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ABSTRACT

We propose ShiftNorm, a simple yet promising data augmentation that can be
applied to standard model-free algorithms to improve data-efficiency in high-
dimensional observation-based reinforcement learning (RL). Concretely, the dif-
ferentiable ShiftNorm leverages original samples with reparameterized virtual
samples, and hasten the image encoder to generate invariant representations. Our
approach demonstrates certify substantial advances, enabling it to outperform the
new state-of-the-art on 8 of 9 tasks on the DeepMind Control Suite at 500k steps.

1 INTRODUCTION

Improving agent’s performance and data-efficiency have always been a key problem in visual
reinforcement learning (RL). Unlike the representation learning in supervised learning, as the model
has a strongly supervised singal and various methods could be applied to learn representations useful
to the task, there are not enough supervised signals in visual RL, thus the trainging process is quite
fragile. The network need to learn useful representations for performance improvement, while
inappropriate methods may do damage to the training process, causing performance degradation.
In this case, we urgently need representation learning methods suitable for reinforcement learning.
Previous works have demonstrated that data augmentation could better this situation, both for sample-
efficiency (Laskin et al., 2020a; Yarats et al., 2020; 2021) and generalization (Hansen et al., 2021;
Raileanu et al., 2020; Zhang & Guo, 2021; Hansen & Wang, 2021; Fan et al., 2021). This method
without further modifications to the backbone of RL algorithms is being noticed by others.

Inspired by Spatial Transformer Networks (STN) (Jaderberg et al., 2015), we hold the point that the
observation transformation process can be parameterized. We focus on transforming handcrafted
perturbations into an optimizeable process and propose ShiftNorm to improve the data-efficiency
at pixel-based tasks. We hypothesize that there is a suitable transformation of the observation for
the agent, thus the learned transformation can enable the encoder to abstract more useful semantic
representations from high-dimensional obsevations, and control algorithms based on these represen-
tations should be more sample-efficiency. Following this way, we propose ShiftNorm to improve
the data-efficiency at pixel-based tasks. Through this process, the pixel shift in different degrees and
directions will occur in the whole image and the shift controls the level of perturbation of the image.
Here we raise our ideas:

Can we reparameterize this shift procedure by sampling it from a dynamic distribution to cope with
the assumption of stationary environment in model-free RL training?

To this aim, we parameterize the mean and variance of the distribution and update them with the
RL process. Two constraints are also proposed to ensure that the automatic augmentation will not
ruin the convergence of the RL algorithm. As the iterations increase, the agent will find the shift
distribution suitable for the task at hand.
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Key Contributions: We introduce ShiftNorm, a reparameterized data shift method to integrate
invariant representations with model-free RL methods. We evaluate our algorithm on 9 control tasks
from the DM control suite and show that the optimizable transformation is effective to improve
data-efficiency for visual RL.

2 THE SHIFTNORM

2.1 PROBLEM FORMULATION

We formulate the visual RL as an infinite-horizon Markov Decision Process (MDP) (Bellman, 1957).
The MDP M can be described as a 5-tuple ⟨O,S,A, r, γ⟩. Here O consists of a stack of images
(Mnih et al., 2013). The state space S is either observable or unobservable (Silver et al., 2017; Zhang
et al., 2020). A is the action space for the agent. The goal is to maximize the cumulative rewards
R =

∑
t γ

trt, where γ ∈ [0, 1) is the discount factor and rt denotes the reward at time t.

2.2 LEARNABLE INVARIANT TRANSFORMATION

We first introduce the optimal invariant metric to reach the stationary distribution D over the aug-
mented context x′, where x′ is required to satisfy x′ ∼ q(·|e). Environment transition e belongs to
the replay distribution D. Below are the definition:

Definition 2.1. (Optimal Invariant Metric). Given a transition distribution D, suppose the block
structure assumption holds, the shift between x and x′ can be measured by a conditional divergence:

d(x,x′|e) ≜ Ee∼D [dKL (q(x|e = e), q(x′|e = e))] =
∑
e

p(e)
∑
x

∑
x′

q(x|e) log q(x|e)
q(x′|e) (1)

Following the Bayes’ rule on the conditional distribution, Eq.(1) can be rewritten as:

Ee [dKL (q(x|e), q(x′|e))] = Ee|s [dKL (p(s|x)p(x), p(s|x′)p(x′))] (2)

where dKL(·, ·) is the Kullback–Leibler (KL) divergence. Therefore, minimizing the conditional
divergence leads to encoding x and x′ into an invariant latent state space S.

