
Under review as a conference paper at ICLR 2023

CONVERGENCE ANALYSIS OF SPLIT LEARNING ON
NON-IID DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Split Learning (SL) is one promising variant of Federated Learning (FL), where
the AI model is split and trained at the clients and the server collaboratively. By
offloading the computation-intensive portions to the server, SL enables efficient
model training on resource-constrained clients. Despite its booming applications,
SL still lacks rigorous convergence analysis on non-IID data, which is critical
for hyperparameter selection. In this paper, we first prove that SL exhibits an
O(1/

√
T) convergence rate for non-convex objectives on non-IID data, where T

is the number of total iterations. The derived convergence results can facilitate
understanding the effect of some crucial factors in SL (e.g., data heterogeneity
and local update steps). Comparing with the convergence result of FL, we show
that the guarantee of SL is worse than FL in terms of training rounds on non-IID
data. The experimental results verify our theory. Some generalized conclusions
on the comparison between FL and SL in cross-device settings are also reported.

1 INTRODUCTION

Federating Learning (FL) is a popular distributed learning paradigm where multiple clients collab-
orate to train a global model under the orchestration of one central server. There are two settings
in Federating Learning (FL) (McMahan et al., 2017) including (i) cross-silo where clients are orga-
nizations and the client number is typically less than 100 and (ii) cross-device where clients are Iot
devices and the client number can be up to 1010 (Kairouz et al., 2021). To alleviate the computa-
tion bottleneck at resource-constrained IoT devices in the cross-device scenario, Split Learning (SL)
(Gupta & Raskar, 2018; Vepakomma et al., 2018) splits the AI model to be trained at the clients and
server separately. The computation-intensive portions are typically offloaded to the server, which is
critical for the model training at resource-constrained devices. SL is regarded as one of the enabling
technologies for edge intelligence in future networks (Zhou et al., 2019).

r
x

global model local optima global optima

1r+
x

1

x

2

x

x

IID Non-IID

SL

FL

Figure 1: Illustration of the model
updates of FL and SL for 2 clients
and 2 local update steps during one
round.

The comparisons of FL and SL are of practical interest for
the design and deployment of intelligent networks. Existing
studies focus on various aspects for their comparisons (Thapa
et al., 2020; Gao et al., 2020; 2021), e.g., in terms of learn-
ing performance (Gupta & Raskar, 2018), computation effi-
ciency (Vepakomma et al., 2018), communication overhead
(Singh et al., 2019), and privacy issues (Thapa et al., 2021).
For example, with the emphasis on the learning performance
comparison, Gao et al. (2020; 2021) find that SL exhibits (i)
faster convergence speed than FL under IID data in terms of
communication rounds; (ii) better learning performance un-
der imbalanced data; (iii) worse learning performance under
(extreme) non-IID data, etc. The difference arises from the
distinct process of model updates of FL and SL. In particular,
FL takes the average of the local model parameters at the end
of each round; SL only trains the clients in sequence and does not average the client updates. Fig-
ure 1 plots the client drift (Karimireddy et al., 2020; Wang et al., 2020; Li et al., 2022) of FL and SL
under both IID and non-IID data to visualize the update process. Under the IID setting, SL approach
the global optima x∗ faster than FL given the sequential training mechanism. In contrast, under the
non-IID setting, SL may deviate from the global optima for the same reason.

1

Under review as a conference paper at ICLR 2023

Convergence analysis is critical for the performance comparison between SL and FL. Specifically,
a rigorous analysis is of paramount importance for the vital research questions raised by (Gao et al.,
2020) (which are only empirically evaluated but remain unsolved in theory): RQ1-“What factors
affect SL performance?” and RQ2-“In which setting will the SL performance outperform FL?”.
A wealth of work has analyzed the convergence of FL in the cases of IID (Stich, 2018; Zhou &
Cong, 2017; Khaled et al., 2020), non-IID (Li et al., 2020; 2019; Khaled et al., 2020; Karimireddy
et al., 2020) and unbalanced data (Wang et al., 2020). However, with the distinct update process, the
convergence analysis of SL has yet to be solved on non-IID data. To this end, this paper first derives
a rigorous convergence results of SL and draw the comparison results of FL and SL theoretically.

Main contributions. The main contributions can be summarized with respect to the two research
questions above:

• We prove the convergence of SL on non-IID data with the standard assumptions used in FL liter-
ature 1 with a convergence rate ofO(1/

√
T) in Section 4.2. By this, we find that the convergence

of SL is affected by factors such as data heterogeneity and the number of local update steps.
Experimental results verify the analysis results empirically in Section 5.2. To the best of our
knowledge, this work is the first to give the convergence analysis of SL on non-IID data.

• We compare FL2 and SL in theory (Section 4.3) and in practice (Section 5.3). Theoretically,
the guarantee of SL is worse than FL in terms of training rounds on non-IID data. Empirically,
we provide some generalized conclusions of FL and SL in cross-device settings, including (i) the
best and threshold learning rate of SL is smaller than FL; (ii) the performance of SL is worse than
FL when the number of local update steps is large on highly non-IID data; (iii) the performance
of SL can be better than FL when choosing small the number of local update steps is small on
highly non-IID data.

2 PRELIMINARIES AND ALGORITHM OF SPLIT LEARNING

As two of the most popular distributed learning frameworks, both FL and SL aim to train the global
model from distributed datasets. The optimization problem of FL and SL with N clients can be
given by

min
x∈Rd

{
f(x) :=

N∑
i=1

pifi(x)

}
, (1)

where pi = ni/n is the ratio of local samples at client i (n and ni are the sizes of the overall datasetD
and local datasetDi at client i, respectively), x is the model parameters, f(x) is the global objective,
fi(x) denotes the local objective function on client i. In particular, fi(x) := Eξi∼Di [fi(x; ξi)] =
1
ni

∑
ξi∈Di

fi(x; ξi), where ξi represents a data sample from the local dataset Di.

SL with the global learning rate. The relay-based (sequential) training process across clients
makes SL significantly different (from FL), which has been described in Algorithm 1. Considering
the massive number of clients in cross-device setting, only a subset S of clients are selected for
model training at each round. The update order of the selected clients can be meticulously designed
or randomly determined (used in this paper). The i-th client requests and initializes with the lasted
model (step 4) and then performs multiple local updates (step 5-11)3. After K local updates, the
client will send the model parameters to the next client (i.e., the i + 1-th client). The local update

1We only show the convergence for non-convex objective functions here since SL is now often used in large
deep learning models whose objective functions are possibly non-convex. Nevertheless, similar methods can
be used to get the convergence for general convex functions and strongly convex functions.

2FedAvg is used for comparison in this work.
3The client and the server cooperate to conduct the local updates. Note that in SL, though the model update

requires communication between the client and server, the model is still trained on the local dataset. So the
process is called local update (Thapa et al., 2020). The concatenation of the client-side and server-side models
after each local update is called local model.

2

Under review as a conference paper at ICLR 2023

process can be stated as:

Initialize: x
(r,0)
i =

{
xr, i = 1

x
(r,K)
i−1 , i > 1

(2)

Update: x
(r,k+1)
i = x

(r,k)
i − ηlgi(x

(r,k)
i), (3)

where x
(r,k)
i denotes the complete local model (parameters) after the k-th local update on the local

dataset Di in the r-th round, ηl is the local learning rate and gi(x
(r,k)
i) := ∇fi(x(r,k)

i ; ξ
(r,k)
i) rep-

resents the stochastic gradients over on the mini-batch ξ
(r,k)
i sampled randomly from Di. Note that

the complete model x(r,k)
i consists of the client-side model x(r,k)

c,i and server-side model x(r,k)
s,i , as

shown in Algorithm 1. The clients and server update their models synchronously and without loss
of generality, we do not highlight the model locations in the following.

After the last client in S (i.e., the |S|-th client) completes its local updates, it will request the initial
client-side model of the current round. The global update is conducted in both the client and server:

xr+1 = xr + ηg(x
(r,K)
|S| − xr), (4)

where xr denotes the complete global model (parameters) in the r-th round (xr equals x(r,0)
i only

when i = 1, which is different from FL), ηg is the global learning rate. Note in Eq. (4) that we
propose adding the global learning rate ηg against the vanilla SL algorithm (Gupta & Raskar, 2018;
Vepakomma et al., 2018; Thapa et al., 2020; 2021). The global learning rate design mechanism is
originally developed in the FL setting (Karimireddy et al., 2020; Reddi et al., 2020; Wang et al.,
2020) to reduce the client drift, and can be readily adopted in SL for the same function. Algorithm 1
can operate in both the centralized and peer-to-peer mode (see Appendix A) and is reduced to the
vanilla SL if steps 13-14 removed. For brevity, we have omitted some unconcerned details of SL
in Algorithm 1, e.g., the security and privacy settings. More details about SL can be found in
Appendix A or Gupta & Raskar (2018); Thapa et al. (2021).

Algorithm 1 Split Learning with the Global Learning Rate

Some notations:
– xc denotes the client-side model (parameters)
– xs denotes the server-side model (parameters)
– x := [xc,xs] denotes the complete model (parameters)

1: for round r = 0, . . . , R− 1 do
2: Sample a subset S of clients and determine their update order
3: for client index i = 1, . . . , |S| do

4: Client i: Request the latest client-side model and initialize x
(r,0)
c,i ←

{
xr
c , i = 1

x
(r,K)
c,i−1, i > 1

5: for local update step k = 0, . . . ,K − 1 do
6: Client i: Forward propagation and send activations to the server
7: Server: Forward propagation with activations from the client
8: Server: Back-propagation and send gradients to the client
9: Client i: Back-propagation with gradients from the server

10: Local model updates:

{
Client i: x

(r,k+1)
c,i ← x

(r,k)
c,i − ηlgi(x

(r,k)
c,i)

Server: x
(r,k+1)
s,i ← x

(r,k)
s,i − ηlgi(x

(r,k)
s,i)

11: end for
12: end for
13: Client |S|: Request the initial client-side model xr

c of the current round

14: Global model updates:

{
Client |S|: xr+1

c ← xr
c + ηg(x

(r,K)
c,|S| − xr

c)

Server: xr+1
s ← xr

s + ηg(x
(r,K)
s,|S| − xr

s)

15: Client |S| and Server: Store the global model
16: end for

3

Under review as a conference paper at ICLR 2023

3 RELATED WORK

Variants of SL. SL is deemed as a promising paradigm for distributed model training at resource-
constrained devices, given its computational efficiency on the client side. Most existing works focus
on reducing the training delay arising from the relay-based training manner in the multi-user sce-
nario. SplitFed (Thapa et al., 2020) is one popular model parallel algorithm that combines the
strengths of FL and SL, where each client has one corresponding instance of server-side model in
the main server to form a pair. Each pair constitutes a complete model and conducts the local update
in parallel. After each training round, the fed server collects and aggregates on the clien-side local
updates. The aggregated client-side model will be disseminated to all the clients before next round.
The main server does the same operations to the instances of the server-side model. SplitFedv2
(Thapa et al., 2020), SplitFedv3 (Gawali et al., 2021) and SFLG (Gao et al., 2021), FedSeq
(Zaccone et al., 2022) are the variants of SplitFed. In particular, SFLG (Gao et al., 2021) is one
generalized variants of SplitFed, combining SplitFed and SplitFedv2.

