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ABSTRACT

The field of vision and language machine learning has witnessed a surge in interest
regarding in-context learning—a technique that enables rapid adaptation to new
tasks with just a handful of annotated examples. To bolster the in-context learning
capabilities of multimodal vision and language models, researchers have explored
various instruction tuning formats. In this paper, we aim to study what should be
the effective format for enhancing the in-context learning ability for vision and
language models. We propose Unified Multimodal Instruction Tuning (UMIT), a
framework to suggest how to construct a text-image interleaved instruction dataset
by merging diverse visual instruction datasets in a unified multimodal instruction
format. To examine the effectiveness of UMIT, we train several models based
on OpenFlamingo in different multimodal instruction formats used by existing
MLLMs. Extensive experiments confirm that UMIT can significantly improve the
in-context learning ability on a wide range of vision-language tasks, compared with
prior formats, including MME Benchmark and SEED-Bench. Furthermore, we con-
duct a comprehensive study on the impact of different components in multimodal
instruction formats on the in-context learning ability of MLLMs in 3 traditional
vision-language tasks. The results indicate that UMIT successfully constrains the
model to focus on task-specific information within in-context exemplars by incor-
porating a task definition component, thus giving it remarkable advantages over
prior formats on zero- and few-shot generalization during both the training and
testing stages.

1 INTRODUCTION

GPT-4 (OpenAI, 2023) exhibits astounding performance in vision-language tasks. One charming
property of GPT-4 is its’ in-context learning ability, which enables rapid adaption to new tasks
with just a handful of annotated examples. Although there are many Multimodal Large Language
Models (MLLMs) proposed (Liu et al., 2023b; Zhu et al., 2023; Huang et al., 2023; Dai et al., 2023),
they primarily focus on improving the zero-shot performance, leaving the way to improve in-context
learning less explored.

In the research line of Multimodal in-context learning, Flamingo (Alayrac et al., 2022) and Open-
Flamingo (Awadalla et al., 2023) are pioneering to achieve the goal by constructing large-scale
multi-modal datasets and using the data for upstream pretraining. To further adapt to downstream
tasks effectively with better in-context learning ability, Otter (Li et al., 2023b), an instruction tuning-
based method, has been proposed based on OpenFlamingo. These methods involve creating diverse
downstream text-image interleaved datasets and integrating them with the multimodal instruction
format. To achieve better performance, researchers have been mainly dedicated to dataset construction
for instruction tuning, where they show that increasing the dataset size, complexity, and diversity
can consistently improve the model performance (Li et al., 2023a), leaving the importance of the
multimodal instruction format less explored.

Due to the selection of different tasks for constructing visual instruction datasets, existing methods
employ various multimodal instruction formats mainly composed of four components, including in-
context exemplars, instruction, question and answer (shown in Table 1). For example, Qwen-VL (Bai
et al., 2023) collects traditional vision-language tasks by simply concatenating samples from the same
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task without any instructions to form the instruction format. Thus, training in this format is essentially
performing multi-task learning while instruction tuning, limiting their in-context learning ability
for fast adaptation. Otter (Li et al., 2023b) and MMICL (Zhao et al., 2023b) improved the process
by applying an instance-level instruction format to merge the interleaved datasets for instruction
tuning. Despite their success, we argue that the existing instruction-level instruction format has its
limitations. One limitation is the inherent lack of task-level contextual understanding. This deficiency
poses challenges for the model in comprehending the broader context of the questions it encounters,
hindering its ability to swiftly adapt to diverse task domains and provide accurate responses. For
instance, LLaVA (Liu et al., 2023b) introduces task-level system messages to prompt GPT-4 to
accurately generate corresponding visual instruction datasets. Furthermore, it’s worth noting that
these models are fine-tuned based on foundation models (e.g., OpenFlamingo), which lack instance-
level instructions during their pretraining phase. This absence of instance-level instruction introduces
a discrepancy between the fine-tuning and pretraining stages, thereby potentially diminishing the
efficiency of instruction tuning. Thus, a natural question emerges: “What should be the multi-modal
instruction format for instruction tuning?” Furthermore, the multi-modal instruction format is the
way to merge the collected image-text interleaved data for fine-tuning. In contrast to increasing the
data diversity for enhancing the in-context learning ability, is it possible to use less data but with a
more effective multi-modal instruction format to improve the model’s in-context learning ability?

In this work, we present Unified Multimodal Instruction Tuning (UMIT), a general framework to
construct a text-image interleaved instruction dataset by merging diverse vision-language tasks in
a unified multimodal instruction format. UMIT introduces an essential component to construct the
multimodal instruction format, namely “task definition" in addition to in-context exemplars, instance-
level instruction, question, and answer and is placed at the forefront. The goal of the task definition
is to inform the model about the contextual task-level information and reduce the gap between the
format inconsistency between the pretraining and fine-tuning stages. In addition, the inclusion of a
task definition can lead to synergistic benefits by leveraging the efforts invested in data construction.
For data construction, the main efforts in the literature aim to construct more diverse, complicated,
and large datasets. Implicitly, this construction contributes to enhancing task diversity and naturally
provides a task definition. As a result, our instruction format effectively harnesses this data, offering
the potential to use less data for better performance.

UMIT consists of two key steps. It first collects a set of text-image interleaved datasets and then
transfers them into the unified multimodal instruction formation for finetuning. We collect data from
existing instruction datasets (Xu et al., 2022; Liu et al., 2023b; Gong et al., 2023; Li et al., 2023a; Zhao
et al., 2023a), which naturally provide the task descriptions. To evaluate the potential of our method,
we only randomly select a few examples for each task. Given the data, we then can convert it into our
instruction format. To construct the task definition, since annotations are from different annotators,
there exist significant differences in the instructions for different tasks. To reduce the impact of the for-
mat inconsistency on combining diverse tasks, we leverage an Oracle model (i.e., OpenAI GPT-3.51)
to transfer the multimodal instructions of diverse tasks in a unified style. To construct the in-context ex-
emplars, we employ a retrieval-based approach. The rest of the components all match the correspond-
ing fields in our unified format, so we directly follow their original styles and fill them into our format.

We conduct comprehensive experiments to evaluate the impact of different multimodal instruction for-
mats on the in-context learning ability of MLLMs (§3.2). Specifically, although we use less data (150k,
almost 20 times less than one baseline (otter)), our unified format demonstrates average improve-
ments of 4.7 and 9.4 on the MME Benchmark (Fu et al., 2023) and SEED-Bench (Li et al., 2023c),
respectively, compared to baselines in the in-context learning setting. Furthermore, We also perform
a comprehensive study on three traditional vision-language tasks, analyzing the influence of the
components in different formats on in-context learning ability (§3.3). Extensive experimental results
show that UMIT significantly mitigates the loss of in-context learning capability caused by instruction
tuning compared with prior formats, which means it can successfully combine various components
into a more effective unified format. For further analysis, we also explore the effects of our proposed
unified format on zero-shot performance (§3.4). The results show that our method effectively merges
instruction datasets to enhance task diversity without degrading the zero-shot performance.