Now we define a non-trivial function g : O → S mapping from the observed state O to the latent
state S such that g(x) = p(s|x),∀x. Since the pixel transformation is reparameterized as ν(x,G)
and could drift away, it is natural to find another state encoder g′(x′) = p(s|ν(x,G)),∀x′, and this
encoding function g′ should be different with the original observation encoder g. So far, the learning
goal boils down to minimizing the distance between g(x) and g′(x′),

Definition 2.2. (State ϵ-Approximation). Given a distance metric d : O × S → R+ satisfies
d(s, s) = 0,∀s, and let g, g′ : O → S be two functions. Let ϵ ≥ 0, given a distribution D̂ on O, then
g and g′ are ϵ-approximate w.r.t. (d,D) if

Ex∼D̂ [d(g(x), g′(x))] ≤ ϵ (3)

Define the distance d(·, ·) as lp-norm. If g′ satisfies Lp-Lipschitzness according to Assumption B.1,
the distance between the s and s′ can be expressed as the following triangular inequality,

d(g(x), g′(x′)) ≤ d(g(x), g′(x))︸ ︷︷ ︸
state ϵ-approximation

+ d(g′(x), g′(x′))︸ ︷︷ ︸
Lg-Lipschitzness

(4)

Minimizing the right side of the inequality is able to upper bound our problem.

To restrict the functional similarity, we combine the momentum updating (He et al., 2020) with a
projection f : S → Y (Chen et al., 2020a) and minimize the distance in the projected space Y for

model-free RL. Suppose the Markov chain O g−→ S f−→ Y holds. We use f ◦ g to denote the function
composition f(g(·)). Also, there exists the assumption of Lipschitzness for the projection f . Before
present data shifted method, we leverage the convexity in momentum updating paradigm.

Lemma 2.1. Assume that h : R|S| → R|Y| can be written as h(ξ) = f(< ξ, s >), for some s ∈ R|S|,
and f : R|Y| → R|Y| with parameter ξ. Then, convexity of f implies the convexity of h.
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Figure 1: Overall architecture of ShiftNorm. Observations are augmented that follows a Gaussian
distribution G(µ, σ). gξ̄ and fξ̄ are the momentum averaged version of gξ and fξ.

Lemma 2.2. Given the dynamical updating: ξ̄t = (1− τm)ξ̄t−1 + τmξt. By Lemma 2.1, fξ = fξ̄
holds after convergence. As a result, the problem of minEx[∥fξ ◦ gξ(x)− fξ̄ ◦ gξ̄(x)∥] is equivalent
to the problem of minEx[∥gξ(x)− gξ̄(x)∥].
We then provide helpful insight for learning an optimal shifted data together with the encoders.
Theorem 2.1. (Shift Normalization.) Suppose Assumption B.1 hold for functions gξ, gξ̄, fξ, and
fξ̄, respectively. The updating dynamics is: ξ̄t = (1− τm)ξ̄t−1 + τmξt, τm ∈ [0, 1]. For any input
x ∼ D̂ and shifted x′ obtained via ν(x,G), optimizing the conditional divergence in Definition 2.1
means to minimize the upper bound as follows, where C = 1+τ

1−τ , τ = 1− τm is a constant.

Ex∼D̂
[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′))

]
≤ Lg (CLf + ∥ξf∥)Ex∼D̂ [∥x− x′∥] (5)

The above theorem suggests two analysis results. First, minimizing the representations of the projected
layer ∈ Y is useful for encoding the optimal invariant state. Second, the pixel transformation needs
to be regularized with the observation such that the divergence in upper bounded. Next, we will place
emphasis on the illustration of this shift via a reparameterization method.
2.3 REPARAMETERIZABLE OBSERVATION

For the bound of Theorem2.1, the Algorithm 1 in appendix is a procedure defined on the MDP M
with Gaussian random variables G0 ∼ G|O| for initialization. The TRANSFORM is fulfilled by
aforementioned pixel transformation ν. To parameterize the augmentation, we add a shift subject to
Gt(µt, σt) on the bilinear interpolation. Therefore, the output will have different levels of pixel shift.