Convergence analysis of SL. In the case of IID data, the convergence analysis of SL is identical
to standard Minibatch-SGD (Wang et al., 2022; Park et al., 2021), so some convergence properties
of Minibatch SGD is applied to SL too. The algorithm in Han et al. (2021) reduces the latency
and downlink communication on SplitFed by adding auxiliary networks at client-side for quick
model updates. Their convergence analysis combines the analysis of Belilovsky et al. (2020) and
FedAvg. Wang et al. (2022) proposed FedLite to reduce the uplink communication overhead
by compressing activations with product quantization and provided the convergence analysis of
FedLite. However, their convergence recovers that of Minibatch SGD when there is no quan-
tization. SGD with biased gradients (Ajalloeian & Stich, 2020) is also related. However, it only
converges to a neighborhood of the solution. Furthermore, we find that Woodworth et al. (2020a;b)
compared the convergence of distributed Minibatch SGD and local SGD under homogeneous and
heterogeneous settings, respectively. To differentiate our work, we show how these algorithms op-
erate in Appendix B. As a result, the convergence of SL on non-IID data is still lacking.

4 CONVERGENCE ANALYSIS OF SL

4.1 ASSUMPTIONS

We make the following standard assumptions on the local objective functions {fi(x)}Ni=1.

Assumption 1 (L-smooth). Each local objective function fi is L-smooth, i ∈ {1, 2, . . . , N}, i.e.,
there exists a constant L > 0 such that ∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥ for all x and y.

Assumption 2 (Unbiased gradient and bounded variance). For each client i, i ∈ {1, 2, . . . , N}, the
stochastic gradient gi(x) := ∇fi(x; ξi) is unbiased E[gi(x)] = ∇fi(x) and has bounded variance
Eξi [∥gi(x)−∇fi(x)∥2] ≤ σ2.

Assumption 3 (Bounded dissimilarity). There exist constants B ≥ 1 and G ≥ 0 such that
1
N

∑N
i=1 ∥∇fi(x)∥

2 ≤ B2 ∥∇f(x)∥2 + G2. In the IID case, B = 1 and G = 0, since all the
local objective functions are identical to each other. In the non-IID case, B and G measure the
heterogeneity of data distribution.

4.2 CONVERGENCE RESULT AND DISCUSSION

Without loss of generality, all the clients participate in the SL process (|S| = N) and the unweighted
global objective function f(x) = 1

N

∑N
i=1 fi(x) is adopted. Note that the results in the unweighted

case can be readily extended to the weighted case of Eq. (1). Following the proof of Wang et al.
(2020); Karimireddy et al. (2020); Khaled et al. (2020), we give the convergence results of SL
(details are in Appendix D), as follows:

4

Under review as a conference paper at ICLR 2023

Theorem 1. Let Assumptions 1, 2 and 3 hold. Suppose that the local learning rate satisfies ηl ≤
1

2NKL min
{

1√
2B2+1

, 1
ηg

}
. For Algorithm 1, it holds that

E[∥∇f(x̄R)∥2] ≤ 4[f(x0)− f(x∗)]

NKηgηlR︸ ︷︷ ︸
T1:initialization error

+12N2K2η2l L
2G2 + 6N2Kη2l L

2σ2︸ ︷︷ ︸
T2:client drift error

+ 4NηgηlLσ
2︸ ︷︷ ︸

T3:global variance

, (5)

where x̄R = 1
R

∑R−1
r=0 xr is the averaged global model over the R rounds.

Corollary 1. Choose ηgηl = 1
L
√
T

and apply the result of Theorem 1. For sufficiently large T

(T ≥ 4N2K2 max
{

2B2+1
η2
g

, 1
}

), it holds that

E[∥∇f(x̄R)∥2] ≤ O
(
L[f(x0)− f(x∗)]√

T

)
︸ ︷︷ ︸

T1:initialization error

+O
(
N2K2G2 +N2Kσ2

η2gT

)
︸ ︷︷ ︸

T2:client drift error

+ O
(

σ2

√
T

)
︸ ︷︷ ︸

T3:global variance

, (6)

where T is the total number of iterations (i.e., NKR in SL).

The upper bound of E[∥∇f(x̄R)∥2] consists of three types of terms: (i) initialization error, (ii) client
drift error, caused by the client drift (see Lemma 4 in Appendix D.2), (iii) global variance. We
can see that the result demonstrates the relationships between convergence and factors such as the
number of clients, the data heterogeneity, the global/local learning rates and the local update steps.
According to the result, a large ηl means higher rate that the initialization error decreases at but
causes large client drift error and global variance. Next, we discuss the convergence rate and the
influence factors of SL in detail.

Convergence rate. By Corollary 1, for sufficiently large T , the convergence rate is determined by
the initialization error and global variance (see Eq. (6)), resulting in a convergence rate ofO(1/

√
T).

We can recover the convergence of SGD (Bottou et al., 2018; Wang et al., 2020) when N = 1 and
K = 1 (i.e., without the client drift error) — It is true but not shown in Theorem 1 directly, since it
is complicated to write the constant details in Eq. (5). We defer the discussion to Appendix D.5.

Effect of data heterogeneity. According to Theorem 1, when on highly non-IID data (B and G are
large), a small ηl is required for the convergence of SL (see the condition of Theorem 1). In addition,
the client drift error also increases. As a result, large data heterogeneity harms the convergence of
SL, which is consistent with the previous study (Gao et al., 2020; 2021).

Effect of K. K is the number of local update steps. An immediate question is whether we can
improve the convergence by adding local update steps when R is fixed. The answer is yes. By
Eq. (5), as K increases, the initialization error decreases and the client drift error increases, which
implies that the optimal K exists. We can further get that larger data heterogeneity makes the optimal
K smaller based on Eq. (5). This property is analogous to FL (McMahan et al., 2017).

Effect of ηg . The global learning rate ηg can be used to reduce the client drift without hurting
the progress of SL. A large ηg reduces the client drift error, hence improving the convergence rate.
For example, by Corollary 1, SL shows O(LF+σ2

√
T

+ N2K2G2+N2Kσ2

T) convergence rate if ηg = 1

(F := f(x0)− f(x∗)); while it shows a convergence rate of O(LF+σ2
√
T

+ K2G2+Kσ2

T) if ηg = N .

Some detailed analysis of these factors are deferred to Section 5.2, combined with the experiments.

4.3 COMPARISON BETWEEN FL AND SL

In this section, we first give the convergence result of FL based on our setting, and then compare
the results of FL and SL to answer the second question “In which setting will the SL performance
outperform FL?” theoretically.

We summarize the convergence results of FL ((Wang et al., 2020), reproduced by Theorem 2 in
Appendix D.3) and SL (Theorem 1) in Table 1. The convergence guarantee of FL is one of the
best known convergence results for the non-convex functions of FL, which makes our comparison

5

Under review as a conference paper at ICLR 2023

Table 1: Comparison of convergence results between FL (Wang et al., 2020) and SL (Theorem 1)
for non-convex functions. The convergence guarantee of FL is given in the 1-st (upper bound) and
2-th (constraints on ηl) rows. The effective learning rate versions are shown in the 3-rd (FL) and
5-th (SL) row. The number of rounds required to reach ϵ accuracy is given in the 4-th (FL) and 6-th
(SL) rows. F := f(x0)− f(x∗). Constants (including L) are omitted. ηg is set to ηg = 1.

FL

(Wang et al., 2020)

O
(

F
ηlKR

)
+O

(
η2l K

2G2 + η2l Kσ2
)
+O

(
ηlσ

2

N

)
Constraint: ηl ≤ 1

2KL min
{

1√
2B2+1

, 1
ηg

}
η̃FL: O

(
F

η̃FLR

)
+O

(
η̃2FLG

2 +
η̃2

FLσ
2

K

)
+O

(
η̃FLσ

2

NK

)
Rϵ = O

(
F 2

ϵ2 + σ4

N2K2ϵ2 + KG2+σ2

Kϵ

)
SL

η̃SL: O
(

F
η̃SLR

)
+O

(
η̃2SLG

2 +
η̃2

SLσ
2

K

)
+O

(
η̃SLσ

2

K

)
Rϵ = O

(
F 2

ϵ2 + σ4

K2ϵ2 + KG2+σ2

Kϵ

)

persuasive. Choosing ηl =
√
N

L
√
T

for Theorem 2 provides the O(1/
√
NT) convergence rate, the

linear speedup in FL.

The constraint on the local learning rate of SL is tougher than FL. The local learning rate of SL
(see Theorem 1) has tougher constraints than FL (see the 2-nd row of Table 1), which indicates SL
is more sensitive to the heterogeneity of data. This is significant for the selection of the learning rate
of SL in practice (see the comparison experiments).

Effective learning rate. We next focus on comparing FL and SL in terms of rounds. Note that
this comparison (running for the same R) is fair given the same total computation cost (including
the computation cost on client-side and server-side). Beginning with the observation that the con-
vergence guarantees and constraints seem very alike if choosing ηl(SL) = ηl(FL)/N — ηl(FL) and
ηl(SL) denote the local learning rate of FL and SL respectively, we define the effective learning
rate η̃FL := Kηgηl for FL and η̃SL := NKηgηl for SL as Karimireddy et al. (2020); Wang et al.
(2020) did. Note that the effective learning rate is unequal for FL and SL. As a result, we obtain the
convergence guarantee of the effective learning rate version exhibited in the 3-rd and 5-th rows in
Table 1.

The guarantee of SL is worse than FL in terms of training rounds on non-IID data. To make
a comparison, we need to choose appropriate ηl for both. Considering η̃FL and η̃SL has the same
constraints, we can choose η̃FL = η̃SL = 1/

√
R for both bounds (see the 3-rd and 5-th rows in Ta-

ble 1). Then we get: (i) O
(

F√
R
+ KG2+σ2

KR + σ2

NK
√
R

)
of FL and (ii)O

(
F√
R
+ KG2+σ2

KR + σ2

K
√
R

)
of SL after R rounds, i.e., the round complexity Rϵ shown in 4-th and 6-th rows in Table 1. Then for
sufficiently large R, Rϵ is determined by the first and the second term (see the 4-th and 6-th rows). In
particular, the only difference in the complexity appears in the second term (we have marked it with
red), which indicates that the guarantee of SL is worse than FL in terms of rounds. However, we
note that the gap is not obvious when K or σ is small. Further, considering the constants advantage
of SL (It is true but not shown in Theorem 1, see Appendix D.2), the performance comparison
between FL and SL is still uncertain. To make a more detailed comparison, we have conducted
adequate experiments and given some generalized conclusions in Section 5.3.

5 EXPERIMENTS

Our experiment environment is ideal (without the communication and computation restrictions),
nevertheless, is enough to examine our convergence theory. The convergence rate is evaluated in
terms of the training rounds. We demonstrate the detailed experimental setup in Section 5.1, evaluate

6

Under review as a conference paper at ICLR 2023

the effect of the factors on the performance of SL in Section 5.2, and compare FL and SL in cross-
device settings in Section 5.3. More experimental details are in Appendix E.

