-CHAT
IKE♢ (Zheng et al., 2023) 80.8 63.8 50.9 65.2 13.5 5.7 2.6 7.3

MeLLo♢ (Zhong et al., 2023) 54.9 34.7 30.2 39.9 29.9 9.2 3.1 14.1

Structural Editing (ours) 100 100 100 100 91.5 90.7 56.8 79.1

GPT-3.5-TURBO
IKE♢ (Zheng et al., 2023) 78.5 76.2 73.4 76.0 17.3 9.6 6.7 11.2

-INSTRUCT
MeLLo♢ (Zhong et al., 2023) 72.6 48.7 40.5 53.9 47.8 20.2 16.8 28.3

Structural Editing (ours) 100 100 100 100 98.9 97.7 95.8 97.4

Table 1: Experimental results (accuracy; %) on MQUAKE-2002 for multi-hop editing tasks (2, 3, 4-hop). We
evaluated both open-source and closed-source LLMs across ME, ICE methods, and our STRUEDIT. Methods
marked with ♠ belong to ME, while those marked with ♢ belong to ICE. The best editing result on every LLM is
highlighted in bold font.

crucial for LLMs to accurately reason the correct125

answer without introducing hallucinations caused126

by conflicts with parametric knowledge.127

2.1 Multi-Hop Editing128

Multi-hop editing is a more challenging task in129

KE, where LLMs need to consistently account for130

both the edited facts and related fact updates during131

multi-hop reasoning to ensure thorough knowledge132

revision. The main challenge lies in the potential133

conflict between new knowledge and the paramet-134

ric knowledge in LLMs, which can result in factual135

hallucinations during reasoning (Bi et al., 2024b).136

For instance, regarding a two-hop fact chain (WWE137

Velocity, created by, Vince McMahon), (Vince138

McMahon, spouse, Linda McMahon). With a fact139

edit (WWE Velocity, created by, Stan Lee) and an140

additional fact chain (Stan Lee, spouse, Joan Lee),141

the correct updated answer should be Joan Lee.142

2.2 Evaluation and Analysis143

To thoroughly explore the editing capabilities of144

the main KE methods, including ME, ICE, and the145

new structural editing paradigm proposed in this pa-146

per, we conduct multi-hop editing experiments on147

the MQUAKE dataset (see Section 4.1 for details)148

with both open-source (LLAMA2-7B-CHAT) and149

closed-source (GPT-3.5-TURBO-INSTRUCT) mod-150

els. Specifically, we construct multi-hop fact chains151

from the dataset and edit them with new knowledge152

based on each method. We set the batch size of the153

edit memory to 1 and full batch for KE evaluation.154

The batch size refers to the number of instances 155

providing the edited facts for knowledge retrieval. 156

A batch size of 1 means only the new knowledge 157

relevant to the reasoning is provided, while a full 158

batch simulates a real-world editing scenario where 159

all new knowledge is provided, even if it is not di- 160

rectly related to the current reasoning task. 161

Table 1 presents the results of this experiment. 162

From our observations, we found that structural 163

editing consistently achieves the best performance. 164

Notably, in the full batch size knowledge mem- 165

ory setting, ME and ICE methods perform poorly, 166

while structural editing shows a significant lead on 167

both open-source and closed-source models. 168

Furthermore, structural editing shows robust per- 169

formance across varying batch sizes and reasoning 170

hops compared to other methods. First, all methods 171

show a noticeable drop in average accuracy when 172

moving from batch_size = 1 to batch_size = full. 173

In the ICE methods, IKE experiences the largest 174

drop due to its struggle in retrieving effective new 175

knowledge for complex reasoning chains, while 176

MeLLo is less affected as it breaks down multi-hop 177

queries into sequential single-hop queries. In the 178

ME methods, additional parameter edits can lead 179

to hallucinations. Our proposed structural editing 180

method shows the smallest drop because, unlike 181

other methods, it does not require locating specific 182

knowledge, making it less affected by the number 183

of editing instances. 184

As the number of reasoning hops increases, the 185

accuracy of both ME and ICE methods decreases 186
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Figure 3: An illustration showing how STRUEDIT answers multi-hop questions using new knowledge. For a
multi-hop question, STRUEDIT first guides LLMs to generate a reasoning chain using their parametric knowledge.
It then extracts the source entity and sequential relations, matches the source entity within an external knowledge
structure, and selects based on the sequential relations during reasoning to arrive at the final answer.

