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Ransomware attacks are increasing at an alarming rate, leading to large financial losses, unrecov-
erable encrypted data, data leakage, and privacy concerns. The prompt detection of ransomware
attacks is required to minimize further damage, particularly during the encryption stage. However,
the frequency and structure of the observed ransomware attack data makes this task difficult to
accomplish in practice. The data corresponding to ransomware attacks represents temporal, high-
dimensional sparse signals, with limited records and very imbalanced classes. While traditional
deep learning models have been able to achieve state-of-the-art results in a wide variety of domains,
Bayesian Neural Networks, which are a class of probabilistic models, are better suited to the issues
of the ransomware data. These models combine ideas from Bayesian statistics with the rich expres-
sive power of neural networks. In this paper, we propose the Radial Spike and Slab Bayesian Neural
Network, which is a new type of Bayesian Neural network that includes a new form of the approx-
imate posterior distribution. The model scales well to large architectures and recovers the sparse
structure of target functions. We provide a theoretical justification for using this type of distribution,
as well as a computationally efficient method to perform variational inference. We demonstrate the
performance of our model on a real dataset of ransomware attacks and show improvement over a
large number of baselines, including state-of-the-art models such as Neural ODEs (ordinary dif-
ferential equations). In addition, we propose to represent low-level events as MITRE ATT&CK
tactics, techniques, and procedures (TTPs) which allows the model to better generalize to unseen
ransomware attacks.

1 INTRODUCTION

Ransomware attacks are increasing rapidly and causing significant losses to governments, corpora-
tions, non-governmental organizations, and individuals. The losses may include financial costs due
to ransoms paid to decrypt assets, unrecoverable files when the ransom is not paid or the attacker fails
to provide the decryption key, privacy and intellectual property theft when assets are exported, and
even significant injury when ransomware impairs health care devices or patient records in hospitals.
It is clear that the timely detection of ransomware incidents is necessary in order to minimize the
number of assets that are encrypted or exfiltrated (Urooj et al., 2021). To improve the ransomware
response, this work proposes a new Bayesian Neural Network model that offers improved detection
rates for organizations which employ analysts to protect their assets and networks.

The problem is usually considered as a detection task, where the two classes are ransomware or not.
The traditional methods of statistics and machine learning have been proposed to detect security
threats in general and specifically ransomware in some cases. From the statistical perspective, a
common approach is the application of Bayesian Networks (Perusquı́a et al., 2020; Oyen et al.,
2016; Shin et al., 2015), whose main goal is to model the relationship between the observed signal
and the class of the attack as a graphical model. From the machine learning perspective, a range
of models were used to detect ransomware (Alhawi et al., 2018; Poudyal et al., 2018; Zhang et al.,
2019; Larsen et al., 2021), such as Naive Bayes, Gradient Boosting, and Random Forests.

Bottleneck. To obtain the rich expressive power of traditional deep learning models, training usu-
ally requires having access to a large number of records to successfully obtain robust generalized
results. Unfortunately, the frequency and structure of commonly observed data corresponding to ran-
somware attacks makes this task more difficult to accomplish. In particular, ransomware attack data
can be represented as temporal high-dimensional sparse signals, with a limited number of records
and very imbalanced classes. In our data, the percentage of ransomware attacks to non-ransomware
attacks is 1% versus 99%, respectively.
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Main ideas and contributions. To address these unique features of the ransomware data, we first
propose to represent ransomware signals according their MITRE ATT&CK tactics, techniques, and
procedures (TTPs) which allows us to generalize ransomware and other attacks at a higher-level
instead of the low-level detections associated with an individual attack. In addition, this allows for
the detection of both human operated and automated ransomware attacks across multiple stages in
the kill chain within an organization’s network. Next, we propose a new probabilistic model which
is called the Radial Spike and Slab Bayesian Neural Network. It is a Bayesian Neural Network,
where the approximate posterior is represented by a mixture of distributions, resulting in a Radial
Spike and Slab distribution. Our model provides the following benefits including: (1) the Spike
and Slab component handles missing or sparse data, (2) the Radial component scales well with the
growth of the number of parameters in the deep neural network, and (3) the Bayesian component
prevents overfitting in the limited data setup. From the theoretical perspective, we provide the
justification for using this type of distribution, as well as a computationally efficient method to
perform variational inference. In the results section, we demonstrate the performance of our model
on a set of actual ransomware attacks and show improvement over a number of baselines, including
the state-of-the-art temporal models such as RNNs (Cho et al., 2014) and Neural ODEs (ordinary
differential equations) (Chen et al., 2018). Thus, the proposed model is an important tool for the
critical problem of ransomware detection.

2 INCIDENT DATA DESCRIPTION

This work utilizes threat data provided by ‘our industry partner’ to detect ransomware and other
types of cybersecurity attacks. Low-level event generators are manually created by analysts (i.e.,
signatures) and are provided with a UUID (Universally Unique Identifier).

