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ABSTRACT

I present a Variational Autoencoder (VAE) trained on collider physics data (specif-
ically boosted W jets), with reconstruction error given by an approximation to the
Earth Movers Distance (EMD) between input and output jets. This VAE learns
a concrete representation of the data manifold, with semantically meaningful and
interpretable latent space directions which are hierarchically organized in terms of
their relation to physical EMD scales in the underlying physical generative pro-
cess. The variation of the latent space structure with a resolution hyperparameter
provides insight into scale dependent structure of the dataset and its information
complexity. I introduce two measures of the dimensionality of the learnt represen-
tation that are calculated from this scaling.

1 INTRODUCTION

Energetic events at the Large Hadron Collider (LHC) consist of hundreds of particles each described
by four momentum components, leading to embedding spaces with dimensionality O(1000). Di-
mensionality reduction is therefore important for understanding this data. Distance measures be-
tween events based on optimal transport such as Earth Movers Distance (EMD) have been intro-
duced for usage on particle physics datasets in recent years (Komiske et al., 2019b; 2020a; Crispim
Romão et al., 2021; Komiske et al., 2020b; Cai et al., 2020), leading to geometric interpretations of
the data manifold from which many useful quantities can be derived. Different generative processes
involved in creating events are associated with distinct EMD scales.

Variational Autoencoders (VAEs) (Kingma & Welling, 2014) have been shown to produce se-
mantically meaningful and interpretable dimensional reductions into their latent space in many
contexts. To be trained, they require a notion of similarity between pairs of objects to be used
in the reconstruction loss. Pixel intensity based losses have been used in various VAE stud-
ies for collider data (Dillon et al., 2021; Cheng et al., 2020; Dohi, 2020), but these fail to re-
flect the similarity of events with collinear splittings or small displacements. Given its appeal-
ing physical properties, and the physical interpretations of its corresponding manifolds, the EMD
between events is a promising candidate to be used as a reconstruction loss in a VAE which
might then be used for studying the data manifold in this space. This paper serves to introduce
a VAE trained with such a reconstruction loss, and to describe some experiments on a dataset of
W -jets, which are collimated streams of particles formed from the decay of a W boson travel-
ling with high momentum. Code used for generating the results for this paper can be found at
https://github.com/jackhcollins/EMD_VAE/tree/ICLR_DGM4HSD.

2 EXPERIMENTS

Data and Architecture A sample of 6 × 105 W jets were simulated with transverse momenta
in the range 500 – 600 GeV using a standard pipeline descriped in Appendix A.1. The 50 largest-
momentum particles are selected and stored as 3-vectors (pT , η, φ). The momenta pT are prescaled
so that their sum is one for each jet. Two VAEs with identical architecture are trained: VAE uncent
(VAE cent) is trained on jets which have not (have) been centered in the detector. The VAEs
are built with a Particle Flow Network (Komiske et al., 2019a) encoder which takes input jets as
point clouds x, and a dense decoder which outputs jets ρ with the same structure. The encoder
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parameterizes means and variances µ(x), σ(x)2 for a multivariate diagonal normal distribution
with 256 dimensions, from which latent space coordinates z are sampled. The loss function,

LEMD−VAE =
Ŝ(x, ρ(z))2

2β̂2
+
∑
i

1

2

(
µi(x)2 + σi(x)2 − log

(
σi(x)2

)
− 1
)
, (1)

is composed of a distortion (D) term Ŝ2, which is chosen to be a sharp Sinkhorn (Sinkhorn & Knopp,
1967; Cuturi, 2013; Schmitzer, 2016) approximation to the EMD, and a rate term (R) given by the
expectation value of DKL(p(z|x)‖N (z;0, I)) which can be decomposed into a sum of separate
contributions from each latent direction. Ŝ is dimensionless due to the HT ≡

∑
pT rescaling of the

jets, but it is related to true Sinkhorn distance between the physical jets by S ≡ HT Ŝ. Similarly,
while the hyperparameter β̂ is dimensionless, it is related to a dimensionful quantity defined as β ≡
〈HT 〉 β̂. The dimensionality of the latent space is chosen to be larger than the full dimensionality
of the dataset (150), so that an identity map is in principle possible and the information capacity is
primarily restricted by the rate constraint rather than an architectural bottleneck.

