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ABSTRACT

In this work, we investigate score-based models for learning the distribution of
multiple-input multiple-output (MIMO) wireless channels in structured stochastic
environments, using either clean or corrupted (noisy) data for training. We find
that score-based models are capable of generating high-quality synthetic chan-
nels, and have robust downstream estimation performance, sometimes surpassing
strong baselines by up to 10 dB in estimation error, when the inverse problem
is ill-posed. Our preliminary results on training with corrupted data show im-
proved performance against simple baselines, and introduce a very promising fu-
ture research direction. Code is publicly available at https://github.com/
utcsilab/score-based-channels.

1 INTRODUCTION

The field of digital communications is a backbone of our global society, and, in fact, has effects in
modern deep learning – as in the case of federated learning, where the communication budget is a key
motivator and constraint (Kairouz et al., 2021). A deciding factor for the end-to-end performance
of a communication system is given by the statistics of the wireless environment, summarized by
a channel model. Proper channel modeling is thus crucial for downstream tasks, such as channel
estimation (Li et al., 2002), beamforming (Sun et al., 2014), and data recovery (Weber et al., 2006).

Deep learning has recently been successfully applied to several of these signal processing tasks in
isolation. However, a generative model for wireless channels that can offer high performance on
multiple downstream tasks remains an open problem. Furthermore, a particular challenge in deep
learning for communications comes from an imperfect data problem: all acquired measurements
suffer from corruptions due to hardware and resource limitations, even in controlled environments
(Molisch et al., 2016; O’Shea & Hoydis, 2017). From a learning perspective, this is equivalent
to the problem of learning generative models of the underlying distribution using only noisy, and
potentially undersampled, linear measurements (Bora et al., 2018; Lehtinen et al., 2018).

Score-based generative models (Song & Ermon, 2019; 2020; Song et al., 2021) have recently
emerged as a powerful modeling tool for highly structured data distributions. In this work, we
use score-based models to learn the distribution of wireless channels generated from standardized
stochastic models used across the cellular industry (3GPP, 2020). We resort to simulated channels
because of a lack of publicly available real-world, high-dimensional measurement datasets, but also
due to the widespread acceptance of these models.

We build on the method in Arvinte & Tamir (2021) and more broadly investigate the use of score-
based generative models for MIMO wireless channels. Our contributions are: (i) we evaluate the
sampling quality of score-based models and generative adversarial networks (GANs) trained on
simulated environments, (ii) we perform comparisons of score-based models with an extensive range
of baselines when applied to ill-posed MIMO channel estimation as a downstream task, and, (iii) we
propose a Stein’s unbiased risk estimate (SURE) loss formulation for score-based models when only
corrupted data are available for training, and compare this to naive (unmodified) training of score-
based models with noisy data. Our results on channel estimation show that score-based models are
an extremely attractive and robust approach, in some cases surpassing even algorithms that exploit
knowledge of the underlying stochastic model used to simulate the environment.
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1.1 RELATED WORK

The work in Balevi et al. (2020) is an application of the compressed sensing with generative models
(CSGM) framework (Bora et al., 2017) to wireless channel estimation. This method trains a GAN
with a low-dimensional latent space, that is then optimized in this latent space in conjunction with
the observed measurements during inference. The generative latent optimization (GLO) approach
Bojanowski et al. (2018) learns a latent codebook for the training set instead of using an adversarial
approach, and can be used in an identical way during inference.

Using conditional generative models to learn the effects of unknown channels has been proposed
in O’Shea et al. (2019), but this method cannot explicitly output channel realizations. Compressed
sensing has been used for MIMO channel estimation, based on a sparse channel model (Saleh &
Valenzuela, 1987). The Lasso is a fast estimation method (Schniter & Sayeed, 2014), while the
approximate atomic norm decomposition (fsAD) (Zhang et al., 2017) imposes sparsity in an over-
sampled representation, and exploits the underlying clustered delay line (CDL) channel models.

End-to-end training of unrolled optimization approaches have been successfuly used for wireless
channel estimation in He et al. (2018) and offer a strong and robust deep learning baseline in the
form of the learned denoising AMP (L-DAMP) algorithm. Finally, recent work in Kim & Ye (2021)
proposes learning a denoising model using corrupted data at a single noise level.