Features. Given each incident, features need to be extracted which capture the range of attack be-
haviors observed across the kill chain and represent common behaviors across the different families
of ransomware attacks. The low-level events cannot be used directly because there are too many
to train our model, given the number of labeled examples, and they do not generalize well indi-
vidually. To overcome these problems, we map a subset of the low-level events into a higher-level
representation using the MITRE ATT&CK framework (MITRE). We chose the MITRE ATT&CK
framework for the mapping because it provides a knowledge base of adversary tactics, techniques,
and procedures (TTPs) and is widely used across the industry for classifying attack behaviors and
understanding the lifecycle of an attack. Using the MITRE ATT&CK TTPs is a natural choice for
features as it is generalizable, interpretable, and easy to acquire for this data as each low-level event
from ‘the anonymized company’ is tagged with the MITRE technique associated with the alerted
behavior (MITRE). For example, one of the features can represent whether ‘OS Credential Dump-
ing’ happened or not. Additional MITRE ATT&CK features are included in Table 2, and the entire
set is provided by the MITRE corporation (MITRE, 2022a). The verbose definition of these features
can be found in (MITRE). For example, feature T1059.001 “Command and Scripting Interpreter,
Powershell” corresponds to “Adversaries may abuse PowerShell commands and scripts for execu-
tion” (MITRE, 2022b). In total, our data is a sparse binary, high-dimensional vector of size 706,
which contains 298 MITRE ATT&CK features and 408 additional signature-based features, at each
time point. One of the primary characteristics of the data is sparsity because only very few actions
are completed at each time step during the attack.

Labels. Using manual investigation, an analyst provides a label for each incident indicating whether
it is due to a ransomware attack or another type of attack. The ransomware incidents include both
human operated ransomware (HumOR) and automated ransomware attacks described in Appendix
B in the Supplementary Material. However, our positive class label only indicates that an attack is
ransomware and does not distinguish between the two classes of ransomware (i.e., HumOR, Auto-
mated). Our goal is to build an alarm-recommendation system, which can not only detect a possible
ransomware attack, but also provide an estimate of the uncertainty about the decision. We provide
additional details about the training and testing data in Section 4.

Ethics. As part of the production data collection process, all data has been processed to remove
all personal identifiable information. The datasets we received for this analysis only included a
randomly assigned UUID for the organization, and the incidents that included the MITRE events,
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signature UUID identifiers and the labels. The data was collected and adheres to the GDPR standard.
There are no negative societal impacts for creating models to protect users from ransomware.

3 METHODOLOGY

Important features of probabilistic models, such as providing a notion of uncertainty, dealing with
missing data, and preventing overfitting in a limited data regime, have generated a strong interest
in deep Bayesian learning. In this section, we provide more details regarding Bayesian Neural
Networks, including different aspects of initializing and training the model. We then propose the
Radial Spike and Slab Bayesian Neural Network model to address the problems of the ransomware
data.

Bayesian Neural Networks. The main idea behind the Bayesian Neural Network is to consider all
weights as being samples from a random distribution. Formally, we denote the observed data as
(x, y), where x is an input to the network, and y is a corresponding response. Let all weights of a
BNN, W = (W 1, . . . ,WD), be a random vector, where D is the depth (i.e., number of layers) of the
BNN and each W j = (wj,1, . . . , wj,lj ) is a random vector itself of all weights wj,k per layer W j of
size lj . To generate uncertainty of the prediction, we need to be able to compute p(y|x). However,
since all weights of a BNN are considered to be random variables, we can rewrite the conditional
probability as p(y|x) =

!
w
p(y,W |x)dW =

!
W

p(y|W,x)p(W |x)dW . Typically, the likelihood
term p(y|W,x) is defined by the problem setup, e.g., if we consider classification, as in ransomware
incident detection, y ∼ Bern(g(W,x)) for some function g. Then, the main problem of training a
BNN is to compute the posterior probability p(W |x), given the observed data x and a suitable prior
for W .

In some simple cases of small neural networks, it may be possible to obtain a closed-form solution
for the posterior if the prior and posterior are conjugate distributions. In other cases, if a closed-
form solution is unavailable, sampling-based strategies are required such as Markov Chain Monte
Carlo schemes based on Gibbs or Metropolis Hasting samplers. While such an approach provides
excellent statistical behavior with theoretical support, scalability as a function of the dimensional-
ity of the problem is known to be a serious issue. The alternative for machine learning and vision
problems is Variational Inference (VI) (Graves, 2011). The core concept of VI is based on the fact
that approximating the true posterior with another distribution may often be acceptable in practice.
The computational advantages of VI permit estimation procedures in cases which would not other-
wise be feasible. VI is now a mature technology, and its success has led to a number of follow-up
developments focused on theoretical as well as practical aspects (Blundell et al., 2015).

When using VI in Bayesian Neural Networks, we approximate the true unknown posterior distri-
bution P (W |x) with an approximate posterior distribution Qθ of our choice, which depends on
learned parameters θ. Let Wθ = (W 1

θ , . . . ,W
D
θ ) denote a random vector with distribution Qθ

and probability distribution function (pdf) qθ. VI seeks to find θ such that Qθ is as close as pos-
sible to the real (unknown) posterior P (W |x), and this is accomplished by minimizing the Kull-
back–Leibler (KL) divergence between Qθ and P (W |x). Given a prior pdf of weights, p, with a
likelihood term p(y|W,x), and the common mean field assumption of independence for W d and
W d

θ for d ∈ 1, . . . , D, i.e., p(W ) =
"D

d=1 p
d(W d) and qθ(Wθ) =

"D
d=1 q

d
θ (W

d
θ ),

θ∗ = argmin
θ

KL (qθ||p)− Eqθ [ln p(y|W,x)] (1)

KL (qθ||p) =
D#

d=1

Eqdθ

$
ln qdθ (w)

%
− Eqdθ

$
ln pd(w)

%
. (2)

By definition of the expected value Eqθ , it is necessary to compute the multi-dimensional integral
w.r.t w ∼ Qθ to solve equation 1. If such integrals are impossible to compute in a closed-form, a
numerical approximation is used (Ranganath et al., 2014; Paisley et al., 2012; Miller et al., 2017).
For example, Monte Carlo (MC) sampling yields an asymptotically exact, unbiased estimator with
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variance O( 1
M ), where M is the number of samples. For a function g(·):

Eqθ [g(w)] =

&
g(w)qθ(w)dw ≈ 1

M

M#

i=1

g(wi), where wi ∼ Qθ. (3)

The expected value terms in equation 1 and equation 2 can be estimated by applying the method in
equation 3, and in fact, even if a closed-form expression can be computed, an MC approximation
may perform similarly given enough samples (Blundell et al., 2015).

