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Abstract

Hallucinations pose a significant challenge to
the reliability of neural models for abstractive
summarisation. While automatically gener-
ated summaries may be fluent, they often lack
faithfulness to the original document. This is-
sue becomes even more pronounced in low-
resource languages, where summarisation re-
quires cross-lingual transfer. With the existing
faithful metrics focusing on English, even mea-
suring the extent of this phenomenon in cross-
lingual settings is hard. To address this, we
first develop a novel metric, mFACT, evaluat-
ing the faithfulness of non-English summaries,
leveraging translation-based transfer from mul-
tiple English faithfulness metrics. Through ex-
tensive experiments in multiple languages, we
demonstrate that mFACT is best suited to de-
tect hallucinations compared to alternative met-
rics. With mFACT, we assess a broad range
of multilingual large language models, and
find that they all tend to hallucinate often in
languages different from English. We then
propose a simple but effective method to re-
duce hallucinations in cross-lingual transfer,
which weighs the loss of each training example
by its faithfulness score. This method dras-
tically increases both performance and faith-
fulness according to both automatic and hu-
man evaluation when compared to strong base-
lines for cross-lingual transfer such as MAD-X.
Our code and dataset are available at https:
//github.com/yfqiu-nlp/mfact-summ.

1 Introduction

Recent neural abstractive summarisation models
(Lewis et al., 2020; Liu and Liu, 2021; Liu et al.,
2022; Fonseca et al., 2022; Ravaut et al., 2022)
have shown promise in terms of ROUGE scores
(Lin and Och, 2004). However, a well-known prob-
lem with these models is hallucination (Maynez
et al., 2020; Kryscinski et al., 2020; Laban et al.,
2022; Cao et al., 2022a)—generating summaries
that cannot be supported by ground-truth knowl-

edge (e.g., news, documents, meeting notes). Anec-
dotally, it was shown that the percentage of gen-
erated summaries for CNN/DailyMail (Hermann
et al., 2015; See et al., 2017) and XSum (Narayan
et al., 2018) containing hallucinations amounts to
up to 74.8% and 96.9% (Pagnoni et al., 2021), re-
spectively. Hallucinations hinder the reliability of
abstractive summarisation systems by potentially
misleading users with the misinformation they pro-
duce.

In addition, current summarisation models, open-
source or proprietary, struggle in low-resource set-
tings (Parida and Motlicek, 2019; Hasan et al.,
2021; Bai et al., 2021; Urlana et al., 2023), when
the target language is under-represented (e.g., Viet-
namese and Urdu). Fortunately, cross-lingual trans-
fer methods (Pfeiffer et al., 2020b; Xue et al., 2021;
Hu et al., 2020) leverage task-specific knowledge
learned from a resource-rich source language to
summarise documents in many resource-poor tar-
get languages, in a zero-shot fashion or only with
few annotated examples. Nevertheless, it remains
unclear to what extent cross-lingual summarisation
suffers from the problem of hallucination, com-
pared to monolingual systems where English is the
only language.

The main challenge in addressing this question
is that most faithfulness evaluation metrics are
available only for English and do not support low-
resource languages. Hence, our first contribution
(Section 2) is a model-based metric (mFACT) that
measures the factual consistency of multilingual
conditional generation, obtained from four diverse
English faithfulness metrics (Goyal and Durrett,
2021; Fabbri et al., 2022; Cao et al., 2022a) via
‘translate train’ knowledge transfer (Artetxe et al.,
2020). As illustrated in Figure 1, we use existing
faithfulness metrics to label the English document–
summary pairs as positive (i.e., faithful) or negative
(i.e., hallucinated) and translate them into each tar-
get language. We then train a classifier in each
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Figure 1: Pipeline of mFACT for transferring English faithfulness metrics to target languages via machine translation.
We average the score of four English metrics to rank the training samples in XSum. We then translate the most
faithful and hallucinated samples into each target language and train a classifier to distinguish them.

target language to predict the faithfulness scores
for the translated document–summary pairs. We
verify the reliability of mFACT on the translated
test set and, most importantly, with human evalua-
tion. These confirm the effectiveness of mFACT in
capturing hallucinations in target languages.

Equipped with this new metric, we conduct ex-
tensive cross-lingual transfer experiments on XL-
Sum (Hasan et al., 2021) for abstractive summari-
sation in six typologically diverse languages: Chi-
nese, Spanish, French, Hindi, Turkish and Viet-
namese. We find that state-of-the-art cross-lingual
transfer methods increase summarisation perfor-
mance in the target languages, but also introduce
more hallucinations compared to English monolin-
gual models in comparable experimental settings,
thus further exacerbating this tendency (Section 6).

We also employ the mFACT metric to assess the
faithfulness of some recently released multilingual
large language models (LLMs), including Phoenix,
BLOOMZ, and Vicuna (Chen et al., 2023; Muen-
nighoff et al., 2022; Chiang et al., 2023; Le Scao
et al., 2022). We show that LLMs that use multi-
lingual data for pre-training or conversational fine-
tuning fail to ensure faithfulness in summarisation
in various languages, producing more hallucina-
tions in low-resource ones.

To overcome this limitation and promote faithful
summarisation in multiple languages, we adapt a
series of existing methods for reducing hallucina-
tions originally devised for monolingual summari-
sation (Section 3.2). In addition, we introduce a
novel, simple but effective method (Section 3.3):
we weigh the loss for each training example ac-
cording to their faithful scores. We evaluate our
loss-weighting method with automated metrics and

human judgements. We observe significant gains in
both summarisation performance and faithfulness
over a series of strong baselines (Section 8). In a
nutshell, our main contributions are the following:
• We propose mFACT, a multilingual faithful met-

ric developed from four English faithfulness met-
rics. This enables detecting hallucinated sum-
maries in languages other than English.

• To the best of our knowledge, we are the first
to study hallucination in a cross-lingual transfer
setting. We show that state-of-the-art methods
like MAD-X (Pfeiffer et al., 2020b) can improve
the performance for low-resource summarisa-
tion, but also amplify hallucinations.

• We apply mFACT to study the faithfulness in
summarisation of the recent multilingual Large
Language Models. We observe that despite their
scale, these models are still struggling to reduce
hallucinations for languages other than English.

• We propose a novel method to enhance faithful-
ness and performance in cross-lingual transfer
for summarisation, which consists of weighting
training samples’ loss based on their faithfulness
score. Both automatic and human evaluations
validate the superiority of our method over exist-
ing baselines.

2 mFACT: A Multilingual Metric for
Faithfulness

The lack of faithful metrics in languages other than
English greatly limits the evaluation (and hence,
the prevention) of hallucinations in cross-lingual
transfer for low-resource languages. In this section,
we fill this gap by introducing mFACT. This is con-
structed by transferring multiple English faithful



metrics into any target language, given the avail-
ability of a machine translation model.

2.1 Translation-based Transfer for
Faithfulness Metrics

One straightforward way to implement a faithful
metric in any target language is by implementing
it from scratch following the design of monolin-
gual English metrics. However, these often rely
on data annotated with auxiliary language-specific
tools. For instance, Dependency Arc Entailment
(DAE; Goyal and Durrett 2021) requires an exter-
nal dependency parser to label fine-grained hal-
lucinated segments. This is impractical due to
the lack of annotated data and auxiliary tools in
most languages. Another strategy relies on “trans-
late test” knowledge transfer (Artetxe et al., 2020),
where test documents and their corresponding gen-
erated summaries are translated from the target lan-
guage to English. Then, English metrics can mea-
sure faithfulness; however, this introduces noise
from translation and is costly at inference time,
which makes this unsuitable for model develop-
ment. For instance, model selection is commonly
based on early stopping according to validation
faithful scores (Choubey et al., 2021; Aharoni et al.,
2022), which necessitates translating all generated
summaries at each validation step.

