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ABSTRACT

Model-based value expansion methods promise to improve the quality of value
function targets and, thereby, the effectiveness of value function learning. How-
ever, to date, these methods are being outperformed by Dyna-style algorithms with
conceptually simpler 1-step value function targets. This shows that in practice, the
theoretical justification of value expansion does not seem to hold. We provide a
thorough empirical study to shed light on the causes of failure of value expan-
sion methods in practice which is believed to be the compounding model error.
By leveraging GPU based physics simulators, we are able to efficiently use the
true dynamics for analysis inside the model-based reinforcement learning loop.
Performing extensive comparisons between true and learned dynamics sheds light
into this black box. This paper provides a better understanding of the actual prob-
lems in value expansion. We provide future directions of research by empirically
testing the maximum theoretical performance of current approaches.

1 INTRODUCTION

In recent years a large fraction of the reinforcement learning (RL) community has been focused
on model-based RL to improve the sample complexity. Model-based RL algorithms consist of an
iterative process of jointly learning a dynamics model from data and then leveraging the learned
model in a model-free RL training loop. The learned models have been used for data augmenta-
tion (Sutton, [1990; Kurutach et al., 2018 [Janner et al.l 2019)), improving the value targets (Feinberg
et al.,2018; Buckman et al.,[2018};[Wang et al., 2020; Xiao et al., 2019), improving the policy gradi-
ent (Heess et al.,|2015) or any combination thereof. These works have proposed various approaches
for training the model, new model architectures, (automatically) adapting the rollout horizons and
computing better value targets.

A common understanding among most model-based RL approaches is that the compounding model
error along modelled trajectories is one of the main problems to be solved or at least avoided. This
compounding model error results in modelled trajectories drifting away from the true trajectory
even though they start from the same states and execute the same action sequence. Learning more
accurate dynamics models is often believed to be key.

Two key takeaways that have been used by many of these model-based RL papers and have mani-
fested in recent literature are using (1) Short model-rollout horizons and (2) Heteroskedastic ensem-
ble dynamics models.

Short model-rollout horizons As the learned models are at best approximately correct, model
errors accumulate with the length of the rollout horizon. Therefore, one common practice introduced
byJanner et al.|(2019) is to use shorter rollout horizons with learned models. Otherwise, one exploits
the approximation error, and the RL agent fails to learn the task. This approach can be vaguely
thought of as treating the symptoms of model errors by behaving pessimistic and cutting rollouts
early before the accumulating error can become too large. In practice, this paradigm is often taken
to the extreme by using 1-step model rollouts only. Furthermore, using shorter rollouts contradicts
the theoretical insights we have into value expansion methods.

Heteroskedastic ensemble dynamics models Initially proposed by [Chua et al. (2018)), this
model has been widely adopted in most subsequent papers. The main benefit is that the model
learns the aleatoric uncertainty separately from the epistemic uncertainty. It is an attempt to
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construct a more capable model architecture which is better suited to represent the environment dy-
namics. A further benefit is that by explicitly modelling uncertainties they can be used down the line.

Both of these takeaways are an attempt to treat model errors. The first, by reducing the length of
the prediction horizon, and the second by explicitly learning uncertainty measures which can be
leveraged later down the line. This leads us to two lines of questioning which might challenge the
understanding of the current approaches.

First, if we learned a perfect dynamics model, would this solve all of the problems that current
model-augmented actor-critic approaches struggle with? And if this were the case, could we then
just simply use longer horizons and obtain even greater increases in sample efficiency? The rele-
vance of different possible future research directions is linked directly to the answer of these ques-
tions. If the answer is yes, then we should focus future research onto learning more accurate models.
If the answer turns out to be no, however, it might be the case that greater accuracy has diminishing
returns for model-augmented actor-critic approaches or hinders necessary exploration for example.
Striving for more accurate models in these approaches might then not be the most important priority
and interesting new research directions could open up.

