Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

LEARNING CATEGORY-LEVEL GENERALIZABLE
OBJECT MANIPULATION POLICY VIA
GENERATIVE ADVERSARIAL SELF-IMITATION
LEARNING FROM DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generalizable object manipulation skills are critical for intelligent and multi-
functional robots to work in real-world complex scenes. Despite the recent
progress in reinforcement learning, it is still very challenging to learn a gener-
alizable manipulation policy that can handle a category of geometrically diverse
articulated objects. In this work, we tackle this category-level object manipulation
policy learning problem via imitation learning in a task-agnostic manner, where
we assume no handcrafted dense rewards but only a terminal reward. Given this
novel and challenging generalizable policy learning problem, we identify several
key issues that can fail the previous imitation learning algorithms and hinder the
generalization to unseen instances. We then propose several general but critical
techniques, including generative adversarial self-imitation learning from demon-
strations, progressive growing of discriminator, and instance-balancing for expert
buffer, that accurately pinpoints and tackles these issues and can benefit category-
level manipulation policy learning regardless of the tasks. Our experiments on
ManiSkill benchmarks demonstrate a remarkable improvement on all tasks and
our ablation studies further validate the contribution of each proposed technique.

1 INTRODUCTION

Learning human-level object manipulation skills is highly demanding for robots, which can auto-
mate repetitive works in our real-world complex scenes and lead to revolutionary applications, e.g.
home robots, that may impose huge impacts on human society. A crucial and valuable feature of
human manipulation skills is the remarkable generalization ability — for certain tasks (e.g. open
the door), we can successfully manipulate different kinds of object instances (that contain a door),
regardless of the large variations in their geometry and topology. With the emerging deep reinforce-
ment learning (RL) and imitation learning (IL) techniques, we have recently observed great progress
in generalizable robot learning on basic tasks that only involve rigid objects with simple manipula-
tion skills, e.g. grasping (Levine et al., 2015; Mabhler et al., 2017), planar pushing (Yu et al.,|2016),
pick and place (Zeng et al.l |2020a)), etc. However, learning generalizable policy for more complex
tasks that involve articulated objects, e.g. open drawers and doors, are still highly under-explored.

Recently, to facilitate the research and benchmark the progress in learning generalizable object ma-
nipulation skills on articulated objects, Mu et al.|(2021b) initiate SAPIEN open-source manipulation
skill (ManiSkill) challenge. The challenge introduces four tasks with each aimed at manipulating
one category of articulated objects using robots with either a single arm or dual arms. Based on
SAPIEN environment and PartNet-mobilty dataset (Xiang et al.,|2020), the benchmark split a cate-
gory of objects into non-overlapped training and testing instances and the learned policy is expected
to work on both seen instances as well as novel object instances at test time. As shown in Mu
et al.| (2021b), learning such category-level generalizable policy is very challenging for RL-based
approaches. Naively adopting state-of-the-art RL methods on category-level generalizable policy
learning achieves almost zero success rate. To ease the learning, ManiSkill provides many success-
ful demonstrations on training object instances and thus enables learning from demonstrations.

In this work, we thus tackle the problem of learning category-level generalizable object manipu-
lation policy via imitation learning in a task-agnostic manner. Although, for each individual task,

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

conducting reward engineering that incorporates rich task and object category priors into a hand-
crafted dense reward do help, we aim to find a more general and universal approach that assumes no
handcrafted rewards but only a terminal one, which will benefit all kinds of category-level manipu-
lation tasks and is complimentary to task-specific reward design.

With the sufficient amount of demonstrations, we couple the popular IL method, Generative Ad-
versarial Imitation Learning (GAIL) (Ho & Ermonl 2016)), with prevailing model-free off-policy
RL algorithm, Soft Actor-Critic (SAC) (Haarnoja et al., 2018)) and achieve non-zero success rates
on both training and test instances. However, this baseline is far from being satisfactory and not
tailored for category-level generalizable policy learning.

Through in-depth investigation, we identify several key problems that hinder the generalizable policy
learning: 1) to handle many training instances altogether, the policy network is very hard to get ramp
up, which imposes a severe challenge to GAIL, whose reward provided by discriminator can easily
diminish to zero, and fail the imitation; 2) the demonstrations of different object instances may be
from different strategies, which is difficult for a single policy network to imitate, given its limited
capacity and intrinsic continuity in neural networks; 3) even the policy learning is successful on
some training instances, the learned policy can still be highly biased such that it can only handle a
certain type of instances and doesn’t generalize to novel instances.