Given a mechanism to solve equation 1, the main consideration in VI is the choice of prior p and
the approximate posterior qθ. A common choice for p and qθ is Gaussian, which allows calculating
equation 2 in a closed-form. However, this type of distribution is mainly used for computational pur-
poses and does not reflect the nature of the data. Choosing the correct distribution, especially the one
which can incorporate the features of the analyzed data, is an open problem (Ghosh & Doshi-Velez,
2017; Farquhar et al., 2020; McGregor et al., 2019; Krishnan et al., 2019). In the next section, we
discuss our proposed distribution, which naturally fits the data encountered in ransomware incident
detection. While we give the description of the analyzed data in Section 2, we next describe the
features of the data, which are important to encapsulate in the model design.

Spike and Slab distribution. The sparsity of the data is a common problem in many areas (Kang,
2013) and was previously approached from different perspectives. For example in the statistics com-
munity, sparsity can be addressed with both Stochastic Regression Imputation and Likelihood Based
Approaches (Lakshminarayan et al., 1999). In the machine learning community, methods based
on k-nearest neighbor (Batista & Monard, 2003) and iterative techniques (Buuren & Groothuis-
Oudshoorn, 2010) have been developed, including approaches with neural networks (Sharpe &
Solly, 1995; Śmieja et al., 2018). Another way to tackle sparsity comes from regularization the-
ory via L1 regularization, e.g., group LASSO (Meier et al., 2008), sparse group LASSO (Simon
et al., 2013) and graph LASSO (Jacob et al., 2009).

However, we are interested in a probabilistic approach to address the sparsity in our data. From
the probabilistic perspective, a common way to account for sparsity of the data in the model is
to consider an appropriate distribution. For example, the distribution can be the Horseshoe dis-
tribution (Carvalho et al., 2009) or derivatives of the Laplace distribution (Babacan et al., 2009;
Bhattacharya et al., 2015). Namely, in our case, we would like to model sparse data with a sparse
probabilistic Bayesian neural network. Since only a portion of the input variables are relevant to the
response variable, we want the weights to be represented as on/off switches to understand whether
we should account for the input variables. Such a sparse Bayesian neural network can be repre-
sented by a ‘sparse‘ distribution on its weights, e.g., the mixture of priors with Spike and Slab
components which have been widely used for Bayesian variable selection (Mitchell & Beauchamp,
1988; George & McCulloch, 1997). In general, the form of the Spike and Slab distribution for ran-
dom variable w can be written as: w ∼ (1−π)δξ +πg, where π determines the probability for each
mixture component, δ is spike component, which is modeled with a Dirac delta function such that

δ(w) =

'
+∞, w = ξ

0, w ∕= ξ
and

!∞
−∞ δ(w)dw = 1, and g is the slab component, which is a general

distribution of the practioner’s choice. The general idea is to explicitly introduce the sparsity com-
ponent in the distribution of the data, allowing the probability mass to fully concentrate on ξ = 0
with probability 1 − π, and with probability π spread the remaining mass over the domain of the
slab component g. Notice, that π can be considered as a random variable itself, e.g., π ∼ Bern(λ),
where λ is either a learned parameter or a fixed value that is provided by a specialist.

The next questions to consider include: (1) how can the ‘Spike and Slab’ distribution be applied in
a BNN, and (2) which slab component g should we consider?

Spike and Slab BNN. In the BNN, all of the neural network’s weights W are considered to be
random variables, and to use VI to solve equation 1 for each layer’s set of weights W j in W =

(W 1, . . . ,WD), it is necessary to provide the prior pj and the approximate posterior qjθ . Without
loss of generality, we consider a single weight w := wj,k, dropping the indices j and k, and only
work with the prior p and the approximate posterior q for the remainder of this section.
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Incorporating a Spike and Slab distribution on both the prior p and the approximate posterior q,
samples wp from p and wq from q have the following distribution:

wp|πp ∼ (1− πp)δ0 + πpgp and wq|πq ∼ (1− πq)δ0 + πqgq, (4)

where πp ∼ Bern(λp),πq ∼ Bern(λq), and gp, gq are distributions of our choice.

As we discussed previously, the main goal of VI is to learn parameters θ of an approximate posterior
qθ, by minimizing equation 2. In the case of equation 4, θ = (λq, θq), where λq is the probability of
the Bernoulli distribution associated with πq , and θq are the parameters of the Slab component gq .
First, we state Theorem 3.1, which allows us to compute the KL term between two general Spike
and Slab distributions.

Theorem 3.1. Given two general Spike and Slab distributions such that: p(w|πp) = (1−πp)δ0(w)+
πpgp(w), q(w|πq) = (1 − πq)δ0(w) + πqgq(w), πp ∼ p(π) = Bern(λp), and πq ∼ q(π) =
Bern(λq), with δ0 being a dirac delta function at 0 and gp, gq are the pdfs of the distributions of
our choice, the KL (q(w,π)‖p(w,π)) is equal to:

KL (Bern(λq)‖Bern(λp)) + λqKL (gq‖gp) . (5)

The proof is shown in Appendix F.