2 SCORE-BASED GENERATIVE MODELS FOR WIRELESS CHANNELS

We consider the setup of narrowband, MIMO communications (Tse & Viswanath, 2005), even
though the framework of score-based models is extendable to higher-dimensional wireless chan-
nels. In this setup, a channel realization is represented by a complex-valued matrix H ∈ CNr×Nt

sampled from an underlying distribution p(H), where we assume a transmitter and receiver each
equipped with Nt and Nr antennas, respectively. Channel estimation consists in recovering H from
a set of Np pilot transmissions, typically staggered across time (Larsson et al., 2014), and known
ahead of the time by the receiver. Each transmitted, unique, pilot vector pi ∈ CNt is seen by the
receiver as yi = Hpi + ni, where the channel imposes a linear effect on the pilots, and adds
complex-valued Gaussian noise ni with zero mean and variance σ2

n. Assuming that the channel and
noise variance are constant across all Np pilot transmissions, the receiver observes the matrix of
measurements:

Y = HP +N . (1)

In practical systems, the elements of P are commonly restricted to unit amplitude to limit power
consumption and nonlinear effects. The signal-to-noise-ratio (SNR) is defined as NtE[|hi,j |2]/σ2

n.
When the pilot density α = Np/Nt is strictly less than one, the above problem takes the form of
an under-determined inverse problem, and knowledge of the prior p(H) is needed to successfully
recover H from Y . An important characterization of a channel model is given by the distribution
of its instantaneous capacity (Goldsmith et al., 2003) C = log2 det

(
I +HHH

)
, measured in bits

per channel use, where I is an identity matrix.

We learn a noise-conditional score network (Song & Ermon, 2020) using a training set of 10000
ideally known channels from the CDL-C MIMO channel model (3GPP, 2020), with Nt = 64 and
Nr = 16. We treat the real and imaginary parts as separate channels and normalize H during
training and testing by division with Etrain[|hi,j |2]. The loss function for the score-based model sθ
with weights θ and a batch of B samples takes the form (independent of P ):

1

2B

B∑
i=1

∥∥∥∥σisθ (Hi +Zi;σi) +
Zi

σi

∥∥∥∥2
F

, (2)

where, for each step, the elements of Zi are i.i.d. sampled from N (0, σ2
i I), and σi is picked uni-

formly at random from exponentially spaced noise levels chosen according to (Song & Ermon,
2020). For sampling and inference, we run annealed Langevin dynamics, with the update rule given
by:

Ht+1 ←Ht + γt (Y −HtP )PH + ηtsθ (Ht;σt) +
√
2βηtZt (3)

where γt, β and ηt are tunable hyper-parameters, and σt ranges from largest to smallest.
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Figure 1: Sampling diversity and similarity with ground truth distribution for score-based and adver-
sarial generative models trained on CDL-C channels. The left columns show five exemplar samples
from the ground-truth model and the two models, respectively. The rightmost column shows the
empirical capacity CDF for each of the models, and an additional two different environments, with
the 1-Wasserstein distance between CDL-C channels and various other models shown in the title.

Figure 2: Estimation performance for models trained and tuned on CDL-C (moderate scattering)
channels. Except for the model labeled Score-based (Mixed), all other methods are trained and
tuned exclusively on CDL-C channels. The left plot shows in-distribution estimation normalized
mean squared error (NMSE), while the other plots evaluate generalization to completely different
environment models. Score-based models are exceptionally robust in CDL-D (line of sight) environ-
ments, and also surpass competing deep learning methods in CDL-B (rich scattering) environments.

2.1 SAMPLING LEARNED CHANNELS

We sample channels from the learned p (H) by setting γt = 0, β = 1, and we set ηt as in (Song
& Ermon, 2020). Figure 1 shows random samples from the ground truth CDL-C environment, the
score-based model, and the WGAN approach in Balevi et al. (2020), respectively. From qualitative
inspection, the sampled channels look similar to true CDL-C channels. Quantitatively, we find
that the empirical 1-Wasserstein distance between the capacity of synthetic channels and CDL-
C channels (0.42 for score-based models) is much smaller than compared to CDL-D or CDL-B
channels (both greater than 3), which is expected as they have different statistics of their modeled
environments.

We conclude that both score-based models and GANs can successfully learn the distribution of
MIMO wireless channels from standardized stochastic models, and can be a useful tool for generat-
ing synthetic data from targeted environments.

