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ABSTRACT

Convolutional Networks (ConvNets) suffer from insufficient robustness to com-
mon corruptions and perturbations of the input, unseen during training. We ad-
dress this problem by including a form of response inhibition in the processing
of the early layers of existing ConvNets and assess the resulting representation
power and generalization on corrupted inputs. The considered inhibition mecha-
nism consists of a non-linear computation that is inspired by the push-pull inhi-
bition exhibited by some neurons in the visual system of the brain. In practice,
each convolutional filter (push) in the early layers of conventional ConvNets is
coupled with another filter (pull), which responds to the preferred pattern of the
corresponding push filter but of opposite contrast. The rectified responses of the
push and pull filter pairs are then combined by a linear function. This results in a
representation that suppresses responses to noisy patterns (e.g. texture, Gaussian,
shot, distortion, and others) and accentuates responses to preferred patterns.
We deploy the layer into existing architectures, (Wide-)ResNet and DenseNet, and
propose new residual and dense push-pull layers. We demonstrate that ConvNets
that embed this inhibition into the initial layers are able to learn representations
that are robust to several types of input corruptions. We validated the approach
on the ImageNet and CIFAR data sets and their corrupted and perturbed versions,
ImageNet-C/P and CIFAR-C/P. It turns out that the push-pull inhibition enhances
the overall robustness and generalization of ConvNets to corrupted and perturbed
input data. Besides the improvement in generalization, notable is the fact that Con-
vNets with push-pull inhibition have a sparser representation than conventional
ones without inhibition. The code and trained models will be made available.

1 INTRODUCTION

After AlexNet was proposed, several other more sophisticated Convolutional Networks (ConvNets),
e.g. VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), ResNet (He
et al., 2015), DenseNet (Huang et al., 2017), consecutively achieved lower error rates on clas-
sification benchmarks such as CIFAR (Krizhevsky, 2009), SVHN (Netzer et al., 2011) and Ima-
geNet (Krizhevsky et al., 2012). The witnessed reduction of the classification error, however, was
not accompanied by a similar increase of generalization and robustness to common corruptions or
perturbations in the test images. When test images contain artefacts that are not present in the train-
ing data (e.g. shot noise, JPEG compression, blur), the performance of SOTA networks, like ResNet
or DenseNet, degrade relatively more than that of AlexNet (Hendrycks & Dietterich, 2019).

Robustness of DeepNets and ConvNets is gaining attention from researchers in machine learn-
ing and computer vision. One point of analysis concerns adversarial attacks that consist of very
small, visually imperceptible perturbations of the input signals such that confuse the classification
model (Akhtar & Mian, 2018). Several adversarial attacks were proposed based on the knowledge
of the classification models (Goodfellow et al., 2015) or on iterative methods (Kurakin et al., 2016;
Madry et al., 2018). Class-specific and universal black box attacks (Moosavi-Dezfooli et al., 2017)
were also proposed. As new types of adversarial perturbations are designed, defense algorithms
need to be developed (Lu et al., 2017; Metzen et al., 2017).

In contrast to adversarial perturbations, common corruptions and perturbations are modifications of
the input signals due to typical artefacts generated by sensor noise, illumination changes, transfor-
mations determined by changes of camera perspective (e.g. rotations or elastic transformations),
quality loss due to compression, among others. These can be considered as average cases of ad-
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versarial attacks and are very common in computer vision tasks. In this study, we focus on the
robustness of ConvNets to common corruptions and perturbations and demonstrate how the use of
inhibition-augmented filters increases the robustness of existing ConvNet models. We use a layer
that implements a local-response suppression mechanism (Strisciuglio et al., 2020), named push-
pull, to replace some convolutional layers in existing ConvNets. The design of this layer was in-
spired by neurophysiological evidence of the push-pull inhibition exhibited by some neurons in the
early part of the visual system of the brain (Hirsch et al., 1998). Lauritzen & Miller (2003) stated
that ‘push-pull inhibition [...] acts to sharpen spatial frequency tuning, [...] and increase the stabil-
ity of cortical activity’. These neurons have inhibitory interneurons with receptive fields of opposite
polarity. The interneurons suppress the responses of the associated neurons in noisy local patterns;
that is they pull the push responses. From an engineering point of view, the push-pull inhibition can
be considered as a band-pass filter. A computational model of the push-pull inhibition was intro-
duced in image processing operators for contour and line (Azzopardi et al., 2014; Strisciuglio et al.,
2019) detection that are robust to various types of noise. Early results on augmenting ConvNets with
push-pull inhibition were reported in (Strisciuglio et al., 2020), where only the first convolutional
layer of existing networks was replaced and preliminary experiments on the MNIST and CIFAR
images were reported.

We deploy a push-pull layer in the state-of-the-art (wide-)ResNet and DenseNet architectures by re-
placing the convolutional layer in the entry layer of the networks and all convolutional layers inside
the first residual or dense block. The number of layers and parameters of the modified networks re-
mains the same of their original counterpart. We train several models with and without the push-pull
layers, using the images from ImageNet and CIFAR training sets, and test them on the ImageNet-
C/P and CIFAR-10-C/P benchmark test sets (Hendrycks & Dietterich, 2019), which contain images
with several types of corruption and perturbation. Furthermore, we combine the push-pull layer with
other techniques to improve the robustness performance of ConvNets, namely the data augmentation
techniques AutoAugment (Cubuk et al., 2018) and cutout (Devries & Taylor, 2017), and low-pass
anti-aliasing filters (Zhang, 2019), of which we provide more details in Section 2. We show how
combined data- and architecture-related actions have jointly a positive effect to further improve the
robustness and generalization performance of existing models.

Our contributions are twofold: a) new residual and dense layers in which push-pull filters replace
the original convolutions, b) a thorough analysis of the impact of the push-pull inhibition on the
robustness of existing models, and of its combination with other strategies for model robustness.

The rest of the paper is organized as follows. We discuss related works in Section 2 and provide
details of the push-pull layer and modified residual and dense layers in Section 3. We report the
experiments and results in Section 4 and Section 5. Finally, we draw conclusions in Section 6.