Our solution instead is to formulate faithfulness
evaluation as a binary classification problem, i.e.,
to predict whether a given document–summary
pair is faithful or hallucinated. In other terms,
our proposed approach aims to distil knowledge
from multiple teacher models, i.e., existing English
model-based metrics, into a target-language classi-
fier as a student model. Specifically, we use mul-
tiple English faithful metrics to assign the pseudo
labels of “faithful” or “hallucinated” for English
document–summary pairs, then translate them to
create a faithfulness binary classification dataset in
target languages. We then train the target-language
classifier on the resulting silver dataset. Formally,
we aim to obtain a faithfulness scoring model g(·)
in target language tgt that predicts the faithfulness
for a given document-summary pair (x,y). Hence
g(tgt)(x(tgt),y(tgt)) ≜ p(z = 1 | x(tgt),y(tgt))
where z = 1 and z = 0 represent whether the pair
is faithful or hallucinated, respectively.

The pipeline for creating mFACT is presented in
Figure 1. We start with four diverse English faith-

fulness metrics1, and use them to score the training
samples from the English XSum summarisation
dataset (Narayan et al., 2018). Following Maynez
et al. (2020), we select the metrics based on two cat-
egories of hallucinations generated by the model:
1) intrinsic hallucinations where the summary dis-
torts the information present in the document; 2)
extrinsic hallucinations where the model adds in-
formation that cannot be directly supported by the
document. We select two model-based metrics cap-
turing intrinsic hallucinations:
• DAE (Goyal and Durrett, 2021) which consists

in an entailment classifier trained with annota-
tion at a fine-grained dependency level;

• QAFactEval (Fabbri et al., 2022) which focuses
on generating questions whose answer is a span
of the summary, and attempts to answer them
based on the document alone;

and two metrics for extrinsic hallucinations:
• ENFS% is a simple rule-based measurement

presented by Cao et al. (2022a), which counts the
proportion of entities which appear in a summary
but not in its corresponding document.

• EntFA (Cao et al., 2022a) which estimates the
posterior and prior probabilities of generated en-
tities with language models conditioned (or not
conditioned, respectively) on the source docu-
ment. Using these probabilities as features, a
KNN classifier detects token-level hallucination.

We chose XSum as the source English dataset be-
cause 1) all our selected faithfulness metrics are
trained on XSum, which allows us to maximise
the reliability of these metrics. 2) XSum has been
shown to include abundant and diverse hallucina-
tions (Maynez et al., 2020; Pagnoni et al., 2021),
which allows our metrics to capture as many types
of hallucinations as possible.

We then normalise the scores from the above-
mentioned four metrics between [0, 1] and aver-
age them for each training sample. We rank the
samples from the most faithful to the most halluci-
nated according to the resulting faithfulness scores.
The k top-ranked and k bottom-ranked document–
summary pairs are then considered positive and
negative examples, respectively. We translate these
into a series of target languages with the Google
Translation API2 and create our silver faithfulness
dataset splitting its examples with a proportion of
95/2.5/2.5 as the training/validation/testing sets.

1Our simple sanity check in Appendix A.3 shows these
model-based hallucination metrics to be reliable.

2https://cloud.google.com/translate

https://cloud.google.com/translate


Finally, a multilingual BERT-based classifier is
fine-tuned on our dataset. We follow the sentence-
pair classification setting from (Devlin et al., 2019)
to concatenate the document–summary pairs as the
input. A classifier receives the last-layer representa-
tion for the [CLS] special token and returns a score
between 0 (hallucinated) and 1 (faithful).

3 Reducing Hallucination in
Cross-lingual Transfer

We first provide some background on cross-lingual
transfer. Then, we show how to adapt several meth-
ods promoting faithfulness in monolingual sum-
marisation to cross-lingual transfer settings. Fi-
nally, we describe a new approach based on loss
weighting.

3.1 Cross-lingual Transfer with MAD-X

We adopt the Multiple ADapters framework (MAD-
X; Pfeiffer et al. 2020b), which constitutes a state-
of-the-art method for cross-lingual transfer. MAD-
X learns independent language and task adapters
(i.e., parameter-efficient model fine-tunings), and
then combines them. Specifically, to transfer the
ability to summarise documents from a source lan-
guage to a target language, we follow these steps:
1) We train two separate language adapters on
the Wikipedia corpora for both the source and tar-
get languages. 2) We stack the (frozen) source
language adapter with a randomly initialised task
adapter and train the latter with annotated data in
the source language. 3) We stack the trained task
adapter with the target language adapter and then
perform zero-shot inference in the target language.

3.2 Expert and Anti-Expert Approaches

The majority of strategies to reduce hallucinations
in monolingual settings rely on creating experts or
anti-experts that steer the model towards positive
behaviour or away from negative behaviour. As
a by-product of the pipeline to create our metric,
mFACT (Section 2), we obtained two separate sub-
sets of faithful and hallucinated samples in both
source and target languages. These subsets can
serve as training data for experts/anti-experts in
multiple languages, thus making them suitable for
cross-lingual transfer. We explore three methods
in this family. In all in stances, we first train a
base adapter with the source summarisation dataset.
Then, we further tune it with the faithful (hallu-
cinated) subset to obtain an expert (anti-expert)

adapter.
Task Vector Negation (TVN; Ilharco et al.

2022). Task vector negation mitigates hallucinated
generation by subtracting the task vector of the anti-
expert model from the fine-tuned model. Formally,
given a fine-tuned model with parameter θ0 and
an anti-expert model θ−, the interpolated model
parameters θ⋆ are obtained as

θ⋆ = θ0 − λ(θ− − θ0), (1)

where λ is the importance hyperparameter that con-
trols the degree of fusion between the fine-tuned
model and the anti-expert.

Contrastive Parameter Ensembling (CAPE;
Choubey et al. 2021). To compensate for the poten-
tial loss of summarisation ability by only subtract-
ing the anti-expert task vector from the base model,
CAPE proposes to also add the expert parameters.
Formally, the interpolated model parameters θ⋆ are
obtained as:

θ⋆ = θ0 + λ(θ+ − θ−), (2)

where λ again is the importance hyperparameter.
DExpert Decoding (Liu et al., 2021). Contrary

to Task Vector Negation and CAPE, which directly
manipulate the model parameters, DExpert uses
expert and anti-expert models to modify the pre-
dicted logits at each decoding step. Given the base
model fθ and a pair of expert fθ+ and anti-expert
fθ− models, the scores for the next token at each
decoding step t are:

p(yt|x,y<t) = softmax(zt + λ(z+t − z−t )), (3)

where zt, z+t , z
−
t are the outputs from fθ, fθ+ , fθ−

at time step t, respectively. Again, an importance
hyper-parameter λ controls the degree of fusion
during decoding.

