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ABSTRACT

Multi-view representation learning (MvRL) has garnered substantial attention in
recent years, driven by the increasing demand for applications that can effectively
process and analyze data from multiple sources. In this context, graph Laplacian-
based MvRL methods have demonstrated remarkable success in representing
multi-view data. However, these methods often struggle with generalization to new
data and face challenges with scalability. Moreover, in many practical scenarios,
multi-view data is contaminated by noise or outliers. In such cases, modern deep-
learning-based MvRL approaches that rely on alignment or contrastive objectives
can lead to misleading results, as they may impose incorrect consistency between
clear and corrupted data sources. We introduce SpecRaGE, a novel fusion-based
framework that integrates the strengths of graph Laplacian methods with the
power of deep learning to overcome these challenges. SpecRage uses neural
networks to learn parametric mapping that approximates a joint diagonalization of
graph Laplacians. This solution bypasses the need for alignment while enabling
generalizable and scalable learning of informative and meaningful representations.
Moreover, it incorporates a meta-learning fusion module that dynamically adapts
to data quality, ensuring robustness against outliers and noisy views. Our extensive
experiments demonstrate that SpecRaGE outperforms state-of-the-art methods,
particularly in scenarios with data contamination, paving the way for more reliable
and efficient multi-view learning. Our code will be made publicly available upon
acceptance.

1 INTRODUCTION

Multi-view representation learning (MvRL) has become a crucial paradigm in recent years. Its
primary objective is to integrate data from multiple sources into a unified representation, which can
be used for various tasks such as clustering and classification. The demand for MvRL methods has
surged as more applications require analyzing objects or phenomena from diverse perspectives. For
instance, streaming platforms rely on the fusion of visual, audio, and textual features to enhance
content recommendations, while healthcare systems combine genetic data, imaging, and clinical
records to provide a comprehensive view of patient health.

Graph Laplacian methods have demonstrated notable effectiveness in representing both single-view
and multi-view data (Ng et al., 2001; Belkin & Niyogi, 2003; Coifman & Lafon, 2006a; Cai et al.,
2011; Kumar et al., 2011; Eynard et al., 2012; 2015). This success largely stems from the ability of
Laplacian eigenvectors to preserve similarity and capture the underlying cluster structure of the data
(Ng et al., 2001; Belkin & Niyogi, 2003). Moreover, by focusing on the eigenvectors corresponding
to the smallest eigenvalues, one can uncover the intrinsic low-dimensional manifold structure, as
demonstrated in Laplacian eigenmaps (Belkin & Niyogi, 2003).

However, in the multi-view setting, traditional graph Laplacian-based methods face two major
limitations: Generalizability - the ability to map new test points into the representation space after
the training set has been processed (i.e., out-of-sample extension); Scalability – the capability to
process large datasets within a practical time frame efficiently. Current graph Laplacian-based MvRL
approaches often fail to address these two challenges (see discussion in Section 2). These limitations
in generalizability and scalability hinder the full potential of graph Laplacians for representing
multi-view data in real-world applications.
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Another fundamental challenge in the multi-view setting is the presence of noise or outliers in some
of the views. For example, in autonomous driving systems that integrate data from multiple sensors,
adverse weather conditions can lead to unreliable or noisy data from certain sensors. Most modern
deep learning-based MvRL approaches (Andrew et al., 2013; Huang et al., 2019; 2021; Federici et al.,
2020; Trosten et al., 2021; Xu et al., 2022; Trosten et al., 2023; Wang et al., 2023; Yan et al., 2023) rely
on alignment or contrastive objectives that enforces consistency between view-specific representations.
These alignment-based methods can become problematic when handling contaminated data, as they
may enforce incorrect consistency between clear and degraded data sources. These challenges
highlight the pressing need for robust MvRL methods that can effectively handle real-world data
imperfections while maintaining the benefits of graph Laplacian-based approaches.

To address the challenges of Generalizability and Scalability in graph Laplacian-based methods, as
well as ensuring Robustness in the presence of contaminated views, we propose SpecRaGE, a novel
fusion-based MvRL framework that combines the strengths of graph Laplacians with the power of
deep learning. At its core, SpecRaGE provides a deep-learning solution to the joint diagonalization
of Laplacians, by extending SpectralNet (Shaham et al., 2018) to multi-view settings. This joint
diagonalization is our key strategy for avoiding the need for alignment between views (see Section
4.1 for further discussion). SpecRaGE is inherently scalable, as it is trained on mini-batches in
a stochastic manner, allowing it to efficiently process large datasets. Furthermore, the resulting
model provides a parametric map that approximates the leading joint eigenvectors of multi-view
graph Laplacians. This parametric map enables efficient application to new data, addressing the
generalizability challenge of traditional graph Laplacian methods.

Moreover, SpecRaGE incorporates a flexible fusion technique that overcomes the rigid limitations of
traditional alignment-based methods when dealing with contaminated multi-view data. Specifically,
SpecRaGE introduces a meta-learning-driven fusion mechanism, which generates sample-specific
weight vectors, allowing the model to down-weight anomalous or noisy views dynamically.

Our extensive experiments demonstrate that SpecRaGE not only achieves state-of-the-art performance
on standard multi-view benchmarks but also significantly outperforms existing methods when dealing
with outliers and incomplete views.

The main contributions of this work are: (1) We introduce a generalizable and scalable, graph
Laplacian-based MvRL framework that extends the power of spectral methods to large-scale multi-
view data. (2) We propose a meta-learning fusion module that dynamically weights different views,
providing robust performance in the face of data contamination. (3) We present extensive experimental
results demonstrating SpecRaGE’s superior performance across various benchmarks, particularly in
scenarios involving outliers and noisy views.