to varying extents. Structural editing maintains187

100% accuracy when batch_size=1 because, with188

the given structured fact chains and edited facts,189

LLMs can easily perform single-chain reasoning.190

Even with a full batch size, it remains stable, de-191

spite the need to consider more possible reasoning192

paths. This stability is due to the standardized193

knowledge representation in structured formats,194

which, compared to text, provides more reliable195

knowledge for LLMs’ reasoning and reduces fac-196

tual hallucinations.197

3 STRUEDIT: An Improved Baseline of198

Knowledge Editing199

Section 2 demonstrates the exceptional accuracy200

and robustness of structural editing in multi-hop201

editing tasks. To address more generalized multi-202

hop QA problems with new knowledge, we propose203

a more comprehensive method, STRUEDIT, an im-204

proved baseline for knowledge editing. The main205

idea behind ME and ICE methods is to combine206

edited facts with parametric knowledge, relying on207

the strong reasoning capabilities of LLMs to an-208

swer questions. However, this approach is implicit,209

as it’s unclear whether the model’s parameters were210

correctly updated or if the new knowledge is trusted211

by the LLMs. To reduce the burden on LLMs and212

the uncertainty of editing, STRUEDIT does not re-213

tain parametric knowledge and no longer targets 214

specific knowledge for editing. Instead, all related 215

knowledge is updated, allowing LLMs to reason 216

over up-to-date knowledge structures based on the 217

extracted logic of the question. Figure 3 illustrates 218

the framework of STRUEDIT, using KGs as an ex- 219

ample of the knowledge structure. We introduce the 220

details of STRUEDIT from the following aspects. 221

3.1 Structrual Editing on Parametric Output 222

STRUEDIT uses up-to-date knowledge from the 223

knowledge structure to edit LLMs’ parametric out- 224

put for multi-hop QA, leveraging the logic rules to 225

reason over the structure. To enable reasoning over 226

the knowledge structure for multi-hop questions, 227

it is essential to provide the necessary conditions, 228

including the source entity and sequential relations. 229

First, we input the initial multi-hop question into 230

the LLMs and use in-context demonstrations to 231

guide them in generating a multi-hop reasoning 232

chain. Then, we extract the source entity and se- 233

quential relations from this chain using LLMs, pro- 234

viding logic for subsequent reasoning. 235

In this process, we discard all other entities in 236

the chain reflecting parametric knowledge with- 237

out checking for conflicts with the new knowl- 238

edge. We only utilize LLMs to obtain invariant rela- 239

tions, which are invariant over time in the reasoning 240

chain, and entities are very unstable as connections 241
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Entity / Relation Query Template

prefix_question: Which candidate enti-
ty/relation best matches the entity e0 / rela-
tion rti <feature>?

candidate_description: c1: <feature>, c2:
<feature>, ..., c|C|: <feature>

Figure 4: The query template has two compo-
nents: prefix_question, a selective question, and can-
didate_description, describing the candidate set C =
c1, c2, ..., c|C|, which represents either all entities or the
relations associated with ei−1. <feature> denotes the
textual description of entities or relations.