1https://platform.openai.com/docs/models/gpt-3-5
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Model Text-Image Interleaved Training Data Format

(a) Flamingo (Alayrac et al., 2022),
OpenFlamingo (Awadalla et al., 2023)

(b) Qwen-VL (Bai et al., 2023)

(c) Otter
MMICL

(d) UMIT

Table 1: The existing text-image interleaved instruction formats exhibit variations across different
datasets for preserving in-context learning ability. For example, Qwen-VL and Otter (Li et al., 2023b)
focus on preserving in-context learning ability without explicit instructions. Moreover, the majority
of Otter’s datasets are derived from real-world tasks, which means that its questions can be considered
a form of instance-level instruction (light yellow). MMICL (Zhao et al., 2023b) incorporates diverse
VL tasks and creates instance-level instruction templates for their instances. Distinct from these
formats, we propose Unified Multimodal Instruction Tuning (UMIT) to unify different formats in
various datasets while effectively expanding task diversity and preserving in-context learning ability.

2 UNIFIED MULTIMODAL INSTRUCTION TUNING

In this section, we introduce the principal components constituting the existing multimodal instruction
formats, along with the recent research advancements as depicted in Table 1. We then introduce
the pipeline we used to collect more diverse tasks from different datasets. Then we present Unified
Multimodal Instruction Tuning (UMIT), an attempt to unify multimodal instruction format for
preserving in-context learning capabilities while also assisting us in merging various visual instruction
datasets to enhance task diversity.

2.1 PRELIMINARIES ON MULTIMODAL INSTRUCTION FORMAT

Flamingo (Alayrac et al., 2022) and OpenFlamingo (Awadalla et al., 2023) emerge as pioneering
frameworks to address a diverse spectrum of vision-language tasks, encompassing visual question-
answering, captioning, and image classification. Initially, the design exclusively incorporated the
exemplars to bolster in-context learning. Formally, given a new instance i, the format F i employed
by Flamingo and OpenFlamingo is expressed as:

F i
1 = ( [X1

e, · · · ,XN
e ], Xi

v, X
i
l), (1)

wherein, for instance i, in-context exemplars Xj
e are randomly selected to construct few-shot tem-

plates, while Xi
v and Xi

l denote the image and language content of instance i, respectively.

As delineated in Table 1, Qwen-VL (Bai et al., 2023) took the initiative to extend the framework to
encompass three components. It notably segregates the language input into question and answer for
the current instance, denoted as Xi

q and Xi
a, respectively. The overall format thus evolves to:

F i
1 = ( [X1

e, · · · ,XN
e ], Xi

v, X
i
q, X

i
a ). (2)

Moreover, unlike the format utilized by Qwen-VL, Otter (Li et al., 2023b) and MMICL (Zhao et al.,
2023b) incorporated the instance-level instruction component into the prompt format design for
in-context instruction tuning, thereby enriching the overall format to become:

F i
2 = ( [X1

e, · · · ,XN
e ], Xi

v, X
i
instruct, X

i
q, X

i
a ). (3)

Therefore, the current state-of-the-art multimodal instruction formats encapsulate four components:
1) examplars, 2) instruction, 3) question, and 4) answer corresponding to the current instance or
context. As elucidated in Section 1, prevailing literature predominantly focuses on instance-level
instruction tuning, which is highly specific to each data sample. Nonetheless, a high-level task-level
orientation has been conspicuously overlooked. As shown in Table 1 (d), we devise a new component,
task definition, to bridge this gap in our UMIT, which will be elaborated in Section 2.3. Additionally,
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Example 1

Instruction: Generate a text to describe each image. 

Input: Question: What is the caption of the given images? Answer: Three 

cats sit on a table looking at a computer screen.

Definition: In this task, you need to generate the caption for the given image.  

A caption of an image is a sentence to describe the content of the image.

Example 2

Instruction: Answer below questions by first finding the object in the following 

images and determine what colour it is.

Input: Question: What color is in the bike? Answer: red

Definition: In this task, you need to be asked about the color of some objects 

in a image. Please output a shor answer.

Example 3

Instruction: Make sure your answers are based on the information presented 

in the image.

Input: Question: What skills can children develop by playing Wii games? 

Answer: By playing Wii games, children can develop a variety of skills, both 

cognitive and physical. As Wii games often require players…(too long)

Definition: In this task, you need to answer a question based on the 

information presented in the image. Please provide detailed reasoning to 

explain your responses to the questions regarding the image.

Example 4

Instruction: You are asked about the activity of animals or people in the image. 

Input: Question:  What are they doing? Answer: walking

Definition: In this task, you need to identify the activity presented in the image. 

Please provide a short answer to describe the action being completed by the 

animals/people in the image.

Unified Multimodal Instruction Tuning

Visual Instruction Tuning for MLLMs

Instance-level Format:

LLaVA, Otter
Task-level Format:

MultiInstruct

[Image Tokens]

User: Which additional item is 

the girl having with her hot dog?

GPT: In addition to her hot dog, 

the girl is also having a beer, as 

suggested by the presence of a 

bottle in the scene.

[Image Tokens]

[Instruction] Based on the image 

and the text on the image, answer 

the question below.

[question] what is the brand of 

this camera?

[Answer] dakota

Definition: In this task, you will 

need to look at each image closely 

and explain your reasoning for 

answering the questions.

[ICL Exemplars] User: <image> 

is image 1, and the question is…

GPT: … on this hot dog …

User: <image> question about 

this image: Which additional item 

is the girl having with her hot dog?

GPT: In addition to her hot dog, 

the girl is also having a beer, …

Definition: In this task, you need 

to look at the image and the text 

on it, and then answer the 

corresponding question.

[ICL Exemplars] User: <image> 

is image 1, and the question is: 

what are the brand of cigarettes?

GPT: Honghe

User: <image> question about 

this image: what is the brand of 

this camera? 

GPT: dakota

Format Transfer Paradigm

Figure 1: Our multimodal instruction format transfer paradigm and an example of generating a task
definition. To obtain more accurate definitions, we incorporate task examples in our prompts.

we discern that the current exemplars are selected through various methods. We then further explore
the influence of different exemplar retrieval methods on in-context learning, thus selecting the most
effective exemplars to augment the performance further.

2.2 DATA COLLECTION PIPLINE FOR UMIT

As our task definition prompt and enhanced exemplar generation requires a prebuilt database, we
first introduce the data collection pipeline. We conduct data collection and construction through the
following three steps.
Step i Data Collection First, we gathered various datasets containing different tasks (55 in
total), categorizing them into five main types, including image caption (IC), visual question answer-
ing (VQA), visual reasoning (VR), referential dialogue (RD), and language-only tasks. Detailed
information about data resources can be found in Appendix A.
Step ii Format Transfer For the tasks within these different data resources, we organize their
task-specific instructions and notice significant format discrepancies among them. Directly merging
them would diminish the in-context learning ability on unseen tasks due to format inconsistency.
Therefore, we transfer these instructions into a unified style of task definition.
Step iii Data Filiter During the training process, we employ filtering strategies described in
Appendix C to further reduce the effects of increasing dataset scale while preserving the benefits of
increasing task diversity.

