
Replication Study of "Fairness and Bias in Online Selection"

Reproducibility Summary1

Scope of Reproducibility2

In this paper, we work on reproducing the results obtained in the ’Fairness and Bias in Online Selection’ paper (Correa,3

Cristi, et al., 2021). The goal of the reproduction study is to validate the 4 main claims made in Correa, Cristi, et al.4

(2021). The claims made are: (1) for the multi-color secretary problem, an optimal online algorithm is fair, (2) for5

the multi-color secretary problem, an optimal offline algorithm is unfair, (3) for the multi-color prophet problem, an6

optimal online algorithm is fair (4) for the multi-color prophet problem, an optimal online algorithm is less efficient7

relative to the offline algorithm.8

To test if the results of the secretary algorithm generalize to other data sets, the proposed algorithms and baselines are9

applied to the UFRGS Entrance Exam and GPA data set (Castro da Silva, 2019).10

Methodology11

The paper that has been reproduced includes a link to a repository containing C++ files for the algorithms that were12

implemented. For our experiments, we reimplemented the code in Python. Our goal was to reproduce the code in an13

efficient manner without altering the core logic. Using the Python code all the experiments in the paper have been14

replicated including some additional experiments to verify the claims made in Correa, Cristi, et al. (2021).15

Results16

The reproduced results support all claims made in Correa, Cristi, et al. (2021). However, in the case of the unfair17

secretary algorithm (SA), some irregular results arise in the experiments due to randomness. This irregularity is also18

existent in the original code.19

What was easy20

The concepts behind the algorithms were straightforward. The existing code base provided a solid reference point to21

verify the results of the original paper by compiling and running the provided code.22

What was difficult23

Implementing the prophet algorithm, in comparison to the secretary algorithm, was complex. C++ is a more efficient24

compiler (time complexity, etc.) compared to Python. For the reproduction of the algorithms, this needed to be taken25

into account. While it might be possible to execute transliterated code on a powerful machine, with the available26

resources the code would have taken over 96 hours to run. In order to tackle this problem, some of the data structures27

needed to be converted to NumPy arrays to decrease computation time.28
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1 Introduction29

As more machine learning algorithms are used in decision-making circumstances, it is important to ensure that social30

norms are not violated. The social norm that serves as the pivot of this research is fairness. Specifically ’fairness’ in the31

use of selection models. The importance of fairness is to avoid undesirable biases. Selection models are models that32

input a finite amount of agents and attempt to pick the best possible candidate (agent). The goal is to design algorithms33

that can fairly judge between agents regardless of any unfair bias.34

In some real-life implementations of selection models, there is no clear overview of all agents. For example, in the35

online selection problem, the agents enter the algorithm sequentially. For every agent, a decision has to be made whether36

this is the best possible agent. The complexity of this task is not being able to have any knowledge on agents that might37

come in the future. As soon as the decision is made that an agent is the best fit, the algorithm should stop as that agent is38

the optimal candidate (according to the model). Multiple attempts have been made to create the most accurate algorithm39

for these online selection models.40

For this research, we reproduce the ’Fairness and Bias in Online Selection’ paper (Correa, Cristi, et al., 2021). In this41

paper, the authors focus on 2 main problems: the secretary problem and the prophet problem. The secretary problem42

is a scenario for the sequential selection problem where an attempt is made to select the candidate with the highest43

value without knowing the value of the candidates to come. An immediate decision has to be made on the candidate,44

the candidate either gets picked or gets passed on. For the prophet algorithm the same assumptions are made as for45

the secretary algorithm, but we know the distributions the candidate values are drawn from. The probability of the46

candidate is based on these distributions. In the case of both problems, the goal is to stop at the best possible candidate47

based on the assigned probabilities.48

In order to include a form of fairness in these models, a concrete definition needs to be given to fairness in online49

selection models. Based on the Correa, Cristi, et al. (2021) paper, fairness is defined as an unbiased evaluation of50

agents in a selection model. A selection algorithm is fair if it selects the best candidate, closely following the original51

probability of the best candidate existing in that group. Along with fairness, efficiency has also been used as an52

evaluation metric in the original paper. Efficiency is a measure of how accurately the online algorithm picks the actual53

best candidate.54

By creating a ’fair’ version for these problems, the authors claim to have created a fair use of sequential single55

item selection models. Through categorization of the agents by color, a distinction between the agents can be made.56