2.4 STABILIZING REWARD FUNCTION

Reparametrizing the underlying invariant optimization plays a key role to smooth the distribution D
in the replay buffer. We sample multiple augmentation data following G(µ, σ) and then mixup the
learned hidden state s′ for further stabilization.
Theorem 2.2. (Mixed Shift Normalization.) Suppose Assumption B.1 hold for functions gξ, gξ̄, fξ,
and fξ̄ , respectively. For any input x ∼ D̂ and shifted x′ ∼ G, the divergence with mixed augmented
states can be bound by, where C = 1+τ

1−τ , τ = 1− τm.

Ex∼D̂
[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′∼G [x

′]))
]
≤ Lg (CLf + ∥ξf∥)Ex∼D̂Ex′∼G [||x− x′||] (6)

The proof of Theorem 2.2 is straightforward based on Jensen’s inequality and the Theorem 2.1.

2.5 AUTOMATIC MANIPULATED OBSERVATION

With theoretical analysis on invariant transformations, we presented a new framework with normal-
ization variants to ensure our discussed learning guarantees.

Critic oriented. We switch the shift into a parameterized Gaussian distribution. The mean and
variance will participate in optimizing the objective function of the critic network, where s(x′

t) and
s(x′

t+1) are states embedded by encoder and ω represents the transformation.
JQ(θ, ω) = (Qθ(x

′
t,at)− r − γQθ̄(x

′
t+1, π(·|x′

t+1)))
2 (7)
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Figure 2: Results of 9 complex tasks in DM control suite. Our method demonstrates improvement on
sample-efficiency and performance over tasks on 8 out 9 selected tasks

Hidden representation oriented. For similarity measurement, we use the loss proposed in BYOL.
ξ and ξ̄ represent the parameters of online encoder gξ ◦fξ and momentum encoder gξ̄ ◦fξ̄ respectively.

Lξ,ξ̄,ω(D) ≜
∥∥fξ(gξ(x′

t))− fξ̄(gξ̄(xt))
∥∥2

2
= 2− 2 ·

〈
fξ(gξ(x

′
t)), fξ̄(gξ̄(xt))

〉
∥fξ(gξ(x′

t))∥2 ·
∥∥fξ̄(gξ̄(xt))

∥∥
2

(8)

Batch statistics oriented. The distribution shift between the transformed samples and the overall
data can be measured by the following formulation, where µ̃(x′

t) and σ̃2(x′
t) is the mean and variance

corresponding to the l-th convolution layer, X is the overall observations.

Rω(x
′
t) =

∑
l

∥∥µ̃l(x
′
t)− E(µ̃l(x)|X)

∥∥
2
+

∑
l

∥∥σ̃2
l (x

′
t)− E(σ̃2

l (x)|X)
∥∥
2 (9)

Architectural overview. We summarize the objective function of the transformation below. α and
λ as hyperparameters represent the magnitude of the constraints.

Jθ,ξ,ω(D) = JQ(D) + αRω(D) + λLθ,ξ,ω(D) (10)

3 EXPERIMENTS

We compare ShiftNorm with prior model-free methods on 9 visual tasks from the DM control suite.
and results are presented in Figure 2. Below are key findings: (i) Compared to vanilla DDPG and
SAC, ShiftNorm gains outstanding results and outperform in a wide range. (ii) When compared with
DrQ-v2 which has already performed remarkable for continuous control, we improve the sample-
efficiency on multiple tasks. (iii) We also find that ShiftNorm has better stability during training
while still keep convincing performance. More details and ablation studies can be found in appendix.

4 CONCLUSION

We introduce a simple automatic transformation for model-free RL algorithm for visual continuous
control tasks. We proposed an auxiliary loss to improve the performance and training stability at the
same time. Our method achieves convincing performance without specific architectural selection
compared to SOTA approachs on DeepMind control suite. We hope that our method can promote the
progress of automatic augmentation and representation learning in RL.
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A MISSING PROOFS.