2.3 TASK DEFINITION AS A NOVEL COMPONENT IN INSTRUCTION TUNING

Foundation models, pre-trained on massive data harvested from a multitude of sources, have ex-
hibited formidable capabilities in generating insightful responses. Yet, there remains a margin for
enhancement in terms of accuracy and professionalism. Various methods of instruction tuning have
been proffered as a means to steer these models towards more precise outcomes. However, a notable
limitation lies in the fact that such instructions tend to be instance-specific, as opposed to being driven
by the overarching task at hand. This narrow focus could potentially hamstring the model’s ability to
generalize across a broader spectrum of queries, thereby underscoring the necessity for more holistic,
task-oriented tuning methodologies. Adopting a more task-centric approach may pave the way for
more adept handling of queries, propelling the model towards generating answers that are not only
accurate but are imbued with a higher degree of professionalism.
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Inspired by the above observations, we propose to improve the instruction tuning by introduc-
ing our task definition in UMIT. Denote the original task-level instruction as I. We aim to
transfer I of any style to a more unified task definition D, to constrain learning task-specific
information contained in the in-context exemplars. Inspired by Liang et al. (2023), we em-
ploy GPT-3.5 (text-davinci-003) as the Oracle model foracle to transfer different styles of
task-level instructions into task definitions with a unified style for each task via in-context learn-
ing. Specifically, k seed instruction-examplar pairs {(X1

instruct,X
1
e), . . . , (X

k
instruct,X

k
e)} are

manually selected from several tasks. Then we craft a task definition Dj for each instruction-
exemplar pair (Xj

instruct,X
j
e), and consequently get a set of instruction-exemplar-definition pairs

{(X1
instruct,X

1
e,D1), . . . , (X

k
instruct,X

k
e,Dk)}, which is used as the prompt for the Oracle model.

Then, given a new instruction-exemplar pair (Xnew
instruct,X

new
e ), the Oracle model will generate the

corresponding unified-style task definition Dnew as follows:

Dnew = foracle
(
(X1

instruct,X
1
e,D1), . . . , (X

k
instruct,X

k
e,Dk), (X

new
instruct,X

new
e )

)
. (4)

As shown in Tabel 1 (right), we assist GPT-3.5 in better understanding task types by incorporating task
instances, such as distinguishing between tasks that require long answers (e.g., LLaVA-instruction-
150k (Liu et al., 2023b)) and those that require short answers (e.g., GQA (Hudson & Manning,
2019)). However, we contend that creating a robust and meaningful definition for each instance from
real-world scenarios is an ongoing challenge that requires further exploration in the future.

2.4 ENHANCED EXEMPLARS SAMPLING TO BOOST IN-CONTEXT LEARNING

Prior works in multimodal domains (Yang et al., 2022; Li et al., 2023b; Bai et al., 2023; Zhao
et al., 2023b) have shown that adding in-context exemplars can preserve the model’s in-context
learning capabilities. However, the impact of different in-context exemplar selection approaches
on in-context learning ability remains an under-explored facet. Therefore, in this section, we
comprehensively investigate the selection of in-context exemplars using both image and text features.
Specifically, We define C = {T1, T2, . . . , TN} as the retrieval database, which is a collection of
N vision-language tasks, where each task T = {(X1

v,X
1
q,X

1
a), . . . , (X

n
v ,X

n
q ,X

n
a )} is a dataset

consisting of n image-question-answer pairs collected in Section 2.2.

For data retrieval, we denote Ze = (Xv,Xq,Xa) as a retrieval exemplar, and use an image encoder
EImage and a text encoder EText, mapping a text or image instance to a d-dimensional latent
space. Then, we select in-context exemplars based on the cosine similarity of their representations.
Specifically, we initialize the image encoder with CLIP-ViT (Radford et al., 2021), a pretrained vision
transformer, and we employ text-embedding-ada-002 2 as the text encoder. Therefore, for a
new exemplar Znew

e = (Xnew
v ,Xnew

q ,Xnew
a ) belonging to task T , we respectively searches k nearest

samples in both text-encoded and image-encoded latent space, according to the cosine similarity. We
denote this retrieval pipeline as R:

R(Znew
e ) = {Top k

Ze

(cos(EImage(Z
new
e ),EImage(Ze))) , (5)

Top k
Ze

(cos(EText(Z
new
e ),EText(Ze)))} (6)

= {Ẑ1
e, . . . , Ẑ

2k
e }. (7)

Where EText use the Xq and Xa to compute the text embedding during the training stage.

2.5 UNIFIED MULTIMODAL INSTRUCTION FORMAT

Based on the diverse tasks collected as mentioned above, along with specific task definitions and
in-context exemplars, we propose a unified multimodal instruction format F3:

F3 = (Dnew, [X
1
e, . . . ,X

N
e ],Xnew

v ,Xnew
instruct,X

new
q ,Xnew

a ), (8)
Where Dnew denotes the unified task definition generated by prompting the Oracle model as Eq. 4.
Note that for each instance j, the in-context exemplar consists of (X̂j

v,X
i
instruct, X̂

j
q, X̂

j
a), where

(X̂j
v, X̂

j
q, X̂

j
a) = R((Xnew

v ,Xnew
q ,Xnew

a ))j is the j-th retrieved exemplar.

2https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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Models #Exp Shots Existen. Count Pos. Color Poster Cele. Scene Land. Art. OCR Perception

OpenFlamingo† - 0 103.33 43.33 60.00 55.00 111.56 91.76 95.25 54.75 78.50 55.00 748.50
OpenFlamingo† - 2 150.00 58.33 63.33 75.00 89.46 56.18 108.50 50.00 79.25 70.00 800.05
OpenFlamingo† - 4 145.00 55.00 63.33 85.00 84.35 60.59 125.50 50.00 94.50 95.00 858.28

Otter† 2.8M 0 185.00 88.33 65.00 113.33 117.69 110.29 162.25 99.50 105.25 50.00 1096.65
Otter† 2.8M 2 190.00 125.00 55.00 75.00 119.39 121.47 159.25 105.25 109.00 57.50 1116.86
Otter† 2.8M 4 190.00 100.00 60.00 85.00 113.27 115.88 149.75 105.25 96.50 72.50 1088.15

OpenFlamingo (F1) 148k 0 165.00 78.33 56.67 125.00 120.07 105.29 140.75 94.50 72.25 72.50 1030.36
OpenFlamingo (F1) 148k 2 175.00 91.67 63.33 125.00 150.00 125.88 158.75 123.00 113.25 80.00 1205.88
OpenFlamingo (F1) 148k 4 175.00 83.33 60.00 125.00 158.16 135.88 157.75 122.25 109.75 80.00 1207.13

Otter (F2) 148k 0 180.00 100.00 75.00 120.00 81.63 52.65 131.75 59.00 72.25 50.00 922.28
Otter (F2) 148k 2 180.00 73.33 75.00 108.33 147.28 162.94 168.25 147.75 99.50 80.00 1242.39
Otter (F2) 148k 4 180.00 48.33 56.67 100.00 150.00 127.65 166.75 144.00 84.25 80.00 1137.65

UMIT (F3) 148k 0 180.00 53.33 48.33 103.33 138.10 129.41 157.25 126.00 95.00 65.00 1095.76
UMIT (F3) 148k 2 180.00 108.33 90.00 118.33 148.30 161.18 160.75 145.50 122.75 102.50 1337.64
UMIT (F3) 148k 4 185.00 98.33 70.00 130.00 154.42 163.82 161.50 146.50 116.00 102.50 1328.08

Table 2: Zero- and Few-shot evaluation of coarse-grained and fine-grained recognition and OCR on
MME Benchmark (Fu et al., 2023). Models with † refer to our measure while indicating the results
reported from their paper. Otter (F2) refers that we instruction fine-tune OpenFlamingo by employing
the format used by Otter sytle (F2) mentioned in Equation 3).