2 RELATED WORK

Graph Laplacian-based Methods. Various graph Laplacian-based methods (also known as multi-
view spectral representation learning methods) have been proposed to extract compact and informative
representations from multi-view data (Cai et al., 2011; Kumar et al., 2011; Eynard et al., 2012; 2015;
Li et al., 2015; Lindenbaum et al., 2020; Yang et al., 2023). These approaches typically aim to learn a
fused representation based on multiple graph Laplacians, one for each view. While these methods
produce meaningful representations, they often face challenges with generalizability (out-of-sample
extension), requiring the recomputation of graph Laplacians to embed new, unseen data into the
fused representation space. Some approaches address this issue through out-of-sample extension
methods, such as the Nystrom extension (Nyström, 1930) or Geometric Harmonics (Coifman &
Lafon, 2006b). However, these techniques were originally developed for single-view data and
provide only local extensions, functioning effectively only near existing training points. Additionally,
they are computationally intensive and memory-demanding, as they require calculating distances
between each new test point and all training points. Furthermore, many graph Laplacian-based MvRL
approaches struggle with scalability due to their high computational demands and limited support
for sparse matrices, complicating the storage and processing of large Laplacians. These issues with
generalizability and scalability hinder the practical application of graph Laplacians for representing
multi-view data in real-world settings.
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Deep-learning based Methods. Modern deep-learning-based MvRL methods attempt to design
a loss function that is useful for extracting meaningful representations from multi-view data. One
category of methods includes deep extensions of the Canonical Correlation Analysis (CCA) algorithm,
such as DCCA, DCCAE, and ℓ0-DCCA (Hotelling, 1936; Andrew et al., 2013; Wang et al., 2015;
Lindenbaum et al., 2021). These methods utilize deep networks to learn a non-linear mapping for two
views, maximizing their correlations. Another set of algorithms relies on information-theory-based
metrics (Federici et al., 2020; Lin et al., 2022), aiming to maximize the mutual information between
views while minimizing redundant information unique to each view. Contrastive learning methods
(Trosten et al., 2021; Xu et al., 2022; Yan et al., 2023; Wang et al., 2023) represent another group
of deep learning approaches, utilizing a contrastive alignment objective to achieve view-specific
alignment. Deep learning techniques have also been applied to address the multi-view spectral
clustering problem (Huang et al., 2019; 2021). These methods are closely related to our work, as they
also extend SpectralNet to multi-view settings by incorporating alignment objectives between the
spectral embeddings from each view. Despite their promising performance, these approaches rely
on some form of alignment between the view-specific representations, making them vulnerable to
data contamination. Their underlying assumptions regarding data quality and view consistency may
struggle in the presence of noise, outliers, or asymmetric corruption across views, as demonstrated in
Section 5.3.

3 PRELIMINARIES

3.1 GRAPH LAPLACIAN AND SPECTRALNET

Graph Laplacian. Given a dataset of n points x1, x2, . . . , xn, a positive semi-definite and symmet-
ric affinity matrix W is an n×n matrix whose Wi,j entry represents the similarity between xi and xj .
The unnormalized graph Laplacian is defined as L = D −W where D is a diagonal matrix in which
the element Di,i =

∑n
j=1 Wi,j correspond to the degrees of the points xi, i = 1, ..., n. The eigen-

vectors corresponding to the smallest eigenvalues of the Laplacian provide valuable low-dimensional
representations, capturing structural information like relationships and similarities between data
points. These eigenvectors are widely used in applications such as spectral clustering (Ng et al.,
2001), dimensionality reduction (Belkin & Niyogi, 2003), graph partitioning (Karypis & Kumar,
1998), and image segmentation (Shi & Malik, 2000; Melas-Kyriazi et al., 2022).

SpectralNet. SpectralNet (Shaham et al., 2018) is a deep-learning model that effectively maps
single-view data to the approximate eigenvectors of its Laplacian. This enables the performance of
spectral clustering on huge single-view datasets since the loss is amenable to parallelized training.
Furthermore, the model can be easily and accurately used to generalize the representation to unseen
test data. To learn the eigenvectors, SpectralNet minimizes the following Rayleigh-quotient loss:
Tr
(
Y TLY

)
s.t. Y TY = I , where Y ∈ Rn×k is the network’s output and L is the graph Laplacian.

3.2 JOINT DIAGONALIZATION

Definition 1. A set of diagonalizable matrices A(1), A(2), . . . , A(v) is said to be simultaneously
diagonalizable if there exists a single invertible matrix V such that for all 1 ≤ p ≤ v, V −1A(p)V is
a diagonal matrix.

Intuitively, joint diagonalization (or simultaneous diagonalization) seeks to find a common basis by
which all matrices could be represented in a diagonal form.

However, exact joint diagonalization can be achieved if and only if A(1), A(2), . . . , A(v) commute.
Nevertheless, when commutativity cannot be guaranteed, optimizing a joint diagonality criterion
and approximating the solution remains possible. This defines the approximate joint diagonalization
problem.

Approximate Joint Diagonalization of Laplacians. In terms of graph Laplacians, for a set of graph
Laplacians L(1), L(2), . . . , L(v) the objective of joint diagonalization is to find a set of orthogonal
eigenvectors V such that for each Laplacian L(p), the matrix V TL(p)V is diagonal and contains the
eigenvalues of L(p) on the diagonal. It has been demonstrated in (Eynard et al., 2012; 2015), that
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it is possible to find an approximate joint diagonalization of Laplacians by solving the following
objective:

min
V ∈Rn×k

Tr
(
V T L̄V

)
, s.t. V TV = I, (1)

where L̄ represents a form of average of the graph Laplacians. This average can be computed, for
example, as a weighted arithmetic mean: L̄ =

∑v
p=1 w

(p)L(p) where w(p) represent the contribution
of the p-th view.

4 SPECRAGE

Problem Statement. Let X = {X (p) ∈ Rn×dp}vp=1 be a multi-view dataset where n is the number
of samples, v is the number of views, and dp denotes the dimensionality of samples within the p-th
view. MvRL aims to leverage the multi-view information to learn a high-quality unified representation
that facilitates downstream tasks such as clustering, manifold learning, or classification.