Lemma A.1. Assume that h : R|S| → R|Y| can be written as h(ξ) = f(< ξ, s >), for some
s ∈ R|S|, and f : R|Y| → R|Y| with parameter ξ. Then, convexity of f implies the convexity of h.

Proof. Let ξ1, ξ2 ∈ R|S| and τ ∈ [0, 1]. We have

h(τξ1 + (1− τ)ξ2) = f(< τξ1 + (1− τ)ξ2, s >)

= f(< τξ1, s > + < (1− τ)ξ2, s >) = f(τ < ξ1, s > +(1− τ) < ξ2, s >

≤ τf(< ξ1, s >) + (1− τ)f(< ξ2, s >) = τh(ξ1) + (1− τ)h(ξ2)

(11)

where the last inequality follows from the convexity of f .

Lemma A.2. Given the updating dynamics: ξ̄t = (1− τm)ξ̄t−1 + τmξt. By Lemma 2.1, fξ = fξ̄
holds after convergence. As a result, the problem of minEx[∥fξ ◦ gξ(x′)− fξ̄ ◦ gξ̄(x)∥] is equivalent
to the problem of minEx[∥gξ(x′)− gξ̄(x)∥].

Proof. Through Lemma A.1, we know the convexity of a designed function f can give rise to the
convexity of the function h with the parameters as the input. Therefore, we design our projections fξ
and fξ̄ as f(< ξ, s >) and f(< ξ̄, s >) respectively. For instance, ReLU and MLP can be adopted
here. Using the dynamic: ξ̄t = (1− τm)ξ̄t−1 + τmξt together with h(ξ) mentioned in Lemma A.1,
we obtain the divergence of hidden representations fξ ◦ gξ(x′) and fξ̄ ◦ gξ̄(x)],

Ex[∥fξ ◦ gξ(x′)− fξ̄ ◦ gξ̄(x)∥] = Ex[∥fξ ◦ (gξ(x′)− gξ̄(x))∥
≤ Ex[∥ξf∥∥(gξ(x′)− gξ̄(x))∥]
= Ex[∥(gξ(x′)− gξ̄(x))∥]∥ξf∥

(12)

where ∥ξf∥ is the parameter of the projection ∥fξ∥. The first equality is determined by the approxi-
mation of convergence analysis, which is fξ = fξ̄. We use Cauchy–Schwarz inequality here. Note
that a premise in this lemma is that the momentum updating reached convergence, which means
fξ = fξ̄. Minimizing the right side bound equals optimizing the problem of the left side in Eq.(12).
When the norm of ∥ξf∥ is fixed, the proof completes.

Theorem A.1. (Shift Normalization.) Suppose Assumption B.1 hold for functions gξ, gξ̄, fξ, and
fξ̄, respectively. The updating dynamics is: ξ̄t = (1− τm)ξ̄t−1 + τmξt, τm ∈ [0, 1]. For any input
x ∼ D̂ and shifted x′, optimizing the conditional divergence in Definition 2.1 means to minimize the
upper bound as follows,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x

′))
]
≤ Lg (CLf + ∥ξf∥)Ex

[
∥x− x′∥

]
(13)

where C = 1+τ
1−τ , τ = 1− τm is a constant.

Proof. According to the following triangular inequality,

d(gξ̄(x), gξ(x
′)) ≤ d(gξ̄(x), gξ(x)))︸ ︷︷ ︸

state ϵ-approximation

+ d(gξ(x), gξ(x
′)))︸ ︷︷ ︸

Lg-Lipschitzness
(14)

The distance d(·, ·) is set as lp-norm for simplicity. By incorporating Lemma A.2 into the left side of
Eq.(14), it leads to a divergence with projections where a new triangular inequality holds,

d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′)) ≤ d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x))︸ ︷︷ ︸
state ϵ-approximation

+ d(fξ ◦ gξ(x), fξ ◦ gξ(x′))︸ ︷︷ ︸
Lg-Lipschitzness

(15)

Set s′ = gξ(x) and s = gξ̄(x). Now we use Lemma A.1 and the updating dynamics for the designed
projection fξ and fξ̄, τm ∈ [0, 1], we can obtain,

h(ξ̄t) = h((1− τm)ξ̄t−1 + τmξt) ≤ (1− τm)h(ξ̄t−1) + τmh(ξt) (16)
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By designing a projection that satisfies h(ξ̄t) = f t
ξ̄
(s) and h(ξt) = f t