3 EXPERIMENTS

3.1 GENERAL SETUP

Format and Baselines. These instruction formats primarily consist of five components, as refer-
enced in Section 2.1: (1) task definition (D), (2) in-context exemplars (E), (3) instruction (I) that is
customized for each individual example, (4) Question of the current instance (Q), (5) Answer of the
current instance (A). We can map these components into the existing baselines.
Since we mainly focus on the in-context learning ability, we mainly consider the methods following
the directions of Flamingo as baselines, which include: (1) OpenFlamingo (Awadalla et al., 2023),
which is an open-sourced Flamingo (Alayrac et al., 2022) with an internal LLM of MPT-7b. The
instruction format is composed of EQA. (2) Otter (Li et al., 2023b) is trained on OpenFlamingo
with MIMIC-IT datasets (including 2.8M samples) (Li et al., 2023a) and first introduces in-context
learning into visual instruction tuning. The instruction format is composed of EIQA

Hyper-parameter and Training Details. We train UMIT on our proposed dataset in DEIQA
format (F3). We utilize DeepSpeed (Rasley et al., 2020) for optimization during the training process.
The AdamW (Loshchilov & Hutter, 2018) optimizer is used, with β1 = 0.9, β2 = 0.999, and a weight
decay of 0.01. All training runs on 4 NVIDIA A100 GPUs, with a total batch size of 128, a learning
rate of 2 × 10−5 for the second stage. The maximum sequence length is fixed at 2000 and BF16
precision is used for both training and inference. Detailed information can be found in Appendix C.

3.2 EVALUATION ON MULTI-MODAL BENCHMARKS

To evaluate the effectiveness of our method, here, we select two commonly employed benchmarks:
MME(Fu et al., 2023) and SEED (Li et al., 2023c). As we aim to assess the in-context learning
ability, we evaluate the performance by using k example as an in-context example, where k =
{0,2,4}. We compare our method with the officially released checkpoint. We denote the baseline as
OpenFlamingo† and Otter†. Since the baseline methods are trained on different sizes of instruction
data compared to ours, for a fair comparison, we also apply the baselines on our training corpus with
their instruction tuning format. We denote them as OpenFlamingo(F1) and Otter(F2).

3.2.1 EXPERIMENT RESULTS ON MME BENCHMARK

We conducted comprehensive testing on the MME Benchmark (Fu et al., 2023) to assess the impact
of different formats and task diversity on the zero- and few-shot capabilities of our models. The MME

6



Under review as a conference paper at ICLR 2024

Models #Exp Shots Scene Identity Attr. Loc. Count. Spatial Interac. Reason. Text Rec. Avg.

OpenFlamingo† - 0 55.1 49.5 47.9 37.4 37.8 33.8 40.2 43.2 30.6 46.3
OpenFlamingo† - 2 55.6 51.3 49.6 39.3 42.1 32.7 43.3 45.3 44.7 48.2
OpenFlamingo† - 4 56.9 51.8 50.1 38.6 43.7 32.7 44.3 43.8 45.9 48.9

Otter† 2.8M 0 56.6 51.2 49.4 38.9 39.6 35.3 41.2 45.9 30.6 47.9
Otter† 2.8M 2 55.3 51.2 49.8 39.3 42.7 32.9 45.4 46.5 44.7 48.3
Otter† 2.8M 4 54.7 50.8 49.2 39.2 42.2 32.6 45.4 45.6 44.7 47.9

OpenFlamingo (F1) 148k 0 55.9 54.2 57.8 42.9 47.6 39.0 48.5 45.3 48.2 52.9
OpenFlamingo (F1) 148k 2 57.9 56.2 62.0 44.6 50.6 41.9 53.6 46.5 43.5 55.7
OpenFlamingo (F1) 148k 4 58.0 55.5 61.4 43.3 51.5 40.2 51.6 47.1 38.8 55.4

Otter (F2) 148k 0 61.2 56.6 62.0 45.3 50.0 42.5 52.6 49.2 28.2 56.5
Otter (F2) 148k 2 59.3 55.6 62.0 45.7 53.3 42.3 54.6 46.8 28.2 56.4
Otter (F2) 148k 4 60.0 56.2 62.4 45.9 53.8 42.8 54.6 47.7 28.2 57.0

UMIT (F3) 148k 0 62.6 57.1 59.2 47.8 49.9 38.7 56.7 50.2 38.2 56.1
UMIT (F3) 148k 2 61.5 58.0 61.9 47.0 52.5 42.8 53.6 52.6 30.6 57.3
UMIT (F3) 148k 4 61.5 57.6 62.0 45.3 53.3 43.1 50.5 50.5 36.5 57.3

Table 3: Zero- and Few-shot evaluation on SEED-Bench (Li et al., 2023c) consists of 19K multiple-
choice questions with accurate human annotations, covering 12 evaluation dimensions including both
the spatial and temporal understanding.

Benchmark is a comprehensive multimodal benchmark used to evaluate the abilities of MLLMs across
14 tasks. It can be divided into perception and cognition benchmarks. Each task in the cognition
benchmark contains only 20 examples, which can result in high variance in the evaluation of different
checkpoints. Therefore, we only evaluate our models on the perception benchmark, which consists
of 10 tasks: existence, count, position, color, posters, celebrities, scenes, landmarks, and artworks.

Specifically, as shown in Table 2, we can find that: (1) Compared with other MLLMs that also empha-
size in-context learning, such as OpenFlamingo (Awadalla et al., 2023) and Otter (Li et al., 2023b),
UMIT, trained on datasets merged through our UMIT, has demonstrated superior performance in terms
of in-context learning capabilities. (2) Due to the training dataset used by Otter being predominantly
composed of real-world VL tasks while lacking traditional VL tasks (Li et al., 2023a), UMIT, which
is trained on a more diverse dataset, manages to attain a comparable performance while utilizing
only 5% of its data volume. (3) For a fair comparison between different multimodal instruction
formats, we also introduce OpenFlamingo (F1) and Otter (F2), which are trained on our dataset while
preserving their own instruction formats. The results again demonstrate that UMIT can improve both
zero- and few-shot task generalization performance by unifying the multimodal instruction format.

3.2.2 EXPERIMENT RESULTS ON SEED-BENCH

We further evaluate the impact of different instruction formats on SEED-Bench (Li et al., 2023c),
a comprehensive benchmark consisting of 19K multiple choice questions with accurate human
annotations including both spatial and temporal comprehension. We choose the spatial benchmark for
our evaluation, which includes 9 tasks (number of included examples): Scene Understanding (3158),
Instance Identity (1831), Instance Attribute (4649), Instance Location (978), Instance Counting (2447),
Spatial Relation (657), Instance Interaction (97), Visual Reasoning (331), and Text Recognition (85).

Results are shown in Table 3, and we obtain conclusions similar to those on the MME benchmark:
(1) in-context learning: UMIT outperforms all existing OpenFlamingo-based MLLMs in the 4-shot
setting and also surpasses two other models trained on existing formats used to construct text-image
interleaved datasets. (2) task diversity: Compared to OpenFlamingo and Otter, UMIT exhibits a
significant advantage in both zero- and few-shot performance. This suggests that merging different
datasets by unifying the instruction format does indeed effectively increase task diversity.