3.3 Weighted Loss Approach
We also introduce a simple but effective approach
to reduce hallucination during cross-lingual trans-
fer. Previous works have shown that controlling
the quality of the training samples can improve the
model’s faithfulness (Kang and Hashimoto, 2020;
Aharoni et al., 2022). However, simply filtering out
hallucinated training data may sacrifice the sum-
marisation performance (Dziri et al., 2022).

We thus propose a “soft” data filtering approach
where we weigh the training loss according to each
sample’s faithfulness score. More formally, we rely



Model
Acc. Prec. Recall F1

µ σ µ σ µ σ µ σ

XNLI 52.9 0.7 71.6 3.3 8.4 1.5 15.0 2.5
X.-mF 95.0 2.3 95.7 2.4 94.3 2.2 94.9 2.3
mF-T 64.2 6.2 98.9 0.9 28.3 12.9 42.5 16.9
mF 95.3 1.7 95.4 1.8 95.1 2.0 95.2 1.8

Table 1: Mean values (µ) and standard deviations (σ)
of the test performance of four faithfulness classifiers
over six target languages. X.-mF, mF-T, mF stand for
XNLI-mFACT, mFACT-Transfer and mFACT, respec-
tively. The detailed results for each language are given
in Appendix A.5.

on a faithfulness metric for the source language,
which outputs a score z(i) for the ith document–
summary pair’s faithfulness. Then the update rule
of training parameters for each batch becomes

θ∗ = θ − α

(
1

m

m∑
i=1

z(i)∇θJ(x
(i),y(i);θ)

)
,

(4)
where θ is the vector of trainable model parameters,
α is the learning rate, m is the batch size, J(·;θ)
is the loss function for a single training example
(x(i),y(i)), and ∇θJ(·) is the gradient of the loss
function wrt. the model parameters.

4 Experimental Setup

Evaluation Metrics. We use ROUGE-1/2/L scores
(Lin and Och, 2004) to evaluate the task of ab-
stractive summarisation. We use the four metrics
mentioned in Section 2 to evaluate the faithfulness
of English summaries and our mFACT metric for
summaries in other languages.
Dataset. We conduct our experiments on XL-Sum,
which is a large-scale multilingual summarisation
dataset (Hasan et al., 2021). XL-Sum provides a
large collection of annotated document–summary
pairs in 45 languages in addition to English. We
test our approach on six target languages: Chinese,
Spanish, French, Hindi, Turkish and Vietnamese.
Table 7 shows the dataset statistics.

5 Faithfulness Classification Experiments

5.1 Classification Results
Firstly, we verify the reliability of mFACT by us-
ing our translated test sets in multiple languages
to benchmark mFACT and several baselines for
faithfulness classification.
Baselines. Previous works (Maynez et al., 2020;
Kryscinski et al., 2020) showed that models train

Models R-1↑ DAE↑ QAFE↑ ENFS↓ EntFA↑

MAD-X 23.62 80.14 52.12 23.04 93.09

XNLI 23.42 84.92 53.42 21.56 94.23
XNLI-mFACT 23.64 86.48 52.26 21.50 94.33

mFACT-TF 23.97 84.25 53.14 21.16 94.51
mFACT 23.24 85.29 54.30 20.68 94.63

Table 2: Results for (inverse) cross-lingual transfer from
other languages to English. We report the average values
for performance (R-1) and faithfulness (DAE, QAFE,
ENFS%, EntFA) metrics. The methods include the
MAD-X baseline and our proposed loss weighting with
four weighting metrics, including an XNLI-trained clas-
sifier and mFACT. Numbers are averages of 3 different
random seeds for each of the 6 languages.

for natural language inference (NLI), a related task
for which more annotated data is readily available,
can be used also for assessing faithfulness for En-
glish summarisation. We thus include a baseline,
namely XNLI, which consists in fine-tuning mul-
tilingual BERT with the corresponding language
split in the XNLI dataset (Conneau et al., 2018). As
an alternative, we further fine-tune the XNLI base-
line with our translated data (XNLI-mFACT), thus
verifying whether combining the supervision signal
from both sources boosts the performance. Finally,
we incorporate an ablation study for using zero-
shot multilingual transfer instead of “translate train”
(Artetxe et al., 2020). In mFACT-Transfer, we train
a multilingual encoder on our English faithfulness
classification dataset without translating it, then
deploy it directly on examples in other languages.
Results and Discussion. We report the classifi-
cation performance in Table 1. We find that NLI
classifiers do not achieve a level of performance on
par with classifiers trained on our faithfulness clas-
sification dataset. This demonstrates that evaluat-
ing faithfulness is indeed distinct from NLI, which
is consistent with previous findings in assessing
faithfulness in English (Kryscinski et al., 2020;
Maynez et al., 2020). Comparing mFACT and
mFACT-Transfer, we also observe the positive ef-
fects of translation-based transfer, which achieves a
much higher recall rate than zero-shot cross-lingual
transfer. Hence, mFACT is more likely to identify
faithful document–summary pairs as such.

5.2 External Evaluation by Inverse Transfer

Finally, we conduct an evaluation based on inverse
cross-lingual transfer (i.e., from other languages to
English) as a downstream task with our newly intro-



duced approach (Section 3.3). This setting allows
us to compare the impact of using different multi-
lingual faithfulness metrics, among those listed in
Section 5.1, to weigh the training samples in tar-
get languages. The logic behind this experiment is
that if the scorer captures the model’s faithfulness
in target languages, the English summaries gener-
ated by the corresponding model should be more
faithful according to the four English metrics from
Section 2.1.

The results are shown in Table 2. Unsurprisingly,
we observe that in general weighting the training
samples in target languages with faithfulness met-
rics can achieve considerable improvements over
the MAD-X baseline on English faithfulness scores.
This suggests that these metrics are well aligned
with the actual faithfulness of generated summaries.
Specifically, comparing mFACT-Ours and mFACT-
Transfer methods with XNLI and XNLI+mFACT,
we find that our constructed dataset is much more
effective in improving faithfulness than NLI signal,
which again verifies our previous assumption that
faithfulness classification and NLI are only vaguely
related. Finally mFACT-Transfer performs worse
than mFACT in ROUGE, which can be caused by
the much lower recall rate of mFACT-Transfer in
faithfulness classification (see Table 1).

6 Cross-lingual Transfer Introduces
Additional Hallucinations

The second analysis of this paper aims to corrobo-
rate our observation that cross-lingual transfer can
introduce additional hallucinations over monolin-
gual fine-tuning, though it improves the task per-
formance for summarisation in the target language.
Transfer Setup. We compare two data scenarios
and two styles of fine-tuning. To begin, we inves-
tigate the impact of initial training on source data,
followed by applying few-shot learning techniques
on target data (cross-lingual transfer) instead of
direct application. We attribute the difference in
faithfulness scores to the additional hallucinations
introduced by the training phase in the source lan-
guage. Taking Chinese as an example of few-shot
cross-lingual transfer, we train the summarisation
model first on XL-Sum (Chinese) and then with
1K randomly sampled XSum (English) examples.
Secondly, we compare fine-tuning the full model,
where all parameters are updated, with parameter-
efficient fine-tuning, where only the adapters are
updated. This allows us to study the effect of dif-

Metrics MAD-X Full Model

MFT CLTF MFT CLTF

Pe
rf

or
m

.