To mitigate the aforementioned issues, we propose several important extensions to the baseline. Our
technical contribution includes: propose to progressively grow the discriminator of GAIL to mitigate
issue 1; propose Generative Adversarial Self-Imitation Learning from Demonstrations to mitigate
issue 2; and propose category-level instance balancing expert buffer to mitigate issue 3.

Our proposed method achieves remarkable improvements on success rates, outperforming the
GAIL+SAC baseline by 13% and 18% averaged across four tasks on training and validation sets,
respectively. On the “no external annotation” track of ManiSkill Challenge 202 1[1_-] that allows inter-
action, imitation, dense reward but no further annotations, our method ranks first place when further
coupling with dense rewards.

2 RELATED WORK
2.1 LEARNING GENERALIZABLE MANIPULATION SKILLS

Generalization is essential for future robot applications. The robots are expected to be functional in a
variety of real-world environments. For simple motion tasks like pushing and lifting, the variation in
objects seldom constraints the performance of algorithms. However, for dealing with articulated ob-
jects whose each part has unique dynamics and function, generalization becomes challenging. Pre-
vious works focus to identify key parts or extract features of articulations as representations (Mittal
et al.| [2021; |Arduengo et al., 2021} Devin et al.,2018]) to enable generalized manipulation on differ-
ent instances. These methods are based on visual information including key location identification,
pose estimation, or pretrained attention models. There are also control-based methods using model
prediction and generative planning methods (Abbatematteo et al., 2019 Jain & Niekum)| 2020) to
achieve robust and adaptive control on both seen and novel objects.

2.2 IMITATION LEARNING FROM DEMONSTRATIONS

Imitation learning (IL) techniques aim to mimic expert behaviors in a certain task. When expert
demonstrations of the tasks are given, a task-specific reward function becomes optional. The or-
dinary way to perform imitation learning including behavior cloning (Bain & Sammut, [1995) and
inverse reinforcement learning (Ng et al., 2000; Russell, | 1998). In recent years, a new IL method has
emerged, namely, generative adversarial imitation learning (GAIL) (Ho & Ermonl 2016)) which has
achieved state-of-the-art performance on numerous complex robotics tasks (Merel et al.,2017;|Wang
etal.,[2017). This method incorporates RL into the GAN framework. The generator which is the pol-
icy of the RL part generates demonstrations in the environment, and the discriminator is used to dis-
criminate the generated and expert demonstrations, such that the policy of RL converges to the expert
policy. To improve the sample efficiency, there have been numerous studies leveraging off-policy
RL algorithms rather than original on-policy RL algorithms for policy generation (Kostrikov et al.,
2018). In addition, GASIL (Guo et al., 2018)) combines the idea of self-imitation (Oh et al., |2018)

'https://sapien.ucsd.edu/challenges/maniskill2021/

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

with GAIL to realize imitation learning without demonstration data. Moreover, SILfD (Pshikhachev
et al.| 2021) uses expert demonstration data to help self-imitation learning.

However, using imitation learning to train an agent that utilizes expert demonstrations effectively
and generalizes to different unseen objects still remains challenging.

2.3 3D ARTICULATED OBJECT MANIPULATION

3D articulated object manipulation is at the nexus of computer vision and robotics and has been an
attractive topic in research. Previous works utilize the learning methods to get the vision knowl-
edge (such as articulated part configurations, link poses, joint parameters, and state information)
of the environment from the 3D input in order to build a bridge between vision and robotics and
help the downstream robotic tasks (Wang et al.,|2019;|L1 et al.,|2020; Zeng et al., 2020bj [Mu et al.}
2021a). Other works like |/Abbatematteo et al.| (2019) estimate kinematic structures to predict the
shape and kinematic model of an object from depth sensor data. On the other hand, there have also
been impressive works about various robotic planning, trajectory optimization, and control meth-
ods on articulated object manipulation (Peterson et al., [2000; (Chitta et al., 2010) like door-opening.
These methods typically assume perfectly known geometry with objects pre-fixed to the robot. Re-
cent works have demonstrated successful systems which leverage the vision learning methods and
the robotic planning methods to manipulate 3D articulated objects with the learned visual knowl-
edge (Gadre et al.| 2021} Harada et al., 2019; Schmid et al., |2008). These works typically start with
the vision methods such as pose estimation, object detection, and part segmentation to get the visual
knowledge of the environment and compute a motion trajectory. However, this explicit standardized
visual knowledge may be insufficient for the downstream robotic tasks if the diverse articulated ob-
jects have complex topological and geometric variations, such as different numbers and shapes of
doors and drawers on different shapes of cabinets.