However, the qualities these agents possess might be different enough that they could be considered incomparable. So57

implementing a multi-color version of the sequential selection models and picking the best possible candidate, taking58

color into account, an ’unfair’ comparison is avoided.59

2 Scope of reproducibility60

In this reproduction study, we focus on the authors’ claims that the use of a multi-color version of the secretary and61

prophet problem would make the use of these algorithms fair. The authors of the paper implement these algorithms on62

synthetic data sets and real-world data sets.63

For our study, we put an effort into reproducing the results given by the paper. The goal of this reproduction is to either64

validate or deny the claims made in the paper. This effort has been fulfilled by re-implementing the code publicly65

available for the algorithm. This re-implementation is done in Python in comparison to the C++ code provided by the66

authors. Most of the code has been written using NumPy to try and achieve about the same efficiency as the C++ code.67

However, the setup for the experiments corresponds to that of the authors.68

To show that the claims generalize well over differently distributed data sets, we run the proposed algorithms and69

baselines on the UFRGS Entrance Exam and GPA data set (Castro da Silva, 2019).70

The claims made in the Correa, Cristi, et al. (2021) paper are:71

• Claim 1: For the multi-color secretary problem, an optimal online algorithm is fair.72

• Claim 2: For the multi-color secretary problem, an optimal offline algorithm is unfair.73

• Claim 3: For the multi-color prophet problem, an optimal online algorithm is fair.74
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• Claim 4: For the multi-color prophet problem, an optimal online algorithm is less efficient relative to the75

offline algorithm.76

To test these claims we use the algorithms mentioned above on 4 types of data sets. These data sets are further discussed77

in section 3.3.78

3 Methodology79

In this section, our approach to the re-implementation of the experiments will be discussed and an additional experiment80

will be proposed.81

3.1 Code82

The code accompanying the paper is provided in C++. As required for this study, we reproduced the work in Python,83

and subsequently made use of the inherent Pythonic efficiencies. The provided code allowed for a smooth initial84

reproduction. However, many optimisations were required to decrease computation duration.85

3.2 Model descriptions86

In the original paper, two types of single item selection models are considered: the secretary algorithm and the prophet87

algorithm. Candidates are partitioned into different groups which the authors refer to as colors. Every candidate has88

a numerical value that indicates the capabilities of that candidate. The authors refer to these indicators as values.89

Candidates arrive sequentially, and upon arrival, the algorithms decide whether the candidate is the best candidate90

overall. The best candidate is defined as the candidate with the highest value of the sequence of candidates. For clarity,91

the main parts of the Methodology and Results sections are divided per model.92

3.2.1 Secretary Algorithm93

For the secretary algorithm, it is assumed that candidates arrive in uniformly random order. To verify the claims94

made by the author, we compare the optimal online algorithm as proposed by Correa, Cristi, et al. (2021) to two95

baselines. Additionally, the algorithm and its baselines are applied on different data sets, either synthetically generated96

or composed from real-word data sets. The optimal online algorithm proposed by the authors (Fair secretary algorithm)97

is denoted formally as:98

where the input t = (t1, ..., tk) is a vector of thresholds, one for each color j ∈ [k]. The algorithm first checks if the99

candidate i arrived after the threshold of its color tc(i). If this condition is met, it accepts the candidate if its value100

exceeds the value of all previous candidates of color tc(i), indicating that it is the best candidate for that color.101

After having chosen the best candidate of each color, we are interested in selecting the best overall candidate. We102

denote the probabilities with which the best candidate of group j is the best among all colors by pj , which results in the103

vector p = (p1, ..., pk) covering all colors. We use this in our experiments to verify the claims of the author using equal,104

and unequal values for p among colors.105
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3.2.2 Prophet Algorithm106

For the prophet algorithm, the same assumptions are made as for the secretary algorithm, but we know the distributions107