5.1 EXPERIMENTAL SETUP

Datasets and models. We adopt the following setups: (i) training LeNet-5 (LeCun et al., 1998)
on the MNIST dataset (LeCun et al., 1998); (ii) training LeNet-5 on the Fashion-MNIST dataset
(Xiao et al., 2017); (iii) training VGG-11 (Simonyan & Zisserman, 2014) on the CIFAR-10 dataset
(Krizhevsky et al., 2009). For SL, the LeNet-5 is split after the second 2D MaxPool layer, with 6%
of the entire model size retained in the client; the VGG-11 is split after the third 2D MaxPool layer,
with 10% of the entire model size at the client. Ideally, the split layer position has no effect on the
performance of SL (Wang et al., 2022).

Data distribution. Both IID and non-IID datasets are considered in the experiments. For the non-
IID setting, we adopt two mechanisms to generate non-IID data: (i) using a Dirichlet distribution
Dir(α) to generate mildly non-IID data, where a smaller α indicates higher data heterogeneity (Hsu
et al., 2019; Zhu et al., 2021); (ii) using a similar mechanism like (McMahan et al., 2017; Zhao
et al., 2018) to generate the pathological non-IID data, e.g., one distribution in which most clients
only contain samples from 2 (5) classes, denoted as C = 2 (5). Note that the data distribution
generated by the first mechanism is unbalanced and the second is balanced. We will use “α = #”
and “C = #” to represent the different data distributions in the following, where # is the parameter.

5.2 EXPERIMENTAL RESULTS OF SL

0 5 10 15 20 25 30
Rounds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

n
Lo

ss

SL(IID)
SL(C = 8)
SL(C = 5)
SL(C = 2)

(a) Effect of data heterogeneity

0 5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

SL(=1.0) E=1
SL(=1.0) E=2
SL(=1.0) E=4
SL(=1.0) E=8
SL(=1.0) E=10

(b) Effect of K

5f(-4) f(-3) 5f(-3) f(-2) 5f(-2)
Local Learning Rate (f(x) = log10(x))

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

Gl
ob

al
 L

ea
rn

in
g

Ra
te

34.6 44.6 11.4 11.4 11.4

26.1 34.6 11.4 11.4 11.4

33.0 31.2 62.2 11.4 11.4

44.4 72.2 95.0 77.8 11.4

41.9 67.3 97.3 69.6 11.4

39.2 61.1 96.3 79.7 21.5

35.2 54.8 96.9 98.1 11.4

29.8 49.4 96.5 11.4 11.4

24.5 45.1 95.7 87.8 11.4
20

30

40

50

60

70

80

90

(c) Effect of ηg

Figure 2: Results of SL on MNIST dataset.

In this section, we study the effects of data heterogeneity local update steps using the MNIST dataset.
The training samples are assigned to 10 clients. For data heterogeneity, we use four distributions:
IID, C = 8, 5, 2. For K, we use five settings, E = 1, 2, 4, 8, 10 over Dir10(1.0) distribution. E is the
local epochs (McMahan et al., 2017), which satisfies K = max{Eni/b}, where b is the mini-batch
size. So E can measure the value of K with ni and b fixed. The results on Fashion-MNIST and
CIFAR-10 are deferred to Appendix E.1.

Effect of data heterogeneity. As shown in Figure 2a, the training loss curve of IID distribution
is the lowest and most stable. When the data heterogeneity increases (C decreases from 8 to 2),
SL shows worse performance. The phenomenon is in accordance with our analysis that large data
heterogeneity harms the convergence of SL in Section 4.2.

Effect of K. Figure 2b shows the training loss in terms of communication rounds R. SL shows the
best performance when E = 2. This verifies that optimal K exists and suitable K can improve the
convergence. Over-large K can even harm the convergence rate (see curves E = 8 and E = 10).

Effect of ηg . The effect of ηg in FL has been empirically studied in Reddi et al. (2020). They
tune ηl and ηg by grid search. We follow a similar method to study ηg of SL by choosing different
combinations of ηg and ηl. As shown in Figure 2c, the dark green grids with high test accuracy
concentrate on the left bottom triangular regions, which shows that ηgηl should avoid being too
large. Also note that ηg cannot be set infinitely too large and has a limited range, which is also
observed in FL (Reddi et al., 2020). Thus tuning ηg in the limited range is suggested. Besides, we
find that ηg can be introduced to other SL frameworks, like SplitFed. However, further research
on ηg is needed to address the issues such as how to tune ηg to gain improvement? in FL and SL.

7

Under review as a conference paper at ICLR 2023

5.3 EMPIRICAL COMPARISON BETWEEN FL AND SL

We have compared FL and SL theoretically in Section 4.2. The question arises that how about the
learning performance of SL in practice compared to FL? In the previous work, the same learning
rates are used to evaluate the performances of SL and FL (Gao et al., 2020; 2021). However, theo-
retical analyses in Section 4.2 show that the appropriate learning rate for SL may deviate from that
of FL. Thus, we evaluate the performance of SL and FL with different learning rates for fair com-
parison. The learning rates are selected from {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. To evaluate
the effect of K on the performance comparison of FL and SL, we adopt two settings: E = 1 and
E = 10. We run 1000 rounds of training on MNIST, Fashion-MNIST and 4000 rounds on CIFAR-
10 dataset when E = 1; run 100 rounds of training on MNIST, Fashion-MNIST and 400 rounds
on CIFAR-10 dataset when E = 10. The average top-1 test accuracy over the last 10% rounds are
shown in Table 2, e.g., the average accuracy over the last 400 rounds of the total 4000 rounds on
CIFAR-10 when E = 1.

Cross-device setting. We compare the performance of FL and SL in cross-device settings, where the
client number is enormous and the local dataset size is small. Specifically, (i) MNIST: the training
data is split into 1000 clients; (ii) Fashion-MNIST: the training data is split into 1000 clients; (iii)
CIFAR-10: the training data is split into 500 clients. The number of samples per client depends on
the data distribution, e.g., 60 (MNIST), 60 (Fashion-MNIST) and 100 (CIFAR-10) samples per client
in the second partition mechanism. The mini-batch size is 10 for all setups under the consideration of
low computation power of IoT devices. The original test sets are used to evaluate the generalization
performance of the global model (test accuracy) after each training round.

The best and threshold learning rate of SL is smaller than FL. We refer to the learning rate mak-
ing the best test accuracy and minimal learning rate making the training die as the best learning rate
and the threshold learning rate. According to our theory, the tougher constraint indicates the smaller
threshold learning rate of SL and the math property of Eq. (5) indicates a smaller best learning rate.
To verify this point, we use the “best” learning rate, which makes the “best” test accuracy among the
learning rates we choose, to substitute the actual best learning rate. The “threshold” learning rate
is defined alike. As shown in Table 2, the “best” and “threshold” learning rates of SL are smaller
than FL, especially on highly non-IID data (e.g., α = 0.2). Furthermore, we note that the “best”
and “threshold” learning rate turn small as the heterogeneity of data becomes large, which is also in
accordance with our theory.

Performance comparison on IID data. SL can obtain a faster convergence rate with comparable
or even higher test accuracy than FL (see the left plot in Figure 3 and Table 2). This is identical to
the conclusion in Gao et al. (2020; 2021).

Performance comparison on non-IID data. Our theory proves that the guarantee of SL is worse
than FL in terms of rounds when K is large. As shown in Table 2, almost all the “best” test accuracy
of FL on very highly non-IID data (i.e., α = 0.2 and C = 2) beats that of SL when E = 10. When
E (K) is large, FL converges faster than SL too (see the middle plot in Figure 3). However, we find
that SL has a better performance than FL when E (K) is small (see the E = 1 column in Table 2 and
the right plot in Figure 3). Even in some cases (α = 0.5 and C = 5 on CIFAR-10) when E = 10,
SL is better.

0 50 100 150 200 250 300 350 400
Rounds

30

40

50

60

70

80

To
p-

1
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10 (E=10)

FL(IID) SL(IID)

0 50 100 150 200 250 300 350 400
Rounds

10

20

30

40

50

60

70

To
p-

1
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10 (E=10)

FL(= 0.2)
FL(C = 2)

SL(= 0.2)
SL(C = 2)

0 500 1000 1500 2000 2500 3000 3500 4000
Rounds

20

30

40

50

60

70

80

90

To
p-

1
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10 (E=1)

FL(= 0.2)
FL(C = 2)

SL(= 0.2)
SL(C = 2)

Figure 3: Top-1 test accuracy of FL and SL on non-IID data in terms of rounds. We illustrate some
results of CIFAR-10 from Table 2.

8

Under review as a conference paper at ICLR 2023

Table 2: Performance comparison between FL and SL in cross-device settings. The “best” test
accuracy (%) is in the “Best” accuracy (lr) column (the “best” learning rate is in the parenthesis) and
the “threshold” learning rate in the “Threshold” lr column. Note that ># means that the “threshold”
learning rate is larger than #. The higher “best” accuracy between FL and SL is marked in bold
(excluding the results whose difference is within 1%).

Dataset Distribution
E = 1 E = 10

“Best” accuracy (lr) “Threshold” lr “Best” accuracy (lr) “Threshold” lr
FL SL FL SL FL SL FL SL

1

MNIST

IID 99.0 (0.05) 98.9 (0.005) > 0.1 0.05 97.9 (0.01) 97.6 (0.005) 0.1 0.05
2 α = 5.0 99.1 (0.05) 98.9 (0.01) > 0.1 0.05 98.0 (0.01) 97.8 (0.001) 0.05 0.01
3 α = 0.5 98.9 (0.05) 98.8 (0.005) > 0.1 0.05 97.9 (0.01) 97.9 (0.001) 0.05 0.005
4 α = 0.2 98.7 (0.05) 98.8 (0.005) 0.1 0.05 96.8 (0.01) 96.8 (0.001) 0.05 0.01
5 C = 5 99.0 (0.05) 98.9 (0.005) > 0.1 0.05 98.0 (0.01) 98.0 (0.001) 0.05 0.01
6 C = 2 98.8 (0.05) 99.0 (0.01) > 0.1 0.05 96.8 (0.005) 97.1 (0.001) 0.05 0.005

7

Fashion-
MNIST

IID 88.1 (0.05) 88.4 (0.005) > 0.1 0.1 85.0 (0.01) 84.0 (0.001) 0.1 0.05
8 α = 5.0 88.2 (0.05) 88.8 (0.005) > 0.1 0.1 84.5 (0.01) 83.2 (0.0005) 0.05 0.05
9 α = 0.5 86.7 (0.05) 87.6 (0.005) > 0.1 0.1 83.8 (0.01) 79.2 (0.001) 0.05 0.01
10 α = 0.2 83.5 (0.01) 85.9 (0.005) 0.1 0.05 80.4 (0.01) 79.0 (0.0005) 0.05 0.01
11 C = 5 87.5 (0.05) 88.1 (0.01) > 0.1 0.05 82.7 (0.01) 80.1 (0.001) 0.1 0.05
12 C = 2 83.0 (0.1) 87.3 (0.005) > 0.1 0.05 75.9 (0.01) 72.3 (0.001) 0.1 0.005

13

CIFAR-10

IID 86.4 (0.05) 87.0 (0.005) 0.1 0.05 77.7 (0.01) 83.7 (0.001) 0.05 0.01
14 α = 5.0 86.1 (0.05) 87.0 (0.005) 0.1 0.05 77.6 (0.005) 82.7 (0.001) 0.05 0.005
15 α = 0.5 84.1 (0.01) 85.5 (0.005) 0.05 0.01 71.8 (0.01) 76.9 (0.001) 0.05 0.005
16 α = 0.2 80.5 (0.01) 83.5 (0.001) 0.05 0.01 66.9 (0.01) 65.0 (0.0005) 0.05 0.001
17 C = 5 85.5 (0.05) 86.5 (0.005) 0.1 0.05 74.2 (0.01) 78.9 (0.001) 0.05 0.005
18 C = 2 80.0 (0.05) 84.7 (0.005) 0.1 0.05 61.6 (0.01) 58.7 (0.0005) 0.05 0.001

6 CONCLUSION

In this work, we first derived the convergence guarantee of SL for non-convex objectives on non-
IID data. The results reveal that the convergence of SL is affected by the factors such as data
heterogeneity and local update steps. Furthermore, we compare SL against FL theoretically and
empirically, ending up with the conclusions that (i) the best and threshold learning rate of SL is
smaller than FL; (ii) the performance of SL is worse than FL when the number of local update steps
is large on highly non-IID data; (iii) the performance of SL can be better than FL when the number
of local update steps is small on highly non-IID data. Our work can bridge the gap between FL and
SL, provide deep understanding of these two approaches and guide the deployment of these two in
real-world applications.