3.3 ABLATION STUDY

Effects of multimodal instruction formats on in-context learning. As shown in Table 4, we
evaluate a total of three different multimodal instruction formats, including EQA, EIQA, DEIQA,
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Data
Format

Retrieval
Method

HatefulMemes (Kiela et al., 2020) VizWiz (Gurari et al., 2018) ISEKAI (Tai et al., 2023)
k = 0 k = 2 k = 4 k = 8 k = 0 k = 2 k = 4 k = 8 k = 0 k = 4 k = 8 k = 16

EQA (F1) mixed 51.40 50.70 54.00 51.30 11.91 16.54 28.91 45.71 0.18 0.48 0.57 0.54
EIQA (F2) mixed 54.44 54.57 53.89 50.56 24.74 28.93 29.38 30.90 0.00 0.38 0.46 0.58
EIQA (F2) image 57.79 53.67 51.94 51.98 22.99 28.95 30.10 30.16 0.01 0.40 0.48 0.50
EIQA (F2) text 56.76 55.10 56.96 55.52 17.13 27.58 28.27 30.01 0.00 0.37 0.51 0.53

Testing-time Format Transfer
DEIQA (F3) image 55.11 54.58 54.28 54.36 26.13 32.69 33.66 35.42 0.25 0.42 0.51 0.57
DEIQA (F3) text 59.38 56.66 57.80 54.94 26.54 31.68 31.40 32.28 0.00 0.41 0.54 0.57

Training time Format Transfer
DEIQA (F3) random 61.37 54.15 52.49 50.61 27.15 29.53 30.66 31.21 0.18 0.47 0.56 0.64
DEIQA (F3) image 59.09 55.57 55.94 56.88 27.45 32.69 33.75 34.95 0.32 0.51 0.62 0.67
DEIQA (F3) text 57.96 55.69 60.19 59.18 26.79 33.55 36.06 37.60 0.22 0.47 0.57 0.65
DEIQA (F3) mixed 61.86 54.65 55.78 51.77 27.03 29.66 31.02 31.87 0.20 0.41 0.61 0.84

Table 4: Comparison of different multimodal instruction formats on few-shot evaluation. k is the
number of in-context examples that are randomly selected in the inference stage. EQA, EIQA,
and DEIQA respectively represent the ways of constructing text-image interleaved data based on
OpenFlamingo (F1), Otter (F2), and Ocotpus (F3). “Testing-time Format Transfer” refers that we
train the model in format (F2) while testing the model in format (F3). “Training time Format Transfer”
means that we train and test the model both in format (F3).

on three vision-language tasks (HatefulMemes (Kiela et al., 2020), VizWiz (Gurari et al., 2018),
ISEKAI (Tai et al., 2023)).

The results demonstrate that during both test and training times, DEIQA is the most effective format
for improving in-context learning. Firstly, by transferring EQA format to EIQA format, we observe a
decrease in in-context learning ability. In the highest shot setting for the two tasks, there is a decrease
of 0.74 and 14.81, respectively. We contend that this is due to the incorporation of instructions,
which widens the gap between visual instruction tuning and pertaining in OpenFlamingo. Secondly,
we train on the EIQA format but transfer the test samples to the DEIQA format at test time. In the
highest shot setting, there is an improvement of 2.38, 5.26, and 0.07 for each of the three tasks,
respectively. Finally, when we employ the DEIQA format during both training and testing stages,
there is a significant improvement compared to the EQA and EIQA baselines in all settings except
for the 8-shot setting in VizWiz task. We argue that in-context learning aims to teach the model
to respond to "unanswerable" for blurry pictures in the VizWiz task. However, current MLLMs tend
to answer "yes" due to data biases, which leads to a decrease in performance on this task.

Select in-context exemplars based on different features. We also conduct a study about the
retrieval method using different features (including image and text). random means we randomly
select in-context exemplars to form the DEIQA format, while image and text represent the
in-context exemplars selected by image and text features, respectively (Section 2.4). And mixed
includes in-context exemplars in image and text. Based on the results in Table 4, our conclusion
is: The unified format composed of in-context exemplars retrieved through different features
has a different impact on in-context learning in various downstream tasks. For example, in the
HatefulMemes task, the model needs to assess whether the text in the meme is hateful, and this
text is provided in the instruction, which means instruction is the more important part of in-context.
Therefore, we observe that a unified format composed of text in-context exemplars is more helpful
for in-context learning ability on this task.

3.4 FURTHER ANALYSIS

3.4.1 ENHANCING TASK DIVERSITY WITH THE UNIFIED FORMAT.

To explore whether the UMIT can effectively merge different tasks by unifying the instruction format
to enhance task diversity, we design a set of experiments. Specifically, we first randomly select 8
VQA tasks from our collection of 55 tasks (denoted as vqa). Then We choose another 8 different
VQA tasks, denoted as same and 8 tasks distinct from VQA, denoted as diff. By freely combining
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Dataset Shots vqa+
same

vqa+
diff all

Hateful
Memes

0 55.26 57.11 58.37
4 54.16 55.44 55.49

VizWiz
(val)

0 25.21 24.00 25.61
4 34.35 33.76 34.58

ISEKAI
0 0.18 0.18 0.19
4 0.39 0.42 0.47

Flickr30K
0 61.03 67.29 68.22
4 67.61 70.33 71.96

Table 5: Experiments for enhancing task di-
versity. We set the dataset to vqa+same,
vqa+diff, or vqa+same+diff in for-
mat (F3) and select the in-context exemplars
through the text retrieval method.

Models Flickr
30K

SciQA
image

OK-
VQA

Text
VQA

Flamingo-9B 61.5 - 44.7 31.8

OpenFlamingo-9B 59.5 - 37.8 24.2

Otter† 63.6 - 42.3 27.2

InstructBLIP-7B 82.4 60.5 - -

UMIT 70.2 60.9 43.3 33.0

Table 6: Zero-shot evaluation was conducted across
multiple datasets, including Flickr30K, ScienceQA (Fol-
lowing Dai et al. (2023), we only evaluate on the set
with image context), OK-VQA, and TextVQA. The re-
sults confirm that our UMIT does not have an impact
on zero-shot performance.

these three groups of tasks using UMIT, we can obtain different training sets. The results are shown in
Table 5, we can observe that vqa+same+diff achieve the best performance across different shot
settings in all three tasks, suggesting that UMIT can indeed enhance zero- and few-shot performance
by merging different tasks.

3.4.2 THE IMPACT OF DEIQA FORMAT ON THE ZERO-SHOT PERFORMANCE.

Table 6 shows the comparison between UMIT and some similar MLLMs on Flickr30K, ScienceQA,
OK-VQA, and TextVQA tasks. The results suggest that UMIT is ahead of the MLLMs based on
OpenFlamingo, so we believe that UMIT has minimal impact on zero-shot performance.