Fi the candidate values are drawn from. In the paper, the authors propose two optimal online algorithms specified in108

figure 1, where q1, · · · , qn denote the marginal probabilities that the optimal fair offline algorithm picks the candidates109

i = 1, · · · , n. Figure 1a shows the general Fair prophet algorithm (Fair prophet algorithm). This algorithm does not110

make any assumptions about the underlying probability distribution, it can be different for every candidate. Figure 1b111

shows the Fair independent and identically distributed prophet algorithm (Fair IID prophet algorithm). This algorithm112

assumes that the values of the candidates are drawn from the same distribution.113

(a) Fair prophet algorithm
(b) Fair IID prophet algorithm

Figure 1: Fair prophet algorithms proposed by the authors.

3.3 Data sets114

The experiments involving the SA algorithm are conducted on two synthetic data sets and two real-world data sets. The115

data sets and their properties are summarised below:116

1. Synthetic data set, equal p values contains four different colors with 10, 100, 1000, and 10000 occurrences.117

The value of each element is chosen independently and uniformly at random from [0, 1].118

2. Synthetic data set, general p values contains a similar setup as 1, but with p = (0.3, 0.25, 0.25, 0.2).119

3. Feedback maximization (Bank) contains records of direct marketing campaigns (phone calls) by a Portuguese120

banking institution (Moro et al., 2014). The clients are split into 5 colors by age: under 30, 31-40, 41-50,121

51-60, and over 61 years old. The value of every client is the duration of the phone call. Moreover, an equal p122

of 0.2 was used for all colors.123

4. Influence maximization (Pokec) contains records of the influence of users of the Pokec social network (Takac124

& Zábovský, 2012). We pre-process the data by dividing the users into 5 different colors according to their125

body mass index (BMI): under weighted (BMI < 18.5), normal (18.5 <= BMI < 25), over weighted (25.0 <=126

BMI < 30.0), obese type 1 (30.0 <= BMI < 35), and obese type 2 (BMI >= 35.0). The value is computed as the127

number of the followers for each user. Again, an equal p of 0.2 was used for all colors.128

3.4 Experimental setup129

In this subsection, the experimental evaluation performed by the authors is discussed. As before, a distinction between130

the two problems is made for clarity. Additionally, an extra experiment will be considered where the secretary algorithm131

will be evaluated on another real-world data set.132

133
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Secretary experiments134

The authors propose two different baselines to compare the Fair secretary algorithm to. Firstly, the classic secretary135

algorithm (SA), which does not take the colors of the candidates into account. Secondly, the single-color secretary136

algorithm (SCSA). This algorithm picks a color proportional to the p values and then runs the classic secretary algorithm137

on the candidates of only that color. To evaluate the claims by the authors, the three mentioned algorithms are evaluated138

against the four data sets discussed earlier.139

The parameters of these experiments consist of the size of the data sets and the number of repetitions. For the140

experiments on the Synthetic data sets (equal p / general p) and the Bank data set, all available candidates were used in141

20.000 repetitions. In the original paper, the authors used all ± 650.000 candidates of the Pokec data set in 1000.000142

repetitions. In our experiment, we had to limit these parameters due to time constraints. We only considered the first143

40.000 candidates and used 40.000 repetitions.144

145

Prophet experiments146

For the prophet experiments, the Fair prophet algorithm and Fair IID prophet algorithm are evaluated against three147

baselines: the SC algorithm (Samuel-Cahn, 1984), EHKS algorithm (Marx, 2021), CFHOV algorithm (Correa, Foncea,148

et al., 2021) and DP algorithm (Brown, 1972). The specific works of these algorithms are described in further detail in149

the paper (Correa, Cristi, et al., 2021) section 4.2.150

For the experiments, two settings are implemented. In the first setting, 50 samples are taken from a uniform distribution151

in a range of [0, 1]. These samples function as the input stream. In the second setting, 1000 samples are taken from a152

binomial distribution with 1000 trials and a probability of a successful single trial p = 0.5. In order to compare this153

method with the already existing algorithms, we assume each candidate to be group of its own. For every algorithm, we154

repeat the experiment 50.000 times.155

156

Extending to other data set (UFRGS) experiments157

This subsection describes an experimental extension on the work of Correa, Cristi, et al. (2021). In our work, we have158

concluded that the secretary results claimed in the paper are reproducible. It is shown in section 4 that the Fair algorithm159

significantly outperforms the SCSA baseline. However, all real-world data sets used to prove this claim contain the160

same distribution of values for every color. The distributions for the Bank and Pokec data sets are shown in Figures 2a161