2 RELATED WORKS

One common approach to increase the generalization of existing models is data augmentation. It
provides a mechanism to increase the robustness to certain transformations included in the train-
ing process. One type of data augmentation, namely added Gaussian noise, does not guarantee
robustness to other types of noise, e.g. shot noise (Zheng et al., 2016). In Vasiljevic et al. (2016),
for instance, it was demonstrated that using one blurring type for data augmentation during training
does not result in a model that is robust to other types of blurring. Moreover, in Geirhos et al. (2018),
it was observed that heavy data augmentation can cause underfitting. Devries & Taylor (2017) pro-
posed a technique named cutout that masks out random square patches of the training images and
increases network performance. Although cutout reduces the classification error on benchmark test
sets, we noticed that it does not improve robustness to common corruptions and perturbations. Lopes
et al. (2019) proposed PatchGaussian, which combines the regularization abilities of cutout with data
augmentation using Gaussian noise. Randomly located patches are selected from the input images
and corrupted with Gaussian noise. Autoaugment (Cubuk et al., 2018; Lim et al., 2019) is a very
effective strategy to learn an optimal set of augmentation policies from training data. Together with
increased classification rate on benchmark test sets, it was shown to improve the robustness of the
concerned models to various corruptions and perturbations (Yin et al., 2019). Recently, AugMix was
proposed. It uses diverse augmentations and a Jensen-Shannon divergence consistency loss function
to train models that have better generalization and uncertainty estimates (Hendrycks et al., 2020).
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Data augmentation is in some cases very powerful. However, these techniques work around archi-
tectural or structural weaknesses of ConvNets. For example, using high-frequency noise for data
augmentation (e.g. Gaussian noise) makes the network focuses on low frequency features that are
discriminant instead of becoming explicitly robust to high-frequency corruptions (Yin et al., 2019).
In order to improve the intrinsic robustness of ConvNets, it would be preferable to deploy architec-
tural elements that are able to better detect the features of interest also when the input data is cor-
rupted. For instance, common downsampling methods, like max-pooling and strided convolutions,
introduce aliasing as they ignore the sampling theorem of Nyquist. Zhang (2019) used a low-pass
filter before down-sampling and showed that it improves classification results on ImageNet and ro-
bustness to common corruptions of the input images. A layer of Gabor filters was recently shown to
increase network robustness to adversarial attacks (Pérez et al., 2020).

3 PUSH-PULL INHIBITION IN CONVNETS

A ConvNet constitutes of L layers, each of which performs a non-linear transformation H(x) of the
input x. In some architectures, H(x) is a composite function of convolutions, batch normalization
(BN), rectifier linear unit (ReLU) and pooling. For example, a residual layer contains two convolu-
tions, batch normalizations, ReLUs and one identity connection. We use a composite layer, called
push-pull, that consists of two convolutions with kernels of different size and two ReLU functions.

3.1 PUSH-PULL LAYER

push

pull

+
x

k ? x

−k̂h↑ ? x

upsampling

R(x)

−

Figure 1: Structure of the push-pull layer. An
input image x is convolved with a push and
a pull kernel. The pull kernel is derived from
the push one by negation and upsampling (by
a factor h). Their responses are rectified and
combined linearly.

The response of the push-pull layer (Figure 1) is de-
fined as the linear combination of the rectified re-
sponses of two convolutions of the input signal, one
with an excitatory (push) kernel k(·) and one with
an inhibitory (pull) kernel −k̂(·) (Strisciuglio et al.,
2020). The responses of the push and pull compo-
nents are rectified by means of the ReLU function,
which introduces non-linearity, and combined: the
pull response is subtracted from (i.e. it suppresses)
the push response. In the forward step of the learn-
ing algorithm, the weights of each pull kernel are
computed by upsampling and negating the weights
of the corresponding push kernel. Since the pull ker-
nels are directly inferred from the push kernels, the
number of trainable parameters does not change. In
the backward step, however, the implementation of
the push-pull layer ensures that the gradient is back-
propagated to both push and pull components. While only the weights of the push kernels are
updated, the effect of the gradient back-propagation incorporates the pull responses. We compute
the response R of a push-pull layer to an input x as:

R(x) = Θ (x ? k)− αΘ
(
x ? (−k̂h↑)

)
(1)

where Θ(·) is the ReLU function, k is the push kernel and k̂h↑ is its upsampled (by a factor h) and
negated version, i.e. the pull kernel. We set h = 2, that is the pull kernel has double width and
height of the push kernel. The parameter α is a weighting factor for the inhibition response, which
we set to 1 (i.e. same relevance as the push response). The decision of having pull kernels larger
than the push kernels is motivated by neurophysiological findings (Li et al., 2012).

The combined effect of the push and pull kernels results in an increased robustness to the detection
of features of interest in corrupted input signals. Figure 2 illustrates an example of the response
maps of a conventional convolution filter and those of a push-pull filter on images corrupted with
noise. The response maps of the push-pull filter on corrupted images correlate better with that
of the clean image in comparison to the corresponding response maps of the convolution filter.
For this illustration we selected a convolutional and a push kernel that have the same shape and
whose parameters are learned in the first layer of a ResNet model, without and with push-pull layers
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Figure 2: Illustration of robustness to noise. (Top left) An image from the CIFAR-10 test set and
its corrupted versions with Gaussian noise of increasing severity. (Bottom left) The response maps
of the convolutional kernel are affected by high frequency noise. (Right) The response maps of the
push-pull kernel are less sensitive to the image corruption.

respectively, on the CIFAR data set. This allows to better and more directly demonstrate the effect
that the pull inhibitory component has on the quality of the computed feature maps. The spatial
frequency selectivity of the push-pull filter is sharper than that of a conventional convolutional layer,
as it focuses on the frequency of interest and suppresses those outside a certain learned sub-band.
In this way, noise induced artefacts can be filtered out and clearer feature maps are computed for
further processing in subsequent layers of the network.

3.2 PUSH-PULL IN RESIDUAL AND DENSE LAYERS

We extended the implementation of the residual and dense composite layers, originally proposed
by He et al. (2015) and Huang et al. (2017), respectively. In both cases, we substituted the convolu-
tional layers with push-pull layers, which resulted in the push-pull residual layer and the push-pull
dense layer.

The push-pull inhibition is a phenomenon that is exhibited by certain neurons in the early visual
system. Evidence of it has been observed in area V1 of the visual cortex (Lauritzen & Miller, 2003),
which can be compared to the early layers of a ConvNet. Thus, motivated by neuro-scientific find-
ings, we deploy the modified push-pull residual and dense layers in the first block of the considered
architectures. In principle, the push-pull layer may be used to substitute a convolutional layer at any
depth in a ConvNet. In practice, however, we experienced that deploying push-pull layers at deeper
layers considerably changes the training dynamics of the model, not contributing to result improve-
ment, and the nominal hyperparameters used to train the original network need to be changed.

4 EXPERIMENTS

In the following, we refer as ResNet-L to a residual network with L layers (He et al., 2015) and as
DenseNet-L-k to a densely connected network with L layers and growing factor k (Huang et al.,
2017). The notation ‘-pp’ in the model name indicates the use of the push-pull layer that replaces
the first convolutional layer. We use the suffix ‘-b1’ to denote that the concerned model deploys
push-pull residual or dense layers in the first block of the network as well.