3 PROBLEM FORMULATION

Our problem concerns the policy learning for robots to manipulate a variety of articulated objects
from one object category for a specific task, e.g. opening different types of drawers. The tasks and
the environments come from the ManiSkill Challenges (Mu et al., [2021b)). The goal is specified
by instance mask and part mask of the point cloud obtained from multiple depth cameras in the
environment, for example, the target drawer and its corresponding handle are labeled in the opening
drawer task, and the task is considered successful when the target drawer is opened to a certain
extent and remain static. Assuming the robot state is always known, our state S; thus comprises a
colored point cloud with per-point part labels and the robot state.

In this work, we tackle the problem under the setting of imitation learning, following the setting of
the “no external annotation” track in ManiSkill Challenges, where several successful demonstrations
are available for each training object instance but no external annotations are allowed. We further
get rid of any hand-crafted task-specific reward functions and only assume a terminal reward r;
(1 if success, otherwise 0), aiming to learn a category-level generalizable manipulation policy via
imitation learning from demonstrations in a task-agnostic manner. The goal is to learn a policy that
can handle both training and unseen novel instances.

4 METHOD

In this section, we introduce our method in detail. In section @ we briefly introduce our base-
line imitation learning method that couples GAIL with SAC; in section we further propose
to progressively grow the structure of the discriminator of GAIL to mitigate the diminishing re-
ward problem; in section[d.3] we introduce the basic version of our proposed generative adversarial
self-imitation learning from demonstrations that combines GAIL and self-imitation learning from
demonstrations (Pshikhachev et al., 2021)) to better leverage both the knowledge of successful ex-
perience and the expert demonstration; in section [#.4] we introduce our last improvement, which
maintains an instance-balancing expert buffer for self-imitation from demonstration; the implemen-
tation details are elaborated in section[A.]

4.1 GAIL wWITH SAC

Our baseline implements GAIL (Ho & Ermonl [2016) to utilize demonstrations provided by Man-
iSkill Challenge. These expert demonstrations {7 } are generated by training per-instance manipu-
lation policy using a popular off-policy model-free reinforcement learning method, Soft Actor-Critic

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

CLIB
Expert Generated
Replay Buffer Buffer Buffer

II Trajectory & allocat\

[Enwronment

Pollcy g
Trajectory
T SAC
| D¢ D¢
Reward
D¢ T
Lo R X

Figure 1: Pipeline Overview. On top of Generative Adversarial Imitation Learning, we introduce
Category-Level Instance-Balancing (CLIB) Expert Buffer, which both includes expert demonstra-
tions and successful trajectories and maintain a balance between different instances of objects. Be-
sides, we modified the discriminator’s structure to make it progressive as training goes.

(SAC) (Haarnoja et al., [2018])), with task-specific handcrafted dense rewards. Without using these
task-specific rewards, we thus couple GAIL with SAC to provide dense rewards. In this baseline,
GAIL utilizes an adversarial trajectory generation scheme that comprises a generator, which is sim-
ply the policy network of SAC, and a discriminator D, which trains to distinguish between expert
trajectories 75 and generated trajectories 7, and whose outputs can provide dense rewards r; to
SAC. This off-policy imitation learning framework contains three buffers: replay buffer B,., gen-
erated buffer B, (generated trajectories), and expert buffer Bg. The details are shown in Fig. E

4.2 PROGRESSIVELY GROWING THE DISCRIMINATOR OF GAIL

In GAIL, the reward r; = —log Dy (S, a;) is crucial to the success of imitation learning. Due to
the need to handle many training instances with large variations, the policy network struggles to
ramp up at the very beginning and can easily be over-powered by the discriminator. In other words,
the discriminator is usually too strong and can easily tell the generated trajectories from the expert
demonstration trajectories soon after the training starts. This will cause the reward from GAIL to
quickly vanish to zero, leading to failures in imitation learning.