Second, are stochastic models really necessary to achieve good results? Or can deterministic models
deliver comparable performance if built and trained carefully? Current benchmark environments
usually feature deterministic dynamics. Naturally, the question arises, of whether a deterministic
model should not be sufficient at learning to model these systems. If the answer is yes, we should
revisit deterministic models with the possibility of cutting down complexity.

To come closer to answering these questions, we believe, that there is a need for extensive empirical
analysis of the impact of model errors on the training algorithms. In this paper, we focus on the first
line of questioning. We investigate the question of whether learning more accurate dynamics models
can still increase the performance of value expansion methods (Feinberg et al.| |2018)). Therefore,
we create an experimental setup with a perfect dynamics model, by replacing the learned dynamics
model with an oracle dynamics model. This allows us to study the theoretical performance of value
expansion approaches in isolation without the negative impact of model errors. Only recently, with
the development of GPU based physics simulators, this type of study has becoming computationally
feasible. Simulators like BRAX (Freeman et al.| 2021), provide GPU accelerated simulation of
dynamical systems scaling to thousands of parallel environments. It allows us to perform fast,
oracle dynamics rollouts in the inner model-based RL training loop for entire batches in parallel. An
additional performance benefit is that we are able to perform the training on the GPU only which
limits the amount of costly memory transfers from CPU to GPU and back.

2 MAXIMUM-ENTROPY MODEL-BASED VALUE EXPANSION

We adapt Model-based Value Expansion (MVE) (Wang et al., 2020) for the maximum-entropy
RL case in order to combine it with a model-free Soft Actor-Critic (SAC) (Haarnoja et al., [2018])
learner. For this, consider a Markov Decision Process (MDP) (Puterman, 2014), defined by the
tuple {S, A, P,R,p,~v} with state space S C R”™ and action space A C R™. At each time
step t, the agent observe a state s; € S and samples an action a; € A according to a policy
a; ~ 7( | st). The environment returns a next state s;11 € S according to the transition prob-
ability density function s;41 ~ P( - | s¢,a;) and the corresponding scalar reward r; = R(sq, at).
The starting state of a trajectory is sampled from the initial state distribution sg ~ p. ~ is a dis-
count factor. The main objective of maximum-entropy RL is to find a policy 7 that maximizes
J(m) = Eggmp {D o0 7 (r(se, ar) — alog (- | s¢))} with the initial state distribution p. The actor
loss is defined as Jr(s¢,a;) = alog (m(a|s:)) — Q(s¢, ar) with a; ~ 7(s;). In the maximum-
entropy case, the value expansion used within the critic loss is described by

H—1
VA (s0) = 3 3 [r(sesa0) = alog (- | s0)] +97 [Qsw, am) — alog (- | su)] -
=0
The corresponding critic loss is defined as Jo(si,ar, se41) = 3[QE — Q(s¢,a0)]* with

QL (s4,at,5041) = r(st,a¢) + YV (s411). We define a learned dynamics model as an ensemble
of N probabilistic neural networks Pg = {pfﬁ(stﬂ, 7¢|st, at) }Y5, which output mean and variance
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Figure 1: MVE training performance (top) and OVE training performance (bottom). We evaluate
each for multiple rollout horizons H € {1, 3,5, 10, 20, 30} and plot the mean and variance across 5
random seeds.

of the state transition and reward, similar to (Chua et al.|l [2018)). At inference time, one network in
the ensemble is sampled uniformly to capture epistemic uncertainty.

3 EXPERIMENTS

In this section, we compare the theoretical performance of MVE with its practical performance. For
this purpose, we construct a version of MVE where we replace the learned dynamics model with
an oracle dynamics model. For clarity, we will refer to the latter as Oracle-based Value Expan-
sion (OVE). OVE creates a well-defined, artificial environment for studying training performance
by eliminating the negative impact of model errors. It lets us answer whether there is still room
for performance gains by learning more accurate dynamics models and if, in the absence of model
errors, ever longer rollout horizons can increase performance of value expansion methods further.
Our experiments focus on five standard RL benchmark environments: InvertedPendulum, Cartpole
Swingup, Hopper, Walker2d and HalfCheetah. As an efficient GPU based physics simulator, we use
BRAX (Freeman et al., [2021)), which provides implementations of these benchmark environments.
Our experiments are implemented in JAX (Bradbury et al.|2018)) to integrate seamlessly with BRAX
and take full advantage of the GPU.