4.1 DATA SETS

We trained several models on the CIFAR and ImageNet data sets, and tested them on the original
test sets and on those provided with the CIFAR-C/P and ImageNet-C/P benchmarks (Hendrycks &
Dietterich, 2019). The CIFAR-C and ImageNet-C data sets are composed of 75 test sets of corrupted
images, generated by applying 15 types of corruption with 5 levels of severity, to the original images.
The corruptions are arranged in four categories: noise (Gaussian, shot and impulse noise), blur
(defocus, glass, motion and zoom blur), weather (snow, frost, fog, brightness) and digital distortions
(contrast, elastic transformation, pixelate, jpeg compression). The perturbations in CIFAR-P and
ImageNet-P have a character of temporality. Starting from the corrupted images in CIFAR-C and
ImageNet-C, sequences of 30 frames were generated by applying consecutive small perturbations.
For each image in the original CIFAR and ImageNet validation sets, ten types of perturbed sequences
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were created (Gaussian and shot noise, motion and zoom blur, snow, brightness, translate, rotate, tilt,
scale). More details about the -C and -P data sets are reported by Hendrycks & Dietterich (2019).

4.2 EVALUATION

We applied the evaluation protocol proposed by Hendrycks & Dietterich (2019). Besides the classi-
fication error on the CIFAR and ImageNet, we evaluate the corruption error C, i.e. the classification
error achieved on the CIFAR-C and ImageNet-C sets, and the flip-probability FP , that is the prob-
ability that the outcome of the classification changes between consecutive frames, on the sequences
in the CIFAR-P and ImageNet-P sets. We compute the mean and relative corruption errors mCE
and rCE and the normalized flip probability, i.e. the flip rate FR. For details about these metrics,
we refer the reader to Appendix B and to the paper of Hendrycks & Dietterich (2019).

4.3 EXPERIMENTS

CIFAR. We trained several ResNet and DenseNet models and their versions with the push-pull
layer, using the images from the CIFAR training set to which we applied a light data augmenta-
tion, consisting only of center-cropping and random horizontal flipping (Lee et al., 2015). For both
(wide)ResNet- and DenseNet-based models we optimized the parameters with stochastic gradient
descent (SGD), Nesterov momentum equals to 0.9 and weight decay equals to 10−4. We trained
ResNet architectures for 200 epochs, with batch size equals to 128 and initial learning rate of 0.1,
which we decreased by a factor of 10 at epochs 80, 120 and 160. We trained DenseNet models for
350 epochs with batch size of 64 and initial learning rate of 0.1, which we decreased by a factor of 10
at epochs 150, 225 and 300. These hyperparameters are the same used to train the original ResNet
and DenseNet models. The use of the push-pull layer in the first block of existing architectures does
not require to change the hyperparameters used to train the original networks.

Furthermore, we experimented by enhancing the considered architectures with the anti-aliased sam-
pling layers proposed by Zhang (2019) for improvement of shift-invariance. We compared the per-
formance of what the push-pull layer and the anti-aliased sampling layer, and showed that their com-
bination contributes to a further improvement of the robustness of ConvNets. We experimented with
anti-aliasing filters of size 2×2, 3×3 and 5×5. We also trained WideResNet models (Zagoruyko &
Komodakis, 2016) with and without the push-pull layer, using different data augmentations, namely
cutout (Devries & Taylor, 2017), AutoAugment (Cubuk et al., 2018), and cutout plus AutoAugment.
We show that the push-pull layer, although already providing the network with intrinsic robustness
to corruptions, can be combined with data augmentation to achieve further robustness.

ImageNet. We considered ResNet-18 and ResNet-50 models in which we deployed the push-
pull layer as a replacement of the first convolutional layer and of the convolutions inside the first
residual block. In the case of ResNet-50, we replaced only the middle convolution of the bottleneck
layers. We trained the networks using SGD optimization with Nesterov moment equals to 0.9 and
weight decay of 5 · 10−4 for 90 epochs, with an initial learning rate of 0.1 that we decreased by a
factor of 10 after 30, 60 and 85 epochs. We used a batch size of 256. For comparison purposes, we
trained ResNet-18 and ResNet-50 models augmented with the anti-aliased sampling layers proposed
by Zhang (2019) using the same hyperparameters and schedule of the learning rate that we employed
for the training of the push-pull networks. For ResNet-50 with anti-aliasing, due to GPU memory
limitations, we reduced the batch size to 128.

5 RESULTS AND DISCUSSION

5.1 CIFAR

Effect of the push-pull inhibition layer. In Table 1, we report the results of ResNet and DenseNet
networks on the CIFAR and CIFAR-C/P test sets. The lower the numbers the better the performance.
We tested architectures with different number of layers (and growing factors, for DenseNet). For
each architecture, we trained the original model with convolutional layers and two models with
the push-pull layer, one (-pp) with the push-pull layer in the first layer only and the other (-b1)
with the push-pull layer replacing all convolutions in the first block of the network as well. The
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Table 1: Results obtained on the CIFAR-C and
CIFAR-P test sets by networks that embed the
push-pull layer. For each push-pull model, the re-
sults are to be compared with its baseline network
without inhibition. E indicates the classification
error on the original test set. ThemCE, rCE and
mFR are normalized by the corresponding values
achieved by the baseline AlexNet.

Results on CIFAR(-C/P)

Network E mCE rCE mFR
AlexNet 13.87 1 1 1
ResNet-20 7.56 1.07 1.79 1.06
ResNet-20-pp 8.29 1.04 1.68 1.07
ResNet-20-b1 8.32 0.98 1.52 0.96
ResNet-44 6.76 0.99 1.60 0.94
ResNet-44-pp 6.87 0.94 1.48 0.90
ResNet-44-b1 7.18 0.84 1.25 0.76
ResNet-56 6.64 1.00 1.72 0.90
ResNet-56-pp 7.01 0.93 1.54 0.85
ResNet-56-b1 7.76 0.86 1.31 0.82
DenseNet-40-12 6.33 1.05 1.77 1.00
DenseNet-40-12-pp 7.13 1.01 1.64 0.967
DenseNet-40-12-b1 7.16 0.98 1.59 0.97
DenseNet-100-24 3.88 0.81 1.44 0.66
DenseNet-100-24-pp 4.5 0.75 1.28 0.61
DenseNet-100-24-b1 4.27 0.73 1.27 0.57
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Figure 3: Results achieved by combining the
push-pull layer with the anti-aliasing filters
proposed by Zhang (2019). We group by col-
ors the results achieved by a certain model
with different anti-aliasing filter configura-
tions. The closer the points are to the bottom-
left the better the robustness is.

measurements mCE, rCE and mFR (see Appendix B) are normalized with respect to the results
of the baseline AlexNet.