REFERENCES

Ahmad Ajalloeian and Sebastian U Stich. On the convergence of sgd with biased gradients. arXiv
preprint arXiv:2008.00051, 2020.

Anonymous. Fedexp: Speeding up federated averaging via extrapolation. In Submitted to
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=IPrzNbddXV. under review.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of
CNNs. In International Conference on Machine Learning, pp. 736–745. PMLR, 2020.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Qiang Duan, Shijing Hu, Ruijun Deng, and Zhihui Lu. Combined federated and split learning
in edge computing for ubiquitous intelligence in internet of things: State-of-the-art and future
directions. Sensors, 22(16):5983, 2022.

9

https://openreview.net/forum?id=IPrzNbddXV
https://openreview.net/forum?id=IPrzNbddXV

Under review as a conference paper at ICLR 2023

Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa, Kyuyeon Kim, Seyit A
Camtepe, Hyoungshick Kim, and Surya Nepal. End-to-end evaluation of federated learning and
split learning for internet of things. arXiv preprint arXiv:2003.13376, 2020.

Yansong Gao, Minki Kim, Chandra Thapa, Sharif Abuadbba, Zhi Zhang, Seyit Camtepe, Hyoung-
shick Kim, and Surya Nepal. Evaluation and optimization of distributed machine learning tech-
niques for internet of things. IEEE Transactions on Computers, 2021.

Manish Gawali, CS Arvind, Shriya Suryavanshi, Harshit Madaan, Ashrika Gaikwad,
KN Bhanu Prakash, Viraj Kulkarni, and Aniruddha Pant. Comparison of privacy-preserving
distributed deep learning methods in healthcare. In Annual Conference on Medical Image Un-
derstanding and Analysis, pp. 457–471. Springer, 2021.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun Moon. Accelerating federated
learning with split learning on locally generated losses. In ICML 2021 Workshop on Federated
Learning for User Privacy and Data Confidentiality. ICML Board, 2021.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. Advances in Neural Information Processing Systems, 33:
14068–14080, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pp. 965–978. IEEE, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

10

Under review as a conference paper at ICLR 2023

Jihong Park, Sumudu Samarakoon, Anis Elgabli, Joongheon Kim, Mehdi Bennis, Seong-Lyun Kim,
and Mérouane Debbah. Communication-efficient and distributed learning over wireless networks:
Principles and applications. Proceedings of the IEEE, 109(5):796–819, 2021.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. Detailed compar-
ison of communication efficiency of split learning and federated learning. arXiv preprint
arXiv:1909.09145, 2019.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. arXiv preprint arXiv:2004.12088, 2020.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements
of federated learning towards privacy preservation: from federated learning to split learning. In
Federated Learning Systems, pp. 79–109. Springer, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Jianyu Wang, Hang Qi, Ankit Singh Rawat, Sashank Reddi, Sagar Waghmare, Felix X Yu, and Gauri
Joshi. Fedlite: A scalable approach for federated learning on resource-constrained clients. arXiv
preprint arXiv:2201.11865, 2022.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020a.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Riccardo Zaccone, Andrea Rizzardi, Debora Caldarola, Marco Ciccone, and Barbara Caputo.
Speeding up heterogeneous federated learning with sequentially trained superclients. arXiv
preprint arXiv:2201.10899, 2022.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradi-
ent descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):
1738–1762, 2019.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

11

Under review as a conference paper at ICLR 2023

CONTENTS

1 Introduction 1

2 Preliminaries and Algorithm of Split Learning 2

3 Related work 4

4 Convergence Analysis of SL 4

4.1 Assumptions . 4

4.2 Convergence Result and Discussion . 4

4.3 Comparison between FL and SL . 5

5 Experiments 6

5.1 Experimental Setup . 7

5.2 Experimental Results of SL . 7

5.3 Empirical Comparison between FL and SL . 8

6 Conclusion 9

A More details about Split Learning 13

B Additional related work 15

C Summary of theories 16

D Proof of results 16

D.1 Basic technical lemmas and Notations . 16

D.2 Proof of Theorem 1 . 19

D.3 Proof of Theorem 2 . 22

D.4 Proof of Theorem 3 . 22

D.5 Extreme cases . 24

E More experimental details 25

E.1 More results of SL . 25

E.2 More comparisons between FL and SL in cross-device setting 25

12

Under review as a conference paper at ICLR 2023

A MORE DETAILS ABOUT SPLIT LEARNING

In this section, we provide more details about SL. More discussions can be found in Gupta & Raskar
(2018); Thapa et al. (2021); Duan et al. (2022).

In SL, the complete (or full) ML model is split into two portions. The portion of the complete model
maintained by the clients is called client-side model. The portion maintained by the server is called
server-side model. In SL, the client-side model is owned by all the clients, while the server-side
model is merely owned by the server. Any client can operate with the server to complete the model
training task but can not do it independently (without the help of the server). Then we prepare some
basic concepts in the paper.

Local update (step) The process that one client and the server cooperate to conduct the model
updates, i.e., the inner loop of Algorithm 1. Note that in SL, though the model update
requires communication between the client and server, the model is still trained on the
local dataset. So the process is called local update (Thapa et al., 2020).

Local model The concatenation of the client-side and server-side models after each local update.

Training round The process that all the clients (or a subset of clients selected) complete their local
updates, i.e., the outer loop of Algorithm 1. It is also called a global epoch or global round.

Global model The concatenation of the client-side and server-side models after each global round.

Table 3 summarizes the notations. In particular, the superscripts and subscripts of random vari-
ables appearing in the paper have the same form — a

(r,k)
i , where r is the index of rounds, k is the

index of local update steps, i is the index of clients. It means that the random variable a after the
k-th local update on the local dataset Di in the r-th round. The random variable a can be x (model
parameters), ξ (random samples) or g (stochastic gradients).

Table 3: Summary of notations appearing in the paper.

Symbol Description
T Total number of iterations
R, r Number, index of (training) rounds
N, i Number, index of clients
S, |S| Subset of clients sampled for training every round and its size

K, k

Number, index of local update steps;
K represents the maximum local update steps

when the number of local update steps varies across clients
n, ni Sizes of the overall dataset D and local dataset Di at client i

E
Local epochs;

number of training passes each client makes over its local dataset
b Mini-batch size

ηg, ηl The global, local learning rate

α,C
They are used to denote different distributions by the two mechanisms

generating non-IID data respectively (see Section 5.1)
xr The complete global model (parameters) in the r-th round

x
(r,k)
i

The complete local model (parameters)
after the k-th local update on the local dataset Di in the r-th round

xc,xs The client-side model, server-side model

gi(x
(r,k)
i)

Stochastic gradients over on the mini-batch ξ
(r,k)
i sampled randomly from Di,

also denotes as∇fi(x(r,k)
i ; ξ

(r,k)
i)

13

Under review as a conference paper at ICLR 2023

Two modes of SL. In fact, there are two approaches of training in SL (i) with client-side model
synchronization and (ii) without client-side model synchronization (Singh et al., 2019; Duan et al.,
2022). In this paper, SL is referred to the first approach, i.e., SL with client-side model synchro-
nization. As shown in Figure 4, there are two modes of SL with client-side model synchronization,
including (i) the peer-to-peer mode and (ii) centralized mode. The only difference between the
peer-to-peer and centralized mode is the synchronization way of model parameters4.

• Peer-to-peer mode. Clients store the model parameters by themselves after the local up-
dates. So clients get the latest model from other clients.

• Centralized mode. Clients send the model parameters to the server after the local up-
dates. So clients get the latest model from the server. The centralized mode requires more
communication than peer-to-peer mode.

Implementation of SL with ηg in the peer-to-peer and centralized modes. In each round, the last
client (client N in Figure 4) needs to request for the initial client-side model and conduct the global
model update after completing its local update. The server will conduct the global model update
synchronously. For the peer-to-peer mode, this process will cause (i) additional communication cost
(the red arrow line at the left side of Figure 4) and (ii) additional storage cost of devices and the
server (storing the global model). For the centralized mode, this process will cause (i) additional
communication cost (the red arrow line at the right side of Figure 4) (ii) additional storage cost of
the server (the client-side global model is also stored in the server). The communication cost of SL
with global update is given in Table 4 based on Singh et al. (2019).

Client
1

Client
2

Client
N

Server

...

Client
1

Client
2

Client
N

Server

activations

gradients

model
parameters

clien-side
model

clien-side model

server-side model

...

server-side
model

+

complete
model

=

activations/gradients model parameter

peer-to-peer mode centralized mode

additional communication for
global update

Figure 4: Two modes of SL. The peer-to-peer mode is illustrated in the left side; the centralized
mode is illustrated in the right side.

Table 4: Communication cost of FL and SL when running E local epochs for N clients. x, xc are
the sizes of the complete model parameters and the client-side model parameters respectively. n, ni

are the sizes of the overall datasetD and local datasetDi respectively. The size of the smashed layer
is denoted as q. SL with global update need additional communication cost of one client-side model
parameter each round.

Algorithm Communication of client i Total communication each round
FL 2x︸︷︷︸

complete model

2Nx

SL (peer-to-peer mode) Eniq︸ ︷︷ ︸
activations

+Eniq︸ ︷︷ ︸
gradient

+ xc︸︷︷︸
client-side model

2En+Nxc

SL (centralized mode) Eniq︸ ︷︷ ︸
activations

+Eniq︸ ︷︷ ︸
gradient

+ 2xc︸︷︷︸
client-side model

2En+ 2Nxc

SL
with global update

- Comm. of vanilla SL + xc

4The security and privacy issue is beyond the scope of this work.