ξ(s), we have

f t
ξ̄(s) ≤ (1− τm)f t−1

ξ̄
(s) + τmf t

ξ(s) (17)

The goal is to minimize ϵ-approximation on latent distance d(fξ̄(s), fξ(s
′)) such that the left side of

Eq.(15) is minimized. Particularly, given lp-norm as distance d(·, ·) at the timestep t, and a ReLU
network as function f , it leads to,

∥f t
ξ̄(s)− f t

ξ(s
′)∥ ≤ ∥τf t−1

ξ̄
(s) + (1− τ)f t

ξ(s)− f t
ξ(s

′)∥

= ∥τf t−1
ξ̄

(s)− τf t
ξ(s) + f t

ξ(s)− f t
ξ(s

′)∥

≤ τ∥f t−1
ξ̄

(s)− f t
ξ(s)∥+ ∥f t

ξ(s)− f t
ξ(s

′)∥

≤ τ∥f t−1
ξ̄

(s)− f t−1
ξ (s′)∥+ τ∥f t−1

ξ (s′)− f t
ξ(s)∥+ ∥f t

ξ(s)− f t
ξ(s

′)∥

(18)

where τ = 1− τm. Lf -Lipschitzness assumption is employed. Suppose the updating has achieved
convergence, Eq.(18) turns to the following inequality,

∥fξ̄(s)− fξ(s
′)∥ ≤ 1 + τ

1− τ
∥fξ(s)− fξ(s

′)∥ ≤ (1 + τ)Lf

1− τ
∥gξ̄(x)− gξ(x

′)∥ ≤ (1 + τ)LfLg

1− τ
∥x− x′∥

(19)
On the other hand, the second term on the right side of Eq.(15) can be rewritten as,

∥fξ ◦ gξ(x)− fξ ◦ gξ(x′)∥ ≤ ∥ξf∥∥gξ(x)− gξ(x
′)∥ ≤ Lg∥ξf∥∥x− x′∥ (20)

Altogether, we substitute Eq.(19) and Eq.(20) in Eq.(15), we finally obtain,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′))

]
≤

(
Lg∥ξf∥+

(1 + τ)LfLg

1− τ

)
Ex [∥x− x′∥] (21)

The proof is finished.

Theorem A.2. (Mixed Shift Normalization.) Suppose Assumption B.1 hold for functions gξ, gξ̄, fξ,
and fξ̄, respectively. The updating dynamics is: ξ̄t = (1− τm)ξ̄t−1 + τmξt. For any input x ∼ D̂
and shifted x′ ∼ G, the divergence with mixed augmented states can be bound by,

Ex∼D̂
[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′∼G [x

′]))
]
≤ Lg (CLf + ∥ξf∥)Ex∼D̂Ex′∼G [||x− x′||] (22)

where C = 1+τ
1−τ , τ = 1− τm.

Proof. Based on Theorem A.1, we can view the mixup Ex′ [x′] as a sort of augmented data, and
thereby we have,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ Lg (CLf + ∥ξf∥)Ex [∥x− Ex′ [x′]∥] (23)

Since Ex [∥x− Ex′ [x′]∥] = Ex [∥Ex′ [x− x′]∥] ≤ ExEx′ [∥x− x′∥], we can finally obtain,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ Lg (CLf + ∥ξf∥)ExEx′ [∥x− x′∥] (24)

which completes the proof.

B TECHNICAL TOOLS

Assumption B.1. (Lipschitzness). Let the encoding function g(x) : R|O| → R|S| is Lg-Lipschitz,
we have that ∀x,x′