R-1 30.25 30.96 23.96 32.05
R-2 8.57 9.11 5.9 9.69
R-L 22.48 23.14 17.96 23.85

Fa
ith

fu
l. DAE (↑) 68.17 66.69 84.33 53.24

QAFE (↑) 34.44 33.87 63.52 30.98
ENFS% (↓) 33.29 35.07 16.82 41.45
EntFA (↑) 87.58 87.87 95.14 82.96

Table 3: Performance and faithfulness scores for few-
shot cross-lingual transfer (CLTF) and monolingual fine-
tuning (MFT) on abstractive summarisation. CLTF gen-
erally improves the model’s performance but decreases
its faithfulness. ↑ and ↓ indicate higher or lower values
are better, respectively.

ferent transfer methods on faithfulness.
Results and Discussion In Figure 3, we observe
that cross-lingual transfer improves ROUGE scores
for both full-model fine-tuning and MAD-X, out-
performing monolingual fine-tuning. This under-
scores its effectiveness in transferring task-specific
knowledge from source to target languages in low-
resource scenarios. However, it’s important to note
that leveraging source language data can also in-
crease hallucination in both cases.

7 Hallucinations in Multilingual Large
Language Models

We also assess the summarisation performance of
recent multilingual large language models (LLMs)
on XL-Sum in Table 5. We carefully select three
representative multilingual LLMs for investigation,
• BLOOMZ-P3-7.1B (Muennighoff et al., 2022)

represents the instruction-tuned model with En-
glish P3 dataset, which derives from the multilin-
gual BLOOM (Le Scao et al., 2022). We decide
not test BLOOMZ-xP3 trained with machine-
translated instructions from English P3 because
we consider this experiment as an assessment to
the cross-lingual transfer capabilities from the
multilingual model.

• Vicuna-7B (Chiang et al., 2023) harnesses 70K
multilingual conversation-style interactions to
fine-tune LLaMA. Vicuna originates from the
monolingual LLaMA, and the inclusion of Vi-
cuna aims to test the cross-lingual transfer ability
arising from multilingual conversational tuning.

• Phoenix-7B (Chen et al., 2023) is the cur-
rent state-of-the-art, which continues to train



L. Method R-1 R-2 R-L mF mF-T bi% tr%
C

hi
ne

se
MAD-X 29.59 14.86 20.61 39.62 35.08 21.62 34.37

CAPE 29.64 14.80 20.58 38.83 34.01 20.11 32.32
TVN 29.68 14.75 20.32 38.53 32.61 17.67 28.76

Dexpert 29.59 14.86 20.61 39.63 35.08 21.62 34.37

Ours 31.24 16.13 22.06 43.16 37.85 30.16 47.02

Sp
an

is
h

MAD-X 23.36 5.13 16.34 21.87 29.36 21.98 34.20

CAPE 23.24 5.01 16.24 21.65 29.40 19.98 31.29
TVN 23.53 5.06 16.48 23.82 30.54 18.02 28.60

Dexpert 23.36 5.13 16.34 21.88 29.36 21.98 34.20

Ours 24.30 6.10 17.41 23.83 33.31 34.54 51.69

H
in

di

MAD-X 25.51 7.78 19.07 28.41 19.32 25.57 39.02

CAPE 25.80 7.85 19.20 29.11 19.53 23.77 36.58
TVN 25.28 7.73 19.15 32.76 24.61 21.57 33.28

Dexpert 25.51 7.78 19.07 28.40 19.32 25.57 39.02

Ours 24.47 7.46 18.48 28.48 19.52 34.86 50.99

Tu
rk

is
h

MAD-X 17.22 6.33 14.59 33.24 25.53 38.72 54.12

CAPE 17.12 6.23 14.55 35.04 26.69 36.47 51.47
TVN 16.95 6.28 14.49 34.56 25.97 34.05 48.91

Dexpert 17.22 6.33 14.59 33.22 25.53 38.72 54.12

Ours 17.16 6.28 14.46 34.91 25.83 45.34 61.50

V
ie

tn
am

es
e MAD-X 27.23 12.57 20.32 36.64 37.75 27.40 42.67

CAPE 27.01 12.45 20.15 36.71 37.79 25.89 40.64
TVN 26.73 12.36 20.07 38.41 39.34 25.86 40.48

Dexpert 27.23 12.57 20.32 36.61 37.75 27.40 42.67

Ours 27.76 12.86 20.83 38.27 38.02 30.23 46.27

Fr
en

ch

MAD-X 26.02 7.97 19.02 38.71 42.66 18.88 30.29

CAPE 25.75 7.93 18.80 37.54 40.91 18.00 28.88
TVN 25.54 7.86 18.71 38.18 41.74 17.37 27.68

Dexpert 26.02 7.97 19.02 38.74 42.66 18.88 30.29

Ours 27.70 9.09 20.27 36.83 39.75 33.81 50.57

A
ve

ra
ge

MAD-X 24.82 9.11 18.33 33.08 31.62 25.69 39.11

CAPE 24.76 9.05 18.25 33.15 31.39 24.04 36.86
TVN 24.62 9.01 18.20 34.38 32.47 22.42 34.62

Dexpert 24.82 9.11 18.33 33.08 31.62 25.69 39.11

Ours 25.44 9.65 18.92 34.25 32.38 34.82 51.34

Table 4: Automatic evaluation for zero-shot cross-
lingual transfer performance from English to other lan-
guages when selecting the checkpoint with the best vali-
dation mFACT. Numbers represent the average of three
runs with different random seeds. mF stands for mFACT
and mF-T stands for mFACT-Transfer. bi% and tr%
stand for the percentages of novel bigrams and trigrams.

BLOOMZ with an additional 267K and 189K
instances of multilingual instructions and con-
versation rounds.

We select three languages, aside from English,
which are present in the pre-training data for
BLOOMZ and the conversational tuning data for
Vicuna and Phoenix. We also report the percent-
age of examples in each of these languages that
these models have been exposed to during their

Lang. P. (%) R-1 R-L mF.

Ph
oe

ni
x English 58.6 29.98 21.11 47.22

French 2.1 29.33 18.80 24.03
Spanish 3.0 15.92 10.65 18.69
Hindi 1.1 2.70 2.64 16.53

V
ic

un
a English / 31.74 22.51 57.3

French / 23.82 15.99 23.02
Spanish / 12.92 7.42 23.68
Hindi / 1.30 1.29 13.53

B
L

O
O

M
Z English 30.0 17.07 10.89 53.70

French 12.9 23.17 13.97 26.34
Spanish 10.8 8.54 4.64 27.90
Hindi 1.3 8.22 7.80 12.52

Table 5: Assessing the multilingual summarisation per-
formance for Vicuna-7B, Phoenix-7B, and BLOOMZ-
7.1B on four languages (Lang.) using ROUGE-1/L
(R-1/L) and mFACT (mF.) metrics. We also report the
percentage (P. (%)) of samples in each language an
LLM was exposed to during their multilingual training.

multilingual training.
Table 5 demonstrates that current LLMs display

notable faithfulness limitations in cross-lingual
transfer contexts for languages beyond English, in-
cluding well-resourced languages like French and
Spanish. Furthermore, a noticeable trend emerges:
LLM faithfulness across languages tends to corre-
late highly to the number of samples from target
languages observed during their training. These
observations align with recent findings (Lai et al.,
2023; Laskar et al., 2023) which highlight the chal-
lenges in maintaining faithfulness while generating
content in low-resource languages.