14

Under review as a conference paper at ICLR 2023

B ADDITIONAL RELATED WORK

Variants of SL. SL is deemed as a promising paradigm for distributed model training at resource-
constrained devices, given its computational efficiency on the client side. Most existing works focus
on reducing the training delay arising from the relay-based training manner in the multi-user sce-
nario. SplitFed (Thapa et al., 2020) is one popular model parallel algorithm that combines the
strengths of FL and SL, where each client has one corresponding instance of server-side model in
the main server to form a pair. Each pair constitutes a complete model and conducts the local update
in parallel. After each training round, the fed server collects and aggregates on the clien-side local
updates. The aggregated client-side model will be disseminated to all the clients before next round.
The main server does the same operations to the instances of the server-side model. However, in
SplitFed, the main server is required for great computing power to support the multiple instances
of server-side model. To address this issue, Thapa et al. (2020) proposed SplitFedv2. The only
change in SplitFedv2 is that only one server-side model in main server. So the server-side model
has to process the activations (or smashed data) of the client-side model in sequence. The model
gets updated in every single forward-backward propagation, which means that the server-side model
makes more updates than the client-side model. The main point of SplitFedv3 (Gawali et al.,
2021) is substituting alternative client training with alternative the mini-batch training. In vanilla
SL, the local model makes one or more training passes over the local dataset (alternative client train-
ing). This may cause “catastrophic forgetting” issue (Gawali et al., 2021; Duan et al., 2022). So
SplitFedv3 propose to use alternate mini-batch training, where a client updates its client-side
model on one mini-batch, after which the client next in order takes over (Gawali et al., 2021), to
mitigate the issue. SFLG (Gao et al., 2021) is one generalized variants of SplitFed. The clients
are allocated to multiple groups. There is one server in each group. The training inside the group
is identical to SplitFedv2. Then the server-side “global” models per group are aggregated (e.g.,
weighted averaging) to obtain the server-side global model of all groups. FedSeq (Zaccone et al.,
2022) is the same as SFLG except that the training inside the group is identical to vanilla SL. More
variants can be found in Thapa et al. (2021); Duan et al. (2022).

Convergence analysis of SL. The convergence analysis of SL is identical to standard Minibatch-
SGD on IID data (Wang et al., 2022; Park et al., 2021), so some convergence properties of Minibatch
SGD is applied to SL too. The algorithm in Han et al. (2021) reduces the latency and downlink
communication on SplitFed by adding auxiliary networks at client-side to generate the local loss
for model updating. Their convergence analysis combines the analysis of Belilovsky et al. (2020)
and FedAvg. Wang et al. (2022) proposed FedLite to reduce the uplink communication over-
head by compressing activations with product quantization and provided the convergence analysis
of FedLite. However, their convergence recovers that of Minibatch SGD when there is no quan-
tization. SGD with biased gradients (Ajalloeian & Stich, 2020) is also related. However, it only
converges to a neighborhood of the solution. Furthermore, we find that Woodworth et al. (2020a;b)
compared the convergence of distributed Minibatch SGD and local SGD under homogeneous and
heterogeneous settings. To differentiate our work, we show how these algorithms operate in Table 5.
For Minibatch SGD, there is no local update and each client computes K stochastic gradients at the
same point xr. FL and SL make K times more updates than Minibatch SGD. However, models in
FL are training in parallel, while models in SL are in sequence.

Table 5: The update rules of Minibatch SGD, FL (Local SGD) and SL. We use the descriptions of
Local SGD and Minibatch SGD in Woodworth et al. (2020b) and notations in Section 2. ξ(r,k)i ∼ Di

denotes one random sample from client i for the k + 1-th local update in the r-th round.

Algorithm Global update Local update of client i

Minibatch

SGD
x
r+1

= x
r − ηl

1

NK

N∑
i=1

K−1∑
k=0

∇fi(x
r
; ξ

(r,k)
i)

-

-

Local SGD

(or FL)
x
r+1

= x
r − ηl

1

N

N∑
i=1

K−1∑
k=0

∇fi(x
(r,k)
i ; ξ

(r,k)
i)

Initialize: x(r,0)
i = xr

Update: x(r,k+1)
i = x

(r,k)
i − ηl∇fi(x

(r,k)
i ; ξ

(r,k)
i)

SL x
r+1

= x
r − ηl

N∑
i=1

K−1∑
k=0

∇fi(x
(r,k)
i ; ξ

(r,k)
i)

Initialize: x(r,0)
i = x

(r,K)
i−1

Update: x(r,k+1)
i = x

(r,k)
i − ηl∇fi(x

(r,k)
i ; ξ

(r,k)
i)

15

Under review as a conference paper at ICLR 2023

C SUMMARY OF THEORIES

There are two methods to give the convergence of SL: (i) bounding the progress of all clients in
one round; (ii) bounding the progress of one client in one round. The second method can be given
based on the techniques of FL (Khaled et al., 2020; Karimireddy et al., 2020; Wang et al., 2020)
directly. However, it only converges to a neighborhood around the stationary point of the global
function. This case is similar to the biased SGD (Ajalloeian & Stich, 2020). It is intuitive to get the
conclusion since the local stochastic gradient ∇fi(x; ξi) (ξi ∼ Di) generated by local data of any
client i is a biased gradient estimator of the global gradient ∇f(x) of the global function. For the
first method — bounding the progress of all clients in one round, our main contribution, shows that
SL can converge to the stationary point of the global function. The main theories are summarized in
Table 6.

Table 6: Summary of theories for SL. η̃ is the effective learning rate defined in Section 4.3. η̃ in
“progress of all clients in one round” is defined as NKηgηl while η̃ in “progress of one client in one
round” is defined as Kηl. ηg = 1. F := f(x0)− f(x∗).

Outline Theory

Progress of all clients in one round (η̃ = NKηgηl)

E[∥∇f(xr)∥2] ≤ O
(

f(xr)−f(xr+1)
η̃

)
+O

(
η̃2G2 + η̃2σ2

K

)
+O

(
η̃σ2

K

)
Thm. 1

E[∥∇f(x̄R)∥2] ≤ O
(

F
η̃R

)
+O

(
η̃2G2 + η̃2σ2

K

)
+O

(
η̃σ2

K

)
Thm. 1

E[∥∇f(x̄R)∥2] ≤ O
(

F√
T

)
+O

(
N2K2G2+N2Kσ2

T

)
+O

(
σ2
√
T

)
Cor. 1

E[∥∇f(x̄R)∥2] ≤ O
(

F√
R

)
+O

(
KG2+σ2

KR

)
+O

(
σ2

K
√
R

)
Cor. 2

E[∥∇f(x̄R)∥2] ≤ O
(

F
√

(2B2+1)

R+1

)
+O

(
F

2
3 (G2+σ2

K
)
1
3

(R+1)
2
3

)
+O

(
Fσ2√
K(R+1)

)
Cor. 3

Progress of one client in one round (η̃ = Kηl)

E[∥∇f(x
(r,0)
i)∥2] ≤ O

(
f(x

(r,0)
i)−f(x

(r,0)
i+1)

η̃

)
+O

(
η̃2G2 + η̃2σ2

K

)
+O

(
η̃σ2

K

)
+O

(
G2

)
Thm. 3

1

NR

R−1∑
r=0

N∑
i=1

E[∥∇f(x
(r,0)
i)∥2] ≤ O

(
F

η̃NR

)
+O

(
η̃2G2 +

η̃2σ2

K

)
+O

(
η̃σ2

K

)
+O

(
G2) Thm. 3

D PROOF OF RESULTS

D.1 BASIC TECHNICAL LEMMAS AND NOTATIONS

Lemma 1. x1, . . . ,xN are N vectors, then

∥xi + xj∥2 ≤ 2 ∥xi∥2 + 2 ∥xj∥2 (7)

∥xi + xj∥2 ≤ (1 + a) ∥xi∥2 + (1 +
1

a
) ∥xj∥2 for any a > 0, (8)∥∥∥∥∥

N∑
i=1

xi

∥∥∥∥∥
2

≤ N

N∑
i=1

∥xi∥2 . (9)

16

Under review as a conference paper at ICLR 2023

Lemma 2 (Jensen’s inequality). For any convex function f and any vectors x1, . . . ,xN we have

f

(
1

N

N∑
i=1

xi

)
≤ 1

N

N∑
i=1

f(xi). (10)

As a special case with f(x) = ∥x∥2, we obtain

∥∥∥∥∥ 1

N

N∑
i=1

xi

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥xi∥2 . (11)

Lemma 3. Suppose {Ak}Tk=1 is a sequence of random matrices and E[Ak|Ak−1, Ak−2, . . . , A1] =
0,∀k. Then,

E

∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥
2

F

 =

T∑
k=1

E
[
∥Ak∥2F

]
. (12)

Proof. This is the Lemma 2 of Wang et al. (2020).

E

∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥
2

F

 =

T∑
k=1

E
[
∥Ak∥2F

]
+

T∑
i=1

T∑
j=1,j ̸=i

E
[
Tr{A⊤

i Aj}
]

(13)

=

T∑
k=1

E
[
∥Ak∥2F

]
+

T∑
i=1

T∑
j=1,j ̸=i

Tr{E
[
Ai

⊤Aj

]
(14)

Assume i < j. Then, using the law of total expectation,

E
[
A⊤

i Aj

]
= E

[
A⊤

i E[Aj |Ai, . . . , A1]
]
= 0. (15)

Lemma 4 (Bounded Drift). For any local learning rate satisfying ηl ≤ 1
2NKL , the client drift

caused by local updates is bounded, as given by:

N∑
i=1

K−1∑
k=0

E
[∥∥∥x(r,k)

i − xr
∥∥∥2] ≤ 2N3K2η2l σ

2 + 4N3K3η2l

(
B2 ∥∇f(xr)∥2 +G2

)
1− 4N2K2η2l L

2
(16)

Proof. This proof is based on the proof of Theorem 1: Convergence of Surrogate Objective of Wang
et al. (2020). Considering

x
(r,k)
i − xr = x

(r,k)
i − x

(r,0)
i + x

(r,0)
i − x

(r,0)
i−1 + · · ·+ x

(r,0)
2 − x

(r,0)
1 (17)

= −ηl
k−1∑
t=0

gi(x
(r,t)
i)− ηl

i−1∑
s=1

K−1∑
t=0

gs(x
(r,t)
s), (18)

17

Under review as a conference paper at ICLR 2023

we have

E
[∥∥∥x(r,k)

i − xr
∥∥∥2]

= η2l E

∥∥∥∥∥
k−1∑
t=0

gi(x
(r,t)
i) +

i−1∑
s=1

K−1∑
t=0

gs(x
(r,t)
s)

∥∥∥∥∥
2
 (19)

≤ 2η2l E

∥∥∥∥∥
k−1∑
t=0

[gi(x
(r,t)
i)−∇fi(x(r,t)

i)] +

i−1∑
s=1

K−1∑
t=0

[gs(x
(r,t)
s)−∇fs(x(r,t)

s)]

∥∥∥∥∥
2

+ 2η2l E

∥∥∥∥∥
k−1∑
t=0

∇fi(x(r,t)
i) +

i−1∑
s=1

K−1∑
t=0

∇fs(x(r,t)
s)

∥∥∥∥∥
2
 (20)

(9)
≤ 2iη2l E

∥∥∥∥∥
k−1∑
t=0

[gi(x
(r,t)
i)−∇fi(x(r,t)

i)]

∥∥∥∥∥
2

+

i−1∑
s=1

∥∥∥∥∥
K−1∑
t=0

[gs(x
(r,t)
s)−∇fs(x(r,t)

s)]

∥∥∥∥∥
2

+ 2iη2l E

∥∥∥∥∥
k−1∑
t=0

∇fi(x(r,t)
i)