therein. This reflects the core of our STRUEDIT,242

where we directly remove all information poten-243

tially affected by new knowledge and then refill244

it based on the updated knowledge. This ensures245

efficient and explicit editing.246

3.2 Multi-hop Reasoning with LLMs247

Multi-hop reasoning over a knowledge structure is248

key to our STRUEDIT approach. Formally, given249

a source entity et0 and a sequential relation R =250

{rt1, ..., rth} extracted according to ?? for an h-hop251

question, we ideally aim to find a reasoning path252

P t = {(et0, rt1, e1), ..., (eh−1, r
t
h, eh)} that leads to253

the final answer eh.254

However, although the source entity and sequen-255

tial relations provide the reasoning logic, the ac-256

curacy of reasoning can be significantly impacted257

by discrepancies between the entities and relations258

extracted from the reasoning chain and those in259

the knowledge structure. For instance, as shown260

in Figure 3, "spouse of" in the sequential relation261

does not align with "married to" in the knowledge262

structure, which could lead to the selection of an al-263

ternate path during reasoning, ultimately resulting264

in an incorrect outcome. To address this issue, and265

inspired by Bi et al. (2024c), we adopt the follow-266

ing strategies when entities and relations cannot be267

precisely matched.268

Entity Matching We construct a candidate set269

containing all entities, then query the LLMs with270

et0 to identify the most closely matching entity.271

Relation Selection Similarly, during the i-hop272

reasoning, we construct a candidate set based on273

all relations {r1i , ..., rmi } associated with the entity274

ei−1 to select the relation most similar to rti .275

The query template for entity matching and 276

relation selection is shown in Figure 4. En- 277

tities and relations are aligned through LLM 278

queries to optimally infer a reasoning path P = 279

{(e0, r1, e1), ..., (eh−1, rh, eh)} within the knowl- 280

edge structure, leading to the final answer eh, 281

where e0 best matches the extracted et0 and 282

{r1, ..., rh} most closely correspond to the ex- 283

tracted {rt1, ..., rth}. 284

4 Experiments 285

4.1 Datasets and Tasks 286

Unlike the evaluation editing tasks in Section 2.2, 287

we assess KE performance in the form of more 288

generalized question answering tasks. We focus 289

exclusively on the more realistic and challenging 290

multi-hop tasks to assess whether the knowledge 291

has been thoroughly edited. We conduct experi- 292

ments using MQUAKE-3K (Zhong et al., 2023) 293

along with its challenging derivatives, MQUAKE- 294

2002 and MQUAKE-HARD, introduced by Wang 295

et al. (2024). MQUAKE is a multi-hop QA bench- 296

mark for knowledge editing that provides multi-hop 297

knowledge questions to evaluate KE on counter- 298

factual edits. We construct KGs from the knowl- 299

edge triples provided in MQUAKE to serve as the 300

knowledge structure for our STRUEDIT. 301

4.2 Models and Baselines 302

We examine both closed-source models, including 303

LLAMA2-7B-CHAT and LLAMA2-13B-CHAT, 304

as well as open-source models, including GPT-3.5- 305

TURBO-INSTRUCT and GPT-4O-MINI. We use 306

state-of-the-art ME and ICE methods as our base- 307

lines for comparison with our STRUEDIT, which 308

include the following approaches: 309

ROME ROME (Meng et al., 2022a) applies 310

causal mediation analysis to locate the editing area, 311

framing model editing as a least-squares problem 312

under linear equality constraints and solving it us- 313

ing lagrange multipliers. 314

MEND MEND (Mitchell et al., 2021) adopt a 315

meta-learning approach that trains a hypernetwork 316

to infer weight updates from the gradient of the 317

inserted fact. 318

MEMIT MEMIT (Meng et al., 2022b) insert 319

new memories into language models by targeting 320

key transformer weights identified as causal media- 321

tors of factual knowledge recall. 322
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

ROME♠ (Mitchell et al., 2021) 2.3 2.9 0.4

LLAMA2- MEMIT♠ (Meng et al., 2022b) 3.1 3.5 0.6
MEND♠ (Meng et al., 2022a) 3.9 4.1 0.9

7B-CHAT
IKE♢ (Zheng et al., 2023) 6.2 6.5 0.5
MeLLo♢ (Zhong et al., 2023) 10.8 11.8 1.6
DEEPEDIT♢ (Wang et al., 2024) 11.2 12.9 7.0

STRUEDIT (ours) 52.1 67.3 41.7

ROME♠ (Mitchell et al., 2021) 3.1 4.8 0.7

LLAMA2- MEMIT♠ (Meng et al., 2022b) 4.3 5.1 1.1
MEND♠ (Meng et al., 2022a) 4.8 5.3 1.3