The push-pull layer contributes to a substantial improvement of the robustness of the networks to
corruptions and perturbations of the input images. Its effect, especially when it is deployed in the
first block of existing ConvNets, is noticeable, with a reduction of the mean corruption error mCE
by more than 10% in some cases. The improvement in robustness trades off with a generally small
reduction of the classification accuracy on original (clean) test data. The presence of the push-
pull layer has an important effect in reducing the relative corruption error rCE, i.e. the average
gap between the classification error on clean data (on which the model is trained) and corrupted
data. It indicates that models with push-pull inhibition are better in generalizing to data with heavy
corruptions. In some cases, the relative error is decreased by more than 30%. The flip rate (mFR),
computed on the CIFAR-P sequences, also improved for all models with push-pull layers.

Networks with the push-pull layers generally show an improvement of robustness to corruptions
with high-frequency components. For instance, ResNet20-pp and ResNet20-b1 reduced the CE by
10% to 25% on noise (Gaussian, shot, impulse), up to 18% on glass blur, and between 15% and
20% on pixelate and jpeg compression corruptions with respect to that of the original ResNet20.
Marginal improvements or lower robustness are obtained on low-frequency corruptions, such as
defocus, motion and zoom blur (+2/6% of CE), snow, frost and fog (between −4% and +4% of
CE). For detailed results per corruption and perturbation type, we refer the reader to Appendix C.

Inhibition and anti-aliasing layers. In order to further improve the robustness of existing Con-
vNets, we show that the push-pull inhibition can be used in combination with other techniques. We
couple it with the anti-aliased sampling layer proposed by Zhang (2019), which showed to improve
robustness to some image corruptions next to re-enforcing the shift-invariance property of ConvNets.
It consists of a low-pass filter inserted before the pooling or strided convolutional operations. We
used low-pass filters of different sizes, namely 2× 2 (Rect-2), 3× 3 (Tri-3) and 5× 5 (Bin-5).

Figure 3 illustrates the results achieved by (Wide)ResNet models extended with the push-pull inhi-
bition and anti-aliased sampling layers. In many cases the combined effects of the push-pull and
anti-aliasing layers resulted in lowering either the corruption error CE or the flip probability FP .
The Rect-2 filter (� marker), in particular, is effective on all models (with and without the push-
pull layer), on the contrary of the Tri-3 and Bin-5 filters, which have larger sizes and in some cases
worsen the robustness of the networks. This is due to the relatively small sizes of the images in the
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Table 2: Corruption error (CE) and flip rate (FR) of WideResNet models with and without the push-
pull layer, trained using different data augmentations.

Augmentation
Model none AutoAug. cutout AutoAug.+cutout

m
C

E WRN-28-10 0.796 0.523 0.814 0.535
*-pp 0.689 0.521 0.804 0.548
*-b1 0.703 0.499 0.728 0.484

FR

WRN-28-10 0.602 0.408 0.611 0.391
*-pp 0.555 0.445 0.567 0.417
*-b1 0.572 0.428 0.529 0.384

Table 3: Results obtained on the ImageNet-C and ImageNet-P by ConvNets that embed the push-
pull layer as a substitute of different convolutional layers. For each augmented model with push-pull
and anti-aliasing layers, the mCE and FR results are normalized by those of the baseline network.

Network E CE mCE FR
ResNet-18 30.24 68.32 1 1
ResNet-18-pp 30.25 68.38 1.0024 1.069
ResNet-18-b1 30.98 68.98 1.0109 1.075
ResNet-18 + Rect-2 31.27 69.15 1.0146 0.899
ResNet-18 + Tri-3 31.33 68.94 1.0114 0.854
ResNet-18 + Bin-5 31.77 69.51 1.0198 0.840
ResNet-50 23.84 62.20 1 1
ResNet-50-pp 24.11 61.60 0.99 0.986
ResNet-50-b1 24.31 61.51 0.989 0.998
ResNet-50 + Rect-2 24.04 61.34 0.9919 0.886
ResNet-50 + Tri-3 24.13 61.40 0.9928 0.852
ResNet-50 + Bin-5 24.64 61.54 0.9950 0.844

CIFAR data set with respect to the low-pass filters, which overly smooth the intermediate response
maps in the ConvNets. Models with anti-aliasing filters achieved less reduction of corruption error
with respect to inhibition-augmented ConvNets: up to 10% on noise and around 2% on motion blur,
but perform better (> 6%) than networks with inhibition on the translate perturbation.

Inhibition and data augmentation. We show that the embedding of the push-pull layer within
existing architectures can be combined with data augmentation techniques to further improve the
model robustness to different corruptions. In Table 2, we report the robustness results (CE and
FR) of WideResNet models (with and without push-pull inhibition) trained with data augmentation
techniques. We performed experiments with AutoAugment, cutout and a combination of them. The
cutout augmentation does not increase the robustness of the models to input corruptions, while
AutoAugment contributes to a noticeable reduction of the corruption error. This is in line with
the findings by Yin et al. (2019). In all cases, inhibition layers contribute to further increase the
robustness of networks trained with data augmentation. The best CE and FR values are obtained
by models that deploy the push-pull layer in the first layer and in the first residual block, and are
trained using AutoAugment plus cutout augmentations.

5.2 IMAGENET

In Table 3, we show the results achieved by ResNet models on the ImageNet validation set and on
ImageNet-C/P benchmarks. The mCE and FR values are normalized with respect to the results of
the baseline models ResNet-18 and ResNet-50, respectively.

On one hand, we observed a general decrease of performance of fine-tuned ResNet-18 models with
push-pull and anti-aliasing layers on the ImageNet-C data set. On the other hand, the push-pull layer
improves the robustness of ResNet-50 on the corruptions in ImageNet-C and on the perturbations
in ImageNet-P. Results of the ResNet models extended with anti-aliasing layers decrease on the
ImageNet-C data set with respect to those of the original ResNet model, while showing improved
robustness to the perturbation of the ImageNet-P data set. Also for the ImageNet-C/P benchmarks,
we noticed that the improvements of robustness achieved by the models with push-pull inhibition are
directed towards high-frequency corruptions. Nonetheless, the complementary robustness shown by
ResNet-50 architectures with push-pull inhibition and anti-aliasing layers suggest that they can be
jointly deployed in existing models, as we also observed in the CIFAR experiments.

7



Under review as a conference paper at ICLR 2021

-0.2 0.0 0.2

ResNet-56
ResNet-56-b1

(a)

-0.01 0 0.01
weights

WRN-28-10
WRN-28-10-b1

(b)

-0.2 0.0 0.2

DenseNet40-12
DenseNet40-12-b1

(c)
Figure 4: Histograms of the weights learned in push-pull and convolutional layers of (a) ResNet, (b)
WideResNet and (c) DenseNet. Networks with push-pull layers (orange) learn sparser representa-
tions than networks with only convolutional layers (blue).