In this section, we introduce SpecRaGE, our MvRL framework designed to tackle the challenges
of generalizability, scalability, and robustness to contaminated views. We begin by outlining the
rationale behind our method. Next, we detail how SpecRaGE efficiently learns the approximate joint
eigenvectors, facilitating generalization to new data. Finally, we explore the meta-learning fusion
module, which enhances robustness in the presence of contaminated views. The overall framework
of our method is illustrated in Fig. 1.

4.1 RATIONAL

To develop a method that effectively harnesses the compelling properties of graph Laplacians while
enhancing robustness against data contamination, it is essential to first eliminate the need for alignment
and then implement a mechanism that diminishes the influence of low-quality views. To achieve
this, SpecRaGE utilizes joint diagonalization of Laplacians, which fuses information from all views
into a unified representation that approximates the joint eigenvectors. By prioritizing the fusion of
information over the alignment of view representations, we successfully circumvent the challenges
associated with rigid view alignment. Furthermore, to enhance robustness, SpecRaGE incorporates a
dynamic fusion module that adjusts the weighting of views based on their quality. This effectively
reduces the influence of noisy or outlier views. This fusion-based approach not only leverages the
advantages of graph Laplacians but also demonstrates resilience to contaminated data. Crucially, we
approximate these joint eigenvectors in a scalable manner using deep learning, facilitating efficient
processing of large datasets and enabling generalization to new, unseen data.

4.2 GENERALIZABLE AND SCALABLE JOINT EIGENVECTORS APPROXIMATION

Let Fθ : Rd1 × Rd2 × · · · × Rdv → Rk be a parametric mapping (i.e., a neural network model) that
transforms a multi-view input into the corresponding coordinates in a fused representation. That is, for
a multi-view input x̂i =

(
x
(1)
i , x

(2)
i , . . . , x

(v)
i

)
, Fθ operates such that yi = Fθ (x̂i) where yi ∈ Rk is

the corresponding coordinates in the fused representation. To perform a deep joint diagonalization of
Laplacians for a batch of m multi-view data points, we propose the following loss:

Lθ =
1

m2v

v∑
p=1

m∑
i,j=1

W
(p)
i,j ∥yi − yj∥22, (2)

where W (p) is an m×m affinity matrix of the p-th view, and W
(p)
i,j represents an affinity measure

between x
(p)
i and x

(p)
j . This loss function encourages similar points (as measured by the affinity

matrices) to be close in the fused representation space. As one can observe, this loss can be minimized
by mapping all points to the same output (e.g., Fθ(x̂i) = y0 for all i). To avoid such a trivial map, an
orthogonality constraint is added to the output, i.e.,

Y TY = Ik×k, (3)

where Y is an m× k matrix of the outputs whose i-th row is yi.

4
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Figure 1: SpecRaGE architecture. First, v view-specific representations are obtained from v cor-
responding neural networks. Subsequently, a fusion is performed. Following the fusion, the fused
representation undergoes QR decomposition to ensure orthogonality. Finally, the loss function (Eq. 2
or Eq. 5) is computed where the affinity matrices are constructed by the embeddings of the pre-trained
Siamese networks (see discussion in Appendix B). All networks weights are updated by the gradients.

To satisfy the orthogonality constraint, we follow the same technique from SpectralNet and construct
an orthogonalization layer that computes the QR decomposition of the network output and returns
the orthogonal Q matrix. More specifically, let Ỹ denote the m× k matrix obtained from the fusion
step; the weights of this layer are defined to be the matrix R−1 from the QR decomposition of Ỹ .
The final orthogonal output is then Y = Ỹ R−1. For further details about the training process with
the orthogonalization layer, see Appendix F.

With some mathematical transitions (see Appendix E), the loss in Eq. 2 can be written in the following
Rayleigh quotient form:

Lθ =
2

m2v
Tr

(
Y T

v∑
p=1

L(p)Y

)
, (4)

where L(p) is the m×m graph Laplacian of the p-th view.

One can observe that this loss is exactly the arithmetic mean version of the approximate joint
diagonalization objective in Eq. 1 where each Laplacian is multiplied with the same weight. Our
experiment in Appendix D.1 illustrates that our method effectively approximates the joint eigenvectors
of the graph Laplacians.

The choice of affinity measure plays a crucial role in determining the quality of the generated
representations. An appropriate affinity measure can enhance the ability of the model to capture the
underlying relationships within the data, while an inadequate one may lead to poor representation
quality and misinterpretation of the data structure. In Appendix B, we provide a discussion of the
technique we employed to construct the affinity matrices.

Generalizability and Scalability. Once the framework is trained, it provides a mapping function
Fθ that transforms each multi-view sample directly into its coordinates in the final unified repre-
sentation, facilitating efficient generalization for new samples from the same distribution. Notably,
all our experiments were conducted using test sets, which illustrates the method’s generalizability.
Additionally, the stochastic mini-batch training in SpecRaGE avoids computing the full Laplacian
eigenvectors, enabling scalability for large datasets. For example, SpecRaGE processed the 1-million-
sample InfiniteMNIST dataset (see Section 5.1) in about 15 minutes on a GTX-1080 Ti, whereas
traditional graph Laplacian methods faced out-of-memory errors or much longer runtimes. The
overall running time complexity of SpecRaGE is O(n(k2 +mv)), where k is the output dimension,
v is the number of views, and m is the batch size. Since k, v, and m are typically much smaller than
n and independent of n, our method exhibits near-linear time complexity. In Appendix C, we present
a full time complexity analysis.