2.2 CHANNEL ESTIMATION

We perform channel estimation via posterior sampling (Jalal et al., 2021b; Arvinte & Tamir, 2021)
by using the trained score-based model in equation 1. The hyper-parameters are tuned using a vali-
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dation set of 50 CDL-C channels, regardless of the test-time distribution. We include β as a means
to dampen the added noise during inference, which we find helps with validation performance. We
use a P matrix with randomly sampled entries from 1√

2
(±1± 1j).

Figure 2 confirms the near-optimality of posterior sampling in-distribution (Jalal et al., 2021b), as
well as the distribution-shift robustness (Jalal et al., 2021a). The WGAN and GLO baselines saturate
in performance in the high SNR regime Bora et al. (2017). This could be potentially remedied
through the use of more expensive inversion methods (Daras et al., 2021). Score-based models
also outperform all other baselines, except in CDL-B environments, where fsAD is competitive.
When access to multiple environments is available for training the Mixed model, score-based models
achieve state-of-the-art MIMO channel estimation performance in the considered SNR range.

2.3 MULTILEVEL SURE TRAINING OF SCORE-BASED GENERATIVE MODELS

We now assume that we only have access to a training set of corrupted channels, Hw,i = Hi +Wi,
where the noise Wi is i.i.d. Gaussian with zero mean and variance σ2

w. Assuming knowledge of
σ2
w – practical in wireless systems, where noise level estimation is well understood (Barhumi et al.,

2003) – we propose the following training objective for a denoiser gθ based on SURE:

1

B

B∑
i=1

∥gθ (Hw,i +Zi;σi)− (Hw,i +Zi)∥2F + 2
(
σ2
i + σ2

w

)
divHw,i+Zi

gθ. (4)

Figure 3: Estimation performance when train-
ing using noise-corrupted channel realizations.
At high measurement SNR, the proposed mul-
tilevel SURE approach surpasses the baseline
of naively trained score-based models with
noisy data.

We use the Monte-Carlo SURE formulation (Ra-
mani et al., 2008) to approximate the divergence
term and learn to remove two corruptions simulta-
neously: the intrinsic noise Wi at a fixed level σw,
and the added noise Zi, at randomly sampled lev-
els σi. During inference, we convert the learned
model gθ to a score-based model using the func-
tional form sθ (x;σi) = (gθ (x;σi)− x) /σ2

i , fol-
lowed by posterior sampling with (1).

We consider two baselines: score-based models
using clean data, and naively trained score-based
models using corrupted data. Figure 3 shows esti-
mation results when using P = I and σ2

w = 0.1
corruption for the train set – note that σ2

w is dis-
tinct from the measurement noise during chan-
nel estimation, which we vary. It can be no-
ticed that the naive score-based models fail to esti-
mate the channels accurately in the high measure-
ment SNR regime, whereas the proposed approach
scales more favourably, but still leaves a perfor-
mance gap against having a clean training set.

3 CONCLUSION

We have shown the potential of score-based generative models for wireless channel sampling and
estimation, as well as learning directly from corrupted data. Our results were obtained by an almost
out-of-the-box usage of score-based models: this validates their representational power, but also
leaves future room for important, wireless-specific modifications brought to these models, such as
training methods that leverage the beamspace sparsity of MIMO channels or that can better handle
corrupted data. Finally, latency is still an open problem – while a score-based model with as few
as 500K parameters can accurately learn the CDL-C channel model, inference still costs as much
as 6 seconds per sample, limiting the current approach to static environments and leaving room to
integrate recent techniques that accelerate inference, such as in Salimans & Ho (2022).
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A WIRELESS MIMO CHANNELS

The clustered delay line (CDL) family of channel models are widely used in the wireless industry
for simulating the end-to-end performance in different types of environments 3GPP (2020). As
their name implies, these models are stochastic and simulate an environment by sampling clusters
of propagation paths. In general, the lower letters A, B, C represents richer channels in terms of the
number of paths, while D and E are line-of-sight channels with fewer propagation paths. While an
increased number of paths benefits the overall capacity, it also makes the environment less sparse
(in the continuous angular domain), and consequently channel estimation a harder problem.