Choice of gq and gp: Radial distribution. So far, we have shown results for a general Spike and
Slab distribution. The important question is which slab components g should we consider for our
approach, and if gq and gp should be from the same family? Authors in (Bai et al., 2020) consid-
ered both gq and gp to be the Gaussian distribution. However, there is emerging evidence (Farquhar
et al., 2020; Fortuin et al., 2020) that the Gaussian assumption results in poor performance of the
medium to large-scale Bayesian Neural Networks. Authors regard this as being caused by the prob-
ability mass in a high-dimensional Gaussian distribution concentrating in a narrow “soap-bubble”
far from the mean. For this reason, (Farquhar et al., 2020) proposed using a Radial distribution with
parameters (µ, σ), where samples can be generated as:

µ+ σ ∗ ξ

||ξ|| ∗ |r| ∼ Radial(µ,σ), whereξ ∼ MVN(0, I), r ∼ N(0, 1). (6)

Following (Farquhar et al., 2020), we set up our approximate posterior gq to be the Radial distri-
bution (µ, σ), while the prior gp is Normal(0, 1). Given equation 5, it is necessary to define the
KL (gq‖gp) term. Unfortunately, a closed-form solution for our choice of gq and gp is not available,
and we approximate the KL term using Monte Carlo sampling from equation 3 with M samples.
This process leads to (up to a constant): KL (gq‖gp) ≈ − log σ − 1

M

(M
i=1 log[p(wi)], where wi

is sampled from the Radial distribution (µ, σ) as described in equation 6 and p is the Likelihood of
N(0, 1). Note that running an MC approximation for large M can lead to running out of memory
in either a GPU or RAM, (Nazarovs et al., 2021). To tackle this issue, we follow (Nazarovs et al.,
2021) and apply a graph parameterization for our Radial Spike and Slab distribution, allowing us to
set M = 1000 without exhausting the memory.

Reparameterization trick: Gumbel-Softmax. Given Theorem 3.1, we can rewrite equation 1 as:

θ∗ = argmin
θ=(λq,θq)

KL (Bern(λq)‖Bern(λp)) + λqKL (gq‖gp)− Eqθ [ln p(y|W,x)] . (7)

Recall, we can compute the KL (Bern(λq)‖Bern(λp)) in a closed-form (inside the proof of The-
orem 3.1) and approximate the KL (gq‖gp) term with MC sampling. Next, there are two main
aspects left for our attention: (1) computing Eqθ [ln p(y|W,x)], which is usually approximated with
Monte-Carlo sampling (Kingma & Welling, 2013) because of the intractability issue, and (2) how
to do back-propagation for optimization. The problem with back-propagation in this setting is that
sampling directly from, e.g., w ∼ N(µ,σ) with learnable parameters µ and σ, does not allow us to
back-propagate through those parameters, and thus, they cannot be learned. This issue is addressed
by applying a local-reparameterization trick (Kingma et al., 2015). For example, instead of sam-
pling from w ∼ N(µ,σ) directly, we sample z ∼ N(0, 1) and compute: w = µ + σz. This allows
back-propagation to optimize the loss w.r.t. µ and σ.
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While the local-reparameterization trick is obvious for members of a location-scale family, like the
Gaussian distribution, and even for the selected Radial distribution, it is not clear how to apply this
trick to the Bernoulli distribution, Bern(λ). One way to address this issue is to approximate samples
from the Bernoulli distribution with the Gumbel-Softmax (Maddison et al., 2016; Jang et al., 2016;
Bai et al., 2020). That is, π ∼ Bern (λ) is approximated by )π ∼ Gumbel-Softmax (λ, τ), where
)π = (1 + exp (−η/τ))

−1, η = log λ
1−λ +log u

1−u , and u ∼ U(0, 1). Here, τ is the parameter which
is referred as the temperature. When τ approaches 0, π̃ converges in distribution to π. However, in
practice, τ is usually chosen no smaller than 0.5 for numerical stability (Bai et al., 2020). Applying
the Gumbel-Softmax approximation instead of optimizing the loss for parameter λq , we consider
a new parameter θπ = log

λq

1−λq
. Thus, λq = S(θπ) = 1

1+e−θπ
, resulting in the final learned

parameters: θ = (θπ, θq).

Final Loss and Method Summary. A step-by-step summary of the method in provided in Algo-
rithm 1. The final loss is given in Algorithm 2.

Algorithm 1: Learning the posterior distribution of a BNN p(W |x) with a Radial Spike and Slab approximate
posterior, to account for sparsity of the data.

Input:
1: Neural Network of depth D with
2: Weights Wθ = (W 1

θ , . . . ,W
D
θ ), which have

3: Spike and Slab Radial distribution Qθ with pdf qθ , s.t.
• q(w|πq) = (1− πq)δ0(w) + πqgq(w;µ,σ),

• gq(w;µ,σ) is pdf of Radial(µ,σ)

• πq ∼ Bern(S(θπ)), where S is the softmax, and
4: Prior Spike and Slab distribution Pθ with pdf p, s.t.

• p(w|πp) = (1− πp)δ0(w) + πpgp(w;µp,σp),

• gp(w;µp,σp) is pdf of Gaussian distribution
• πp ∼ Bern(πp)

Output: Learned parameters θ = (θπ, µ,σ)

Require: Prior distribution’s parameters (πp, µp,σp)

5: while θ has not converged do
6: Minimize VI loss in equation 8, by using gradient descent algorithms (e.g., SGD or Adam) and doing:
7: Forward pass: to compute

• y with local reparameterization trick for both Radial and Bernoulli (using Gumbel-Softmax)
• KL terms and expected log-likelihood term, using combination of closed-form and MC

8: Backward pass: compute gradients of θ
9: end while

Algorithm 2: Final loss used for optimization in Algorithm 1.