5
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4.3 ROBUST META-LEARNING FUSION

View-specific Representations. As described above, the loss function in 2 operates on a fused
representation Y ∈ Rm×k, derived from a mini-batch of m multi-view samples. To construct
this fused representation, we first need to generate intermediate representations for each individual
view. The primary goal of these representations is to embed numeric and categorical features
into a common space and ensure that all views are of the same size. To extract the view-specific
representations, we introduce an individual neural network, g(p)θ : Rdp → Rk (e.g., an MLP), for

each view. Specifically, given a multi-view input x̂i =
(
x
(1)
i , x

(2)
i , . . . , x

(v)
i

)
, the intermediate

representations are y
(1)
i , y

(2)
i , . . . , y

(v)
i , where y

(p)
i = g

(p)
θ

(
x
(p)
i

)
. For a batch of m multi-view

samples, we obtain v matrices Y (1), Y (2), . . . , Y (v), where Y (p) is an m× k matrix of the outputs,
and its i-th row corresponds to y

(p)
i .

Merging the view-specific representations Y (1), Y (2), . . . , Y (v) into a unified representation Y
presents a significant challenge. A key difficulty in this process arises from the potential pres-
ence of contaminated samples in some views, such as outliers or noisy data. In such cases, it is
desirable to give less weight to the low-quality views in order to obtain a more accurate representation.
Specifically, we need an approach that can evaluate the quality of each view directly from the data
and determine its degree of contribution accordingly.

Meta-learning for Fusion. To dynamically weight views based on their quality, we introduce
another neural network model that takes a multi-view sample as input and predicts a weights vector
wi. This model functions as a meta-learning model as it learns how to adaptively weight the views
based on the data, optimizing the fusion process. The size of the weight vector corresponds to
the number of views, and each entry in the vector indicates the importance or contribution of the
corresponding view. We apply a softmax on the obtained vector to ensure that the vector sums up
to one. The overall process is as follows: First, the view-specific representations y(1)i , y

(2)
i , . . . , y

(v)
i

are obtained from the multi-view sample x̂i. Then, the concatenated x̂i is passed through the meta-
learning model, generating a weights vector wi. Subsequently, to get the fused representation yi, the
following weighted sum is performed: yi =

∑v
p=1 w

(p)
i · y(p)i . Section 5.3 demonstrates that this

fusion approach not only achieves state-of-the-art performance on standard multi-view benchmarks
but also significantly outperforms existing methods in handling outliers and noisy views.

To provide meaningful feedback to the meta-learning model, we integrate the view-specific contribu-
tions into the loss function. For a batch of size m, weight vectors w1, w2, . . . , wm are first generated
using the meta-learning model. We then compute the mean of these weight vectors, w̄, to capture a
global representation of the batch’s characteristics. This mean weight vector is embedded into the
loss function, guiding the meta-learning model in producing appropriate weights for each view. The
resulting loss function is defined as:

Lθ =
2

m2v
Tr

(
Y T

v∑
p=1

w̄(p)L(p)Y

)
, (5)

where w̄(p) denotes the mean contribution of the p-th view.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We assess the performance of SpecRaGE using five well-studied multi-view datasets.
Our selection prioritizes datasets that exhibit diversity in the types and number of views, as well as
the number of classes, as depicted in Table 3 in Appendix A. The datasets are listed as follows: (1)
BDGP (Cai et al., 2012) contains 2500 images of Drosophila embryos divided into five categories
with two extracted features. One view has 1750-dimensional visual features, and the other view has
79-dimensional textual features. (2) Reuters is a multilingual dataset comprising more than 11,000
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articles across six categories and five languages: English, French, German, Italian, and Spanish. We
used a subset of this dataset containing 18,758 samples for our analysis. (3) Caltech20 is a subset of
2386 examples derived from the object recognition dataset (Fei-Fei et al., 2004), which comprises
20 classes viewed from six different perspectives. The dataset encompasses various features such
as Gabor features, wavelet moments, CENTRIST features, histogram of oriented gradients, GIST
features, and local binary patterns. (4) Handwritten (Asuncion & Newman, 2007) contains 2,000
digital images of handwritten numerals ranging from 0 to 9. This dataset employs two types of
descriptors: a 240-dimensional pixel average within 2 × 3 windows, and a 216-dimensional profile
correlations method, serving as two distinct viewpoints. (5) InfiniteMNIST is a large-scale variant
of MNIST (LeCun et al., 1998), with 1 million samples. The first view contains the original images,
while the second adds Gaussian noise (σ = 0.2) to images from the same class, as in (Trosten et al.,
2023). Created similarly to affNIST1, this dataset applies small random affine transformations to
expand the original data. More details about the different datasets can be found in Appendix A.

Baselines. We compared the performance of SpecRaGE with seven multi-view representation
learning methods including two classic deep methods (DCCA (Andrew et al., 2013) and DCCAE
(Wang et al., 2015)) and five state-of-the-art methods (MvSCN (Huang et al., 2019), MIB (Federici
et al., 2020), Multi-VAE (Xu et al., 2021), AECoKM (Trosten et al., 2023), and MetaViewer (Wang
et al., 2023)). DCCA and DCCAE are deep extensions of classic correlation analysis. MvSCN
learns spectral embeddings for each view while aligning view-specific representations with an MSE
objective. MIB uses information theory to separate shared and view-specific information. Multi-
VAE disentangles visual representations into view-common and view-peculiar variables. AECoKM
combines autoencoders with contrastive learning for view alignment. MetaViewer learns to fuse
representations by observing reconstruction from unified representations to specific views and
employs contrastive learning in its improved version. To ensure fairness, we ran each algorithm ten
times on the aforementioned datasets using the same backbones, recording the mean and standard
deviation of their performance. For clustering, we employed K-means, while Support Vector Machines
(SVM) were used for classification. For alignment-based methods, we concatenated the view-specific
representations before applying clustering and classification. More details on hyper-parameters and
training are in Appendix F.

Evaluation metrics. For clustering, we employed three widely used metrics: Normalized Mutual
Information (NMI), Accuracy (ACC), and Adjusted Rand Index (ARI). For classification, we used
Accuracy, Precision, and F-score. Higher values of these metrics indicate superior performance.