4 RELATED WORK

Visual Instruction tuning. Progress has been witnessed in transferring the powerful capabilities
of instruction tuning to the multimodal domain. MultiInstruct (Xu et al., 2022) pioneered to collect a
large number of vision-language (VL) tasks formatted in task-level instructions to improve zero-shot
generalization of vision-language models on unseen tasks. With the emergence of multimodal
large language models (MLLMs), recent works show interest in constructing high-quality visual
instruction datasets with various instruction formats to unlock the potential of MLLMs on both zero-
and few-shot generalization. Existing works (Liu et al., 2023b; Zhu et al., 2023; Dai et al., 2023;
Chen et al., 2023b;a) prefers to adopt the instruction format that only contains a single image-text
pair per sample (Text here generally includes instruction, question, answer), which leads to great
zero-shot performance while being attributed to the lack of the in-context learning ability.
Multimodal in-context learning. Flamingo is the pioneering work to support in-context learning
in the multi-modal domain by constructing MultiModal MassiveWeb(M2W) and employing the
upstream training. Following this line of thought, the other works (Li et al., 2023b; Zhao et al.,
2023b) focus on constructing text-image interleaved instruction datasets by adding related in-context
exemplars, thus enhancing the instruction comprehension ability of MLLMs while preserving the
in-context learning capacity.

5 CONCLUSION

In this paper, we propose the unified multimodal instruction tuning framework (UMIT) to merge
diverse tasks with limited data by unifying instructions with different styles from various datasets,
thus effectively enhancing in-context learning ability. The results show that our designed format
has significant advantages over prior formats in in-context learning on various vision-language tasks
and benchmarks. In general, we investigate a relatively unexplored facet, i.e., how to construct the
text-image interleaved instruction datasets for preserving in-context learning ability, and we anticipate
that our research could encourage further exploration in this area.
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Viusal Perception and Reasoning (short answer)

Sence Understanding with in-context exemplar (long response)

Q: Are there three cats in the image?

OpenFlamingo: Yes, there are three cats here.

Otter: Yes, there are three cats.

Octopus: The image has two cats, not three.

Q: What color does the taller one wear? 

OpenFlamingo: The taller one wears red.

Otter: The taller one wears red.

Octopus: grey.

Q: Describe the traffic condition. 

A: The traffic condition in the image is quite busy, with a large number of people and vehicles on 
the street. There are multiple cars, a truck, and a bicycle, all navigating through the city traffic. The 
scene also includes a group of people walking across the street, adding to the bustling atmosphere. 

Q: Describe the traffic condition. 

A: The traffic condition in the image appears to be moderate, with multiple cars on the road, 
including a silver car that is in the middle of the street and another one behind it. The vehicles seem 
to be moving in the same direction, and there is no visible congestion. There is also a truck present 
in the traffic, indicating that the scene is a typical urban environment. 

In-context exemplar

Figure 2: Examples illustrate that our model can avoid being misled in traditional vision-language
tasks (short answers) while also demonstrating improved position awareness for visual reasoning.
Additionally, our model can learn from exemplars to generate long responses (human preferences).

√
×

Figure 3: This example illustrates that by incorporating task definition, the model can learn to
understand in-context exemplars, thereby enhancing in-context learning ability.

Dataset IC VQA VR RD Text Few-Shot # Tasks # Exs

LLaVA† ✔ ✔ ✔ ✗ ✗ ✗ 3 158k
MiniGPT-4† ✔ ✗ ✗ ✗ ✗ ✗ N/A 3.5k

Otter ✔ ✔ ✔ ✗ ✗ ✔ 47 ∼ 2.8M
MultiModal-GPT ✔ ✔ ✔ ✗ ✔ ✗ 7 ∼ 164k

InstructBLIP ✔ ✔ ✔ ✗ ✗ ✗ 13 ∼ 1.6M
M³IT ✔ ✔ ✔ ✔ ✗ ✗ 40 2.4M

Clever Flamingo† ✔ ✔ ✔ ✔ ✗ ✗ 37 975k
Shikra† ✔ ✔ ✔ ✔ ✗ ✗ 4 ∼ 90k
Emu† ✔ ✔ ✔ ✗ ✔ ✗ 4 ∼ 282k

UMIT† ✔ ✔ ✔ ✔ ✔ ✔ 55 148k

Table 7: Summary of visual instruction tuning datasets used by existing models. † indicates that the
model is trained in two stages.
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A VISION-LANGUAGE TASK COLLECTION

Previous works have demonstrated that extending visual instruction datasets can improve performance
on unseen tasks with different multimodal instruction formats (Xu et al., 2022; Dai et al., 2023; Li
et al., 2023b; Zhao et al., 2023b), as shown in Table 1. Therefore, we select 55 tasks from these
datasets and merge them into a unified multimodal instruction format for training and evaluation.

A.1 DATASET RESOURCE

Image Caption (IC) The aim of this type of image caption task is to evaluate the model’s overall
perception of images, which is the foundation of all vision-language tasks. For example, we include
MSCOCO (Lin et al., 2014) and Flickr30K (Young et al., 2014) datasets for short image descriptions,
but LLaVA-Instruct-23k (Liu et al., 2023b) and SVIT (Zhao et al., 2023a) datasets for detailed image
descriptions.
Visual Question Answering (VQA) The majority of vision-language tasks can be generally
viewed as Visual Question Answering (VQA) tasks, requiring the model to provide answers to
queries related to the image. Therefore, we collect 17 VQA tasks from diverse datasets, such as
VQAv2 (Goyal et al., 2017), OK-VQA (Marino et al., 2019), GQA (Hudson & Manning, 2019),
OCR-VQA (Mishra et al., 2019), and TDIUC (Kafle & Kanan, 2017), among others.
Visual Reasoning (VR) This category of task serves to assess the model’s proficiency in visual
reasoning. Specifically, we include some reasoning tasks: RD data generated by Chen et al. (2023b),
Visual Reasoning in Natural Language (Suhr et al., 2017), Visual Spatial Reasoning (Liu et al.,
2023a) for spatial reasoning, LLaVA-Instruct-77K and SVIT, both generated by GPT-4 (OpenAI,
2023), for complex reasoning.
Visual Dialog (VR) This task necessitates the model’s capacity to chat naturally with humans about
visual content. We include visual dialogue (Das et al., 2017), LLaVA-Instruct-58k and SVIT.
Referential Dialogue (RD) This type of task is defined by Shikra (Chen et al., 2023b), which
covers a wide range of vision-language positioning tasks for fine-grained image comprehension,
including tasks: referring expression comprehension (REC) (Kazemzadeh et al., 2014; Mao et al.,
2016), VQA grounding and grounding caption (GC) (Zhou et al., 2020), referring expression
generation (REG) (Liu et al., 2017). Additionally, we also propose the Referential Complex
Reasoning (RCR) task and Referential Detailed Description (RDD) task based on the SVIT datasets
by employing ChatGPT to add objects’ bounding boxes to their responses.
Language-only tasks To maintain the chatting and text instruction-following capabilities of
language models, we include tasks: Alpaca GPT-4 (Taori et al., 2023), Dolly 15k (Conover et al.,
2023). For learning to reason, Flan-mini CoT (Ghosal et al., 2023), CodeX MathQA, CoQA (Reddy
et al., 2019), Math (Li et al., 2023d) datasets are also incorporated. Note that we filter out some out-of-
domain examples to avoid language models learning to refuse to answer image-related instructions.