Original: KL (Bern(λq)‖Bern(λp)) + λqKL (gq‖gp)− EQθ [ln p(y|W,x)]

Final: L =
!

j=1,...,D,
k=1,...,lj

KLj,k − EQθ [ln p(y|W,x)] , where (8)

KLj,k = (1−S(θj,kπ )) log
1−S(θj,kπ )

1−λ
j,k
p

+S(θj,kπ ) log
S(θj,kπ )

λ
j,k
p

+S(θj,kπ )
"
− log σj,k − 1

M

#M
i=1 log[p(w

j,k
i )]

$

Note that based on the mean field assumption of a BNN, the final loss L includes the sum over all KLj,k

terms, which are computed for each k-th weight wj,k of the j-th layer of the BNN with parameters
θj,k = (θj,kπ , µj,k,σj,k). In this case, the final set of trainable parameters is θ = {θj,k} for j = 1, . . . , D
and k = 1, . . . , lj . In addition, EQθ can be computed either in a closed-form or approximated by MC,
depending on the complexity of the BNN.
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4 EXPERIMENTS

Data description. As described previously in Section 2, each incident is represented by a temporal
sequence of events from a knowledge base of TTPs with an assigned label, which indicates whether
it is ransomware or another type of attack. First, the company provided 201 incidents labeled as
Ransomware and 24,913 with Non-Ransomware labels for the initial dataset. All of the samples
in this dataset were deduplicated and included 706 sparse binary features. This first dataset was
randomly split with 80% of the examples assigned to the training set, while the remainder were used
to create a validation set. Second, for the test set, we received a newer, deduplicated dataset making
it independent of the training and validation sets. This dataset included 644 Ransomware incidents
and 14,696 Non-Ransomware incidents.

Preprocessing of temporal information. Some of the models such as the Neural ODE benefit from
knowledge of the actual time associated with the recorded event, while others, including the RNN
with a GRU cell, can be trained on the event sequence based solely on the event index (i.e., t=1,2,...).
Finally, other models such as the fully connected and Bayesian Neural Networks can be trained and
tested using the aggregation of all of the events in the event sequence. To reduce the number of
time steps for the time-based models for our study, we aggregated all TTP events observed within a
one minute window. We set the aggregation time to one minute after doing hyperparameter tuning
on this value. This results in very few signals being recorded per aggregated time step, which is
represented in Figure 1 in Appendix D. We see that the majority of the data have a small number of
features that are set, namely less than 10 out of 706 possible. For the neural network models, we
aggregated all of the TTP features into a single input vector. All of the sequences for the training
and testing datasets were truncated after one hour from the time of the first event.

Models. In the experiments, we consider several baseline models from the traditional, temporal, and
probabilistic deep learning settings, in addition to our proposed model. From the temporal perspec-
tive, we consider two models including the Recurrent Neural Network with a GRU cell (RNN) and
the Neural ODE (NODE). As we mentioned earlier, the traditional recurrent neural network models
(e.g., Simple RNN, GRU, LSTM) ignore the value of the time steps and only consider the order (i.e.,
index), in contrast to the Neural ODE which accounts for the time step value. Note, we originally
considered several temporal models, which do not account for the time value, like the traditional
(i.e., Simple) RNN, the RNN with a GRU cell, the LSTM, and the Bi-directional LSTM. However,
among all of these models, the RNN with the GRU cell performed the best, and we only include this
model in the analysis below.

In addition we consider the traditional fully connected neural network (FC), and four BNN models.
The first two BNNs are the standard BNNs which have a Gaussian or Radial approximate posterior
(BNN: Gaus, BNN: Radial), and the other two are the corresponding Spike and Slab versions, BNN:
Spike-Slab Gaussian and our proposed BNN: Spike-Slab Radial. For these networks, we ignore
the temporal aspect of the data by aggregating all available features per entry with the ‘logical or’
operator. Since our features are binary, aggregation corresponds to summarizing the information
into the set of events which occurred during the time period. In addition, we also considered an
approach with a Bayesian Network (i.e., not a BNN). However, the BN model failed to converge
due to the sparsity and high dimensionality of the data. Furthermore, we also trained many variants
of XGBoost (Chen & Guestrin, 2016), but all of the boosted decision tree models produced random
results. Therefore, we did not include the results for XGBoost below.

Parameter settings/hardware. All experiments were run on an NVIDIA P100. The code was
implemented in PyTorch, using the Adam optimizer (Kingma & Ba, 2014) for all models, and trained
for 400 epochs. The model with the lowest validation loss was selected for evaluation. The final
hyperparameter settings are specified in Appendix A.

Ablation study. To understand the effect of the distribution on the BNN, we conduct an ablation
study between the Gaussian BNN, Radial BNN, and their Spike and Slab versions. We provide
results in Table 1. Clearly our proposed method provides better results in a number of metrics,
including Specificity, Precision, F1, and FPR, which are important for Ransomware detection.