5.3 DISCUSSION

The push-pull inhibition component that we implemented into ConvNets allows for a sharper detec-
tion of features of interest in cases when the input signal is corrupted. In neuroscience studies, it
was found that while neurons that exhibit push-pull inhibition achieve similar activations to preferred
stimuli when compared to neurons that do not exhibit such inhibition, the fact that their activations
are suppressed in noisy areas result in a more pronounced distinction between patterns of interest
from others and in a sparser representation (Li et al., 2012). These may be considered as two de-
sirable properties in machine learning models. In Figure 4, we show the histograms of the weights
learned in convolutional and push-pull layers of several models. The push-pull layer acts as a reg-
ularizer and allows to learn generally sparser representations. We conjecture that one effect of the
push-pull layer is the learning of smoother discriminant mapping functions due to sparser represen-
tations. This contributes to the increased generalization showed on corrupted data (Srivastava et al.,
2014). While the resulting models may fit slightly less than models without push-pull inhibition on
training data, they generalize better to unknown corruptions and perturbations.

The push-pull layer contributes to the improvement of the robustness of a particular architecture to
input corruptions, with negligible reduction of classification accuracy on the original data. When
classification systems are deployed in real-world tasks, where the acquisition of data is subject to
corruptions due to sensor uncertainty/deterioration or to changing environments, it is desirable to
provide them with mechanisms that can effectively deal with such degradation. From a computa-
tional cost point of view, during the training stage, the pull kernels are derived at each iteration by
upsampling and negating the corresponding push kernels, which relatively slows down the training
process. On a Nvidia V100 gpu, one training iteration with a batch of 256 ImageNet images takes
0.78, 0.85 and 0.95 seconds for ResNet50, ResNet50-pp and ResNet50-b1, respectively. In the test-
ing stage, the pull kernels are loaded only once when the model is initiated. Extra computations are
due only to the processing of the pull component. When the push-pull layer is used only in the first
layer of the network or in the first block, the difference in computations is negligible. For inference,
the processing takes 0.66, 0.67 and 0.63 seconds, respectively. The lowest test time of ResNet50-b1
is attributable to the sparser representation learned in the push-pull layer.

6 CONCLUSIONS

We demonstrated that the inclusion of a response inhibition mechanism, inspired by the push-pull
neurons of the visual system of the brain, into existing ConvNets improves their robustness to cor-
ruptions and perturbations of the input that are not present in the training data. The improvement is
mainly attributable to the filters in the push-pull layer that are less sensitive to noise, and have a reg-
ularization effect that makes the network learn a sparser representation. We carried out experiments
on the CIFAR-C/P and ImageNet-C/P data sets and the results that we achieved (more than 10% of
reduction of the error on corrupted and perturbed data, and 1% of reduction of the corruption error
for fine-tuned networks) demonstrate the effectiveness of the push-pull inhibition layer.
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APPENDIX

A PUSH-PULL RESIDUAL AND DENSE LAYERS

In Figure 5, we show the structure of the composite residual and dense layers augmented with the
push-pull inhibition. The architecture of the layers is the same of the original residual and dense
layers, with the difference that all convolutions are replaced by push-pull filters.

push-pull

BN

ReLU

push-pull

BN

ReLU

push-pull

BN

ReLU

concat

Push-pull
residual layer

Push-pull
dense layer

(a) (b)

Figure 5: Modified residual and dense layers. In the (a) push-pull residual layer and (b) push-pull
dense layer we replace the convolutions with our push-pull layer.

B PERFORMANCE METRICS

We denote byEM the classification error of a modelM on the original clean (without perturbations)
test set. Let us denote by EM

c,s the corruption error achieved by the model M on images with
corruption c ∈ C and severity level s, and denote by EM

c the average error achieved across all
severity sets of a given corruption c.

We compute the mean corruption error mCE as the average of the normalized errors achieved on
all corruptions and severity levels. We use the error Ebaseline

c,s achieved by a baseline network on the
set of data with corruption c and severity s as a normalization factor for the corruption error:

mCEM =
1

|C|

|C|∑
c=1

∑5
s=1E

M
c,s∑5

s=1E
baseline
c,s

(2)

As proposed by Hendrycks & Dietterich (2019), we also evaluate the degradation of the classifier
performance on corrupted data with respect to the results achieved on clean data and compute the
relative mean corruption error rCE. It measures the relative gap between the error on clean and
corrupted data and it is computed as:

rCEM =
1

|C|

|C|∑
c=1

∑5
s=1

(
EM

c,s − EM
)∑5

s=1

(
Ebaseline

c,s − Ebaseline
) (3)

As a measure of performance on the CIFAR-P and ImageNet-P test sets, we compute the flip prob-
ability FP . It measures the probability that the outcome of the classification changes between
consecutive frames of a sequence S due to a perturbation p. Formally, it is defined as:

FPM
p = Px∼S(f(j) 6= f(xj−1)) (4)

where xj is the j-th frame of the perturbation sequence. Similarly to the mCE, the flip rate
FRM

p = FPM
p /FP baseline

p is the normalized version of the FP .
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C DETAILED RESULTS

C.1 RESULTS PER CORRUPTION TYPE

In Table 4, we show the detailed results achieved on the corruption sets in the CIFAR-C data set
by network with and without push-pull inhibition. We also report the results achieved by networks
that deploy the anti-aliased sampling filters of Zhang (2019). The push-pull filters are robust to
high-frequency corruptions and can be effectively combined with anti-aliasing filters.

Table 4: Results on CIFAR-C, for models that make a combined use of the push-pull filters with the
anti-aliasing filters.

noise blur
lpf original Gaussian shot impulse defocus glass motion zoom

AlexNet 13.87 38.44 31.82 46.13 23.53 40.97 29.32 26.89

ResNet-20 7.56 57.41 45.75 41.88 21.43 58.82 30.62 27.54
ResNet-20 2 7.37 57.3 46.06 43.39 22.13 54.95 27.89 29.56
ResNet-20 3 7.93 56.39 45.36 43.14 22.72 61.53 29.5 30.02
ResNet-20 5 7.98 60.44 48.81 45.49 23.36 59.71 30.97 32.43
ResNet-20-pp 8.29 49.90 39.98 37.20 22.30 58.56 29.50 29.68
ResNet-20-pp 2 7.95 48.58 39.61 35.39 21.87 56.93 29.18 28.11
ResNet-20-pp 3 7.78 45.76 36.84 34.63 20.9 54.47 28.28 27.13
ResNet-20-pp 5 8.45 46.37 37.08 35.72 23.61 55.13 29.98 31.09
ResNet-20-b1 8.32 47.60 37.31 38.05 22.31 51.64 29.76 28.95
ResNet-20-b1 2 8.2 45.31 36.41 35.85 21.87 53.89 27.79 26.99
ResNet-20-b1 3 8.45 45.28 35.84 35.92 21.74 56.43 29.92 28.38
ResNet-20-b1 5 7.93 47.6 37.99 37.64 19.15 54.83 27.3 24.17