|g (x′)− g(x)| ≤ Lg ∥x′ − x∥

8
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C RELATED WORK
Data augmentation. Training agents from high-dimensional images data has always been highly
concerned (Mnih et al., 2013; Yarats et al., 2019; Hafner et al., 2019; Lee et al., 2019). Previous
work has shown the great potential of solving the visual RL tasks by data augmentation. Many
results show that even the simplest augmentation method can greatly improve the agent’s sample
efficiency and asymptomatic performance (Laskin et al., 2020a; Yarats et al., 2020; 2021) without
further modifications to the backbone RL algorithm.
Self-supervised learning. Recent years have witnessed the self-supervised learning methods
achieving huge success in representation learning (Chen et al., 2020a; He et al., 2020; Caron et al.,
2020; Grill et al., 2020; Chen et al., 2020b). For SSL combined with RL, CURL (Laskin et al.,
2020b), ReLIC (Mitrovic et al., 2020) and CoBERL (Banino et al., 2021) focus on compute the
consistent between positive samples. On the other hand, Mazoure et al. (2020) maximized the
mutual information between the nearby states, while PSM (Agarwal et al., 2021) measures behavioral
similarity between states through optimal policies similarity with future state transition probability.

D BENCHMARKS.

We follow the settings in DrQ-v2 (Yarats et al., 2021) and classify these tasks into easy and challenging
and provide a summary for each task in Table 1.

Table 1: A detailed description of each tasks in our easy, and challenging benchmarks.

Task Traits Difficulty Allowed Steps dim(S) dim(A)

Cartpole Swingup swing, dense easy 1× 106 4 1
Finger Spin rotate, dense easy 1× 106 6 2
Pendulum Swingup swing, sparse easy 1× 106 2 1
Walker Walk walk, dense easy 1× 106 18 6

Cheetah Run run, dense challenging 3× 106 18 6
Hopper Hop move, dense challenging 3× 106 14 4
Quadruped Walk walk, dense challenging 3× 106 56 12
Reacher Easy reach, dense challenging 3× 106 4 2
Walker Run run, dense challenging 3× 106 18 6

9
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E PSEUDOCODE

Algorithm 1 Reparameterized Data Manipulation

1: Initialization: Generate an initial distribution G0 ∼ G|O| with given mean µ0 and variance σ0,R = 0.
2: Training:
3: for each timestep t in 0, · · · , T do
4: x′

t = TRANSFORM(xt,Gt)
5: R = R+ γtr(x′

t,at)
6: Adjust to an optimal Gt(µt, σt)
7: end for

Algorithm 2 ShiftNorm
Similarity metric. Learnable transformation.
1: Inputs:
2: Encoder gξ , policy πϕ, Q-functions Qθ1 , Qθ2 , OBSERVATION encoder gξ̄ , MLP fξ , OBSERVATION MLP fξ̄
3: µ, σ ∼ G for TRANSFORM.
4: Scheduled standard deviation σ̃(t) for the exploration noise
5: Training steps T , mini-batch size N , learning rate δ, target update rate τ , clip value c, TRANSFORM learning

rate δaug, MOMENTUM update rate τm
6: Training:
7: for each timestep t in 1..T do
8: σ̃t ← σ̃(t)
9: x′

t← TRANSFORM(xt,Gt) and σt ← 0
10: at ← πϕ(gξ(x

′
t)) + ϵ̃ and ϵ̃ ∼ G(0, σ̃t)

11: xt+1 ∼ P (·|xt,at)
12: D ← D ∪ (xt,at,R(xt,at),xt+1)
13: UPDATECRITIC(D, σ̃t)
14: UPDATEACTOR(D, σ̃t)
15: end for
16: procedure UpdateCritic(D, σ̃)
17: {(xt,at, rt:t+n−1,xt+n)}Ni=1 ∼ D
18: x′

t,x
′
t+n ← TRANSFORM(xt,Gt), TRANSFORM(xt+n,Gt)

19: st, st+n ← gξ(x
′
t), gξ(x

′
t+n)

20: sξ̄ ← gξ̄(xt)
21: Measure similarity by Lξ,ξ̄,ω

22: at ← πϕ(st+n) + ϵ̃ and ϵ̃ ∼ G(0, σ̃t)
23: Compute Jθ,ω(D) for Qθ and TRANSFORM updating
24: µ← µ− δaug∇µ(Jθ,ω(D))
25: σ ← σ − δaug∇σ(Jθ,ω(D))
26: ξ ← ξ − δ∇ξJθ,ω(D)
27: θ ← θ − δ∇θJθ,ω(D)
28: θ̂ ← (1− τ)θ̂ + τθ
29: ξ̄ ← (1− τm)ξ̄ + τmξ
30: end procedure
31: procedure UpdateActor(D, σ̃)
32: {xt}Ni=1 ∼ D
33: st ← gξ(TRANSFORM(xt,Gt))
34: at ← πϕ(st) + ϵ̃ and ϵ̃ ∼ clip(G(0, σ̃))
35: Update the actor using the sampled policy gradient
36: ∇ϕJ ≈ 1