∥∥∥∥∥
2

+

i−1∑
s=1

∥∥∥∥∥
K−1∑
t=0

∇fs(x(r,t)
s)

∥∥∥∥∥
2
 (21)

Applying Lemma 3 to the first term on the right hand side in Eq. (21) and Jensen’s Inequality to the
second term respectively, we get

E
[∥∥∥x(r,k)

i − xr
∥∥∥2] ≤ 2i2Kη2l σ

2 + 2iKη2l

i∑
s=1

K−1∑
t=0

E
[∥∥∥∇fs(x(r,t)

s)
∥∥∥2] (22)

(7)
≤ 2i2Kη2l σ

2 + 4iKη2l

i∑
s=1

K−1∑
t=0

E
[
∥∇fs(xr∥2

]
+ 4iKη2l

i∑
s=1

K−1∑
t=0

E
[∥∥∥∇fs(x(r,t)

s)−∇fs(xr)
∥∥∥2] (23)

Asm. 1
≤ 2i2Kη2l σ

2 + 4iKη2l

i∑
s=1

K−1∑
t=0

E
[
∥∇fs(xr)∥2

]
+ 4iKη2l L

2
i∑

s=1

K−1∑
t=0

E
[∥∥∥x(r,t)

s − xr
∥∥∥2] (24)

≤ 2i2Kη2l σ
2 + 4iK2η2l

N∑
s=1

E
[
∥∇fs(xr)∥2

]
+ 4iKη2l L

2
N∑
s=1

K−1∑
t=0

E
[∥∥∥x(r,t)

s − xr
∥∥∥2]︸ ︷︷ ︸

E

(25)

18

Under review as a conference paper at ICLR 2023

Summing up E
[
∥x(r,k)

i − xr∥2
]

over i and k, we get

N∑
i=1

K−1∑
k=0

E
[∥∥∥x(r,k)

i − xr
∥∥∥2] ≤ 2K2η2l σ

2
N∑
i=1

i2 + 4K3η2l

N∑
s=1

E
[
∥∇fs(xr)∥2

] N∑
i=1

i

+ 4K2η2l L
2E

N∑
i=1

i (26)

≤ 2N3K2η2l σ
2 + 4N2K3η2l

N∑
s=1

E
[
∥∇fs(xr)∥2

]
+ 4N2K2η2l L

2E (27)

Term E is equivalent to
∑N

i=1

∑K−1
k=0 E[∥x(r,k)

i − xr∥2], so we can rearrange the equation and get:

(1− 4N2K2η2l L
2)E ≤ 2N3K2η2l σ

2 + 4N2K3η2l

N∑
s=1

E
[
∥∇fs(xr)∥2

]
(28)

Asm. 3
≤ 2N3K2η2l σ

2 + 4N3K3η2l

(
B2 ∥∇f(xr)∥2 +G2

)
(29)

Using 4N2K2η2l L
2 < 1 and dividing both sides by it yields the claim of Lemma 4.

D.2 PROOF OF THEOREM 1

Proof. Beginning with Assumption 1, we have

f(xr+1)− f(xr) ≤
〈
∇f(xr),xr+1 − xr

〉
+

L

2

∥∥xr+1 − xr
∥∥2 . (30)

From Algorithm 1, we know the global model update in round r can be written as:

xr+1 − xr = ηg(x
(r,K)
N − xr) = −ηgηl

N∑
i=1

K−1∑
k=0

gi(x
(r,k)
i). (31)

For the expectation on xr, we get

E[f(xr+1)]− f(xr)

≤ E

[〈
∇f(xr),−ηgηl

N∑
i=1

K−1∑
k=0

gi(x
(r,k)
i)

〉]
+

L

2
E

∥∥∥∥∥ηgηl
N∑
i=1

K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 (32)

= −Nηgηl

K−1∑
k=0

E

[〈
∇f(xr),

1

N

N∑
i=1

∇fi(x(r,k)
i)

〉]
+

L

2
η2gη

2
l E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 ,

(33)

19

Under review as a conference paper at ICLR 2023

where we use E[gi(x)] = ∇fi(x) in the equality (see Assumption 2). For the second term on the
right hand side (RHS) of Eq. (33), we have:

E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 (7)
≤ 2E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

[
gi(x

(r,k)
i)−∇fi(x(r,k)

i)
]∥∥∥∥∥

2

+ 2E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 (34)

(9),Lem. 3
≤ 2E

[
N

N∑
i=1

K−1∑
k=0

∥∥∥gi(x
(r,k)
i)−∇fi(x(r,k)

i)
∥∥∥2]

+ 2E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 (35)

Asm. 2
≤ 2N2Kσ2 + 2E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 . (36)

Note in Eq. (35) that we apply Jensen’s Inequality first before Lemma 3 to the first term of RHS,
since the data across clients are non-IID. However, if the data across clients are IID, we can get a
tighter bound of NKσ2. Then plugging Eq. (36) into Eq. (33), we have:
E[f(xr+1)]− f(xr)

≤ −Nηgηl

K−1∑
k=0

E

[〈
∇f(xr),

1

N

N∑
i=1

∇fi(x(r,k)
i)

〉]
+ Lη2gη

2
l E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2

+N2KLη2gη
2
l σ

2 (37)

= −Nηgηl
2

K−1∑
k=0

∥∇f(xr)∥2 + E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x(r,k)
i)

∥∥∥∥∥
2

− E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x(r,k)
i)−∇f(xr)

∥∥∥∥∥
2

+ Lη2gη
2
l E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
+N2KLη2gη

2
l σ

2, (38)

where we use the fact that 2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 in the last equation. Note that

− 1

2
Nηgηl

K−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x(r,k)
i)

∥∥∥∥∥
2
+ Lη2gη

2
l E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2

(9)
≤ −1

2

1

N
ηgηl

K−1∑
k=0

E

∥∥∥∥∥
N∑
i=1

∇fi(x(r,k)
i)

∥∥∥∥∥
2
+ Lη2gη

2
l K

K−1∑
k=0

E

∥∥∥∥∥
N∑
i=1

∇fi(x(r,k)
i)

∥∥∥∥∥
2

= − 1

2N
ηgηl(1− 2NKLηgηl)

K−1∑
k=0

E

∥∥∥∥∥
N∑
i=1

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 (39)

and E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x(r,k)
i)−∇f(xr)

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1

N

N∑
i=1

[∇fi(x(r,k)
i)−∇fi(xr)]

∥∥∥∥∥
2

(11)
≤ 1

N

N∑
i=1

E
[∥∥∥∇fi(x(r,k)

i)−∇fi(xr)
∥∥∥2]

Asm. 1
≤ 1

N

N∑
i=1

L2E
[∥∥∥x(r,k)

i − xr
∥∥∥2] , (40)

20

Under review as a conference paper at ICLR 2023

where the first equality of Eq. (40) results from the fact that ∇f(xr) = 1
N

∑N
i=1∇fi(xr). By

plugging Eq. (39) and Eq. (40) into Eq. (38) and using 2NKηgηlL ≤ 1, we get

E[f(xr+1)]− f(xr) ≤ −1

2
NKηgηl ∥∇f(xr)∥2 + 1

2
L2ηgηl

N∑
i=1

K−1∑
k=0

E
[∥∥∥x(r,k)

i − xr
∥∥∥2]

+N2KLη2gη
2
l σ

2. (41)

Then we use Lemma 4:
E[f(xr+1)]− f(xr)

NKηgηl
≤ −1

2

(
1− DB2

1−D

)
∥∇f(xr)∥2 +NLηgηlσ

2

+
1

1−D

(
N2KL2η2l σ

2 + 2N2K2L2η2l G
2
)
, (42)

where D = 4N2K2L2η2l . Then using D ≤ 1
2B2+1

and B ≥ 1, we get

E[f(xr+1)]− f(xr)

NKηgηl
≤ −1

4
∥∇f(xr)∥2 +NLηgηlσ

2

+ (1 +
1

2B2
)
(
N2KL2η2l σ

2 + 2N2K2L2η2l G
2
)

(43)

≤ − 1
4 ∥∇f(x

r)∥2 +NLηgηlσ
2 + 3

2N
2KL2η2l σ

2 + 3N2K2L2η2l G
2 (44)

Taking unconditional expectation, rearranging the terms and then averaging the above equation over
r = {0, · · · , R− 1}, we have

1

R

R−1∑
r=0

E ∥∇f(xr)∥2 ≤ 4[f(x0)− f(x∗)]

NKηgηlR
+ 12N2K2η2l L

2G2 + 6N2Kη2l L
2σ2 + 4NηgηlLσ

2

Using the fact that E
∥∥∇f(x̄R)

∥∥2 ≤ 1
R

∑R−1
r=0 E ∥∇f(xr)∥2 where x̄R = 1

R

∑R−1
r=0 xr, we get the

Eq. (5). Finally, we summarize the constraints:

D = 4N2K2L2η2l ≤
1

2B2 + 1
(45)

2NKηgηlL ≤ 1 (46)
2NKLηl ≤ 1, (47)

where the last inequality is from Lemma 4. The overall constraint is given as:

ηl ≤
1

2NKL
min

{
1√

2B2 + 1
,
1

ηg

}
(48)

Now we complete the proof of Theorem 1.

Corollary 2. Choose NKηgηl =
1√
R

and apply the result of Theorem 1. For sufficiently large R,
it holds that

E[∥∇f(x̄R)∥2] ≤ O
(

F√
R

)
+O

(
KG2 + σ2

√
KR

)
+O

(
σ2

K
√
R

)
, (49)

where F := f(x0)− f(x∗), R is the total rounds, x̄R = 1
R

∑R−1
r=0 xr is the averaged global model

over the R rounds.
Corollary 3. Apply the result of Theorem 1. There exits ηl, such that

E[∥∇f(x̄R)∥2] ≤ O

(
F
√
(2B2 + 1)

R+ 1

)
+O

(
F

2
3 (G2 + σ2

K)
1
3

(R+ 1)
2
3

)
+O

(
Fσ2√

K(R+ 1)

)
, (50)

where F := f(x0)− f(x∗), R is the total rounds, x̄R = 1
R

∑R−1
r=0 xr is the averaged global model

over the R rounds.

Proof. Applying Lemma 2 (sub-linear convergence rate) of Karimireddy et al. (2020) to Eq. (44),
we get the the claim of this corollary.

21

Under review as a conference paper at ICLR 2023

D.3 PROOF OF THEOREM 2

Theorem 2. Let Assumptions 1, 2 and 3 hold. Suppose that the local learning rate satisfies ηl ≤
1

2KL min
{

1√
2B2+1

, 1
ηg

}
. For Algorithm 1, it holds that

E[∥∇f(x̄R)∥2] ≤ 4[f(x0)− f(x∗)]

KηgηlR︸ ︷︷ ︸
T1:initialization error

+12K(K − 1)η2l L
2G2 + 6(K − 1)η2l L

2σ2︸ ︷︷ ︸
T2:client drift error

+
4ηgηlLσ

2

N︸ ︷︷ ︸
T3:global variance

,

(51)

where x̄R = 1
R

∑R−1
r=0 xr is the averaged global model over the R rounds.

Proof. This is almost the same as Theorem 1 of Wang et al. (2020), we reproduce here for conve-
nience of comparison between FL and SL. The proof is similar to that of Theorem 1.