8 Reducing Hallucinations

In this section, we test different methods for cross-
lingual transfer of summarisation to multiple lan-
guages and for promoting faithfulness. We com-
pare our new method of loss weighting based on
mFACT with MAD-X, as well as with a series of
approaches for reducing hallucinations (Section 4).
We evaluate these methods with automated metrics
for performance, faithfulness, and abstractiveness
(i.e., the ability to rephrase the document instead
of copy-pasting spans of text). We also conduct
human evaluations to corroborate these results.
Automatic Evaluation. We report ROUGE scores
for performance, faithfulness (mFACT), and ab-
stractiveness (novel bigrams and trigrams in the
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Figure 2: Human preferences for summaries in terms
of Inform[ativeness] and Faithful[ness]. Annotators
could choose MAD-X, weighted loss (WL, ours), or
non-differentiable (if summaries are too similar).

Pearson Spearman
ρ p value ρ p value

XNLI 0.22 0.10 0.25 0.07
XNLI-mF 0.25 0.07 0.28∗ 0.04

mF-T 0.44∗ 0.00 0.36∗ 0.01
mF 0.45∗ 0.00 0.34∗ 0.01

Table 6: Correlation between several faithfulness met-
rics and human preferences. mF and mF-T stand for
mFACT and mFACT-Transfer, respectively. We calcu-
late both Pearson and Spearman statistics on document–
summary pairs from all six languages to ensure that the
sample size is significant.

summary) for the test set of each target language in
Table 4. We first observe that the expert/anti-expert
methods adapted from monolingual summarisation
are partly effective for improving ROUGEs and
mFACT score in cross-lingual transfer over MAD-
X; however, no clear winner emerges among them,
as their gains are marginal or inconsistent. For ex-
ample, TVN produces the most faithful summaries
for Hindi and Vietnamese, CAPE for Turkish, and
DExpert for French. All three models, however, dis-
play a similar trend of sacrificing ROUGE scores
to improve faithfulness. Instead, as Table 4 demon-
strates, our proposed weighted-loss approach (WL)
improves the performance across the board while
achieving a comparable mFACT score with the
most faithful expert models. In particular, WL
achieves the best faithfulness in Chinese and Span-
ish and the best ROUGE scores for all languages ex-
cept Hindi. These results suggest that our weighted-
loss method strikes the best balance between sum-
marisation abilities and faithfulness.
Abstractiveness. We also measure the levels of ab-

stractiveness of different methods, which is known
to be inversely correlated with faithfulness (Ladhak
et al., 2022; Daheim et al., 2023). In fact, reducing
hallucinations has the side effect of encouraging
the model to copy-paste spans of the document (i.e.,
acquiring an extractive behaviour). Following Cao
et al. (2022a) and See et al. (2017), we use the per-
centage of novel n-grams in summaries compared
with the document as a measure of abstractiveness.

Figure 3 illustrates the distributions of abstrac-
tiveness and faithfulness for all models in six XL-
Sum datasets. Both positive and negative predic-
tions of mFACT scatter with different levels of
abstractiveness. We also observe that summaries
generated by the weighted loss method generally
have a higher level of abstractiveness when they
are similarly faithful compared with other baselines.
Table 4 shows most expert/anti-expert models sac-
rifice abstractiveness to improve faithfulness score.
In contrast, the weighted loss approach produces
more novel n-grams. These findings show that our
method does not improve faithfulness by simply
favouring extractive summaries.
Human Evaluation. Finally, we recruited human
annotators from the Prolific platform3 for a
blind comparison between MAD-X and our
weighted-loss model. We randomly sampled nine
documents for each language and paired them
with the summaries generated by the two models.
We asked the human participants to evaluate
the summaries via A/B testing in two aspects,
Informativeness: An informative summary should
cover as much information from the document as
possible, while it should convey the main idea of
the document.
Faithfulness: A faithful summary should only con-
tain information already present in the document 4

and should not contain information contradicting
the document.

Participants will first read the document, then
select the better summary (or both, if they are simi-
lar) in terms of informativeness and faithfulness
(see Appendix A.5). We require participants to
be native speakers of the language they evaluate
and have obtained at least a bachelor’s degree.
Each document and its paired summaries are
evaluated by 3 participants. These settings allow
us to achieve a fair inter-rater agreement of 0.28 in
terms of Fleiss’ κ (Landis and Koch, 1977).

The results in Figure 2 indicate that human

3https://app.prolific.co

https://app.prolific.co
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Figure 3: Distributions for Novel 2-gram% and mFACT scores for all five hallucination reduction methods in
cross-lingual transfer for the datasets of 6 languages in XL-Sum.

evaluators prefer the summaries generated by our
weighted loss method rather than MAD-X, demon-
strating that our weighted loss approach improves
faithfulness and informativeness for all six lan-
guages.

Finally, we study the correlation between the
human preferences from Figure 2 and various faith-
fulness metrics presented in Section 5.1. From Ta-
ble 6, it emerges that mFACT achieves the strongest
correlation with human judgements (0.45 Pearson
ρ and 0.34 Spearman ρ), which is statistically sig-
nificant. In comparison with XNLI and XNLI-mF,
we reconfirm that metrics designed for faithfulness
classification, rather than natural language infer-
ence, more effectively align with human prefer-
ences.

9 Related Work

While faithfulness in summarisation is a highly re-
searched topic, previous works focused mostly on
the English language (Pagnoni et al., 2021; Maynez
et al., 2020; Fabbri et al., 2021). To evaluate faith-
fulness, state-of-the-art methods fall into three cat-
egories. Firstly, validating faithfulness can be cast
as a classification problem (Kryscinski et al., 2020;
Goyal and Durrett, 2021; Laban et al., 2022). Sec-
ondly, faithfulness can be interpreted as answerabil-
ity, and assessed with existing question answering
models (Fabbri et al., 2022; Scialom et al., 2021).
Finally, language models may be adopted to iden-
tify extrinsic hallucinations (Filippova, 2020; Cao
et al., 2022a). To improve faithfulness in summari-
sation models, an approach related to ours changes
the training dynamics, e.g. by filtering out halluci-
nated data (Cao et al., 2022b; Kang and Hashimoto,
2020; Goyal et al., 2022). The expert/anti-expert
approach aims to learn experts and anti-experts that
alter the behaviour of a base generative model (Liu
et al., 2021; Choubey et al., 2021; Ilharco et al.,

2022). Other methods include designing the spe-
cific neural architecture (Huang et al., 2020; Qiu
and Cohen, 2022; Cao et al., 2018), summary rank-
ing (Falke et al., 2019; Liu et al., 2022) and post-
hoc correction (Zhu et al., 2021; Dong et al., 2020;
Cao et al., 2020; Zhao et al., 2020). However, there
is still a limited understanding of the effectiveness
of these methods in cross-lingual transfer.

10 Conclusion

We investigate how to measure and mitigate hallu-
cinations of summarisation models in cross-lingual
transfer scenarios. We first propose a multilingual
metric, mFACT, to facilitate the evaluation of faith-
fulness in low-resource languages. By virtue of
this new metric, we find empirical evidence that
while common cross-lingual transfer methods ben-
efit summarisation performance, they amplify hal-
lucinations compared to monolingual counterparts.
We also point out that faithfulness in summarisa-
tion for languages other than English is still chal-
lenging for multilingual large language models. Fi-
nally, with the aim of reducing these hallucinations,
we adapt several monolingual methods to cross-
lingual transfer and propose a new method based on
weighting the loss according to the mFACT score
of each training example. Based on both automated
metrics and human evaluation, we demonstrate that
mFACT is the most reliable metric in detecting
hallucinations in multiple languages. Moreover,
compared to a series of state-of-the-art baselines,
we find that summaries produced by loss weighting
achieve higher performance and abstractiveness,
competitive faithfulness, and a higher alignment
with human preferences. We hope that this work
will attract more attention from the community to
the phenomenon of hallucination in languages dif-
ferent from English and facilitate future research
by establishing evaluation metrics and baselines.