At a high-level, these models synthesize channels by first sampling pairs of transmit and receive
angles (both in azimuth and elevation directions – here we only consider linear arrays which are
only affected by the azimuth direction, for simplicity) ϕt,i and ϕr,i, together with clusters of path
delays τi, path gains hi and Doppler delays νi. Once a set of angular values, delays, gains and shifts
are sampled, the four-dimensional channel tensor H between a transmitter and receiver each with
Nt and Nr antennas, respectively, is constructed as (Bajwa et al., 2010):

H (f, t) =

L∑
i=1

gi exp (−j2πτif) exp (j2πνit)ar (ϕt,i)a
H
t (ϕr,i) , (5)

where L is the total number of propagation paths, and at and ar are the transmitter and receiver
array response functions, respectively. These functions generally depend on the configuration of
the antenna array (either analog, or after beamforming) used at the transmitter and the receiver,
independent of each other.

At a fixed frequency f0 and time t0, MIMO propagation is characterized by the complex valued
channel matrix H (f0, t0). The (i, j)-th entry in the channel matrix represents the complex-valued
gain (magnitude and phase shift) between the electromagnetic wave field transmitted by the j-th
antenna, and received by the i-th antenna. Thus, for arbitrary channel matrices, a transmitted vector
of complex-valued symbols is seen as ”entangled” at the receiver side. Note that the forward model
in equation 1 also includes Gaussian noise, which is applied at the receiver side (after the channel
multiplies the transmitted vectors – in this case, the columns of P ). This is caused by the thermal
noise in the electronic components of the receiver, and modeling with a Gaussian i.i.d. distribution
is a well-accepted model Tse & Viswanath (2005).

In this work, we generate MIMO channels by using a frequency f = 40 GHz – which corresponds
to millimeter-scale wavelengths λ – and randomly sample t from a set of ten equally spaced values
for each channel realization. We consider uniform linear spaced arrays at both the transmitter and
receiver, with an antenna spacing equal to λ/2. This specific form leads to at and ar both being
rows of a discrete Fourier transform matrix of the appropriate size, and the synthesized channels
being exactly sparse on the continuum of frequencies. This is the reason why we consider the
fsAD approach to be a strong baseline, and why it unsurprisingly surpasses all prior deep learning
methods.

In reality, channel sounding work suggests that this exact sparsity is violated (Molisch et al., 2016),
but there is currently no public dataset of measured high-dimensional MIMO channels available.
This violation of exact sparsity represents one of the main reasons for considering score-based
generative models a prime candidate for learning the distribution of wireless channel, since these
models, unlike GANs, do not require the explicit definition of a low-dimensional latent space, in-
stead operating in the ambient (high-dimensional) space. Other generative approaches of similar
nature, such as normalizing flows (Papamakarios et al., 2021), are interesting research directions to
consider.

B SCORE-BASED GENERATIVE MODELS

We use the score-based models originally introduced in Song & Ermon (2019). The score of a
probability density function pX (x) is defined as ∇ log pX (x). The work in Song & Ermon (2019)
proposes to train a noise-conditional score model sθ (x;σ) that learns the score of the perturbed
distribution pX′

i
, where X ′

i = X+Zi, and Zi ∼ N
(
0, σ2

i I
)
, conditioned on σi. In practice, a single

deep neural network sθ is trained with a weighted combination of denoising score matching losses
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at multiple levels (Vincent, 2011; Song & Ermon, 2019):

LDSM =
1

2B

B∑
i=1

σ2
i

∥∥sθ (x′
i;σi)−∇ log pX′|X (x′

i|xi)
∥∥2
2
, (6)

where σi is a noise level chosen at random from a discrete set of exponentially noise levels
(σi)i=1...L, where L and σ1 are hyper-parameters. We have chosen to use this formulation of
score-based models in favour of more recent ones (Song et al., 2021) due to the improvements
in Song & Ermon (2020), which we have followed and successfully used as-is, leading to almost
zero tuning of the architecture or learning objective required. When using the implementation
sθ (x;σ) = sθ (x) /σ and the closed-form expression of the gradient in equation 6, we obtain the
loss function in equation 2.

If a training set of clean channel matrices Hi is available, the loss in equation 2 is used to train
the score-based model; otherwise, when a corrupted database of channels is available, we use the
loss in equation 4 to train a denoiser gθ, which is then converted to a score model as described in
equation 2.3. Both of these objectives lead to a learned score model for wireless channels, and this is
a separate optimization problem from channel estimation itself, which is done through the iterative
process in equation 3.