Training β can be interpreted equivalently as the noise parameter of the Gaussian posterior proba-
bility from which the reconstruction loss descends, setting the resolution scale of the VAE, or as the
β hyperparameter of a β-VAE (Higgins et al., 2017). The VAE is trained by β-annealing (Fu et al.,
2019) whereby it is trained in stages using a sequence of values for β̂, preserving the model weights
between stages. This sequence is log-uniform separated in the range 10−5 – 1. The procedure begins
with an initial ‘priming’ run, starting at the smallest β̂ and proceeding upwards. Next, β̂ is annealed
in a zig-zag pattern until it reaches again its smallest value. Finally, a ‘production’ run is performed,
repeating the sequence of values used for the priming run. The model weights saved at the end of
each β step in this run are used to generate the results of this paper.

Before proceeding to describe the learnt representations, I will make some qualitative observations
from training. During most of the priming run the learnt representation is disorganized, taking ad-
vantage of all 256 latent directions to describe the data (i.e. all dimensions have associated DKL

significantly greater than zero). By the production run the learnt representation has been organized
into a small set of informative directions with DKL > 0, while the majority are uninformative with
DKL ' 0. For each informative direction, there is some critical value β̂crit above which the di-
mension becomes uninformative. These are associated with physical scales in the training data, for
instance the translation of jets around the detector (πHT ), or the orientation of hard prongs within
the jet (mW ). When trained with β̂ � β̂crit, the corresponding variations will not be learnt in the
latent space. When trained with β̂ � β̂crit, the variations may be learnt in the latent space, but they
have no tendency to be organized into orthogonal or semantically meaningful ones. When subse-
quently trained with β̂ . β̂crit, these dimensions tend to organize into a small number of semantically
meaningful directions, which have a tendency to be preserved if β̂ is subsequently gradually reduced
to very small values. Further details of the training procedure are given in Appendix A.1, and plots
of the DKL associated with the individual latent directions can be found in Fig. 7.

Learnt representations VAE uncent has three informative directions at β ' 100 GeV, and an
additional three at β ' 10 GeV. VAE cent has no informative directions at β ' 100 GeV, three
at β ' 10 GeV, and many more at smaller values of β̂. For each VAE, the latent directions can be
ordered by the sizes of their individual contributions toR. Fig. (1) illustrates the physics encoded by
the first three zi of VAE uncent with β ' 100 GeV. The blue contours which indicate the density
of the training data in the latent space suggest that a two dimensional manifold has been embedded
into a three dimensional space. z0 maps η while z1 maps −π/2 < φ < π/2. The remaining half of
the barrel is mapped with the aid of z2 which appears to encode sign(cosφ), and a full 2π rotation
around the detector barrel is obtained by traversing the ring in the (z1, z2) plane.

Fig. (2) illustrates the representation learnt in the two most informative directions of VAE cent at
β = 6 GeV. The coordinates (z0, z1) of this VAE map the polar and azimuthal angles (θ, φ) of the
W decay in its rest frame, where θ can be mapped to the energy fraction z of the hardest prong in
the boosted frame. The topology of the decay of a massive particle into two identical particles is
that of the real projective plane, RP2, which in this context is naturally represented by the sphere
with antipodes identified. Any hemisphere gives a single cover of the space of two-body decays
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Figure 1: Learnt representation of jet coordinates for VAE uncent with β = 50 GeV. The major
axes of the left and center plots are the latent space coordinates z0 to z2. The blue contours indicate
probability density of encoded events. Overlaid are grids of jet images in red, in which areas of discs
are proportional to the pT of the corresponding particle. Each jet image has its own coordinate axes
(φ, η), and is generated by decoding the latent code associated with the major axis coordinates of
the center of its small square. The jet images on the right zoom in on one of these small squares.