Limitations

We use machine translation to construct the faith-
fulness classification dataset for training the faith-
fulness metrics in target languages. The required
resources may constrain the feasibility of extend-
ing mFACT to other languages. The quality of the
learned metrics may also be limited by the propa-
gation of errors during translation, especially for
languages with poor translation performance. Ad-
ditionally, although the weighted-loss approach is
effective in a diverse sample of languages, we note
that its gains in faithfulness are not consistent for
all languages, as we discussed in Section 8. Find-
ing a method that is equally effective in reducing
hallucinations across all languages is still an open
research question for future work.

Ethical Consideration

All human workers participating in our evaluation
are informed of the intended use of the provided
assessments of summary quality and comply with
the terms and conditions of the experiment, as spec-
ified by Prolific. In regards to payment, workers
from different regions are paid on the same high
scale with a wage of £13.5 hourly. This work (and
specifically, the human evaluation) has also passed
an ethical review by the ethical panel in our insti-
tute.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Yifu Qiu and Shay B. Cohen. 2022. Abstractive sum-
marization guided by latent hierarchical document
structure. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 5303–5317, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland.
Association for Computational Linguistics.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, Jacopo Staiano, Alex Wang,
and Patrick Gallinari. 2021. QuestEval: Summariza-
tion asks for fact-based evaluation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6594–6604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ashok Urlana, Pinzhen Chen, Zheng Zhao, Shay B
Cohen, Manish Shrivastava, and Barry Haddow. 2023.
Pmindiasum: Multilingual and cross-lingual headline
summarization for languages in india. In Findings of
EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021.
One teacher is enough? pre-trained language model
distillation from multiple teachers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4408–4413, Online. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Zheng Zhao, Shay B. Cohen, and Bonnie Webber. 2020.
Reducing quantity hallucinations in abstractive sum-
marization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2237–
2249, Online. Association for Computational Lin-
guistics.

Chenguang Zhu, William Hinthorn, Ruochen Xu,
Qingkai Zeng, Michael Zeng, Xuedong Huang, and
Meng Jiang. 2021. Enhancing factual consistency
of abstractive summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 718–733, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://aclanthology.org/2022.emnlp-main.355
https://aclanthology.org/2022.emnlp-main.355
https://aclanthology.org/2022.emnlp-main.355
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/2021.emnlp-main.529
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.findings-acl.387
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2021.naacl-main.58
https://doi.org/10.18653/v1/2021.naacl-main.58


A Appendix

A.1 Dataset Statistics
We show the dataset statistics for all six used sub-
sets of XL-Sum in table 7.

A.2 Implementation Details.
mFACT Classifiers We implement mFACT with
the transformers package (Wolf et al., 2020). We
train the multilingual BERT model for two epochs,
with a batch size of 32 and a learning rate of 5e-
5. We set the max input length to 512 and apply
truncation to the input article if necessary. The
same hyper-parameter settings are applied to all
the languages we test.
Weighted Loss Summarisation Models We im-
plement our weighted loss model for cross-lingual
transfer with adapter-transformers package
(Pfeiffer et al., 2020a). We use the officially re-
leased mBART-50 checkpoint as the base model
for equipping language and task adapters.

To train the language adapters, we follow the
same adapter architecture and training settings in
(Pfeiffer et al., 2020b). We use the batch size of 64,
and a learning rate of 1e-4. We train each adapter
with 48K update steps.
Task Adapters To train the task adapters for sum-
marisation, we set the batch size to 32, the learning
rate to 1e-4, label smoothing factor to 0.1. We use
the polynomial scheduler for adjusting the learn-
ing rate during training, with weighted decay at
0.01 and maximum gradient norm at 0.1. The
model is trained for ten epochs, and we set the
first 500 update steps as the warm-up stage. We
select the best checkpoint following either the best
validation ROUGE or the best mFACT score, re-
spectively. During the decoding step for zero-shot
cross-lingual transfer, we follow most settings of
(Hasan et al., 2021). We apply the beam search
with a size of 6, and the minimum/maximum de-
coding steps are set to 30/84, respectively. The
length penalty is applied at 0.6, and we block all
repeated tri-grams.

A.3 Sanity Check for English Faithfulness
Metrics

We perform a sanity check experiment and report
the results in Table 9 to verify the reliability of these
model-based hallucination metrics. We randomly
shuffle the alignments of document-summary pairs
predicted by the mBART model and the reference.
We then feed these misaligned document-summary

pairs into the evaluation models and test their per-
formance. We observe that all hallucination metrics
drop considerably, showing that these metrics are
indeed sensitive to random summaries and reliable
to some extent.

A.4 Translation Quality Check
Our first experiment is to confirm the effective-
ness of mFACT in capturing hallucinations in target
languages. To support our method, we conduct a
quality check for translation outputs, a comparison
of different metrics on our translated faithfulness
classification dataset, and an external evaluation of
downstream tasks.

Machine translation (MT)-based transfer can ar-
guably suffer from error propagation, where MT
tools introduce hallucinations into their outputs.
This issue is even more serious in our setting where
translating faithful samples is necessary to create
the mFACT metric as training with false positives
might significantly degrade its quality. To ensure
the feasibility of our pipeline to develop mFACT,
we first check the translation quality manually. We
randomly pick 100 samples from the Chinese pos-
itive set and label their faithfulness. Through this
sanity check, we found 13 hallucinated samples;
however, only 4 of them are caused by poor trans-
lation, while the other 9 are due to an incorrect
ranking based on the four English metrics. This
shows that MT-based transfer is mostly reliable:
only a small amount of noise is introduced by MT.

A.5 Extended Results for Faithfulness
Classification

To gain a deeper comprehension of the averaged
faithfulness classification results presented in add
a reference to Table 1, we analyse the individual
language-specific outcomes (Table 10). Across the
six language experiments, we consistently observe
a significant performance gap between the models
trained on the NLI task and those trained on the
faithfulness classification task.

The following is the guide for annotators to indi-
cate whether a summary is informative and faithful.

A.6 Full-model transfer vs. MAD-X transfer
We conduct a comparative study on the perfor-
mance of summarisation and faithfulness in two
cross-lingual transfer approaches: MAD-X style
and full-model transfer.

For both MAD-X style and full-model cross-
lingual transfer, we observe that cross-lingual trans-



Language Family Doc. Len. Sum. Len. Comp% Prop. A Prop. C

Chinese Sino-Tibetan 859 48 9.63 93.49 29.56
French Indo-European 743 43 12.07 99.20 26.72
Spanish Indo-European 1242 42 11.12 84.71 42.93
Vietnamese Austro-Asiatic 1647 50 6.09 / /
Turkish Turkic 747 44 9.33 / /
Hindi Indo-European 1200 49 8.59 90.91 31.42

Table 7: Dataset statistics for six annotated datasets from XL-Sum (Hasan et al., 2021). We report the document
length (Doc. Len.), summary length (Sum. Len.) and the corresponding compression percentage (Comp%). All
lengths are measured in the unit of tokens. We also include quality measurements from the XL-Sum paper according
to human annotators. Prop. A reports the percentage of the summaries that convey the main idea of the document.
Prop. C reports the percentage of summaries that contain some additional information not presented in the source.