We use the NCSNv2 architecture from Song & Ermon (2020), which is a RefineNet (Lin et al., 2017)
with a depth of four hidden layers and variable number of channels, that doubles in the encoder after
the first hidden layer, and is mirrored in the encoder. For Section 2.3, we implement gθ(H;σi)

as the same RefineNet and a forward implementation of
√

1 + σ2
ngθ(H/

√
1 + σ2

n) to work with
normalized inputs.

We train our models using a training set of 10000 channels from the CDL-C model, as described
above, and use the Adam optimizer with a learning rate of 10−4, batch size of 32 and exponential
moving averaging of the weights with a factor of 0.99. Figure 4 shows ablation results on the
downstream channel estimation performance when the number of channels in the first layer Nc is
varied. In the case of the Mixed score-based model, we use 10000 training channels from each of
the CDL-B, CDL-C, and CDL-D environment models.

Overall, the estimation performance is very robust to the network size and using a network with
Nc = 6 only loses up to 1 dB in estimation performance in the high SNR regime. Similar trends are
valid across all SNR points. The same conclusion also holds for the generalization to the CDL-D
environment (dashed lines in Figure 4).

To determine the best inference hyper-parameters using the in-distribution validation data, we let
γt = γ0ηt, and grid search for γ0 in the set {1, 2, 3, 4}×10−10, while using an exponentially decay-
ing ηt as in Song & Ermon (2020). We additionally search for β in the set {10−3, 10−2, 10−1, 1}.
Since we assume the SNR is known for the estimation task, we find a set of hyper-parameters for
each SNR value. We generally find that γ0 = 10−3 is the best value, regardless of SNR, while β
decreases as the SNR increases.

C DETAILS ABOUT BASELINES

The Lasso baseline solves channel estimation by solving the optimization problem
argminA

1
2 ∥Y − FrAFtP ∥2F + λ ∥vec (A)∥1 and then using H⋆ = FrA

⋆Ft as the output
solution. In the previous Fr and Ft are left and right-sided 2D-DFT matrices, respectively of
the appropriate sizes. That is, the approach assumes that the channel is sparse in the 2D-DFT
representation. We choose the optimal λ for each SNR value and sparsity level α by searching in
the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3}.
The fsAD baseline is similar to Lasso, except that now sparsity is imposed in an over-sampled
angular domain. In the case of uniform linear antenna arrays at both the transmitter and receiver,
this amount to using the first Nr and Nt rows and columns, respectively, from the DFT matrices of
larger size Dr and Dt. The solved optimization problem is thus argminA

1
2 ∥Y −DrADtP ∥2F +

λ ∥vec (A)∥1, where the optimization variable now has a dimension of LNr×LNt, and L is a lifting
(oversampling) factor. In all of our experiments, we use L = 4 (note that L = 1 recovers Lasso) and
we search for λ in the same way as for Lasso.
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Figure 4: Ablation results for downstream estimation performance as a function of model size and
training epochs. Models are trained on CDL-C channels and evaluated at α = 0.6, SNR = 10 dB.

For the WGAN and GLO baselines, we train a deep generative model paired with a discrimina-
tor or a learned latent codebook, respectively. In both cases we use the same basic DC-GAN
architecture with three hidden layers, with details available in the source code repository. To
solve channel estimation, we use the CSGM framework Bora et al. (2017) for both methods and
solve for argminz

1
2 ∥Y −G(z)P ∥2F + λ

2 ∥z∥
2
2, where the final channel estimate is output as

H⋆ = G (z⋆). We use an Adam optimizer to solve this optimization problem using a pretrained
generative model. For both WGAN and GLO, we grid search for the best learning rate among
the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} for each SNR point, as well for the best λ in the set
{0.001, 0.01, 0.1}. We generally find that optimization quickly saturates in the high SNR regime
after the first 200 steps, regardless of the learning rate and λ chosen.

We train the L-DAMP using a U-Net (Ronneberger et al., 2015) backbone with a depth of four
and 12 channels after the first hidden layer, that is unrolled for a number of ten steps. To optimize
performance, we train a separate L-DAMP model for each SNR value.
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