5.2 REPRESENTATION EVALUATION

Clustering Results. In the clustering experiment, we aimed to evaluate SpecRaGE’s ability to
capture the underlying cluster structure of the data in comparison to the baseline methods. To achieve
this, we applied the K-means algorithm to the final representations learned by each method. Table 1
summarizes the clustering results across the five datasets. SpecRaGE achieves top-performing results
on most datasets and evaluation metrics. Fig. 2 provides an additional illustration of the efficacy of
SpecRaGE in representing the data and capturing its inherent cluster structure.

Classification Results. In the classification experiment, we aimed to assess the quality of the
learned representations by running a SVM on top of the final embeddings produced by each method.
We chose to use SVM because it does not introduce any additional non-linear transformations to
the feature spaces, ensuring that the comparison between different algorithms remains unbiased.
SVM and linear classifiers are widely accepted as standard benchmarks for evaluating learned
representations and embeddings (See, for example, (Chen et al., 2020; Federici et al., 2020; Bardes
et al., 2021; Wang et al., 2023)).

Table 2 presents the classification results across the five datasets. Notably, SpecRaGE consistently
achieves top performance in most datasets and evaluation metrics, demonstrating its effectiveness in
generating discriminative representations for classification tasks.

1https://www.cs.toronto.edu/~tijmen/affNIST/
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Table 1: Clustering results of all methods on four datasets. The best result in each row is shown in
bold and the second-best is underlined.

Datasets Metrics DCCA DCCAE MvSCN MIB Multi-VAE AECoKM MetaViewer SpecRaGE

BDGP
ACC 75.8 ±1.31 80.1 ±1.50 81.9 ±4.33 86.9 ±0.75 53.8 ±6.91 76.6 ±5.33 90.4 ±0.43 97.6 ±0.53
NMI 67.9 ±1.15 73.2 ±1.04 76.9 ±4.15 80.9 ±0.91 29.9 ±6.54 68.7 ±5.89 86.3 ±1.05 93.4 ±0.83
ARI 49.2 ±1.31 55.1 ±1.02 70.3 ±5.42 74.1 ±1.82 28.9 ±4.92 54.7 ±6.34 89.3 ±1.21 94.1 ±1.29

Reuters
ACC 47.9 ±0.93 42.0 ±1.23 49.5 ±2.50 49.5 ±1.10 36.6 ±2.34 26.5 ±0.52 47.8 ±0.08 56.7 ±3.22
NMI 26.6 ±1.32 20.3 ±1.13 27.6 ±1.32 28.4 ±1.81 21.1 ±2.20 16.4 ±1.54 24.2 ±0.06 38.3 ±2.45
ARI 12.7 ±1.44 8.5 ±1.06 23.1 ±1.12 24.4 ±1.23 12.4 ±2.34 10.1 ±2.54 19.19 ±0.81 29.6 ±2.64

Caltech20
ACC 39.7 ±1.10 36.1 ±1.50 42.1 ±2.59 36.1 ±1.23 32.4 ±2.25 42.2 ±3.65 45.1 ±1.33 50.1 ±2.61
NMI 51.2 ±1.21 52.4 ±1.71 53.7 ±3.49 47.5 ±1.55 46.2 ±2.82 57.6 ±0.18 60.9 ±2.15 66.0 ±1.72
ARI 23.5 ±2.23 25.3 ±1.14 29.7 ±3.26 23.2 ±1.04 24.8 ±1.79 32.2 ±1.20 35.0 ±1.24 40.1 ±3.49

Handwritten
ACC 58.3 ±2.10 63.8 ±1.21 68.3 ±4.86 67.5 ±2.95 74.5 ±3.34 66.4 ±2.34 86.3 ±2.51 91.9 ±3.51
NMI 70.2 ±1.69 75.2 ±1.34 70.9 ±2.90 64.7 ±2.18 70.0 ±3.65 70.3 ±2.70 78.9 ±1.44 86.5 ±1.74
ARI 52.2 ±1.33 60.8 ±1.87 59.6 ±4.25 48.9 ±2.56 60.5 ±3.15 61.4 ±2.70 72.3 ±2.94 83.0 ±1.98

InfiniteMNIST
ACC 95.6 ±1.09 95.1 ±1.21 99.1 ±0.28 68.6 ±3.95 98.1 ±0.50 99.3 ±0.20 80.0 ±0.22 99.1 ±0.27
NMI 90.0 ±1.39 88.9 ±1.41 97.7 ±1.54 67.2 ±3.15 96.0 ±1.20 98.1 ±0.42 72.3 ±0.15 97.5 ±0.54
ARI 90.1 ±1.33 89.3 ±1.01 97.9 ±0.48 66.9 ±3.56 96.4 ±1.05 98.5 ±0.20 65.2 ±0.24 97.9 ±0.21

Table 2: Classification results of all methods on four datasets. The best result in each row is shown in
bold and the second-best is underlined.

Datasets Metrics DCCA DCCAE MvSCN MIB Multi-VAE AECoKM MetaViewer SpecRaGE

BDGP
ACC 98.40 ±0.81 98.65 ±0.26 98.76 ±0.10 90.56 ±1.55 88.87 ±2.54 98.92 ±0.21 98.00 ±0.11 99.01 ±0.30
F-score 98.40 ±0.82 98.50 ±0.21 98.76 ±0.10 90.10 ±0.60 88.87 ±2.54 98.92 ±0.20 98.02 ±0.11 99.00 ±0.23
Precision 98.42 ±0.61 98.63 ±0.30 98.02 ±0.15 89.92 ±1.32 89.07 ±2.43 99.01 ±0.20 98.59 ±0.10 99.01 ±0.20

Reuters
ACC 74.40 ±0.92 74.10 ±0.87 75.52 ±0.12 71.96 ±1.02 62.06 ±3.40 68.01 ±0.85 59.17 ±0.10 76.61 ±1.70
F-score 74.50 ±1.10 74.21 ±0.90 75.51 ±0.12 70.78 ±0.91 59.60 ±3.95 65.21 ±0.81 51.19 ±0.09 76.60 ±1.77
Precision 74.72 ±0.92 74.35 ±1.01 75.53 ±0.14 70.78 ±1.10 61.31 ±3.22 67.24 ±0.85 56.43 ±0.12 78.59 ±1.75