Document & Translation Summaries & Translations mFACT

在英法海底隧道工作的19名工人一氧化碳中毒，其中一人情况严

重。事故发生时，有大约60名工人正在法国加莱与英国福克斯通

之间的海底隧道里更换铁轨。星期天凌晨一名焊工患病，后来被

确诊是一氧化碳中毒，另有18名工人也不同程度地中毒。他们被

送往当地一家法国医院治疗，其余41名工人都已回家休息。[. . . ]

MAD-X:英法海底隧道内的一名工人中毒,其中一人情况严重,其

余41名工人已被送往法国医院治疗。

Weighted Loss: 事故发生在法国加莱附近海底隧道里,其中一名工

人中毒,另有18名工人受伤,其中一人情况严重。

0.12

0.78

Nineteen workers working in the Channel Tunnel have been poisoned

with carbon monoxide, one in serious condition. About 60 workers

were replacing rails in the undersea tunnel between Calais, France, [. . . ]

Sunday morning, a welder fell ill and was later diagnosed with carbon

monoxide poisoning, and 18 other workers were also poisoned to varying

degrees. They were sent to a local French hospital for treatment, and the

remaining 41 workers have gone home to rest. [. . . ]

MAD-X: A worker in the British-French Channel Tunnel was poisoned,

one of them in a serious condition, and the remaining 41 workers have

been sent to French hospitals for treatment.

Weighted Loss: The accident occurred in the undersea tunnel near

Calais, France. One worker was poisoned and 18 workers were injured,

one of them in serious condition.

0.12

0.78

Table 8: Examples of hallucinations (highlighted in a orange colour) generated by MAD-X, a method for zero-shot
cross-lingual transfer, on top of an mBART-50 backbone. In this work, we present 1) the mFACT metric to evaluate
the faithfulness of summarisation models in target languages other than English and 2) a loss weighting method to
reduce hallucinations in cross-lingual transfer. We highlight the faithful pieces of information produced by our loss
weighting but missed by MAD-X in a green colour.

DAE (↑) QAFE (↑) ENFS% (↓) EntFA (↑)

Reference 19.37 34.14 64.49 72.50
Shuffled 0.00 0.15 97.57 34.63

mBART 38.40 37.82 53.24 82.67
Shuffled 8e-5 0.13 97.42 36.12

Table 9: Hallucination scores of the reference and
mBART’s outputs and their corresponding shuffled
document-summary pairs (Shuffled). All results are
evaluated on the XSum test set. ↑ and ↓ indicate higher
and lower hallucination score is better, respectively.
QAFE stands for QAFactEval.

fer leads to improved ROUGE scores, but it also
results in reduced faithfulness scores. Interest-
ingly, when comparing the effects of Full-model
and MAD-X transfer in Figure 3, we see that Full-
model transfer exhibit a greater improvement in
ROUGE scores. However, this improvement come
at the expense of introducing more hallucinations.

In Figure 4, we further compare the performance
of Full-model and MAD-X transfer in both zero-

shot and few-shot transfer scenarios. While Full-
model transfer demonstrates an advantage in the
few-shot transfer scenario compare to MAD-X,
MAD-X performs better in the zero-shot scenario.
Additionally, regardless of the transfer scenario,
MAD-X exhibits a lower occurrence of hallucina-
tions.

A.7 Validation Faithfulness Curve for
Weighted Loss Method

We provide the training curve of MAD-X and our
weighted loss method in Figure 5.

Upon examining the curve, it becomes evident
that the model trained with the weighted loss con-
sistently exhibits higher faithfulness compared to
the MAD-X baseline throughout the entire train-
ing process. This observation serves as evidence
for the effectiveness of our approach in guiding
the model’s optimisation towards increased faith-
fulness by diverting its training away from halluci-
nated samples.



Models Acc. Prec. Recall F1
Sp

an
is

h XNLI 54.00 76.47 10.48 18.44
XNLI-mFACT 96.40 97.13 95.56 96.34

mFACT-Transfer 70.60 98.10 41.53 58.36
mFACT 97.00 97.55 96.37 96.96

H
in

di

XNLI 53.00 74.07 8.06 14.55
XNLI-mFACT 94.20 94.33 93.95 94.14

mFACT-Transfer 54.00 100 7.26 13.53
mFACT 94.00 95.04 92.74 93.88

Tu
rk

is
h XNLI 52.40 69.23 7.26 13.14

XNLI-mFACT 96.60 97.53 95.56 96.54

mFACT-Transfer 59.60 100 18.55 31.29
mFACT 97.00 97.17 96.77 96.97

V
ie

tn
am

es
e XNLI 53.40 72.73 9.68 17.08

XNLI-mFACT 96.00 96.72 95.16 95.93

mFACT-Transfer 68.00 97.83 36.29 52.94
mFACT 95.40 94.47 96.37 95.41

Fr
en

ch

XNLI 52.60 67.74 8.47 15.05
XNLI-mFACT 96.20 96.73 95.56 96.15

mFACT-Transfer 65.80 98.73 31.45 47.71
mFACT 95.60 95.20 95.97 95.58

C
hi

ne
se

XNLI 52.20 69.57 6.45 11.80
XNLI-mFACT 90.80 91.39 89.91 90.65

mFACT-Transfer 67.40 98.85 34.67 51.34
mFACT 92.60 92.71 92.34 92.53

Table 10: Classification performance on our translated
faithfulness dataset for all target languages.

A.8 Prompts Used for Multilingual LLM’s
Summarisation

We show the prompt templates used for all lan-
guages in our LLM’s summarisation experiments
in Figure 6.

A.9 Assembling Metrics for mFACT does
better than Single Metric

We conducted an additional experiment to support
our assembling design of mFACT. Rather than av-
eraging four metrics, we individually apply single
English metric - DAE, QAFE, ENFS, and EntFA
— to rank the XSum dataset and train a multilin-
gual classifier similar to mFACT-Transfer without
translation, denoted as DAE-T, QAFE-T, ENFS-T,
and EntFA-T.

To examine mFACT with other metrics originat-
ing from each single metric, we extend the human
evaluation results in Table 6. We compare these
four metrics with mFACT-Transfer, and again we
measure the Pearson and Spearman correlations to
human annotations.

In Table 11, we find mFACT consistently
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Figure 4: Comparison of Full-model and MAD-X cross-
lingual transfer in ROUGE and faithfulness. The left
column is the zero-shot performance, and the right col-
umn is the few-shot performance. We provide the aver-
age scores over all six languages.
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Figure 5: Validation mFACT scores curve for each
model’s training dynamics. Weighted loss consistently
outperforms MAD-X in terms of faithfulness during the
whole training period.

emerges with the highest human correlation when
compared to other four metrics. This observation
underscores mFACT’s better correlation with hu-
man evaluations. The reason could be relying on
a single metric can introduce biased preference in
models and a lack of diversity for captured halluci-
nations. In general, multiple teacher models lead to
a robust, unbiased process (Wu et al., 2021; Ilichev
et al., 2021). Using diverse metrics in mFACT’s
training helps the classifier detect various hallu-
cination types - our inverse transfer experiments
(Table 2) also show mFACT’s promising correla-
tions with both intrinsic and extrinsic hallucination
metrics.