3.1 TRAINING PERFORMANCE

We compare the training performance of MVE and OVE. Therefore, we train both algorithms with
varying rollout lengths. Figure [I] shows the MVE and OVE training performance on the top and
bottom row, respectively. For comparison, we provide a SAC baseline (corresponding to MVE/OVE
with a rollout horizon of 0). We plot the mean and standard deviation across five random seeds.

OVE shows a clear trend that the theoretical improvements of increased horizons can be achieved in
the absence of model errors. As expected, the improvements have diminishing returns with increased
rollout horizons. Where Walker2d and HalfCheetah suffer a slight performance decrease for H =
30. From a practical perspective, there seems to be an optimal trade-off between the benefit of a
longer rollout horizon and the increase in computational cost.

Overall, MVE results are split. While longer rollout horizons assist the training performance in
InvertedPendulum, Cartpole and Walker2d, the training performance of Hopper and HalfCheetah
suffers immensely. We assume that the learned model is not accurate enough to produce better value
targets for the learning agent in these two environments due to the compounding model error.
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Figure 2: Number of environment steps untii MVE/OVE with rollout horizons H €
{1,3,5,10,20,30} reach a certain threshold of episode reward. The different thresholds are rep-
resented by the different shades of red/green.

3.2 DIMINISHING RETURNS OF LONGER ROLLOUT HORIZONS

We further investigate the diminishing returns in training performance using longer rollout horizons.
Figure [2| shows the number of environment steps that MVE/OVE with a certain rollout horizon
requires to first reach a set threshold on the episode reward. The differently shaded lines represent
different thresholds. The thresholds are linearly interpolated between a [min, max] episode reward
which for the different environments we have picked as follows: InvertedPendulum = [50, 200],
Cartpole = [100, 400], Hopper = [250, 1000], Walker2d = [500, 1900], HalfCheetah = [500, 3000].

OVE shows the tendency of diminishing improvements for longer rollouts. While most environ-
ments show notable improvements by increasing rollout horizons from I = 0 to H = 5 or even
H = 10, the lines flatten for horizons H = {20, 30}. Even in the absence of model errors, increasing
the rollout horizon appears to reach limitations.

Except for the InvertedPendulum environment, MVE experiments show that in the case of a learned
dynamics model, rollout horizons above H = 3 or H = 5 indeed hurt the overall performance. Up
to a point where it is not able to solve HalfCheetah for H = 30. This is clear evidence that more
accurate dynamics models could improve MVE training performance for short rollout horizons.
However, due to the diminishing returns of increasing rollout horizons it has its practical limitations
for longer rollout horizons.

4 CONCLUSION

Our experiments have empirically shown that in the absence of model errors, MVE shows increased
performance with longer rollout horizons. Therefore, we conclude that MVE can be made more
sample efficient by training more accurate dynamics models. At the same time, we have seen di-
minishing returns of that improvement with increasing rollout horizons. Our empirical findings
strengthen the theoretical justifications of MVE by [Feinberg et al.|(2018)) and allow for two streams
of future research. First, improving model accuracy through better model training techniques and
architectures. Second, understanding how model errors impact value expansion and how the nega-
tive impact can be mitigated. This needs more research into analyzing and understanding how these
model errors negatively impact training.

In the future, we plan to take a detailed look at the exact nature of the impact of model errors on
the learning process and on the generated value targets themselves. We hope that by understanding
the effects, we can design more capably algorithms that are more robust to model errors and sample
efficient at the same time.
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