ResNet-56 6.64 56.72 44.02 44.68 20.02 59.22 26.54 26.73
ResNet-56 2 6.42 49.28 38.78 38.39 20.18 55.79 25.85 26.64
ResNet-56 3 6.28 53.54 42.04 40.44 20.91 58.11 28.56 29.14
ResNet-56 5 6.56 54.72 43.25 40.72 20.97 55.55 27.35 27.72
ResNet-56-pp 7.01 44.92 35.74 33.14 20.88 50.46 27.67 26.58
ResNet-56-pp 2 7.11 41.43 32.99 32.62 18.81 44.6 25.12 23.7
ResNet-56-pp 3 6.86 44.33 35.36 33.21 21.09 54.04 27.70 28.53
ResNet-56-pp 5 6.7 44.8 34.87 32.43 21.2 55.65 28.83 29.06
ResNet-56-b1 7.76 40.17 31.88 29.56 18.56 45.53 25.36 23.36
ResNet-56-b1 2 10.87 27.34 23.15 35.31 14.09 17.19 18.78 15.33
ResNet-56-b1 3 7.37 38 29.4 33.59 19.1 45.28 25.01 23.84
ResNet-56-b1 5 8.45 31.91 26.8 30.99 17.1 30.42 20.58 19.81

weather digital
lpf snow frost fog brightness contrast elastic pixelate jpeg

AlexNet 26.94 28.26 30.31 17.84 46.77 22.25 18.36 18.48

ResNet-20 25.06 31.39 16.56 9.73 29.59 20.37 32.33 23.81
ResNet-20 2 25.18 31.04 15.71 9.7 28.19 20.66 34.87 24.22
ResNet-20 3 24.98 32.16 17.16 10.12 28.82 21.11 33.24 24.57
ResNet-20 5 25.61 34.78 17.36 10.25 28.75 21.55 35.83 25.27
ResNet-20-pp 25.59 31.29 17.58 10.34 30.50 20.65 32.70 22.16
ResNet-20-pp 2 25.3 29.89 16.94 9.99 29.88 20.72 31.3 21.69
ResNet-20-pp 3 24.64 27.39 15.75 10 26.15 20.52 31.7 22.37
ResNet-20-pp 5 26.36 30 17.06 10.55 28.96 21.28 34.02 22.16
ResNet-20-b1 24.00 26.92 18.04 10.29 31.15 19.56 27.95 20.35
ResNet-20-b1 2 23.79 28.69 16.59 10.45 29.24 19.33 31.28 20.58
ResNet-20-b1 3 25.89 29.59 17.99 10.48 28.06 21.14 33.9 22.14
ResNet-20-b1 5 24.37 28.65 15.99 10.16 28.68 18.57 32.37 21.28

ResNet-56 21.99 29.08 14.55 8.30 24.89 18.52 29.79 22.88
ResNet-56 2 21.94 28.12 15.73 8.28 24.44 17.81 31.31 22.43
ResNet-56 3 21.95 28.7 15.67 8.11 25.49 19.87 29.91 22.76
ResNet-56 5 22.78 28.81 15.57 8.33 24.58 19.56 31.26 22.89
ResNet-56-pp 22.32 27.28 15.93 8.68 26.94 18.57 29.06 19.82
ResNet-56-pp 2 21.19 24.74 16.52 9.17 28.9 16.84 23.28 17.49
ResNet-56-pp 3 22.52 25.94 15.70 8.85 25.81 19.34 28.50 21.03
ResNet-56-pp 5 22.01 27 15.28 8.62 25.3 19.05 28.77 19.79
ResNet-56-b1 22.51 25.49 16.31 9.78 29.30 17.95 25.94 17.73
ResNet-56-b1 2 18.94 17.67 23.73 13.39 34.84 15.68 12.32 15.89
ResNet-56-b1 3 20.87 24.31 16.5 9.22 27.91 16.76 25.18 16.89
ResNet-56-b1 5 18.14 19.42 19.5 10.56 32.47 15.95 14.08 15.72

In Table 5, we report detailed results per corruption type achieved by WideResNet models for which
the convolutions in the first layer and in the first residual block were replaced by push-pull filters,
and that are trained using different types of data augmentation, namely the cutout (Devries & Taylor,
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2017) and AutoAugment (Cubuk et al., 2018) techniques. The use of the push-pull filters can be
combined with data augmentation to further improve the robustness of existing models.

Table 5: Results on the corruptions in CIFAR-C, for models that make a combined use of the push-
pull filters with cutout and AutoAugment (AA) data augmentation techniques.

noise
augmentation original Gaussian shot impulse defocus glass motion zoom

AlexNet 13.87 38.44 31.82 46.13 23.53 40.97 29.32 26.89

WRN-28-10 3.79 51.25 38.66 40.08 15.55 43.29 19.73 20.17
WRN-28-10-pp 4.09 35.46 26.36 29.14 15.52 40.2 18.91 19.17
WRN-28-10-b1 4.59 37.54 28.21 28.61 15.02 41.91 20.26 17.5
WRN-28-10 AA 2.84 36.95 26.53 15.71 5.2 35.57 10.16 6.44
WRN-28-10-pp AA 3.37 31.82 22.74 16.73 5.94 35.61 12.86 7.54
WRN-28-10-b1 AA 3.2 27.04 19.24 16.3 6.09 36.73 12.08 7.94
WRN-28-10 cutout 3.18 56.64 45.24 50.99 17.83 38.03 19.41 25
WRN-28-10-pp cutout 3.32 56.07 44.09 45.24 17.15 46.78 19.38 21.45
WRN-28-10-b1 cutout 3.43 45.46 34.84 40.32 19.46 41.63 18.73 24.02
WRN-28-10 AA+cutout 2.67 38.83 27.75 13.53 5.8 31.95 11.66 7.01
WRN-28-10-pp AA+cutout 2.71 39.47 28.18 16.85 5.66 39.57 11.83 7.23
WRN-28-10-b1 AA+cutout 2.9 33.08 23.39 17.28 5.91 33.2 11.73 7.44

weather digital
augmentation snow frost fog brightness contrast elastic pixelate jpeg