13B-CHAT
IKE♢ (Zheng et al., 2023) 6.8 7.7 1.2
MeLLo♢ (Zhong et al., 2023) 11.2 12.3 1.5
DEEPEDIT♢ (Wang et al., 2024) 12.5 13.7 8.2

STRUEDIT (ours) 53.4 68.5 48.9

Table 2: Experimental results (accuracy; %) on MQUAKE datasets with open-source models. We conduct the
experiments with the full batch size edit memory. Methods marked with ♠ belong to ME, while those marked with
♢ belong to ICE. The best KE result on every LLM is highlighted in bold font.

IKE IKE (Zheng et al., 2023) uses demonstra-323

tion contexts without parameter updates, prompt-324

ing LLMs to perform edits by leveraging newly325

retrieved knowledge.326

MeLLo MeLLo (Zhong et al., 2023) guides327

LLMs in multi-hop knowledge editing by decom-328

posing subproblems and detecting conflicts be-329

tween parametric knowledge and edited facts.330

DEEPEDIT DEEPEDIT (Wang et al., 2024) en-331

hances generating coherent reasoning chains with332

new knowledge through depth-first search.333

4.3 Overall Performance334

We set the edit memory to full batch size to reflect335

real-world scenarios in our experiments. Table336

2 displays the KE performance of ME and ICE337

methods, as well as our STRUEDIT, on MQUAKE338

across open-source models. Overall, both ME and339

ICE methods perform poorly, while our STRUEDIT340

consistently shows a significant lead. ME methods341

rely on modifying model structures or parameters342

to update knowledge, which becomes inefficient343

when dealing with a large number of new knowl-344

edge instances, as in our full batch size experiment.345

This can negatively impact the model’s inherent346

parametric knowledge and reasoning abilities. In347

the ICE methods, IKE struggles to retrieve relevant348

information from the vast amount of new knowl-349

edge, resulting in poor editing performance. Al-350

though MeLLo and DEEPEDITattempt to address351

this limitation through conflict detection and deep352

search, they are still constrained by the reasoning 353

capabilities of open-source LLMs. Our STRUEDIT 354

demonstrates significant improvement, highlight- 355

ing its great potential in real-world scenarios. 356

The experimental results on the closed-source 357

models are presented in Table 3. Due to the closed- 358

source nature of the models, we are only able to 359

test the ICE methods and our STRUEDIT. The ICE 360

methods exhibit overall improvement compared 361

to their KE performance on open-source models, 362

as shown in Table 2, with DEEPEDITshowing the 363

most significant gains. This improvement is at- 364

tributed to the strong in-context learning (ICL) ca- 365

pabilities of the advanced closed-source models. 366

However, our STRUEDIT also benefits from the en- 367

hanced ICL abilities of these LLMs, consistently 368

achieving the best performance with an average 369

accuracy that is 58.8% higher than DEEPEDIT. 370

Compared to more powerful closed-source mod- 371

els, STRUEDIT shows an even greater lead on 372

smaller open-source models. This indicates that 373

previous KE methods heavily relied on the inherent 374

capabilities of LLMs, while STRUEDIT reduces 375

the burden on LLMs during the KE process. 376

4.4 Robustness of Knowledge Editing 377

The robustness of KE is crucial for assessing 378

whether knowledge has been thoroughly and ef- 379

fectively edited. We evaluate the robustness of 380

knowledge editing by assessing it across both the 381

number of hops in multi-hop QA and the number 382
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Model Method MQUAKE-3K MQUAKE-2002 MQUAKE-HARD

IKE♢ (Zheng et al., 2023) 10.2 12.5 1.4
GPT-3.5 MeLLo♢ (Zhong et al., 2023) 20.0 25.1 1.6
TURBO-INSTRUCT DEEPEDIT♢ (Wang et al., 2024) 38.0 48.0 53.7