Caltech20
ACC 72.60 ±0.51 72.58 ±0.64 86.54 ±0.35 73.52 ±2.41 87.73 ±0.63 93.38 ±1.07 92.16 ±0.05 95.42 ±0.92
F-score 40.12 ±0.50 43.26 ±0.81 86.75 ±0.37 72.52 ±2.10 87.30 ±0.91 93.03 ±0.97 85.72 ±0.10 95.93 ±0.93
Precision 46.30 ±0.44 60.66 ±0.69 85.32 ±0.33 73.25 ±1.93 88.90 ±1.60 93.69 ±1.26 90.68 ±0.15 95.44 ±0.90

Handwritten
ACC 88.25 ±0.91 90.01 ±0.45 96.21 ±0.21 96.01 ±1.04 95.36 ±0.95 96.91 ±0.65 97.75 ±0.21 97.80 ±1.27
F-score 88.05 ±1.03 89.92 ±0.45 96.21 ±0.21 96.10 ±1.20 95.36 ±0.93 96.95 ±0.63 97.75 ±0.20 97.77 ±1.27
Precision 89.20 ±0.85 90.48 ±0.56 96.24 ±0.21 96.03 ±0.90 95.38 ±0.92 96.91 ±0.34 97.90 ±0.19 97.80 ±1.26

InfiniteMNIST
ACC 97.21 ±0.12 97.60 ±0.41 99.12 ±0.10 95.52 ±0.11 98.75 ±0.02 99.50 ±0.09 95.71 ±0.10 99.35 ±0.04
F-score 97.21 ±0.14 97.60 ±0.41 99.12 ±0.10 95.51 ±0.11 98.75 ±0.02 99.50 ±0.08 95.71 ±0.10 99.34 ±0.04
Precision 97.21 ±0.12 97.60 ±0.41 99.12 ±0.10 95.56 ±0.11 98.78 ±0.03 99.51 ±0.09 95.74 ±0.15 99.35 ±0.04

Visualization. To further demonstrate the effectiveness of the learned unified representation, we
utilize the t-SNE algorithm on the representation obtained from the validation set during the training.
As depicted in Fig. 2, our method successfully separates the data into distinct clusters with increasing
training epochs.

(a) Epoch 0 (b) Epoch 10 (c) Epoch 20 (d) Epoch 30

Figure 2: Visualization of the unified representation Y during training on the BDGP dataset.

5.3 ROBUSTNESS TO CONTAMINATION EVALUATION

In real-world scenarios, data contamination is a pervasive challenge, whether in the form of noise
or anomalous outliers, often introduced by faulty sensors, human errors, or external environmental
factors. These types of contamination can severely degrade the performance of multi-view models,
making robustness a critical capability. To evaluate SpecRaGE’s robustness—a key differentiator of
our method—we designed two contamination experiments: one targeting robustness to outliers and
the other to Gaussian noise.
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In the outlier experiment, global anomalies were randomly injected into one view, following the
approach from (Han et al., 2022). For the noise experiment, Gaussian noise with σ = 1.2 was injected
into a portion of the samples in one randomly selected view. We conducted both experiments at
contamination ratios of 10%, 20%, 30%, and 40%.

These tests were performed on two real-world datasets and a synthetic 2-view version of the scikit-
learn Blobs dataset 2. We chose to include this simple synthetic 2D data in this experiment, as it
allows us to more clearly distinguish the effect of the noise or outliers on the model’s performance. In
these experiments, we report the relative degradation percentage with respect to the uncontaminated
baseline, where no contamination is injected.

As shown in Fig 3, SpecRaGE consistently outperforms other methods in terms of robustness,
maintaining stable performance even under high levels of contamination. In both the outlier and noisy
view experiments, SpecRaGE demonstrates significantly smaller relative degradation percentages
across all datasets, even at the highest contamination ratios. This resilience to extreme contamination
underscores the method’s effectiveness in handling challenging real-world scenarios, where high
levels of noise or outliers are often unavoidable.

(a) Synthetic - Outliers

(b) BDGP - Outliers

(c) Handwritten - Outliers

(d) Synthetic - Noise

(e) BDGP - Noise

(f) Handwritten - Noise

Figure 3: Performance decrease of methods with various levels of outliers (left column) and noise
(right column) across different datasets. Each line represents a different method, showing the relative
performance degradation (%) as the percentage of outliers or noise increases.

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_blobs.html
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6 CONCLUSION

In this work, we introduced SpecRaGE, a novel fusion-based framework for multi-view spectral
representation learning that effectively integrates graph Laplacian methods with deep learning
techniques. By efficiently learning a parametric map to uncover joint eigenvectors from diverse graph
Laplacians, SpecRaGE addresses the challenges of generalizability and scalability, enabling it to
handle large datasets while generalizing to new samples. Moreover, SpecRaGE employs a dynamic
fusion technique that enhances robustness against outliers and noise in contaminated multi-view data.
Extensive experiments validate that SpecRaGE achieves state-of-the-art performance on standard
multi-view benchmarks and significantly outperforms existing methods when faced with outliers and
incomplete views. These results highlight SpecRaGE’s potential to transform multi-view learning in
practical applications where data quality is often compromised.

Reproducibility Statement. A complete explanation of SpecRaGE’s logic is provided in Section 4
and Algorithm 1. All key details for reproducibility, including the training methodology with the
orthogonality constraint, network backbones for both the view-specific and meta-learning networks,
hyperparameters, data splits, operating system, and hardware specifications, are available in Appendix
F. Further discussion on the construction of affinity matrices is found in Appendix B.
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A DATASETS CHARACTERISTICS

In Table 3, we provide additional information regarding the sample size, number of views, and
dimensions of the various datasets.