θ

φ 

z, θ contour

φ contour

Figure 2: Learnt representation of two-body jet substructure in VAE cent with β = 6 GeV. The
major axes of the plot correspond to the latent directions z0, z1. Each circle contains a jet image
with internal axes (φ, η) ranging from −0.5 to 0.5. Each jet image is obtained by the decoder from
the latent code associated with the coordinates of the center of the circle. Black and red lines are
approximate contours of the polar and azimuthal angles θ, φ of the W boson decay, drawn by eye.

everywhere except on its rim, with an identification of opposite points on the rim being the surviving
remnant of the antipodal identification on the full sphere. This plane of the latent space represents an
approximate projection of the hemisphere indicated by the grey region on the right of the figure, with
the pole of the sphere being represented at approximately (0, 0.75). Jets located around the edge of
the support region satisfy an approximate reflection symmetry (z0, z1) → (−z0,−z1). Additional
latent dimensions are illustrated in Fig. (8).

Dimensionality The organization of the learnt information into a small number of latent dimen-
sions that vary smoothly with β suggests the possibility of notions of information complexity that
depend on the way that properties of the learnt representation scale with β. To this end, I introduce
definitions for two notions of dimensionality

D1 = − dR

d log β
, D2 =

dD

dβ2
, (2)
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where in practice these derivatives are estimated using finite difference approximations using quan-
tities evaluated using VAEs trained at nearby values of β. These quantities should be equal along
the optimal frontier since 2β2 = −∂R/∂D (Alemi et al., 2018), and can be regarded as an analogue
of a thermodynamic heat capacity (Alemi & Fischer, 2018). D2 can be interpreted as a dimension-
ality by noting that if sampling in D2 informative and orthogonal latent directions maps via the
decoder to a stochastic sampling in D2 orthogonal dimensions in the reconstruction space, then the
full reconstruction error can be obtained by adding in quadrature those associated with the individual
orthogonal directions. This leads to D ' D2β

2 + const (since β is behaving as a gaussian noise
parameter), and the derivative extracts the dimension. It is related to the work of Rezende & Viola
(2018), in which dD2/dβ

2 is studied and spikes in this quantity are interpreted as indicating phase
transitions. The interpretation of D1 as a dimensionality stems from the qualitative observation that
informative latent space directions scale like σi ∝ β (Fig 7), while uninformative ones have σi ' 1.
The posterior p(z|x) occupies a Gaussian ball in the latent space with volume Vol ∼ ∏σi ∼ βD1 ,
with DKL ' log(

∏
σi). It can therefore be seen that D1 plays the role of an exponent that relates a

scale (β) to a quanitity which approximates a volume (R = 〈DKL〉). In Appendix A.3 I describe a
simple analytic example in which these formulae for D1,2 can be derived exactly.
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Figure 3: Representation dimension.

Fig. (3) plots the dimensions calculated on both VAEs
during the production run. D1 andD2 are in rough agree-
ment for both VAEs, except for at low values of β for
VAE uncent where it struggles to represent the detailed
substructure of the jet at the same time as its bulk posi-
tion in the detector. At high scales, the dimensionality of
VAE uncent is very close to 2, while the correspond-
ing physics is described using three latent dimensions as
was illustrated in Fig. (1). The third latent dimension,
acting as a categorical variable, contributes very little to
the computed dimensionality. This illustrates the role
that these quantities have in reflecting the true informa-
tion complexity of the dataset when compared to a naive
counting of active latent directions. Indeed, the dimen-
sionality scaling of the learnt representation agrees with
an intuitive understanding of the dataset. At large β, the
uncentered jets have dimensionality of 2 while centered
have dimensionality of 0. An order of magnitude below
and three new dimensions emerge, two of which describe
the orientation of the hard prongs within the jet associ-
ated with the scale mW and a third one describing the overall boost of the jet (associated with the
spread of momenta ∆HT ' 100 GeV). At scales below this many new dimensions rapidly emerge,
representing the various physical processes associated with showering, hadronization, decays, and
detector effects as discussed in Komiske et al. (2019b) and illustrated in Fig. (8). Also plotted are
the correlation dimensions of the datasets which measure their scale-dependent complexity, defined
by (Kégl, 2002)