STRUEDIT (ours) 62.7 85.3 75.5

IKE♢ (Zheng et al., 2023) 10.5 13.1 1.5

GPT-4O-MINI
MeLLo♢ (Zhong et al., 2023) 21.2 27.8 2.4
DEEPEDIT♢ (Wang et al., 2024) 41.3 49.2 55.8
STRUEDIT (ours) 66.5 86.3 77.3

Table 3: Experimental results (accuracy; %) of ICE methods and our STRUEDIT on MQUAKE datasets with
closed-source models. We conduct the experiments with the full batch size edit memory.

of edited instances.383

Number of Hops in Multi-Hop QA Figure 5384

shows the changes in KE performance for ME,385

ICE methods, and our STRUEDIT as the number of386

hops in multi-hop QA increases. We observed that,387

regardless of whether on open-source or closed-388

source models, all methods experience a notice-389

able decline in editing performance as the number390

of hops increases. This decline is primarily due391

to the hallucinations introduced by multi-hop rea-392

soning and knowledge conflicts. Specifically, ME393

shows an average decrease of 57% and ICE an av-394

erage decrease of 56% with each additional hop,395

whereas STRUEDIT only declines by 38% on av-396

erage, demonstrating the strong robustness of our397

STRUEDIT with increasing reasoning hops.398

Number of Edited Instances Edited instances399

refer to the number of new knowledge updates re-400

quired in the edit memory. In real-world deploy-401

ments, where the number of edited instances is402

often high, the robustness of KE in this aspect be-403

comes especially critical. We conduct experiments404

based on randomly grouped edited instances of405

varying quantities, with the results shown in Figure406

6. Consistent with the observations of Zhong et al.407

(2023) , all methods show further decline when408

more edits are injected. As the number of edited409

instances increases, both ME and ICE methods ex-410

perience a significant decline, particularly in the411

comparison between 1-instance and 100-instance412

settings. This decline is primarily due to the chal-413

lenges of imprecise knowledge localization, which414

fails to provide effective editing information, and415

hallucinations caused by knowledge conflicts. In416

contrast, our STRUEDIT consistently demonstrates417

the best performance across different instance sce-418

narios, with the smallest average decline.419

Performance Results on Open-Source Model.

Performance Results on Close-Source Model.

Figure 5: Multi-hop QA results across 2, 3, and 4 hops
on both open-source (LLAMA2-7B-CHAT) and closed-
source (GPT-3.5-TURBO-INSTRUCT) models for ME,
ICE methods, and our STRUEDIT.

Overall, the performance of existing KE methods 420

is significantly impacted by more complex multi- 421

hop reasoning and a higher number of edited in- 422

stances, which implies that many pieces of knowl- 423

edge may not be thoroughly edited in real-world 424

scenarios. In contrast, our STRUEDIT demon- 425

strates more stable robustness by reasoning over 426

the updated knowledge structure, effectively mit- 427

igating hallucinations caused by retrieval errors, 428

reasoning challenges, and knowledge conflicts. 429

4.5 Editing Latency 430

Table 4 shows the latency of different editing meth- 431

ods in multi-hop QA. ME methods are generally 432

slower, as it requires locating and modifying the 433

model based on the edited facts before reasoning. 434

ICE methods are faster, but latency increases when 435
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Figure 6: Multi-hop performance (CoT) of LLAMA2-7B-CHAT (left) and GPT-3.5-TURBO-INSTRUCT (right)
across different KE methods with 1, 100, 1000, 2000, and 3000 edited instances drawn for editing

longer text reasoning is needed to improve editing436

performance, as seen in methods like MeLLo and437

DEEPEDIT. STRUEDIT demonstrates the best effi-438

ciency, even compared to the simplest IKE method,439

because it achieves strong reasoning performance440

without relying on LLMs generating lengthy CoT,441

thanks to the support of knowledge structures.442

Method 2-hop 3-hop 4-hop

MEND♠ 91.7 126.3 167.2
ROME♠ 43.7 52.3 63.8
MEMIT♠ 113.6 155.2 213.4

IKE♦ 2.48 2.67 2.85
MeLLo♦ 12.83 16.27 21.53
DEEPEDIT♦ 10.05 15.79 19.58

STRUEDIT 1.75 2.25 2.38

Table 4: Average latency (s/QA) for KE on MQUAKE-
2002 with LLAMA2-7B-CHAT. The lowest latency is
highlighted in bold. ME latency includes model editing
and reasoning, while ICE latency includes knowledge
retrieval and reasoning.