A.2 COMPARISON OF EXISTING VISUAL INSTRUCTION TUNING DATASETS

Currently, there are many novel models in visual instruction tuning, most of which are data-centric
studies. Therefore, we summarize the datasets employed by the part of multimodal large language
models (MLLMs) and compare them with those used by Octopus, shown in Table 7. Notably, the
training process of many MLLMs consists of two stages (indicated by †), and we generally consider
that the first stage is employed for aligning their visual and textual features, while the second stage
is truly for visual instruction tuning. Therefore, we only consider the training data from the second
stage for these models.
LLaVA utilizes the COCO dataset, leveraging its caption and object bounding box information,
to prompt GPT-4 in generating 158k high-quality visual instruction data. These instructions are
categorized into three types: detailed descriptions, conversations, and complex reasoning.
MiniGPT-4 employs ChatGPT to paraphrase 5,000 image descriptions generated by raw MiniGPT-
4 (trained in the first stage), and manually selected 3,500 high-quality image caption data from
them.
Otter proposes a dataset named MIMIC-IT, consisting of 47 different tasks, to enable the model to
follow user instructions while preserving the in-context learning capability of OpenFlamingo. Each
sample within the dataset contains few-shot templates for in-context instruction tuning. Additionally,
MIMIC-IT serves as a multilingual visual instruction dataset.
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MultiModal-GPT integrates datasets from LLaVA and MiniGPT-4, along with several traditional
vision-language tasks, including A-OKVQA, COCO Caption, and OCR VQA. To maintain the
model’s ability to chat with humans, it also introduces language-only tasks, including Dolly 15k and
the GPT-4 alpaca dataset.
InstructBLIP also employs the LLaVA dataset, but it’s more focused on traditional vision-language
tasks, aiming to improve its generalization performance to unseen tasks by increasing task diversity.
In total, this work collects 26 vision-language tasks, with half of them used for training and the other
half for evaluation.
M³IT assembles 40 traditional vision-language datasets, and it also belongs to a multilingual visual
instruction dataset, spanning over 80 languages. Despite encompassing such a multitude of datasets,
each one only contains a single task, thereby constraining its task diversity.
Clever Flamingo collects 37 vision-language tasks and utilizes the Polite Flamingo model (trained
in the first stage) to rewrite the answers of these tasks into human-preferred responses, resulting in a
high-quality PF-1M dataset that assists the model in reducing multimodal tax.
Shikra focuses on referential dialogue. It utilizes GPT-4 to generate 7,800 high-quality location-
related question pairs which are considered as the Grounding Chain-of-Thought (GCoT) data based
on the Flickr30K dataset. Additionally, it also incorporates 50% of the LLaVA dataset. As a result,
there are a total of four types of tasks included.
Emu is trained to align with users’ intentions and generalize to unseen tasks through visual
instruction tuning, which gathers tasks from three distinct modalities: text, image, and video. For
language-only tasks, the ShareGPT and Alpaca datasets are utilized. The LLaVA dataset is employed
to align with image instructions, and the VideoChat dataset is introduced to assist the model in
understanding video instructions.
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Table 8: Detailed information of visual instruction tuning dataset we collected.

Dataset Task Name #samples SourceTrain Valid

MSCOCO (Lin et al., 2014)

Image Caption 2,000 200 MSCOCO
Question-Image Matching 2,000 200 MultiInstruct

Image-Text Selection 2,000 200 MultiInstruct
Image-Text Matching 2,000 200 MultiInstruct

Object Grounding 2,000 200 MultiInstruct
Object-Region Matching 2,000 200 MultiInstruct
Object-Region Selection 2,000 200 MultiInstruct

Object Matching 2,000 200 MultiInstruct
Missing Object Selection 2,000 200 MultiInstruct

IQA (Duanmu et al., 2021) Image Quality 2,000 200 IQA

COCO-Text (Veit et al., 2016)

Text Type Classification 2,000 200 COCO-Text
Text Legibility 2,000 200 COCO-Text

Region-Text Matching 2,000 200 COCO-Text
Text Localization 2,000 200 COCO-Text

Visual Genome (Krishna et al., 2017)

Grounded Captioning 2,000 200 Visual Genome
Visual Grounding 2,000 200 Visual Genome

Most-Overlapping Region Selection 2,000 200 MultiInstruct
Non-Overlapping Region Selection 2,000 200 MultiInstruct
Least-Overlapping Region Selection 2,000 200 MultiInstruct

Overlapping Region Selection 2,000 200 MultiInstruct
Region Overlapping Detection 2,000 200 MultiInstruct

Region-Caption Matching 2,000 200 MultiInstruct
Grounded Caption Selection 2,000 200 MultiInstruct
Visual Grounding Selection 2,000 200 MultiInstruct

RefCOCO (Kazemzadeh et al., 2014)
RefCOCO+
RefCOCOg

Referring Expression Selection 6,000 200 MultiInstruct
Referring Expression Generation 6,000 200 RefCOCO

Referring Expression Comprehension 6,000 200 RefCOCO

Visual7w (Zhu et al., 2016)
GQA (Hudson & Manning, 2019)
OCR VQA (Mishra et al., 2019)
OK-VQA (Marino et al., 2019)

VQAv2 (Goyal et al., 2017)

Grounded VQA 2,000 200 Visual7w
Visual Reasoning 2,000 200 GQA

Reading Comprehension VQA 2,000 200 OCR VQA
Knowledge Grounded VQA 2,000 200 OK-VQA

Open-Domain VQA 2,000 200 VQAv2

TDIUC (Kafle & Kanan, 2017)

Sport Recognition 2,000 200 TDIUC
Scene Recognition 2,000 200 TDIUC

Color Attribute 2,000 200 TDIUC
Other Attribute 2,000 200 TDIUC

Activity Recognition 2,000 200 TDIUC
Position Reasoning 2,000 200 TDIUC
Object Recognition 2,000 200 TDIUC

Absurd 2,000 200 TDIUC
Utility and Affordance 291 143 TDIUC

Object Presence 2,000 200 TDIUC
Counting 2,000 200 TDIUC
Sentiment 1,242 200 TDIUC

LLaVA-Instruct (Liu et al., 2023b)
SVIT-Instruct (Zhao et al., 2023a)

Detailed Description 3,500 - LLaVA
Complex Reasoning 3,500 - LLaVA

Conversation 7,000 - LLaVA

Otter-LA-I (Li et al., 2023a) LLaVA-Interleaved 7,000 - Otter

Shikra-RD (Chen et al., 2023b)
GQA-CoT
Octopus

(Generated data from SVIT)

Referential Dialogue 7,800 - Shikra
Referential Dialogue GCoT 5,000 - Shikra

Referential Detailed Description 5,000 - Octopus
Referential Complex Reasoning 3,971 - Octopus

Alpaca (Taori et al., 2023)
Dolly (Conover et al., 2023) Human Preferred Text Instruction 4,000 - Alpaca

MathQA (Amini et al., 2019)
Flan-Mini (Ghosal et al., 2023)

CoQA (Reddy et al., 2019)
Math (Li et al., 2023d)

CodeX Math QA 2,000 - -
Flan-CoT 2,000 - Flan

Conversational QA 5,000 - CoQA
Math 2,000 - Camel-AI
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A.3 PROMPT TEMPLATES STATISTICS

Data Filtering Strategy. Using natural language to describe position information would signifi-
cantly occupy the prompt length. Considering the most extreme scenario, we need to incorporate
in-context exemplars responses, leading to excessive prompt length for certain examples. Therefore,
we filter out these examples. Additionally, for language-only tasks, we exclude examples containing
words or phrases like "image" and "I’m sorry," aiming to prevent our model from hallucination and
learning to refuse instructions related to images. Finally, this filtering process reduces our actual
training examples from 148,304 to 121,184.