Dcorr(Q) =
d

d logQ
log

∑
i,j 6=i

Θ(Q2 − Ŝ2(xi, xj)). (3)

This was calculating also using the method of finite differences using a subset of 104 events x from
the training set, and is presented with statistical uncertainty bands. No direct relation between Q
and β has been established, and so Dcorr(Q) is arbitrarily plotted with Q = 2β which results in
qualitative alignment with D1,2(β). While this work does not demonstrate a concrete link between
Dcorr(Q) and D1,2(β), their qualitative similarity is intriguing.

3 CONCLUSIONS AND OUTLOOK

The VAEs trained for this study are effectively learning a concrete representation of the metric space
of jets induced by the EMD. They identify semantically meaningful, intuitive, and approximately
orthogonal principal axes of variation in the space of jets. Associated with these principal axes are
concrete scales, which reflect scales associated with the physical generative process for the jets. As
the resolution of the VAE is varied by adjusting β, the learnt representation smoothly adjusts, and
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its varying properties can be probed to understand the information complexity of the EMD manifold
of the jets. There remains to be seen potential applications for these properties, and the question of
mixed samples which are expected in unsupervised training on LHC data.
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Figure 4: Training examples.

A APPENDIX

A.1 MORE DETAILS ON DATA, ARCHITECTURE, AND TRAINING

A.1.1 DATA DESCRIPTION FOR NON DOMAIN SPECIALISTS

The data used for this study (both training and testing) is simulated data from proton-proton col-
lisions that occur at the Large Hadron Collider. In particular, a special subcategory of this data
is selected, because it has a relatively simple and well-understood structure that is interesting at
multiple physical scales. The data is coming from the decays of simulated W -bosons, travelling at
relativisitic velocities and decaying into pairs of quarks. As the quarks separate, additional particles
are produced around them typically with much lower momentum, following the theory of Quantum
Chromodynamics. The end result of this process is the production of typically 10-100 particles,
mostly clustered around two primary centers of activity (which represent the directions of the two
quarks from the initial decay), although additional centers frequently develop.

Particles can each be desribed by their momentum 3-vector (if their mass is neglected, as it is in
this study). This can be conveniently represented in polar coordinates (E, θ, φ) around the proton-
proton collision point, or equivalently (as is often conventional for hadron colliders) (pT , η, φ) where
pT = E sin θ, and η = − ln(tan(θ/2)), with η ∈ (−5, 5) and φ ∈ [−π, π). Because of the
relativistic velocity of the W , these particles tend to be collimated in the direction of the velocity
vector of theW boson, with a typical spread in the η-φ plane of around 0.3 for the chosen simulation
parameters.

Fig. (4) shows three examples of W -jets, which have been centered to have their overall velocity
vector to be in the direciton (η, φ) = (0, 0). Jets elsewhere in the detector can be obtained simply by
translations of these in the η-φ plane. In order to produce these images particles that are very close
(within a separation of around 0.02) are reclustered into single particles, just to aid visualization.
Each particle is represented by a disc in the (η, φ), centered at the coordinates of the particle, and
with area proportional to the pT of the particle. Clusters of energetic particles are represented by
clusters of large discs. In the left and center image are shown two predominantly two-pronged
examples with differing orienatations. The right image shows an example where a prominent third
prong as emerged during the showering process.

Figure (5) gives a rough schematic of the generative processes. Translations of W -jets in the (η, φ)
plane are associated with the production process and correspond to EMDs of ∼ HT ∆R, where
∆R =

√
∆η2 + ∆φ2 and HT ' 500 GeV. The decay process determines the rotations of the

two major prongs and their relative balance, variations of which correspond with EMDs of order
mW = 80 GeV. The showering and hadronization processes that result in the spread of particles
around and between the two main centers of energy, and occasionally resulting in a third priminent
prong, typically account for EMDs of up to 10 GeV. The VAE tends to easily disentangle latent
directions associated with these different generative processes, because they are associated with
hierarchically separated scales. Similarly, the various intrinsic dimenions of the data manifold that
are associated with these processes can be seen to emerge a little below their relevant scales in Fig. 3.
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Figure 5: Schematic of generative processes.