5 Related Work443

LLMs’ Hallucination Pre-training on large-444

scale corpora equips LLMs with extensive para-445

metric memory, including commonsense and fac-446

tual knowledge (Petroni et al., 2019; Li et al.,447

2022). However, this parametric knowledge may448

be inaccurate due to errors or outdated informa-449

tion in the pre-training data, leading to halluci-450

nations (Zhang et al., 2023; Huang et al., 2023a;451

Wang et al., 2023a) where the content generated by452

LLMs deviates from established world knowledge.453

Knowledge Conflict To mitigate the hallucina-454

tions, tools (Nakano et al., 2022; Yao et al., 2023a;455

Qin et al., 2024) or retrieval-augmented meth-456

ods (Guu et al., 2020; Izacard and Grave, 2021; 457

Zhong et al., 2022), such as ChatGPT Plugins and 458

New Bing, have been proposed as effective so- 459

lutions to provide external knowledge evidence. 460

However, external knowledge may inevitably con- 461

flict (Petroni et al., 2020; Si et al., 2023; Xie et al., 462

2024) with parametric knowledge, leading to un- 463

reliable support, especially when LLMs are overly 464

confident in their own parametric knowledge. 465

Knowledge Editing KE (Yao et al., 2023b) has 466

been proposed to update outdated information, en- 467

abling models to answer current questions accu- 468

rately. In general, existed KE can be divided into 469

two main categories. ME (Zhu et al., 2020; Meng 470

et al., 2022a,b; Huang et al., 2023b) involves modi- 471

fying model parameters or structure to prevent un- 472

desired outputs. ICE (Mitchell et al., 2022; Madaan 473

et al., 2022; Zhong et al., 2023; Zheng et al., 2023) 474

edit knowledge by prompting LLMs with the newly 475

updated facts. However, both approaches are af- 476

fected by localization or knowledge conflicts, lead- 477

ing to hallucinations. 478

6 Conclusion 479

In this paper, we proposed a new improved base- 480

line for knowledge editing, called STRUEDIT. Un- 481

like the locate-and-edit KE approaches such as 482

ME and ICE, STRUEDIT removes all parametric 483

knowledge, regardless of whether it conflicts with 484

new knowledge. By leveraging LLMs to extract 485

entities and relations from the original question, 486

STRUEDIT performs multi-hop reasoning over up- 487

to-date knowledge structures to derive accurate an- 488

swers. This new paradigm offers higher editing ac- 489

curacy, faster performance, and greater robustness. 490

Our work paves the way for further advancements 491

in knowledge editing. 492
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Limitations493

This work presents an improved baseline for KE.494

Unlike ME and ICE, which rely on text-based edit-495

ing information, STRUEDIT requires a more struc-496

tured knowledge format to support LLM reasoning.497

The decline from the editing tasks in Table 1 to the498

QA tasks in Tables 2 and 3 reflects the loss in en-499

tity and relation extraction for STRUEDIT. While500

STRUEDIT demonstrates strong robustness, there501

is still a noticeable decline as reasoning hops and502

the number of edited instances increase, indicating503

potential errors in LLM reasoning.504

Ethical Considerations505

In this study, we adhere to ethical guidelines by us-506

ing only open-source datasets and employing mod-507

els that are either open-source or well-established508

in the scientific community. We utilize counterfac-509

tual public datasets for knowledge editing to evalu-510

ate knowledge updates. Our proposed STRUEDIT511

method focuses on updating knowledge to enable512

LLMs to accurately answer real-world questions.513

We are committed to maintaining high ethical stan-514

dards throughout our research, emphasizing trans-515

parency and promoting the responsible use of tech-516

nology for the betterment of society.517
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