N

∑
i∇aQ(s,a)|s=st,a=at∇ϕπ(s)|st

37: ϕ← ϕ− δ∇ϕJ
38: end procedure
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F EXPERIMENTS

F.1 SETUP

Environments. The DeepMind control suite Tassa et al. (2018) is a popular benchmark that has
been widely used in prior algorithms. This benchmark is built on MuJoCo Todorov et al. (2012) and
contained several robot control tasks, which provides different difficulties.

Following previous works, we set our observations as stacks of 3 consecutive images. The size of the
RGB images is 84×84, and we concatenate 3 of them at the dimension of the color channel to ensure
that the dynamic and temporal information is fitted into the agent.

Details. We select nine tasks from DM Control with different difficulties (as mentioned by Drq-v2)
to test the performance of ShiftNorm both on sample-efficiency and asymptotical performance. Since
each episode is set to a total of 1000 frames in all tasks of DM Control, it is quite reasonable to set
the total number of frames experienced during training as x-Axis, so that we can refer to the number
of episodes we have gone through to evaluate the tested algorithms. We will also use the settings in
DM Control to calculate the reward: a per-frame reward is in the unit interval [0, 1], so each episode
will get an episode reward of no more than 1000. For a fair comparison, we refer to the settings of
the training episodes for different tasks in DrQ-v2, e.g., more episodes will be trained for hard tasks
to facilitate asymptotical performance comparison.

Baselines. We present several baselines, including methods of using data augmentation to improve
performance and sample-efficiency to benchmark performance for continuous control on DM Control
suite: (i) DrQ-v2 Yarats et al. (2021) where the authors change the backbone RL algorithm from SAC
Haarnoja et al. (2018) to a better designed DDPG. In addition, they optimized the details in DrQ
Yarats et al. (2020), (ii) Pixel SAC and (iii) Pixel DDPG: Vanilla SAC and DDPG operating purely
from images.

Evaluation. To facilitate fair performance comparison all algorithms will be evaluated with the
same periodicity of 20000 environment steps and we average over 10 episodes return for each
evaluation query. we also use environment steps to measure sample complexity for a well-defined
comparison with action repeat of 2.

Hyperparameters. We set the parameters as consistent as possible with the baselines. To prevent
premature convergence, the mean and standard deviation in automatic shift augmentation, the learning
rate is 2e-6 and the momentum tau is set to 0.0001. Both policy and Q-function networks are trained
using Adam optimizer, and the batch size is the same as DrQ-v2 of 256. SAC and DDPG’s parameters
are following prior algorithms. The detailed description of all tasks will be shown in table 1.

F.2 ACTOR AND CRITIC NETWORKS

The clipped double Q-learning Van Hasselt et al. (2016); Fujimoto et al. (2018) is applied for the
critic, where each Q-function is parametrized as a 3-layer MLP with ReLU activations after each
layer except of the last. The actor is also a 3-layer MLP with ReLUs that outputs mean for the action.
The hidden dimension is set to 1024 for both the critic and actor.

F.3 ENCODER NETWORKS

The architecture of encoder is based on Yarats et al. (2019), which has four convolutional layers
with 3× 3 kernels and 32 channels. The ReLU activation is applied after each conv layer. We also
use BatchNorm Ioffe & Szegedy (2015) after each activations rather than LayerNorm Ba et al.
(2016) after a single fully-connected layer. The stride for the first conv layer is 2 while 1 for the rest.
BatchNorm is also applied to normalize the fully-connected layer where the output of the convent
is feed into. Finally, the use of tanh nonlinearity and the initialization of weight are consistent
with the prior work. The actor and critic share the same encoder, although the encoder only uses the
gradients from the critic for updating.

F.4 RESULTS

The curves of 9 complex tasks are in Table 2
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Table 2: We evaluate ShiftNorm on 9 tasks from the DeepMind control suite at 100k and 500k
environment steps, compared with 3 baselines.