Model Evaluation. In Figure 1, we provide the ROC curves for the proposed model and several
baselines. For our Radial Spike and Slab BNN method and the Gaussian BNN method, we display
the distribution of each model’s ROC curves, shaded in green, together with its mean value (e.g.,
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Validation Set Test Set: Future Time Period

Statistics
RNN-GRU Neural ODE FC

BNN:
Gaussian

BNN:
Radial

BNN:
Gaussian

Spike & Slab

BNN:
Radial

Spike & Slab RNN-GRU Neural ODE FC
BNN:

Gaussian
BNN:
Radial

BNN:
Gaussian

Spike & Slab

BNN:
Radial

Spike & Slab
AUC 0.85 0.83 0.83 0.83 0.88 0.87 0.87 0.70 0.73 0.77 0.75 0.81 0.79 0.77
Specificity 0.90 0.80 0.88 0.89 0.91 0.90 0.93 0.90 0.79 0.82 0.89 0.91 0.90 0.92
Precision 0.06 0.03 0.05 0.05 0.06 0.06 0.08 0.09 0.06 0.06 0.10 0.12 0.12 0.13
FPR 0.10 0.20 0.12 0.11 0.09 0.10 0.07 0.10 0.21 0.18 0.11 0.09 0.10 0.08
FNR 0.25 0.23 0.27 0.27 0.25 0.23 0.27 0.53 0.38 0.42 0.42 0.41 0.40 0.46
FDR 0.94 0.97 0.95 0.95 0.94 0.94 0.92 0.91 0.94 0.94 0.90 0.88 0.88 0.87
Accuracy 0.90 0.80 0.87 0.89 0.91 0.90 0.93 0.89 0.79 0.81 0.88 0.90 0.89 0.91
Balanced Accuracy 0.82 0.78 0.80 0.81 0.83 0.83 0.83 0.68 0.71 0.70 0.74 0.75 0.75 0.73
F1 0.11 0.06 0.08 0.10 0.12 0.11 0.14 0.15 0.11 0.12 0.18 0.20 0.19 0.21
G-Mean 0.82 0.78 0.80 0.81 0.83 0.83 0.83 0.65 0.70 0.69 0.72 0.73 0.73 0.70

Table 1: Ablation study for both validation set and the test set, which contains data from the future.
green line). Figure 1a shows that, with respect to the distribution of the ROC curves, our model out-
performs the baselines on average, particularly in the region of small false positive rates, Figure 1b,
which is the most important for ransomware detection. In addition, the Radial Spike and Slab BNN
is able to provide a range of ROC curves which are significantly higher than the other baselines,
if we consider the margins of the ROC distribution. Looking at the columns for the validation and
testing set in Table 1, we see that proposed BNN model outperforms the baseline methods, w.r.t. to
AUC, accuracy, G-Mean, and other statistics.

(a) Test Set (b) Test Set - Zoomed In

Figure 1: We present the ROC curves for the new data from the future time period in the Test Set. Because the
BNN is a probabilistic model, we show the distribution of the individual ROC curves (green shade) with the
mean of this distribution (green line).

Training and Test Times. Training the Radial Spike and Slab Bayesian Neural Network in a single
Azure-hosted Linux VM with an NVIDIA P100 for 400 epochs required 1 hour, 32 minutes and 53
seconds. The time required to evaluate the 15,340 samples in the test set was 19 seconds. How-
ever, to create a confidence interval (CI), the evaluation is repeated 100 times. Thus, 19 seconds
corresponds to 100 evaluations. We re-ran inference on an NVIDIA A100 for all of the models to
compare to 1 run of deterministic models. The results include 4.07 sec (1 iteration) and 10.37 sec
(100 iterations for CI) for the BNN: Radial Spike & Slab (ours), 4.02 sec for the BNN: Gaussian,
7.72 sec for Fully Connected NN (FC), 3.12 sec for the Neural ODE, and 2.35 sec for the RNN-GPU.

Feature Importance and Interpretation.

We would like to understand which TTP features of the attack are considered to be important by
our model when making a prediction whether an attack is ransomware or not. One way to do this
is to investigate the posterior probabilities for the first layer weights of the BNN. However, while
understanding the importance of the TTP features based on the BNN’s trained weights conceptually
makes sense, we instead follow a more well-known and established way to interpret the features of
a general neural network, called Integrated Gradients (Sundararajan et al., 2017). Both methods are
discussed in Appendix E. In Table 2, we present the subset of features which are the most important
for our model to identify whether an attack is ransomware or some other type of attack based on
Integrated Gradients. Sorting the values of Integrated Gradients, we find that the MITRE ATT&CK

8



Under review as a conference paper at ICLR 2023

features are significantly more important than the signature-based features. The “signature” in Ta-
ble 2 is a low-level event generator from an analyst. As Table 2 shows, the MITRE events are much
more important than the low-level signatures.

5 RELATED WORK

Id Feature representation
T1059.001 Command and Scripting Interpreter, Powershell

T1105 Ingress Tool Transfer
T1087 Account Discovery

Signature Suspicious activity was observed on this device
T1049 System Network Connections Discovery

T1027.002 Obfuscated Files or Information: Software Packing
T1566.001 Phishing: Spearphishing Attachment
T1546.001 Event Triggered Execution: Change Default File Association
T1218.003 Signed Binary Proxy Execution: CMSTP
T1055.004 Process Injection: Asynchronous Procedure Call

Table 2: The Integrated Gradients method produces a score for each of the
TTP features which indicates the importance of the feature for predicting
whether the attack is ransomware (top) or another type (bottom). Features
are ranked from the highest to lowest Integrated Gradients scores.