D.4 PROOF OF THEOREM 3

Here we use Assumption 4 to replace Assumption 3, one stronger assumption (than Assumption 3)
used in Lian et al. (2017).

Assumption 4. There exist constants G ≥ 0 such that

Ei∼U([N]) [∥∇fi(x)−∇f(x)∥] ≤ G2, (52)

where i is uniformly sampled from {1, . . . , N}. In the IID case, G = 0.

Theorem 3 (Progress of one client in one round). Let Assumptions 1, 2 and 3 hold. Suppose that
the local learning rate satisfies ηl ≤ 1

2
√
5KL

. For Algorithm 1, it holds that

1

NR

R−1∑
r=0

N∑
i=1

E
[∥∥∥∇f(x(r,0)

i)
∥∥∥2] ≤ 4[f(x0)− f(x∗)]

NKηlR
+ 40K2L2η2l G

2

+ 10KL2η2l σ
2 + 4Lηlσ

2 + 4G2, (53)

where x̄R = 1
R

∑R−1
r=0 xr is the averaged global model over the R rounds.

Proof. Different from Theorem 1, we bound the progeress of one client in one round. Beginning
with Assumption 1, we have:

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
≤ E

[〈
∇f(x(r,0)

i),x
(r,0)
i+1 − x

(r,0)
i

〉]
+

L

2
E
[∥∥∥x(r,0)

i+1 − x
(r,0)
i

∥∥∥2] (54)

From Algorithm 1, we know the local update of client i in round r can be written as:

x
(r,0)
i+1 − x

(r,0)
i = −ηl

K−1∑
k=0

gi(x
(r,k)
i). (55)

For the expectation on x
(r,0)
i , we get

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
≤ E

[〈
∇f(x(r,0)

i),−ηl
K−1∑
k=0

gi(x
(r,k)
i)

〉]
+

L

2
E

∥∥∥∥∥ηl
K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 (56)

= −ηl
K−1∑
k=0

E
[〈
∇f(x(r,0)

i),∇fi(x(r,k)
i)

〉]
+

L

2
η2l E

∥∥∥∥∥
K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 , (57)

22

Under review as a conference paper at ICLR 2023

where we use E[gi(x)] = ∇fi(x) in the equality (see Assumption 2). For the second term on the
right hand side (RHS) of Eq. (57), we have:

E

∥∥∥∥∥
K−1∑
k=0

gi(x
(r,k)
i)

∥∥∥∥∥
2
 (7)
≤ 2E

∥∥∥∥∥
K−1∑
k=0

[
gi(x

(r,k)
i)−∇fi(x(r,k)

i)
]∥∥∥∥∥

2

+ 2E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 (58)

Lem. 3
≤ 2E

[
K−1∑
k=0

∥∥∥gi(x
(r,k)
i)−∇fi(x(r,k)

i)
∥∥∥2]

+ 2E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 (59)

Asm. 2
≤ 2Kσ2 + 2E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
 . (60)

Then plugging Eq. (60) into Eq. (57), we have:

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
≤ −ηl

K−1∑
k=0

E
[〈
∇f(x(r,0)

i),∇fi(x(r,k)
i)

〉]
+ Lη2l E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
+KLη2l σ

2 (61)

= −ηl
2

K−1∑
k=0

[∥∥∥∇f(x(r,0)
i)

∥∥∥2 + E
∥∥∥∇fi(x(r,k)

i)
∥∥∥2 − E

∥∥∥∇fi(x(r,k)
i)−∇f(x(r,0)

i)
∥∥∥2]

+ Lη2l E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2
+KLη2l σ

2, (62)

where we use the fact that 2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 in the last equation. Note that

− 1

2
ηl

K−1∑
k=0

E
[∥∥∥∇fi(x(r,k)

i)
∥∥∥2]+ Lη2l E

∥∥∥∥∥
K−1∑
k=0

∇fi(x(r,k)
i)

∥∥∥∥∥
2

(9)
≤ −1

2
ηl

K−1∑
k=0

E
[∥∥∥∇fi(x(r,k)

i)
∥∥∥2]+ Lη2l K

K−1∑
k=0

E
[∥∥∥∇fi(x(r,k)

i)
∥∥∥2]

= −1

2
ηl(1− 2KLηl)

K−1∑
k=0

E
[∥∥∥∇fi(x(r,k)

i)
∥∥∥2] (63)

and E
[∥∥∥∇fi(x(r,k)

i)−∇f(x(r,0)
i)

∥∥∥2] = 2E
[∥∥∥∇fi(x(r,k)

i)−∇fi(x(r,0)
i)

∥∥∥2]
+ 2E

[∥∥∥∇fi(x(r,0)
i)−∇f(x(r,0)

i)
∥∥∥2] (64)

Asm. 1
≤ 2L2E

[∥∥∥x(r,k)
i − x

(r,0)
i

∥∥∥2]+ 2G2. (65)

By plugging Eq. (63) and Eq. (65) into Eq. (62) and using 2KηlL ≤ 1, we get

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
≤ −1

2
Kηl

∥∥∥∇f(x(r,0)
i)

∥∥∥2 + L2ηl

K−1∑
k=0

E
[∥∥∥x(r,k)

i − x
(r,0)
i

∥∥∥2]
+KηlG

2 +KLη2l σ
2. (66)

23

Under review as a conference paper at ICLR 2023

Then using the bounded client-drift in Wang et al. (2020), i.e.,

K−1∑
k=0

E
[∥∥∥x(r,k)

i − x
(r,0)
i

∥∥∥2] ≤ 4K3η2l

∥∥∥∇fi(x(r,0)
i)

∥∥∥2 + 2K2η2l σ
2

1− 4K2L2η2l
, (67)

we can get

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
Kηl

≤ −1

2

(
1− 2D

1−D

)∥∥∥∇f(x(r,0)
i)

∥∥∥2 + Lηlσ
2 +G2

+
2D

1−D
G2 +

2KL2η2l σ
2

1−D
, (68)

where D = 4K2L2η2l . Then using D ≤ 1
5

(1
1−D ≤

5
4) and B ≥ 1, we get

E
[
f(x

(r,0)
i+1)− f(x

(r,0)
i)

]
Kηl

≤ −1

4

∥∥∥∇f(x(r,0)
i)

∥∥∥2 + Lηlσ
2 +G2

+
5

2
KL2η2l σ

2 + 10K2L2η2l G
2 (69)

Taking unconditional expectation, rearranging the terms and then averaging the above equation over
i = {1, · · · , N}, r = {0, · · · , R− 1}, we have

1

NR

R−1∑
r=0

N∑
i=1

E
[∥∥∥∇f(x(r,0)

i)
∥∥∥2] ≤ 4[f(x0)− f(x∗)]

NKηlR
+ 40K2L2η2l G

2

+ 10KL2η2l σ
2 + 4Lηlσ

2 + 4G2 (70)

Using the fact that E
∥∥∇f(x̄R)

∥∥2 ≤ 1
R

∑R−1
r=0 E ∥∇f(xr)∥2 where x̄R = 1

R

∑R−1
r=0 xr, we get the

Eq. (53). Finally, we summarize the constraints:

D = 4K2L2η2l ≤
1

5
(71)

2KηlL ≤ 1. (72)

The overall constraint is given as:

ηl ≤
1

2
√
5KL

(73)

Now we complete the proof of Theorem 1.

D.5 EXTREME CASES

Theorem 1 recovers the convergence of SGD when N = 1 and K = 1. Let us focus on the proof
of Lemma 4. When N = 1 and K = 1, the client drift will reduce to:

N∑
i=1

K−1∑
k=0

E
[∥∥∥x(r,k)

i − xr
∥∥∥2] = E

[∥∥∥x(r,0)
1 − xr

∥∥∥2] = 0, (74)

where x
(r,0)
1 = xr (see Algorithm 1). Thus the client drift error of Eq. (5) will be removed, which

recovers the result of SGD (Bottou et al., 2018).

24

Under review as a conference paper at ICLR 2023

E MORE EXPERIMENTAL DETAILS

Platform. We train LeNet-5 on MNIST and Fashion-MNIST with Nvidia GeForce RTX 3070 Ti,
VGG-11 on CIFAR-10 with Nvidia 3090 Ti. The algorithms are implemented by PyTorch. We use
the random seed “1234” by default. We use vanilla SGD algorithm with momentem = 0.9 and weight
decay = 1e-4 as He et al. (2020). The detailed information of the models and other information can
be found in our code.

E.1 MORE RESULTS OF SL

This section is complimentary to Section 5.2 to study the factors that affects the performance of SL.
We report the details of the experiments, such as ηl, ηg , b.

Effect of data heterogeneity.

0 5 10 15 20 25 30
Rounds

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

n
Lo

ss

MNIST
SL(iid)
SL(C = 8)
SL(C = 5)
SL(C = 2)

(a) MNIST

0 10 20 30 40 50
Rounds

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

n
Lo

ss
Fashion-MNIST

SL(iid)
SL(C = 8)
SL(C = 5)
SL(C = 2)

(b) Fashion-MNIST

0 50 100 150 200 250 300 350 400
Rounds

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

n
Lo

ss

CIFAR-10
SL(iid)
SL(C = 8)
SL(C = 5)
SL(C = 2)

(c) CIFAR-10

Figure 5: Effect of data heterogeneity. (a) MNIST, N = 10, b = 1000, ηl = 0.01, ηg = 1.0; (b)
Fashion-MNIST, N = 10, b = 1000, ηl = 0.01, ηg = 1.0; (c) CIFAR-10, N = 10, b = 100,
ηl = 0.001, ηg = 1.0.

Effect of K.

0 5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

MNIST
SL(=1.0) E=1
SL(=1.0) E=2
SL(=1.0) E=4
SL(=1.0) E=8
SL(=1.0) E=10

(a) MNIST

0 10 20 30 40 50
Rounds

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Tr
ai

n
Lo

ss

Fashion-MNIST
SL(=1.0) E=1
SL(=1.0) E=2
SL(=1.0) E=4
SL(=1.0) E=8
SL(=1.0) E=10

(b) Fashion-MNIST

0 20 40 60 80 100
Rounds

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Lo

ss

CIFAR-10

SL(=1.0) E=1
SL(=1.0) E=2
SL(=1.0) E=4
SL(=1.0) E=8

(c) CIFAR-10

Figure 6: Effect of K. Dir10(1.0) is used. (a) MNIST, N = 10, b = 1000, ηl = 0.01, ηg = 1.0;
(b) Fashion-MNIST, N = 10, b = 1000, ηl = 0.01, ηg = 1.0; (c) CIFAR-10, N = 10, b = 100,
ηl = 0.005, ηg = 1.0.

Effect of ηg . The experimental results on Fashion-MNIST and CIFAR-10 are shown in Figure 7.
We can see that ηg can be helpful in some cases, especially when ηl is small. However, there is still
a big gap between theory and practice. Further research is required.

E.2 MORE COMPARISONS BETWEEN FL AND SL IN CROSS-DEVICE SETTING

The learning rates of FL and SL are selected from {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. We report
the overall results of comparisons between FL and SL on MNIST, Fashion-MNIST and CIFAR-10
datasets with different learning rates in Table 7, Table 8 and Table 9 respectively. Table 2 in the main
body are based on these three tables here. “L-M”, “L-M” and “V-10” denote LeNet-5 on MNIST,
LeNet-5 on Fashion-MNIST and VGG-11 on CIFAR-10 respectively. We highlight the “best” test
accuracy among all chosen learning rates with blue for FL and red for SL. We underline the test
accuracy of the “threshold” learning rate with blue for FL and red for SL.