2b respectively.162

Our extension investigates the effect of applying the Fair algorithm to an unequally distributed real-word data set, such163

as the UFRGS Entrance Exam and GPA Data (UFRGS) data set. This work will show whether the claims made by the164

authors generalize to these types of data sets. The UFRGS contains entrance exam scores of students applying to a165

university in Brazil (Federal University of Rio Grande do Sul), along with the students’ GPAs during the first three166

semesters at university. The data set also includes the gender of every student (male or female). The distribution of167

the data set is shown in Figure 2c. This experiment is a duplication of the original secretary experiments but with the168

UFRGS data set as input. The gender of the students is used as color, their GPA score as values. The experiment is169

repeated 20.000 times.170

(a) Bank data set (b) Pokec data set (c) Urfgs data set

Figure 2: Value distributions of the different color groups in the real-world secretary algorithm data sets.
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4 Results171

The following paragraphs will present the results for the experiments discussed in section 3.4: (1) the secretary172

experiments, (2) the prophet experiments, (3) our extended work.173

174

Secretary results175

The plots in Figure 3 show our reproduction work regarding the original paper on the secretary problem over the four176

different data sets. We find that all results are in line with the work of Correa, Cristi, et al. (2021). Due to the nature of177

construction of the fair algorithm proposed by the authors, and the SCSA, we find that it picks elements from each color178

proportional to the vector p. From this, it can be concluded that the authors’ Claims 1 and 2 are valid.179

(a) Synthetic Data set Equal p (b) Synthetic Data set General p

(c) Feedback Maximization (d) Influence Maximization

Figure 3: Reproduction work regarding the original paper on the secretary problem. Comparing the Fair secretary algorithm to the
aforementioned baselines SA, SCSA over four different data sets: (a) synthetic data set, equal p values, (b) synthetic data set, general
p values, (c) feedback maximization data set (Bank), and (d) influence maximization data set (Pokec). Input denotes the number of
elements from each color in the input, F-Pick and F-Max are the number of elements picked by the fair secretary algorithm and the
number of them that are the maximum among the elements of that color. Similarly, U-Pick (S-Pick) and U-Max (S-Max) are the
number of elements picked by SA and SCSA and the number of them that are the maximum among the elements of that color

The authors claim that the quality of the solution of their algorithm is significantly higher than the SCSA. Table 1 shows180

our replication of this comparison. We find that our implementation reproduces the authors’ claim that their method is181

superior to the SCSA. Small discrepancies in the results are found, this is due to the random nature of the algorithm.182

However, as mentioned earlier, after scrutinizing the distributions of the used data sets, we found that all the used data183

sets have similar distributions in the input. Therefore, we proceed by agreeing with the claims of the author given this184

restriction.185
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Data set Claimed Pick Reproduction Pick Claimed Max Reproduction Max
Synthetic (Equal p) 1.305 (+30.5%) 1.326 (+32.6%) 1.721 (+73.1%) 1.685 (+68.5%)
Synthetic (General p) 1.309 (+30.9%) 1.334 (+33.4%) 1.630 (+63.0%) 1.666 (+66.6%)
Bank 1.347 (+34.7%) 1.377 (+37.7%) 1.760 (+76.0%) 1.812 (+81.2%)
Pokec 1.373 (+37.3%) 1.368 (+36.8%) 1.756 (+75.6%) 1.810 (+81.0%)
UFGRS - 1.192 (+19.2%) - 1.364 (+36.4%)

Table 1: Secretary experiment claims by the author compared to reproduced results.