Recently, ransomware has
become an active research
area (Oz et al., 2022; McIn-
tosh et al., 2021). Machine
learning approaches have
been proposed for the de-
tection of ransomware at-
tacks. A stacked, varia-
tional autoencoder is used
to detect ransomware in the
industrial IoT (IIoT) set-
ting (Al-Hawawreh & Sit-
nikova, 2019). System
API calls are used to de-
tect ransomware using De-

cision Trees, a K-Nearest Neighbor classifier, and a Random Forest in (Sheen & Yadav, 2018).
Takeuchi et al. (Takeuchi et al., 2018) also proposed using an SVM to detect ransomware using
System API calls. Agrawal et al. (Agrawal et al., 2019) proposed a new attention mechanism on the
input vector of an LSTM, an RNN and a GRU to improve the detection of ransomware attacks from
API calls. An ensemble of network traffic classifiers are used to detect network packets and flows for
the Locky family of ransomware in (Almashhadani et al., 2019). A Bayesian Network was the best
performing flow-based classifier in this work while a Random Tree was the best for detecting packets
in this work. HelDroid (Andronio et al., 2015) uses natural language processing techniques, along
with static and dynamic analysis, to detect ransomware on mobile computing devices. Adamov and
Carlsson (Adamov & Carlsson, 2020) use reinforcement learning to simulate ransomware attacks
for testing ransomware detectors. Urooj et al. (Urooj et al., 2021) proposed an online classifier to
predict early stage ransomware, but they do not provide any details for the classifier itself.

6 LIMITATIONS AND CONCLUSION

In this work, we propose the new Radial Spike and Slab Bayesian Neural Network and demonstrate
that it outperforms the standard Bayesian Neural Network and other deep learning methods for the
task of detecting ransomware attacks within the general class of all attacks, such as the dropping of
commodity malware. The results can provide an early indicator of a potential ransomware attack for
analysts to be able to confirm with additional investigation.

While the model is able to learn to distinguish between ransomware attacks and other attacks, the
ROC curve indicates that it cannot be used by a fully automated system to completely disable com-
puters or block network access due to a potential ransomware outbreak. However, since these attacks
are being diagnosed by analysts, we believe that the model can alert these analysts about possible
active ransomware attack on their network.

Given that ransomware attacks are relatively rare compared to the downloading of commodity mal-
ware, the amount of labeled data for these types of attacks is small. The size of our datasets from
a production security service reflects this limitation. Fortunately, Bayesian computational methods
such as Bayesian Neural Networks can be used for training and inference without overfitting in
scenarios where the amount of labeled data is limited.

In addition to security problems, two significant areas, which focus on the analysis of high-
dimensional sparse data, are Biostatistics and Genetics. While there are notable developments in
sparse methods in those areas, our proposed method is novel for them as well. Once the source code
is public, we hope that researchers from other fields will find the proposed model useful.
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A HYPERPARAMETER SETTINGS

For reproducibility, this appendix provides the hyperparameter settings used for the proposed model
as well as those for the baseline models. The best general hyperparameter settings from tuning are
provided in Table 3. Other network hyperparameter are included in Table 4. The hyperparameters
for the RNN, ODE, Fully Connected, and Bayesian models are provided in Tables, 5, 6, 7, and 8,
respectively.

Parameter Value
train batch size 100

maximum num train epochs 400
hidden size 706
learning rate 1e-4

learning rate for probabilities 1e-3
Adam β1 0.5
Adam β2 0.999

Table 3: General hyperparameters used for training the proposed Bayesian neural networks and baseline mod-
els.

Parameter Value
Include binary classification loss True

Parameter for positive weight in the binary loss to represent imbalance of the data 0.0068
std used in likelihood term (or MSE) 0.1

dropout retention rate for discriminator 0.9
slope of leaky relu function 0.2

Table 4: Network hyperparameters.

Parameter Value
Number of layers in ODE func in recognition ODE 100

Number of units per layer in ODE func 0.0068
ODE solver Euler

ODE func units 300
ODE func rec num layers 300

Table 5: ODE hyperparameters.

B RANSOMWARE ATTACKS

Ransomware attacks fall into two main categories, automated ransomware which include infamous
cases such as WannaCry, and human operated ransomware (HumOR) conducted by actor groups
such as REvil and a myriad of others. Although automated ransomware involves humans, the dis-
tribution of the payload usually does not involve human interaction. HumOR attacks, however,
involve hands-on-keyboard activity, where an active human adversary has gained access to a net-
work – whether through purchased access, malware, vulnerabilities, or other means – and progresses
through the kill chain to escalate privileges, move laterally if possible, and distribute ransomware in
the environment. Human operated attacks tend to be more severe, as the adversary is able to take
steps to bypass protections and work to ensure the ransomware payload is executed successfully.
Security solutions will actively monitor for these suspicious events across the different kill chain
stages in a ransomware attack to detect and alert on the malicious behaviors.

Ransomware attackers will typically utilize multiple toolkits, custom malware, and scripts to con-
duct their activity more effectively. Often this can also entail multiple operators for different stages
in the kill chain, such as with Ransomware-as-a-Service (RaaS) attacks. RaaS involves operators
who work to create tools and provide access for vetted attackers – known as affiliates - to conduct
the majority of the ransomware attack. Complicating matters, many of the tools ransomware attack-
ers frequently use are open-source and have legitimate purposes, preventing outright detection and
blocking unless the method of using the tools can specifically be classified as malicious.
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Parameter Value
RNN cell type GRU

GRU units 300

Table 6: RNN hyperparameters.

Parameter Value
Number of hidden layers in FC network 1

Number of hidden units in FC network in FC network 300

Table 7: Fully connected neural network hyperparameters.