AlexNet 26.94 28.26 30.31 17.84 46.77 22.25 18.36 18.48

Wrn-28-10 14.74 18.72 9.84 5.12 18.37 14.56 24.57 21.81
Wrn-28-10-pp 15.75 17.71 10.92 5.44 18.32 13.6 20.59 17.71
Wrn-28-10-b1 16.27 19.14 11.77 5.95 21.92 13.54 19.59 16.86
Wrn-28-10 AA 10.07 11.68 5.25 3.28 4.75 9.99 25.27 17.68
Wrn-28-10-pp AA 11.67 13.44 7.31 3.88 7.01 10.77 23.63 14.39
Wrn-28-10-b1 AA 12.14 12.83 7.08 3.81 6.02 10.64 23.26 13.55
Wrn-28-10 cutout 12.33 16.53 8.9 4.51 15.75 12.75 23.61 21.07
Wrn-28-10-pp cutout 14.94 20.7 9.54 4.66 15.98 11.62 22.3 17.69
Wrn-28-10-b1 cutout 13.67 17.3 9.35 4.69 15.07 11.27 19.28 15.35
Wrn-28-10 AA+cutout 8.64 11.46 5.26 3.21 5 9.6 28.94 18.02
Wrn-28-10-pp AA+cutout 11.44 15.24 6.57 3.26 6.78 9.28 23.78 15.45
Wrn-28-10-b1 AA+cutout 10.01 12.46 6.3 3.39 5.32 8.98 20.37 13.12

In Table 6, we report the detailed classification error achieved per corruption type on ImageNet-C
by models that deploy the push-pull layers in comparison with those achieved by models that use the
antialiased sampling module proposed by Zhang (2019). The push-pull layers provide robustness
for high-frequency corruptions, that is more evident in the case of the ResNet-50 models.

Table 6: Detailed comparison of results on the corruptions in ImageNet-C achieved by models that
deploy push-pull and anti-aliasing-filters.

noise blur
lpf original Gaussian shot impulse defocus glass motion zoom

Resnet-18 30.24 77.33 79.19 82.43 71.97 77.03 70.38 70.43
ResNet-18-pp 30.25 76.41 77.74 81.6 72.48 75.72 69.7 70.47
ResNet-18-b1 30.98 77.73 79.31 83.29 73.02 75.24 69.61 70.84
Resnet-18 2 31.27 77.65 79.55 83.31 71.58 76.51 69.14 70.43
Resnet-18 3 31.33 77.09 79.08 82.46 71.83 76.48 69.41 70.98
Resnet-18 5 31.77 78.00 79.94 83.43 72.26 76.65 69.55 71.45

ResNet-50 23.84 68.37 70.5 72.87 64.32 74.32 63.11 64.83
ResNet-50-pp 24.11 66.99 69.02 71.88 64.92 72.65 63.77 64.25
ResNet-50-b1 24.31 67.57 70.13 73.09 64.59 72.32 63 63.66
ResNet-50 2 24.04 67.62 70.13 72.15 63.60 73.75 62.54 65.14
ResNet-50 3 24.13 67.49 69.74 71.73 62.97 74.12 62.71 64.82
ResNet-50 5 24.64 67.68 70.00 72.06 63.57 73.99 62.68 64.95

weather digital
lpf snow frost fog brightness contrast elastic pixelate jpeg

Resnet-18 75.9 71.78 66.12 41.15 69.2 60.22 57.87 53.75
ResNet-18-pp 75.89 71.48 67.5 42.16 71.67 60.08 57.95 54.8
ResNet-18-b1 76.45 72.19 68.66 42.95 73.29 59.54 58.35 54.25
Resnet-18 2 76.28 72.24 68.15 43.07 71.41 59.94 62.52 55.54
Resnet-18 3 75.79 71.96 67.63 42.78 71.11 59.86 62.15 55.42
Resnet-18 5 76.86 72.98 68.28 43.36 71.55 60.20 62.55 55.60

ResNet-50 70.35 65.66 59.44 35.81 64.34 56.68 55.18 47.16
ResNet-50-pp 70.53 64.85 60.24 35.15 64.8 55.6 52.62 46.71
ResNet-50-b1 70.41 64.43 58.97 35.5 64.25 55.46 51.49 47.8
ResNet-50 2 69.03 64.39 57.13 35.22 62.92 56.21 52.67 47.55
ResNet-50 3 69.72 65.05 57.08 35.22 63.28 56.12 53.99 46.94
ResNet-50 5 69.96 65.79 57.73 35.60 63.12 56.68 53.00 46.29
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C.2 RESULTS PER PERTURBATION TYPE

We report in Table 7 the detailed performance results, in terms of flip probability, per perturbation
type achieved on the CIFAR-P data set by ResNet models, of different depth, that deploy the push-
pull layers, the anti-aliasing layers or a combination of them. The flip probability measures the
likelihood that a model changes its predictions on consecutive frames of a video on which an incre-
mental corruption is applied. The push-pull inhibition layers contribute to a substantial improvement
of stability against high-frequency components, and benefit from the effect of the anti-aliasing filters
on the translate perturbation.

Table 7: Flip probability per perturbation achieved on the CIFAR-P data set by networks augmented
with push-pull filters and anti-aliasing filters.

noise blur weather digital
lpf Gaussian shot motion zoom snow bright. translate rotate tilt scale

AlexNet 0.041 0.051 0.084 0.006 0.036 0.016 0.136 0.089 0.033 0.105

ResNet-20 0.082 0.111 0.119 0.008 0.037 0.009 0.046 0.053 0.018 0.065
ResNet-20 2 0.080 0.108 0.118 0.008 0.038 0.010 0.044 0.054 0.019 0.064
ResNet-20 3 0.077 0.102 0.118 0.007 0.040 0.009 0.042 0.055 0.019 0.067
ResNet-20 5 0.083 0.106 0.111 0.008 0.037 0.010 0.042 0.053 0.018 0.065
ResNet-20-pp 0.076 0.097 0.123 0.008 0.039 0.014 0.053 0.055 0.019 0.067
ResNet-20-pp 2 0.070 0.089 0.122 0.007 0.038 0.013 0.048 0.055 0.019 0.070
ResNet-20-pp 3 0.074 0.096 0.120 0.008 0.037 0.014 0.046 0.055 0.018 0.066
ResNet-20-pp 5 0.072 0.092 0.120 0.009 0.039 0.012 0.043 0.057 0.020 0.069
ResNet-20-b1 0.062 0.081 0.114 0.007 0.034 0.014 0.053 0.051 0.018 0.066
ResNet-20-b1 2 0.061 0.078 0.108 0.007 0.034 0.013 0.052 0.054 0.018 0.067
ResNet-20-b1 3 0.063 0.080 0.103 0.006 0.033 0.013 0.048 0.048 0.019 0.066
ResNet-20-b1 5 0.067 0.085 0.110 0.007 0.035 0.014 0.049 0.053 0.018 0.069