Prophet results186

The patterns of the results in the original paper are reflected in our reproduction as visualized in figured 4. A major187

difference is that the scale of their y-axis is twice the size of our reproduction. Because the shown plots are a histogram188

of arrival positions, this could be attributed to a difference in bin size. The authors’ report specifies using uniform189

distributions. Table 2 shows our replication of the average values chosen by each algorithm. While small differences190

exist, our reproduction mirrors the authors’ results upon running their code closely.

Uniform Distribution Binomial Distribution
Algorithm Claimed value Reproduction value Claimed value Reproduction value
Fair PA 0.501 0.497 0.297 0.273
Fair IID 0.661 0.654 0.389 0.364
SC 0.499 0.494 0.227 0.253
EHKS 0.631 0.625 0.362 0.339
CFHOV 0.752 0.755 0.513 0.408
DP 0.751 0.752 0.429 0.340

Table 2: Prophet experiment claims by the author compared to reproduced results.

191

(a) Reproduced Binomial Distribution (b) Reproduced Uniform Distribution

Figure 4: Reproduced results for the prophet experiments.

Extending to other data set (UFRGS) results192

Figure 5 shows the results of the experiments proposed in section 3.4. It can be noted that the pattern visible in the193

earlier secretary results still holds for a new, unequally distributed data set. However, when looking at Table 1, a194

significant decrease in performance can be detected. The Bank and Pokec data sets scored +37.7% and +36.8% for195

F-Pick compared to S-Pick. The UFRGS only has an increase of +19.2%. The difference is even more significant196

when comparing F-Max to S-Max; Pokec and Bank have an increase of +81.2% and +81.0%, UFRGS only has an197

improvement of +36.4%. We can conclude that the performance increase of the Fair secretary algorithm is not as198

significant when using an unequally distributed data set, compared to the increase mentioned in the paper.199
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Figure 5: Secretary experiment applied to the UFRGS data set.

5 Discussion200

In this research, we have tried to reproduce the work of Correa, Cristi, et al. (2021) as closely as possible. However,201

there are a few inconsistencies in the original code and paper, which caused complications. These points and our202

solution to them (if required) will be briefly discussed in the following paragraph.203

Firstly, as mentioned before, the BMI thresholds for the pre-processing of the Pokec dataset were missing in the authors’204

work. This poses a problem as slight alterations to these thresholds yield different results. This problem was solved by205

finding concurring values in other research. Secondly, to limit the computation time of our reproduction, the size of206

the Pokec data set was limited from approximately 650.000 to 40.000 elements. The number of repetitions for this207

experiment was also decreased from 1.000.000 to 40.000. We opted for this solution as the distributions in the results208

did not change from these limits onward. Thirdly, the U-pick/U-max values in the secretary results of the original work209

are inconsistent due to randomness. It seems that changing the seed value of the random number generator in the C++210

code heavily changes the output of the SA algorithm (U-pick/U-max). The SA results could therefore be cherry-picked211

as no further explanation was provided by the authors. Lastly, some inconsistencies are present in the paper. From212

minor typos e.g. using the word desbribed instead of described, to more serious mistakes, such as claiming that an213

increase of 1.721 is equal to (+73.1%). A thorough reread of the paper would have resolved this.214

5.1 Reflection on our replication study215

The algorithms used in the original were clear and straightforward. The existing C++ code of the authors provided a216

good starting point for the verification of the results.217

However, our goal was to further validate these claims and generalize them to a further extent. We did this by218

reproducing the work of the original paper. Reproducing the work efficiently in another language, in our case Python,219

introduced some difficulties and took longer than expected. An execution of transliterated code resulted in an excessive220

run time. To tackle this problem, some of the data structures needed to be converted to NumPy arrays to decrease221

computation time. This requires advanced knowledge of Numpy and the use of data structures.222

5.2 Communication with original authors223

As certain parameters and split-off values were not clearly defined in either the paper or the original code, we reached224

out to the authors via mail to ensure a fair assessment of the reproduction. Examples of missing split-off values are the225

BMI category thresholds for the pre-processing of the Pokec data set. These category values are not fixed in literature226

and differ depending on age and nationality. At the time of writing this report, we had not yet heard back from the227

authors. We resolved this by assuming certain values and explanations, which are all documented in our paper.228
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