A.1.2 DATA GENERATION

W jets are simulated and decayed in Madgraph (Alwall et al., 2011) with the process pp →
WZ → ννjj and a generation level cut on the missing momentum of pT,miss > 500 GeV. The
events are showered in Pythia8 (Sjöstrand et al., 2015). Detector simulation is performed with
Delphes (de Favereau et al., 2014) using an ATLAS based card and with particle flow reconstruction.
Particle flow objects were then clustered into jets with the anti-kt algorithm (Cacciari et al., 2008)
with R = 1. The event is selected if the leading jet has momentum in the range 500 – 600 GeV,
|η| < 2, and mass in the range 75 – 110 GeV. For selected events, the constituents of the leading jet
are reclustered with anti-kt with R = 0.07 and the leading 50 particles are recorded with (pT , η, φ).
Events with fewer than 50 particles are zero padded. 6 × 105 events survive the cuts, of which
5× 105 are used for training and the remainder for validation and testing.

A.1.3 NETWORK AND TRAINING DETAILS

The inputs to the VAE are jets each with 50 particles represented as {(pT /HT , η, sinφ, cosφ)}.
The encoder network of the VAEs consists of four 1D convolution layers with filter size 1024,
kernel size 1, stride 1, followed by a sum layer, followed by four dense layers of size 1024. Unless
otherwise specified, all layers have activation function Leaky ReLu with negative slope coefficient
of 0.1. 256 latent space µ, log σ2 are encoded with linear activation. The decoder consists of five
layers with size 1024, followed by a linear dense layer which outputs fifty particles represented
as {(pT /HT , η, sinφ, cosφ)}, and then an arctan function reduces this to {(pT /HT , η, φ)}. The
explicit arctan allows the network to avoid learning a discontinuity in φ, which is also the motivation
for the trigonometric form of the inputs.

The loss function is a custom implementation in TensorFlow of a sharp Sinkhorn (Luise et al., 2018)
using ε-scaling (Schmitzer, 2016; Sharify et al., 2013; Kosowsky & Yuille, 1994). In principle
symbolic differentiation should be effective for this problem, however I encountered debilitating
numerical instabilities that I was unable to diagnose. I therefore implemented the explicit gradient
introduced in Luise et al. (2018). The Sinkhorn distance is calculated with regulator scaling from 1
to 0.01 in ten log-uniform steps, with ten iterations per step. Double floating precision is required
for this calculation.

The β̂-annealing schedule used for training VAE uncent is illustrated in Fig. (6), each black dot
representing a step in the annealing schedule. At each step, the VAE is trained for fifty epochs, or
until validation loss has not improved for ten epochs. Training is performed with batch size of 100
and with 1000 steps per epoch, and so five epochs are required to cycle through the whole training
dataset. The adam optimizer (Kingma & Ba, 2014) is used for training. The learning rate begins at
3× 10−5 at the beginning of each annealing step, and reduces by a factor of

√
0.1 if validation loss

has not improved in five epochs. The first straight line of annealing steps is in this paper called the
‘priming’ run. The last straight line is called the ‘production’ run.

Training was performed on NVIDIA GeForce 2080Ti GPUs. An epoch takes approximately two
minutes, and the full annealing schedule approximately four days.
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Figure 7: Left: Evolution of the individual KL losses associated with the 256 latent dimensions in
the first annealing run for VAE uncent. Center: Evolution of the individual KL losses associated
with the 256 latent dimensions in the final annealing run for VAE uncent. Right: Evolution of
the individual KL losses associated with the 256 latent dimensions in the final annealing run for
VAE cent.
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Figure 8: Additional latent dimensions of VAE uncent. Refer to caption of Fig. (1) for details.
Left: Visualization of latent space directions z2, which appears to describe the boost of the jet, and
z3, which appears to describe the prominence of a third prong. Right: Visualization of latent space
directions z4 and z5, which appear to describe the orientation of a third prong.