There are several challenges for detecting and blocking ransomware attacks. First, there is a time
criticality required for detection prior to the distribution and encryption of devices. Ideally, a good
ransomware detection service can detect a ransomware attack prior to the encryption of any assets.
This necessitates detecting the compromise as early in the kill chain as possible. However, the
early stages of an attack do not necessarily have clear and specific implications of ransomware
and can often mirror attacks that are not ransomware in nature. Second, although ransomware
attacks are increasing and regularly reported in the news, they are still rare, and the labeled data is
limited. Therefore, a ransomware detector must not overfit to sparse data. In addition, a ransomware
detection service must have access to signals from a large number of computers or mobile devices
in order to create datasets that can learn to detect important behaviors. Third, the system must
generalize to handle polymorphism since the signals are polymorphic by their nature. Attackers
may delay or reorder their activity, utilize open-source legitimate tools for malicious purposes, use
polymorphic malware (e.g., backdoors) or scripts, or fast flux networks for command and control to
avoid detection. Finally, the input signals are often weak and often do not indicate a ransomware
attack on their own. An effective ransomware detection service must be able to combine these
low-level signals in order to produce a successful high-level detection.

C THREAT MODEL

The BNN ransomware detector operates on data collected from the <the anonymized company’s >
currently operational backend security system. This system processes the low-level events which
are generated by the device and stored in a cloud service, or alternatively on-premise, and, like
all security services, this creates several areas which must be protected from attack. The low-level
events are generated by the device itself in kernel mode of the operating system. The system assumes
that the events are successfully generated, transmitted, and received by the cloud or on-premise
backend service, and that the events have not been altered by the actor using a person-in-the-middle
attack. Next, the system assumes that the events have not been altered once they have received
and stored in the backend service itself. Thus, the system assumes that there are no successful
data poisoning or insider threat attacks. Finally, the system assumes that the ransomware alerts
are successfully transmitted to and correctly received by the customer’s and the <the anonymized
company’s > analysis portals. It should be noted that all of these system components are operational
today, and the proposed model only affects the processing component in the backend service.

D TEMPORAL PREPROCESSING

In this appendix, we investigate the sparsity of the raw dataset. In Figure 2, we show the distribution
of the number of features that are set during each single one minute time step (i.e., time interval) in
the raw data. In general, ten or fewer features are set during a single one minute time interval. A
few one minute time steps have between 10 and 20 features that are set, while a small number of
others have between 40 and 55 features set. Interestingly, we found that none of the time steps had
between 20 and 40 features set.
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Parameter Value
KL coefficient for VI Graves

Method to compute KL reparameterization
Number of samples to evaluate the test 100

Table 8: Bayes hyperparameters.

Figure 2: Count of the number of features available for 1, one minute time step of the ransomware data. The
main mass contains less than 10 features per time point.

E FEATURE IMPORTANCE AND INTERPRETATION DETAILS

In this appendix, we discuss two methods to determine the most important features for the Radial
Spike and Slab Bayesian Neural Network ransomware detection model. The first method we con-
sider is to rank the posterior probabilities which are found in the first layer weights of the BNN.
Recall that the core idea behind a BNN with Spike and Slab distributions is to learn a parameter θπ ,
which models the probability S(θπ) of each node in the neural network to be included. Given that
the first layer of the BNN is fully connected, we can consider S(θπ) of the first layer as the impor-
tance of each TTP for our network. Since we suspect that not all TTPs are equally important, we
expect to observe spikes in the learned S(θπ). The results in Figure 3 confirm this hypothesis, where
we start from the uninformative, uniform prior (left) and generate spikes in the learned S(θπ) (right)
after training. However, while understanding which TTP features are important based on the BNN’s

−→

Figure 3: One of the approaches to evaluate the importance of the input features for a Spike and Slab BNN is
to evaluate the learned posterior probability S(θπ) (right). Note how different it is from the non-informative
prior probabilities (left).

trained weights conceptually makes sense, we instead follow a more well-known and established
way to interpret the features of a general neural network, called Integrated Gradients (Sundararajan
et al., 2017) as the second method to rank the features.
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Based on this procedure, we can generate an importance score for each feature given a trained
network, and these scores are represented in Figure 4 for our model. In contrast to the Bayesian ap-
proach, this method also includes the signs of the feature scores. A positive attribution score means
that a particular feature positively contributed to the final prediction of an attack being ransomware
and a negative score indicates the feature was important for predicting non-ransomware attacks. The
magnitude of the attribution score signifies the strength of the contribution. A feature which does
not meaningfully contribute to the final output has a score of near zero.

Figure 4: Applying the Integrated Gradients method generates scores which indicate the importance of the
input features. A higher, positive score means that the feature is relevant for predicting data belonging to the
ransomware class, while a negative score means the feature is more relevant to predicting the non-ransomware
attack class.

F PROOF OF THEOREM 3.1

In this appendix, we provide the proof of Theorem 3.1.
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Proof.

KL (q(w,π)‖p(w,π))

=

&

π

&

w

log
q(w,π)

p(w,π)
q(w,π)dwdπ

given that q(w,π) = q(w|π)q(π) and p(w,π) = p(w|π)p(π)

=

&

π

'&

w

log
q(w,π)

p(w,π)
q(w|π)dw

*
q(π)dπ

given that q(π) = Bern(λq) and p(π) = Bern(λp)

= q(π = 0)

'&

w

log
q(w|0)q(π = 0)

p(w|0)p(π = 0)
q(w|0)dw

*

+ q(π = 1)

'&

w

log
q(w|1)q(π = 1)

p(w|1)p(π = 1)
q(w|1)dw

*

= (1− λq)

'
log

1− λq

1− λp

&

w

δ0(w)dw

*

+ λq

'
log

λq

λp
+

&

w

log
gq(w)

gp(w)
gq(w)dw

*

= (1− λq) log
1− λq

1− λp
+ λq log

λq

λp

+ λq

&

w

log
gq(w)

gp(w)
gq(w)dw

= KL (Bern(λq)‖Bern(λp)) + λqKL (gq‖gp) .
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