25

Under review as a conference paper at ICLR 2023

5f(-4) f(-3) 5f(-3) f(-2) 5f(-2)
Local Learning Rate (f(x) = log10(x))

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

Gl
ob

al
 L

ea
rn

in
g

Ra
te

34.6 44.6 11.4 11.4 11.4

26.1 34.6 11.4 11.4 11.4

33.0 31.2 62.2 11.4 11.4

44.4 72.2 95.0 77.8 11.4

41.9 67.3 97.3 69.6 11.4

39.2 61.1 96.3 79.7 21.5

35.2 54.8 96.9 98.1 11.4

29.8 49.4 96.5 11.4 11.4

24.5 45.1 95.7 87.8 11.4
20

30

40

50

60

70

80

90

5f(-4) f(-3) 5f(-3) f(-2) 5f(-2)
Local Learning Rate (f(x) = log10(x))

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

Gl
ob

al
 L

ea
rn

in
g

Ra
te

17.8 33.8 10.0 10.0 10.0

27.4 27.6 17.3 10.0 10.0

35.8 41.4 48.0 42.1 10.0

30.5 52.3 71.1 74.7 25.9

29.9 51.1 77.9 81.5 33.1

29.5 47.9 76.0 80.6 84.1

28.6 42.5 75.3 79.2 84.8

25.5 35.5 73.9 80.0 85.1

19.2 30.5 72.0 79.2 85.0
20

30

40

50

60

70

80

5f(-4) f(-3) 5f(-3) f(-2) 5f(-2)
Local Learning Rate (f(x) = log10(x))

5.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

Gl
ob

al
 L

ea
rn

in
g

Ra
te

10.0 10.0 10.0 10.0 10.0

10.0 10.0 10.0 10.0 10.0

12.4 15.7 10.0 10.0 10.0

58.3 70.1 10.0 10.0 10.0

69.5 78.3 77.8 10.0 10.0

71.0 79.6 82.8 83.4 10.0

68.9 80.1 85.0 85.4 10.0

64.3 80.4 85.7 86.1 81.7

54.8 78.7 86.1 86.8 85.2
10

20

30

40

50

60

70

80

Figure 7: Test accuracy for various local/global learning rates combination. Dir10(10.0) is used. For
MNIST, N = 10, b = 1000, E = 1; We average test accuracy over the last 10 rounds from 30 total
rounds; (b) For Fashion-MNIST, N = 10, b = 1000, E = 1; We average test accuracy over the
last 10 rounds from 30 total rounds; (c) For CIFAR-10, N = 10, b = 100, E = 1. We average test
accuracy over the last 20 rounds from 100 total rounds.

Table 7: The detailed results of FL and SL with different learning rates on MNIST dataset. We
average the test accuracy over the last 100 rounds from 1000 total rounds when E = 1; average the
test accuracy over the last 10 rounds from 100 total rounds when E = 10.

Tag N Dist. E b
0.0005 0.001 0.005 0.01 0.05 0.1

FL SL FL SL FL SL FL SL FL SL FL SL

L-M 1000 IID 1 10 67.8 97.8 92.0 98.4 98.3 98.9 98.7 89.2 99.0 11.3 99.0 11.3
L-M 1000 α = 10.0 1 10 78.1 98.3 93.2 98.7 98.5 99.0 98.7 98.9 99.0 11.3 98.7 11.3
L-M 1000 α = 5.0 1 10 80.2 97.9 93.4 98.7 98.5 98.9 98.8 98.9 99.1 11.3 98.8 11.3
L-M 1000 α = 0.5 1 10 81.3 97.9 93.6 98.6 98.4 98.8 98.8 98.7 98.9 11.3 98.3 11.3
L-M 1000 α = 0.2 1 10 85.9 98.3 94.0 98.6 98.3 98.8 98.7 98.7 98.7 11.3 11.3 11.3
L-M 1000 C = 5 1 10 65.3 98.3 91.6 98.6 98.3 98.9 98.7 98.9 99.0 11.3 98.9 11.3
L-M 1000 C = 2 1 10 56.4 98.2 89.2 98.6 97.9 99.0 98.5 99.0 98.8 11.3 98.8 11.3

L-M 1000 IID 10 10 93.4 97.3 95.6 87.9 97.6 97.6 97.9 96.2 95.5 11.3 11.3 11.3
L-M 1000 α = 10.0 10 10 93.8 97.5 96.2 97.5 97.4 97.4 97.4 39.4 11.3 11.3 11.3 11.3
L-M 1000 α = 5.0 10 10 93.9 88.3 96.2 97.8 97.8 69.3 98.0 11.3 11.3 11.3 11.3 11.3
L-M 1000 α = 0.5 10 10 92.6 87.9 94.9 97.9 97.3 11.3 97.9 11.3 11.3 11.3 11.3 11.3
L-M 1000 α = 0.2 10 10 82.9 96.7 93.4 96.8 96.5 95.6 96.8 11.4 11.3 11.3 11.3 11.3
L-M 1000 C = 5 10 10 91.9 88.3 95.0 98.0 97.7 77.7 98.0 11.3 9.8 11.3 11.3 11.3
L-M 1000 C = 2 10 10 70.8 96.9 88.4 97.1 96.8 11.3 87.6 11.3 11.3 11.3 11.3 11.3

Table 8: The detailed results of FL and SL with different learning rates on Fashion-MNIST dataset.
We average the test accuracy over the last 100 rounds from 1000 total rounds when E = 1; average
the test accuracy over the last 10 rounds from 100 total rounds when E = 10.

Tag N Dist. E b
0.0005 0.001 0.005 0.01 0.05 0.1

FL SL FL SL FL SL FL SL FL SL FL SL

L-F 1000 IID 1 10 54.4 75.0 68.8 85.9 83.7 88.4 86.1 88.2 88.1 82.4 87.8 10.0
L-F 1000 α = 10.0 1 10 57.4 84.0 71.0 86.5 84.4 88.8 86.4 88.6 88.1 80.2 87.5 10.2
L-F 1000 α = 5.0 1 10 57.4 84.6 74.0 86.3 84.2 88.6 86.3 88.4 88.2 79.9 87.6 10.0
L-F 1000 α = 0.5 1 10 59.3 83.4 72.9 85.4 83.0 87.6 85.2 87.3 86.7 15.6 85.2 10.0
L-F 1000 α = 0.2 1 10 60.8 81.6 71.3 84.3 80.8 85.9 83.5 84.9 83.4 10.0 10.0 10.0
L-F 1000 C = 5 1 10 53.8 82.4 67.0 85.6 81.7 88.0 84.6 88.1 87.5 10.0 86.8 10.0
L-F 1000 C = 2 1 10 50.9 80.4 62.6 83.9 77.5 87.3 76.5 86.6 81.1 10.0 83.0 10.0

L-F 1000 IID 10 10 75.6 82.7 78.8 84.0 84.0 82.5 85.0 80.0 46.4 11.0 10.0 10.0
L-F 1000 α = 10.0 10 10 76.0 83.6 79.4 84.1 84.0 81.7 84.8 63.7 10.0 10.0 10.0 10.0
L-F 1000 α = 5.0 10 10 76.0 83.2 79.5 76.6 83.9 80.8 84.5 77.0 10.0 10.0 10.0 10.0
L-F 1000 α = 0.5 10 10 72.7 78.0 75.8 79.2 82.8 76.8 83.8 10.0 10.0 10.0 10.0 10.0
L-F 1000 α = 0.2 10 10 65.1 79.0 68.4 78.6 79.3 70.9 80.4 10.0 10.0 10.0 10.0 10.0
L-F 1000 C = 5 10 10 68.6 78.9 72.7 80.1 80.6 77.5 82.7 25.8 78.0 10.0 10.0 10.0
L-F 1000 C = 2 10 10 52.8 72.0 59.5 72.3 73.3 10.0 75.9 10.0 34.5 10.0 10.0 10.0

26

Under review as a conference paper at ICLR 2023

Table 9: The detailed results of FL and SL with different learning rates on CIFAR-10 dataset. We
average the test accuracy over the last 400 rounds from 4000 total rounds when E = 1; average the
test accuracy over the last 40 rounds from 400 total rounds when E = 10. We don not execute the
experiments whose learning rates are larger than the “threshold” learning rate (“-” in the table).

Tag N Dist. E b
0.0005 0.001 0.005 0.01 0.05 0.1

FL SL FL SL FL SL FL SL FL SL FL SL

V-10 500 IID 1 10 - - 43.1 86.2 84.0 87.0 85.5 85.1 86.4 10.0 10.0 10.0
V-10 500 α = 10.0 1 10 - - 47.4 86.4 84.2 86.9 85.7 84.2 86.3 10.0 10.0 -
V-10 500 α = 5.0 1 10 - - 47.2 86.5 84.2 87.0 85.6 84.5 86.1 10.0 10.0 -
V-10 500 α = 0.5 1 10 - - 44.5 85.4 82.1 85.5 84.1 10.0 10.0 - - -
V-10 500 α = 0.2 1 10 22.9 81.2 39.4 83.5 78.1 83.0 80.5 10.0 10.0 - - -
V-10 500 C = 5 1 10 14.4 83.7 37.6 85.9 82.3 86.5 84.7 83.4 85.5 - 10.0 10.0
V-10 500 C = 2 1 10 14.0 81.9 23.9 84.7 73.7 84.7 79.2 12.9 80.0 10.0 10.0 -

V-10 500 IID 10 10 51.5 83.2 68.3 83.7 77.3 78.3 77.7 10.0 10.0 10.0 10.0 10.0
V-10 500 α = 10.0 10 10 53.3 82.8 69.1 83.0 76.3 10.0 77.9 10.0 10.0 - 10.0 -
V-10 500 α = 5.0 10 10 54.2 82.1 68.1 82.7 77.6 10.0 76.9 10.0 10.0 - - -
V-10 500 α = 0.5 10 10 40.6 75.1 58.4 76.9 71.0 10.0 71.8 10.0 10.0 10.0 10.0 10.0
V-10 500 α = 0.2 10 10 27.1 65.0 41.0 10.0 66.2 10.0 66.9 10.0 10.0 10.0 10.0 10.0
V-10 500 C = 5 10 10 36.3 77.6 59.6 78.9 73.9 10.0 74.2 - 10.0 - 10.0 -
V-10 500 C = 2 10 10 20.3 58.7 27.8 10.0 51.8 10.0 61.6 - 10.0 - 10.0 -

27

	Introduction
	Preliminaries and Algorithm of Split Learning
	Related work
	Convergence Analysis of SL
	Assumptions
	Convergence Result and Discussion
	Comparison between FL and SL

	Experiments
	Experimental Setup
	Experimental Results of SL
	Empirical Comparison between FL and SL

	Conclusion
	More details about Split Learning
	Additional related work
	Summary of theories
	Proof of results
	Basic technical lemmas and Notations
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Extreme cases

	More experimental details
	More results of SL
	More comparisons between FL and SL in cross-device setting