Table 3: Characteristics of the datasets in our experiments

Dataset #Samples #Classes #Views #Dimensions
BDGP 2500 5 2 1750; 79
Reuters 18,758 6 5 21531; 24892; 34251; 15506; 11547
Caltech20 2386 20 6 48; 40; 254; 1984; 512; 928
Handwritten 2000 10 2 240; 216
InfiniteMNIST 1,000,000 10 2 784;784

B SELF-SUPERVISED AFFINITY LEARNING.

To perform joint diagonalization of Laplacians, it is necessary to know how to construct an affinity
matrix for each view. A widely used approach is to use a Gaussian kernel with a specific scale
parameter σ > 0. For instance, for the p-th view, the affinity matrix is defined as follows:

W
(p)
i,j =

exp

(
−∥x(p)

i −x
(p)
j ∥2

2σ2

)
, x

(p)
j is one of the l nearest neighbors of x(p)

i ,

0, otherwise.
(6)

However, Euclidean distance may offer a limited measure of similarity, particularly for high-
dimensional data (Beyer et al., 1999; Aggarwal et al., 2001). Therefore, instead of directly computing
the Euclidean distance between xi and xj , we choose to train a SiameseNet (Koch et al., 2015) for
each view p, denoted as h(p)

θsiamese
. This replaces the Euclidean distance ∥x(p)

i − x
(p)
j ∥2 in Eq. 6 with

∥z(p)i − z
(p)
j ∥2, where z

(p)
i = h

(p)
θsiamese

(
x
(p)
i

)
.

Training a SiameseNet typically requires positive and negative pairs. When labels are provided, pairs
from the same class are considered positive, while those from different classes are negative. In our
unsupervised setup, we determine positive pairs based on small Euclidean distances between points
x
(p)
i and x

(p)
j , and negative pairs otherwise. Specifically, positive pairs are formed from the l nearest

neighbors of each point, while negative pairs are generated from points that are not included in the
nearest neighbors set. The parameters l and σ are hyper-parameters, discussed in Appendix F.

The training of the SiameseNets serves as a pre-processing step. Once the SiameseNets are trained,
we use them to construct batch affinity matrices for each view during the training. As in (Shaham
et al., 2018), we empirically found (see the ablation study in Appendix D.2 for the experiments) that
in various datasets, using SiameseNet for the affinities improves the quality of the representations.
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C TIME COMPLEXITY ANALYSIS

Algorithm 1 SpecRaGE

1: Input: Multi-view data x̂1, x̂2, . . . , x̂n, output dimension k, batch size m, number of epochs T
2: Output: Fused representation y1, . . . , yn = Y ∈ Rn×k - the approximate joint eigenvectors.
3: for each epoch t ∈ {1, 2, . . . , T} do
4: for each mini-batch of size m do
5: Obtain view-specific representations Y (1), Y (2), . . . , Y (v)

6: Construct m×m affinity matrices W (1),W (2), . . . ,W (v)

7: Compute the corresponding graph Laplacians L(1), L(2), . . . , L(v)

8: Generate m weights vectors w1, w2, . . . , wm using the meta-learning model
9: Obtain the fused representation Ỹ using the weights vectors

10: Apply orthogonality constraint using QR decomposition: Y = Ỹ R−1

11: Compute the mean of the weights vectors w̄
12: Compute loss in 5
13: end for
14: end for
15: Forward propagate x̂1, x̂2, . . . , x̂n and obtain n the outputs y1, y2, . . . , yn ∈ Rk

The time complexity of the algorithm in 1 can be analyzed as follows:

Given that:

• The size of the networks and the number of epochs are constant.
• Batch size is m.
• The number of views is v.
• The total number of samples is n.
• The output dimension is k.

The running time breakdown per batch is:

• line 5: O(mv).
• lines 6-7: O(m2v).
• line 8: O(mv).
• line 9: O(mv).
• line 10: O(mk2).
• line 11: O(mv).
• line 12: O(m2v).

The Overall complexity:

• Per batch: O(4mv +mk2 + 2m2v).
• Per epoch: O( n

m · (4mv +mk2 + 2m2v)) = O(n(k2 + v(2m+ 4))) = O(n(k2 +mv)).

Now since m, v, and k are much smaller than n, this method presents almost linear running time
complexity.

D FURTHER EXPERIMENTS

D.1 APPROXIMATION OF THE JOINT EIGENVECTORS

We begin by demonstrating that our unified representation approximates the joint eigenvectors. To
show this approximation, we compute the Grassmann distance between the subspace of SpecRaGE’s

14
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(a) BDGP (b) Blobs

Figure 4: Grassmann distance as a function of the number of epochs.

output and that of the true eigenvectors of the matrix
∑v

p=1 L
(p), referred to as the joint eigenvectors.

The squared Grassmann distance measures the sum of squared sines of the angles between two
k-dimensional subspaces, yielding values within the [0, k] range. To demonstrate this approximation,
we used the BDGP dataset and the scikit-learn 2D Blobs dataset, where the second view is generated
by applying a random rotation transformation to the first view.

In the BDGP dataset, our model has an output dimension of 5, so the maximum distance between
the subspace of SpecRaGE’s output and that of the joint eigenvectors is also 5. As shown in Fig.
4, this distance significantly decreases early in training and stabilizes around 0.9, indicating that
SpecRaGE effectively approximates the joint eigenvectors. For the Blobs dataset, the Grassmann
distance quickly approaches zero, indicating that the subspace of SpecRaGE output is extremely
close, if not identical, to the subspace spanned by the exact true joint eigenvectors.

D.2 ABLATION STUDY WITH SIAMESENETS

In Eq. 6 we show how we construct the Gaussian kernel affinities, essential for our primary joint
diagonalization objective. To ensure these Gaussian kernels effectively encode the similarities
between the data points, we opt to train a SiameseNet on each view. After the SiameseNets are
trained, we compute the Euclidean distance on the Siamese’s output instead of computing it on the
feature space.