A.2 ADDITIONAL LATENT DIRECTIONS

In Fig (8) is plotted slices of the latent space of VAE uncent, in the directions z2 to z5. z2 is
very close to z0 and z1 in prominence (see Fig. (7), right), and describes the overall boost of the
jet. Since the jets are generated with a pT range of 100 GeV, this corresponds to a EMD variation
that is comparable to those associated with the decay process. z3 to z5 describe the first three latent
variables associated with the showering process. z3 appears to determine the prominence of a third
prong, while the (z4, z5) plane determines its relative orientation. Moving radially out from the
origin in this plane moves the third prong away from the center of the jet, while traversing a circle
in this plane moves the angle of the third prong with respect to the dominant two.

A.3 A SIMPLE ANALYTICAL EXAMPLE

Consider a toy one-dimensional gaussian distributed dataset with variance σ̄. A linear VAE with one
latent dimension is trained to reconstruct the coordinate of the input x, with loss function

Ltoy VAE =
(x− ρ(z))2

2β2
+

1

2

(
µ(x)2 + σ(x)2 − log

(
σ(x)2

)
− 1
)
. (4)

The VAE is linear in the sense that µ(x), σ(x), ρ(z) are linear functions of their arguments. The
loss function can be integrated analytically over p(x) and p(z|µ, σ), and has extrema given by

µ(x) = ρ(z) = 0, σ(x) = 1, (5)

µ(x) = ±
√
σ̄2 − β2

σ̄2
x, ρ(z) = ±

√
σ̄2 − β2 z, σ(x) = β/σ̄. (6)

The former results in an uninformative latent space with DKL = 0 which is a minimum only for
β > σ̄, and becomes a saddle point for β < σ̄. The latter, which leads to an informative latent
space, is real only for β < σ̄ and is a minimum in this regime. Substituting this minimum into the
expressions for the reconstruction and KL losses in Eq. (4) gives

D =
〈
(x− ρ(z))2

〉
p(x)p(z|x) = β2 (7)

R = 〈DKL〉p(x) = − log (β/σ̄) . (8)

Evaluating Eq. (2) explicitly gives D1, D2 = 1 for β < σ̄ and D1, D2 = 0 for β > σ̄.
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The general case of a d-dimensional Gaussian dataset with variances {σ̄i} is more complicated, but
it can be shown that there are minima when d latent space axes are aligned with the principal axes
of the data. In these minima, the problem reduces to d independent copies of the one-dimensional
case. In this case, D1, D2 both count the number of directions for which β < σ̄i, which is the same
as the number of active dimensions that have DKL > 0

D1, D2 =
∑
i

Θ (σ̄i − β) . (9)

In summary, the VAE probes in detail directions that have characteristic scale larger than β, and
averages over directions which have scale smaller than β. The σ̄is play the role of the βcrits of
Section 2.

Nonlinear VAEs trained on non-Gaussian data have no guarantee to follow this behaviour, in which
case the behaviour of these quantities can be regarded as a diagnostic of how closely the behaviour
of the data resembles that of a Gaussian.

A.4 RELATION TO PREVIOUS MACHINE LEARNING WORK

Earth Movers Distance has been commonly used as a reconstruction error for generative models
of unweighted point clouds starting with Fan et al. (2017); Achlioptas et al. (2018). In the case of
unweighted point clouds this is often implemented using an auction algorithm, but this is unsuitable
for weighted point clouds as in this work. Instead, this work closely follows the approach of Patrini
et al. (2020), which introduced Sinkhorn autoencoders for image datasets. The implementation of
this work differs from that of Patrini et al. (2020) by applying the Sinkhorn distance to weighted
point clouds rather than images. Essentially this just means that the locations of the pixels are
allowed to vary, in addition to their intensity. It is a relatively trivial change with additional gradients
for the locations of the points, but to my knowledge it is novel, as I am not aware of any previous
attempt in the literature to build an autoencoder with an EMD-based loss for weighted point clouds.
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