ResNet-56 0.0706 0.0943 0.1048 0.0063 0.0333 0.0076 0.0354 0.0458 0.0139 0.0523
ResNet-56 2 0.0656 0.0865 0.1021 0.0063 0.0303 0.0078 0.0329 0.0462 0.0143 0.0567
ResNet-56 3 0.0731 0.0987 0.0980 0.0063 0.0324 0.0079 0.0326 0.0451 0.0137 0.0549
ResNet-56 5 0.0688 0.0968 0.1096 0.0065 0.0344 0.0077 0.0348 0.0469 0.0152 0.0569
ResNet-56-pp 0.0577 0.0762 0.1080 0.0059 0.0304 0.0106 0.0365 0.0465 0.0147 0.0579
ResNet-56-pp 2 0.0644 0.0813 0.1105 0.0066 0.0329 0.0122 0.0378 0.0497 0.0162 0.0586
ResNet-56-pp 3 0.0573 0.0736 0.0979 0.0060 0.0327 0.0121 0.0381 0.0418 0.0143 0.0537
ResNet-56-pp 5 0.0615 0.0765 0.1098 0.0067 0.0318 0.0126 0.0382 0.0483 0.0157 0.0568
ResNet-56-b1 0.0517 0.0654 0.1007 0.0061 0.0297 0.0130 0.0429 0.0438 0.0158 0.0573
ResNet-56-b1 2 0.0373 0.0485 0.0814 0.0044 0.0219 0.0114 0.0494 0.0393 0.0137 0.0530
ResNet-56-b1 3 0.0540 0.0702 0.0959 0.0055 0.0305 0.0117 0.0379 0.0482 0.0151 0.0593
ResNet-56-b1 5 0.0514 0.0667 0.1009 0.0056 0.0291 0.0111 0.0383 0.0490 0.0154 0.0582

In Table 8 we report detailed flip probability results per perturbation type achieved by WideResNet
models that deploy push-pull filters in the first layer and in the first residual block to replace the
original convolutions, and that are trained using different types of data augmentation, namely the
cutout (Devries & Taylor, 2017) and AutoAugment (Cubuk et al., 2018) techniques. The push-pull
inhibition and the different data augmentation techniques provide complementary contributions to
the improvement of the model robustness and stability to perturbations. This demonstrates that the
push-pull layer can be deployed in existing architectures and can be combined with other approaches
to further improve the classification performance.

Table 8: Flip probability per perturbation achieved on the CIFAR-P data set by networks augmented
with push-pull filters and trained with different data augmentation techniques. AA stands for Au-
toAugment.

noise blur weather digital
augm. Gaussian shot motion zoom snow brightness translate rotate tilt scale

AlexNet 0.0411 0.0507 0.0842 0.0059 0.0364 0.0160 0.1364 0.0894 0.0326 0.1050

WRN-28-10 0.0479 0.0693 0.0815 0.0039 0.0205 0.0049 0.0186 0.0276 0.0075 0.0334
WRN-28-10-pp 0.0387 0.0524 0.0787 0.0034 0.0204 0.0076 0.0207 0.0273 0.0080 0.0334
WRN-28-10-b1 0.0405 0.0531 0.0771 0.0033 0.0218 0.0081 0.0231 0.0280 0.0087 0.0370
WRN-28-10 AA 0.0345 0.0464 0.0485 0.0029 0.0133 0.0035 0.0145 0.0171 0.0062 0.0202
WRN-28-10-pp AA 0.0351 0.0431 0.0560 0.0029 0.0151 0.0066 0.0166 0.0201 0.0065 0.0235
WRN-28-10-b1 AA 0.0312 0.0383 0.0560 0.0028 0.0162 0.0056 0.0174 0.0217 0.0074 0.0238
WRN-28-10 cutout 0.0481 0.0729 0.0906 0.0044 0.0179 0.0046 0.0140 0.0265 0.0069 0.0304
WRN-28-10-pp cutout 0.0435 0.0622 0.0821 0.0035 0.0213 0.0062 0.0161 0.0225 0.0072 0.0263
WRN-28-10-b1 cutout 0.0390 0.0516 0.0802 0.0039 0.0186 0.0058 0.0162 0.0215 0.0075 0.0269
WRN-28-10 AA+cutout 0.0308 0.0429 0.0577 0.0028 0.0120 0.0033 0.0122 0.0163 0.0058 0.0179
WRN-28-10-pp AA+cutout 0.0341 0.0441 0.0535 0.0027 0.0147 0.0048 0.0148 0.0174 0.0063 0.0186
WRN-28-10-b1 AA+cutout 0.0283 0.0377 0.0499 0.0029 0.0131 0.0046 0.0157 0.0180 0.0062 0.0185
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In Table 9 we report the detailed flip probability results achieved by ResNet models augmented
with push-pull inhibition filters in comparison to those achieved by models that deploy anti-aliasing
layers. The push-pull filters, especially in the case of ResNet-50, contribute to the improvement
of the stability of the network prediction on consecutively perturbed frames and are particularly
effective on high-frequency corruptions.

Table 9: Flip probability results per perturbation achieved on the ImageNet-P data set by ResNet
models augmented with push-pull filters, compared with those achieved by ResNet models that
deploy anti-aliasing filters.

noise blur weather digital
augm. Gaussian shot motion zoom snow brightness translate rotate tilt scale

Resnet-18 0.0979 0.1154 0.0700 0.0504 0.0901 0.0380 0.0689 0.0869 0.0517 0.1560
ResNet-18-pp 0.1009 0.1213 0.0736 0.0527 0.0927 0.0396 0.0797 0.0964 0.0575 0.1662
ResNet-18-b1 0.0968 0.1156 0.0736 0.0518 0.0958 0.0389 0.0837 0.0983 0.0594 0.1710
Resnet-18 2 0.0893 0.1052 0.0661 0.0473 0.0812 0.0375 0.0499 0.0752 0.0440 0.1479
Resnet-18 3 0.0844 0.1026 0.0631 0.0466 0.0777 0.0370 0.0429 0.0689 0.0420 0.1394
Resnet-18 5 0.0837 0.1007 0.0632 0.0467 0.0798 0.0369 0.0376 0.0662 0.0416 0.1355

Resnet-50 0.0748 0.0879 0.0603 0.0437 0.0832 0.0324 0.0486 0.0702 0.0413 0.1149
Resnet-50-pp 0.0717 0.0847 0.0591 0.0416 0.0783 0.0331 0.0527 0.0692 0.0402 0.1148
Resnet-50-b1 0.0715 0.0841 0.0605 0.0421 0.0795 0.0335 0.0538 0.0703 0.0404 0.1171
Resnet-50 2 0.0666 0.0778 0.0554 0.0404 0.0686 0.0300 0.0350 0.0581 0.0346 0.1034
Resnet-50 3 0.0642 0.0756 0.0538 0.0399 0.0692 0.0300 0.0300 0.0540 0.0330 0.0977
Resnet-50 5 0.0648 0.0762 0.0534 0.0397 0.0707 0.0297 0.0270 0.0527 0.0333 0.0957
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