The goal of this experiment is to demonstrate that using the Siamese-based affinity significantly
improves the quality of the final unified representation, implying that Siamese-based affinity captures
more accurately the similarities between the points. In Table 4, it is evident that replacing the
Euclidean distance computed on the feature space with the Euclidean distance computed on Siamese
representations (referred to as Siamese distance) leads to significant improvements in clustering
results. The "Euclidean distance" column presents the clustering results where Euclidean distance is
utilized for each view’s affinity (W (p)), while the "Siamese distance" column showcases the results
where Siamese distance is employed for each view’s affinity.

Table 4: ACC clustering results with and without the SiameseNets.

Datasets Euclidean distance Siamese distance

BDGP 82.2 ±5.68 97.4±0.53
Handwritten 77.9 ±1.06 92.0 ±3.51
InfiniteMNIST 86.5 ±0.10 99.2 ±0.27

E EQUIVALENCE OF THE LOSS FUNCTIONS

In Section 4.2, we claim that the loss function in Eq. 2 is equivalent to the joint-diagonalization loss
in Eq. 4, that is:
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m∑
i,j=1

Wi,j∥yi − yj∥22 = 2Tr

(
Y T

v∑
p=1

L(p)Y

)

Here, we provide a proof for this equation.

Proof. As demonstrated in (Belkin & Niyogi, 2003) the following relation holds:

m∑
i,j=1

Wi,j∥yi − yj∥22 = 2Tr
(
Y TLY

)
Therefore, we can derive the following expression:

v∑
p=1

m∑
i,j=1

W
(p)
i,j ∥yi − yj∥22 = 2

v∑
p=1

Tr
(
Y TL(p)Y

)

= 2Tr

(
v∑

p=1

Y TL(p)Y

)
= 2Tr

(
Y T

v∑
p=1

L(p)Y

)

F TECHNICAL DETAILS

For fairness, we run each of the compared algorithms ten times on the above datasets, recording both
the mean and standard deviation of their performance. The same backbones are employed across all
methods and datasets. Specifically, we used an MLP with hidden layers of sizes 1024, 1024, and 512
for all view-specific networks g(p)θ across all datasets and methods. The meta-learning model also
uses an MLP backbone with three hidden layers, each containing 100 units.

Additionally, for certain datasets such as BDGP, InfiniteMNIST, and Reuters, we initially embedded
the raw features of each view X (p) using a pre-trained Autoencoder (AE) with hidden layers of
sizes 512, 512, and 2048. This pre-trained AE is used to obtain a lower-dimensional input, typically
containing less nuisance information, as shown in (Shaham et al., 2018).

The size of the output of our model (k), is determined by the number of categories of the data. In the
case of coupled view methods like DCCA, DCCAE, and MIB, we present results based on the two
best-performing views. For alignment-based methods, the final unified representations are produced
through concatenation. Subsequently, clustering and classification tasks are conducted using K-means
and SVM classifiers, respectively. Training typically took 35-50 epochs for each dataset.

Training with Orthogonalization Layer. To train the model with the orthogonalization layer, we
adopt a technique similar to that used in SpectralNet (Shaham et al., 2018). This technique employs a
coordinate descent training approach comprising two main optimization steps: the "orthogonalization
step" and the "gradient step". Each step involves processing a different mini-batch.

During the orthogonalization step, we forward a mini-batch through the model and compute the
QR decomposition of the fused representation to update the weights of the orthogonalization layer.
In the gradient step, we pass another mini-batch through the model and use the orthogonalization
weights from the preceding orthogonalization step to orthogonal the output. Following this, we
compute the loss and update the network weights via backpropagation, while keeping the weights of
the orthogonalization layer unchanged.

After training the model, all weights, including those of the orthogonal layer, are fixed. Consistent
with observations from SpectralNet, we empirically found that when employing large mini-batches,
the orthogonalization layer can also approximately orthogonalize the output of other mini-batches
towards the end of training. For instance, in the Blobs dataset, when a random batch of size 1024
passes through the model with the fixed orthogonalization layer (i.e., after training), the resulting
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output Y , exhibits approximate orthogonality. This is evident in Y TY , where the average deviation
of off-diagonal elements from 0 is merely 0.04.

Hyper-parameters. In Table 5, we provide a breakdown of the hyperparameters utilized for the
various datasets. The #Neighbors parameter corresponds to the number of nearest neighbors (l) used
for each data point in the Gaussian kernel, as outlined in Appendix B. Specifically, we select the same
number of neighbors for each view X (p), determined via hyperparameter tuning. The scale parameter
(σ) is also utilized for the Gaussian kernel and was chosen for each view X (p) as the median of the
distances from any point in X (p) to its l-nearest neighbors (across all points in the view), resulting
in a global scale. The temperature parameter is applied in the softmax function used on the weight
vector generated by the meta-learning model. Using a temperature greater than 1 in the softmax
function helps to smooth the weight distribution across the views, reducing the absolute dominance
of any single view. This is particularly useful when we want to ensure that all views contribute to the
final representation, even if some might be slightly less informative.

The initial learning rate (LR) was uniformly set to 10−3 for all datasets, with a decay policy in
place. This decay policy is contingent on monitoring the validation loss. If the validation loss fails
to improve over 10 epochs, the LR is multiplied by 0.1. Furthermore, if the LR decreases to 10−8,
training is terminated. Adam optimizer is used for training.

Table 5: Hyper-parameters.

Hyper-params BDGP Reuters Caltech20 Handwritten InfiniteMNIST

LR 10−3 10−3 10−3 10−3 10−3

Batch size 1024 2048 1024 1024 1024
#Neighbors (l) 22 18 18 22 30
scale (σ) Global; Median Global; Median Global; Median Global; Median Global; Median
Softmax temperture 250 500 250 250 250000

Data Split. For each dataset, we initially divide it into an 80% training set and a 20% testing set.
Subsequently, for training, we further divide the training set into a 90% training subset and a 10%
validation subset

OS and Hardware. The training procedures were executed on Rocky Linux 9.3, utilizing Nvidia
GPUs including GeForce GTX 1080 Ti and A100 80GB PCIe.
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