Language Prompt

English Summarize the given article:
${en_article}

Chinese 总结给定的文章:
${zh_article}

French Résumer l’article donné:
${fr_article}

Spanish Resume el artículo dado:
${es_article}

Hindi िदए गए लेख को संके्षप में प्रस्तुत करें :
${hi_article}

1

Figure 6: Prompt templates we used for conducting
summarisation experiments with multilingual large lan-
guage models.

Pearson Spearman
ρ p value ρ p value

mF-T 0.44∗ 0.00 0.36∗ 0.01

DAE-T 0.34∗ 0.01 0.33∗ 0.01
QAFE-T 0.25 0.07 0.29∗ 0.04
ENFS-T 0.24 0.07 0.29∗ 0.04
EntFA-T 0.35∗ 0.01 0.36∗ 0.01

Table 11: Correlation with human preferences for
mFACT and four transferred metrics developing from
single metric. We again calculate both Pearson and
Spearman statistics on document–summary pairs from
all six languages to ensure that the sample size is signif-
icant.

A.10 Strategy for Selecting Best Model
Checkpoint

Table 12 compares the summarisation model per-
formance when we select the model checkpoint
with the best ROUGE-1 or the best mFACT score.
We find that under both strategies, the weighted
loss model can achieve better ROUGE and faithful-
ness scores in most languages. However, similar to
other works (Choubey et al., 2021; Aharoni et al.,
2022), selecting the model checkpoint with the best
validation faithfulness score has a higher positive
contribution to model’s faithfulness.

A.11 Distributions of Faithfulness and
Abstractiveness for All Languages

We show the distributions for the percentage of
novel 2-grams and mFACT scores for all six lan-
guages in Figure 7.



L. Method Best Validation ROUGE-1 Best Validation mFACT-English

R-1 R-2 R-L mF mF-T bi% tr% R-1 R-2 R-L mF mF-T bi% tr%

C
hi

ne
se

MAD-X 27.97 14.10 19.95 38.29 33.99 28.23 44.15 29.59 14.86 20.61 39.62 35.08 21.62 34.37

CAPE 28.15 14.57 20.74 42.56 39.59 27.12 42.11 29.64 14.80 20.58 38.83 34.01 20.11 32.32
TVN 19.64 9.64 14.27 36.05 31.28 9.98 16.68 29.68 14.75 20.32 38.53 32.61 17.67 28.76

Dexpert 27.98 14.10 19.96 38.17 33.97 28.21 44.12 29.59 14.86 20.61 39.63 35.08 21.62 34.37

Ours 30.81 16.14 22.04 42.50 35.88 36.38 54.85 31.24 16.13 22.06 43.16 37.85 30.16 47.02

Sp
an

is
h

MAD-X 20.77 4.89 15.06 20.57 29.25 33.91 50.47 23.36 5.13 16.34 21.87 29.36 21.98 34.20

CAPE 21.16 4.91 15.28 22.03 31.02 29.99 45.22 23.24 5.01 16.24 21.65 29.40 19.98 31.29
TVN 20.27 4.94 14.98 28.61 36.05 18.92 30.66 23.53 5.06 16.48 23.82 30.54 18.02 28.60

Dexpert 20.75 4.88 15.04 20.46 29.25 33.85 50.42 23.36 5.13 16.34 21.88 29.36 21.98 34.20

Ours 22.62 5.54 16.31 22.09 32.50 41.90 60.49 24.30 6.10 17.41 23.83 33.31 34.54 51.69

H
in

di

MAD-X 20.08 5.44 15.10 22.75 16.42 34.96 51.35 25.51 7.78 19.07 28.41 19.32 25.57 39.02

CAPE 20.97 6.11 16.07 23.50 16.45 30.95 45.81 25.80 7.85 19.20 29.11 19.53 23.77 36.58
TVN 19.44 5.78 15.48 34.36 27.22 24.12 35.71 25.28 7.73 19.15 32.76 24.61 21.57 33.28

Dexpert 19.96 5.74 15.32 22.79 16.43 34.97 51.37 25.51 7.78 19.07 28.40 19.32 25.57 39.02

Ours 20.99 5.73 15.70 20.32 13.75 47.44 65.9 24.47 7.46 18.48 28.48 19.52 34.86 50.99

Tu
rk

is
h

MAD-X 17.16 5.56 14.00 30.16 21.08 43.59 60.56 17.22 6.33 14.59 33.24 25.53 38.72 54.12

CAPE 17.66 5.72 14.33 29.88 22.50 39.32 56.45 17.12 6.23 14.55 35.04 26.69 36.47 51.47
TVN 17.49 5.82 14.63 34.05 22.91 33.68 48.82 16.95 6.28 14.49 34.56 25.97 34.05 48.91

Dexpert 17.17 5.56 14.01 28.47 21.10 43.64 60.61 17.22 6.33 14.59 33.22 25.53 38.72 54.12

Ours 17.66 5.95 14.44 29.80 22.21 54.91 72.2 17.16 6.28 14.46 34.91 25.83 45.34 61.50

V
ie

tn
am

es
e MAD-X 25.85 11.85 19.45 35.09 34.10 33.99 50.73 27.23 12.57 20.32 36.64 37.75 27.40 42.67

CAPE 26.20 11.96 19.65 36.98 36.79 30.68 46.77 27.01 12.45 20.15 36.71 37.79 25.89 40.64
TVN 24.40 11.32 18.83 36.94 34.85 25.69 39.38 26.73 12.36 20.07 38.41 39.34 25.86 40.48

Dexpert 25.86 11.85 19.46 35.15 34.19 33.99 50.74 27.23 12.57 20.32 36.61 37.75 27.40 42.67

Ours 27.01 12.35 20.17 37.56 38.32 35.32 52.02 27.76 12.86 20.83 38.27 38.02 30.23 46.27

Fr
en

ch

MAD-X 25.82 8.31 19.10 38.21 40.79 27.38 42.21 26.02 7.97 19.02 38.71 42.66 18.88 30.29

CAPE 25.83 8.40 19.08 38.30 41.44 26.11 40.44 25.75 7.93 18.80 37.54 40.91 18.00 28.88
TVN 24.42 7.90 18.34 42.27 44.60 16.97 28.35 25.54 7.86 18.71 38.18 41.74 17.37 27.68

Dexpert 25.82 8.31 19.10 38.21 40.82 27.37 42.19 26.02 7.97 19.02 38.74 42.66 18.88 30.29

Ours 27.63 9.21 20.28 35.57 39.47 41.52 59.22 27.70 9.09 20.27 36.83 39.75 33.81 50.57

Table 12: Automatic evaluation for zero-shot performance in English-to-others cross-lingual transfer direction
while selecting the checkpoint with the best validation ROUGE-1 and the best validation mFACT score. We run all
model results with three different random seeds. mF stands for mFACT and mF-T stands for mFACT-Transfer. tr%
and bi% are the percentage of novel tri-gram and bi-gram, respectively.
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Figure 7: Distributions for Novel 2-gram% and mFACT scores for all hallucination reduction methods in cross-
lingual transfer for six languages.