In-context Exemplars. We utilize the approach described in Section 2.4 to select in-context
exemplars for examples in vision-language tasks. In practice, we set k to 3, meaning that for each
example, we select 6 in-context exemplars (3 image exemplars and 3 text exemplars) based on cosine
similarity. Each exemplar cosine similarity must surpass a certain threshold to be considered, with
thresholds of 0.7 and 0.8 for image and text exemplars, respectively. For some tasks, such as NLP
tasks, we randomly select in-context exemplars that are not counted in the final few-shot template
quantity.

Table 9: Exemplars with different types of prompts, including CoT and few-shot templates.

#Samples Pct. (%)
Total samples 155,304 100.00%

Filtered samples 148,304 95.49%

Few-shot templates 51,513 33.17%
Few-shot templates (image) 24,945 16.06%
Few-shot templates (text) 26,568 17.11%

Dataset Task Split Samples Metric
Flickr30K Scene description Test 1000 CIDEr(↑)
OK-VQA Knowledge Grounded VQA Val 5046 VQA acc.(↑)
TextVQA Reading Comprehension VQA Val 5000 VQA acc.(↑)
ScienceQA Visual Reasoning QA Test 2017 Accuracy(↑)

HatefulMemes Image Classification Test 1000 ROC-AUC(↑)
VizWiz Scene Perception Val 4319 VQA acc.(↑)
ISEKAI Link-Context Learning Test 1256 Accuracy(↑)

Table 10: Description of dataset in zero- and few-shot evaluation benchmarks.

B EVALUATION METRICS

We provide evaluation metrics as Table 10. For the Flickr30K dataset, we report the CIDEr score
to assess model performance using the coco-caption evaluation code 3. Regarding ScienceQA,
following Dai et al. (2023), we remove samples without images and employ standard evaluation
code 4 to calculate top-1 accuracy (%). It’s important to note that for all tasks, we refrain from adding
vocabulary constraints and rankings approaches.

C MODEL

Architecture. Our model is based on OpenFlamingo architecture, named UMIT. The model consists
of a vision encoder from CLIP (Radford et al., 2021), a perceiver resampler to receive the visual

3https://github.com/tylin/coco-caption
4https://github.com/lupantech/ScienceQA
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Vision Encoder

Perceiver Resamplar

1st GATED XATTN-DENSE

1st LLM Block (e.g., LLaMA, MPT)

Self-Attention

Feed-Forward

Add & Norm

Add & Norm

LoRA

LoRA n-th GATED XATTN-DENSE

n-th LLM Block (e.g., LLaMA, MPT)

Definition: In this task, you need to look at the given 

image and identify the main characters in it.

[ICL Exemplars] User: <image> is image 1… GPT: …

User: <image> question about this image: … GPT: …

User: <image> question about image 3: What is written 

on the image?  GPT: “CONGRESS”

Language Response

Model Overview

Unified interleaved visual/text instruction

Figure 4: Our model overview.

features from the vision encoder, and a text encoder from large language models (e.g., LLaMA (Tou-
vron et al., 2023), MPT (Team, 2023)) equipped with gated cross-attention layers for image-text
interactions. To preserve the pretraining knowledge and reduce computing consumption, We freeze
both the encoders and only finetune the perceiver resampler module, gated cross-attention layers, and
LoRA (Hu et al., 2021) module added to the text encoder, as shown in Figure 4.

Training Details. UMIT is trained in two stages. The first stage aims to facilitate the model’s
capability to comprehend numerical positional coordinates in natural language. We train UMIT for 2
epochs (approximately 10k steps), using several datasets encompassing RefCOCO for REC and REG
tasks, Visual Genome for GC tasks, and our newly introduced RDD and RCR tasks (Appendix A.1).
In the second stage, we train UMIT on our proposed dataset with only 155k samples but consisting of
55 tasks in DEIQA format (F3). It takes around 30h for stage one training and 6h for stage two.

Training Strategy for In-Context Learning. After retrieval, every example from most tasks has
2k in-context exemplars to construct the unified multimodal instruction format. However, adding
in-context exemplars can significantly increase the length of the prompt, leading to sparsity in the loss
and lower batch diversity. Therefore, we follow Iyer et al. (2022) to in-context instruction-finetune
our model with suffix loss rather than the original MetaICL loss, as illustrated in Table 11. The
difference between the two is that the former only calculates the loss of the last target answer, while
the latter needs to calculate the loss from the first exemplars’ answer and the remaining part, which
mitigates the problem of loss sparsity.

D TASK DEFINITION

Task definitions generated by GPT-3.5 for MME Benchmark, as shown in Table 10.

Task definitions generated by GPT-3.5 for SEED-Bench, as shown in Table 13.
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Definition: [Task Definition (task-level instruction)]
# in-context exemplars
User: <image>question about image 1:[question]
GPT: <answer> [answer] <endofchunk>
· · ·
User: <image> question about image 3:[question]
GPT: <answer> [answer] <endofchunk>
# current instance
User: <image> question about this image:[question]
GPT: <answer> [answer] <endofchunk>

Table 11: <image> and <endofchunk> tokens are originally from the OpenFlamingo training
paradigm, and we follow Li et al. (2023b) to include a new token <answer> for intercepting the
target answer of the model output more easily, which can also assist in adjusting in-context learning
loss mentioned in Appendix A.3. Note that only green sequence/tokens are used to compute the loss
and we train our model using a cross-entropy loss and .

• Existence: In this task, you will receive an image and a question about the existence of an
object in the image.

• Count: In this task, you will need to compare the number of objects in a given image with
the sentence given, and determine whether the number is correct or not.

• Position: In this task, you are given a sentence and a image. You need to judge whether the
sentence correctly describes the positional relationships between objects in the diagram.

• Color: In this task, you need to look at the given image and answer whether the color
described in the question matches the content of the image.

• Posters: In this task, you need to determine if the description of the given question matches
the information of a poster image.

• Celebrity: In this task, you will receive an image and a question about the name of the
celebrity selected by a red bounding box in this image.

• Scene: In this task, you need to look at the image and determine whether the description of
the image in the given question is correct or not.

• Landmark: In this task, you need to evaluate whether the given question is correctly
describing the name of the landmark in the image.

• Artwork: In this task, given a picture of an artwork and a question about it, you need to
answer the question based on the content of the picture and your own general knowledge.

• OCR: In this task, you need to evaluate whether the characters mentioned in a sentence are
the same as the ones in a given image.

Table 12: The list of task definitions for MME Benchmark.
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• Scene Understanding: In this task, you need to analyze the scene in the provided image
and answer a given question.

• Instance Identity: In this task, you will receive an image and please answer a question
about the existence of some objects in the image.

• Instance Attributes: In this task, you need to answer questions about the attribute of an
object in the following images.

• Instance Location: In this task, you are required to understand the location of objects in the
image and answer a question about this location information in the image.

• Instance Counting: In this task, you need to count the number of objects in this image and
answer the corresponding question.

• Spatial Relations: In this task, you need to answer a question by understanding the spatial
relations between objects in a given image.

• Instance Interaction: In this task, you need to find two objects in a given image and then
reason out their relation by looking at the image to answer a question.

• Visual Reasoning: In this task, you need to answer the given questions by referring to the
content of the image and using commonsense reasoning.

• Text Recognition: In this task, you are given an image with some texts on it and you need
to locate the texts in the image and answer a corresponding question related to them.

Table 13: The list of task definitions for SEED-Bench.
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