500K STEPS SCORES SHIFTNORM DRQ-V2 SAC DDPG

CARTPOLE SWINGUP 783± 43 842± 25 776± 78 853± 12
FINGER SPIN 910± 49 859± 43 276± 81 488± 116
PENDULUM SWINGUP 831± 24 826± 12 496± 452 652± 355
WALKER WALK 886± 78 758± 410 106± 72 110± 137
CHEETAH RUN 760± 36 739± 43 687± 86 3± 2
HOPPER HOP 271± 37 169± 96 9± 21 75± 69
QUADRUPED WALK 749± 45 668± 167 36± 10 153± 80
REACHER EASY 849± 177 835± 218 94± 57 191± 65
WALKER RUN 616± 31 524± 118 70± 28 26± 3

100K STEPS SCORES

CARTPOLE SWINGUP 607± 234 774± 37 447± 177 388± 120
FINGER SPIN 620± 103 467± 317 291± 63 228± 132
PENDULUM SWINGUP 228± 284 321± 305 152± 204 172± 210
WALKER WALK 288± 184 207± 145 130± 54 72± 93
CHEETAH RUN 247± 103 424± 62 301± 65 3± 2
HOPPER HOP 91± 37 21± 29 0± 0 2± 3
QUADRUPED WALK 187± 80 150± 65 47± 22 108± 31
REACHER EASY 202± 91 255± 90 167± 80 175± 81
WALKER RUN 89± 45 156± 102 71± 18 29± 5

F.5 ABLATION STUDIES

In this section, we present an ablation study to discuss the effects of different terms in shift loss.
As mentioned in previous sections, the shift loss function is composed of two parts: Rω(x

′
t) for

normalization with observation statistics, and Lξ,ξ̄,ω for similarity measure. On this basis, we can
divide ShiftNorm into 4 versions: (i) with critic. Transformation is only updated with critic. (ii) with
xstats & critic. Transformation is updated by critic and Rω(x

′
t) together. (iii) with h-dist & critic.

Transformation is updated by critic and Lξ,ξ̄,ω together. (iv) with all. Transformation will be updated
by all components. We evaluate all of these versions on 5 tasks from the DeepMind control suite and
present the results in Figure 3.

Compared with critic with other methods, we demonstrate that both of the components in shift
loss has improved the performance. Though the version of with critic has the ability to solve most
of the tasks and improve the data-efficiency, it may suffer from weak supervision signals and sink
into suboptimal cases. However, once the constraints of shiftnorm are added, the performance has
been improved in a degree compared with the version of with critic. If both terms are used, the
performance can lead ahead of all tasks, rather than task-specific. We can also figure out from the
shades that the curve with complete constraints achieves better stability (i.e. smaller variance), which
shows that representation learning may be closely related to policy learning. This result demonstrates
that even if the automatic transformation can enable agents to learn features in a more appropriate
way, such a process is often uncontrollable. Introducing simple distribution constraints and similarity
learning can greatly alleviate this problem, and will not do damage to the sample-efficiency or
asymptotic performance.

F.6 OTHER HYPER PARAMETERS
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Figure 3: Ablation studies in 5 tasks for shift loss analysis. The version of with critic has the ability
to solve most of the tasks and improve the data-efficiency, it may sink into suboptimal cases. Both
of the trems in the shift loss have the ability to alleviate this problem, and if we use the overall
constraints (i.e. with all), the performance can lead ahead of all tasks with a better stability.

Table 3: An overview of used hyper-parameters in the DeepMind control suite experiments.

Hyperparameter Setting
Image size (84, 84)
Replay buffer capacity 106

Action repeat 2
Hopper Hop: 4

Seed frames 4000
Exploration steps 2000
n-step returns 3
Mini-batch size 256
Discount γ 0.99
Optimizer Adam
Learning rate 10−4

Augmentation learning rate 2× 10−6

Agent update frequency 2
Critic Q-function soft-update rate τ 0.01
Momentum τm 0.0001
α 0.01
λ 0.005
Features dim. 50
Hidden dim. 1024
Similarity dim. 128
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 100000) for 1M frames

linear(1.0, 0.1, 500000) for 3M frames
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