Inspired by Progressive Growing GAN (PG-GAN) (Karras et all [2018) and Curriculum
GAN (Sharma et al.l |2018), we propose to progressively grow the architecture of discriminator
during the training, to alleviate the imbalance. More specifically, we let the discriminator evolve
from a simple initial architecture to a more complex one. Here we adopt the baseline PointNet
architecture proposed by Mu et al.| (2021b) as our initial architecture while using the PointNet +
Transformer architecture in Mu et al.|(2021b) as our final architecture. As shown in Fig. |ZL both the
initial and final architectures share the same backbone, which comprises K+2 independent PointNet
fii=1,2,..., K +2), where K is the number of part masks defined by the task, f;(i < K) extract
the feature of part point cloud P;, fx ;1 extracts the feature of the rest points, and f 2 extracts
the feature of all points P, together. Taking these K+2 features along with a trainable embedding
vector (serving as a bias for the task) and a processed robot state (we call this K+4 sub-features) as
inputs, our initial architecture simply performs a max-pooling along K+4 features to generate the fi-
nal feature, while our final architectures further leverage a Transformer layer to process the features
and then perform an attention pooling. When progressive growing is triggered, a parameter « is
introduced to linearly interpolate between the output of max pooling and attention pooling(Fig. [2).
The network also includes stabilizing phases before and after the growth of . At the full growth of
the progressive network, the structure is the same as PointNet + Transformer structure. In the end,
the global feature goes through an MLP and Sigmoid layer to form the output of the discriminator.

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Trainable
tndependent | cnpoaang | o Max

PointNets " Pooling

S [0 e GRS O

Mask 2
f 2 H) | Final
H Feature
Point Cloud |sgg| : : (" I::I
XYZ=(Nx3) [
RGB=(N x 3) Mask K >—
SEG=(N x K) ."' fo P | Attention
Poolin
A g
1 Rest ®
Concatenate i fic H Py | - -
to each point| Entire Attention
H . > fr+2]"I Fgsa | XY
Norm
Transformer
Robot State
) |\

Figure 2: The progressive structure of discriminator network. The input contains the point cloud,
robot state, and action. The robot state and action are concatenated to a vector in the figure. The
output of the network is a scalar ranging from 0 to 1. During training, the latter part of the network
progressively grows from max pooling to attention pooling.

The underlying philosophy of our method is indeed curriculum training and echoes Curriculum
GAN, which gradually increases the sophistication of the discriminator to make the generator learn
smoothly. In our case, the discriminative power of the discriminator is gradually increased and thus
the discriminator is more generous with its reward at the beginning of the training than later, allowing
the policy network to slowly warm up. Note that we don’t evolve the architecture of generator
(policy network) based on the following two reasons: 1) the output of our policy network is always
in the same action space without any change, which is different from PG-GAN that increases the
generation resolution from coarse to fine; 2) since the issue of GAIL comes from the overpowered
discriminator, we want the policy network to be as strong as possible from the very beginning.

4.3 GENERATIVE ADVERSARIAL SELF-IMITATION LEARNING FROM DEMONSTRATIONS

With the progressive growth of the discriminator, the reward from GAIL will not diminish but we
observe that expected reward from GAIL still tends to decay as the training goes (see Fig.). This
means the discriminator can be more and more successful to tell apart our generated trajectories
from expert demonstration trajectories. One issue we identified that contributes to this problem is
the clustering phenomenon in the trajectory space of expert demonstrations. The demonstration
provided by ManiSkill challenge is obtained from per-instance RL training, therefore the underlying
manipulation strategies can be quite different for different object instances (see Fig. [f[a)). On the
other hand, our policy network tends to learn a more universal strategy that can handle different
object instances in a similar way (see Fig. f{b)), which comes by nature from the continuity of
neural networks with the change in object instances. In general, expert demonstrations of different
object instances may come from different sources and thus exhibit a highly non-uniform distribution
in the trajectory space, which is not friendly to imitate using a single policy network.

Inspired by Generative Adversarial Self-Imitation Learning (GASIL) (Guo et al.l [2018) and Self-
Imitation learning from Demonstration (SILfD) (Pshikhachev et al.,[2021)), we propose to fill the ex-
pert buffer with the successful trajectories generated by our policy network, which is so-called self-
imitation learning. We thus propose Generative Adversarial Self-Imitation Learning from Demon-
strations that combines GASIL, which leverages GAIL with Self-Imitation Learning but does not
consider expert demonstrations, and SILfD, which does not use GAIL to generate rewards. More
specifically, at the beginning of training, we initialize the expert buffer with expert demonstrations.
During training, we select successful trajectories, who obtain the terminal rewards, of current policy
through the interaction with the environment and update the expert buffer with those trajectories. As
training goes, the self-generated trajectories will gradually occupy the expert buffer and yield a more
uniform distribution of trajectory data. With this change, the expected reward increases significantly
throughout the training process (see Fig. [3).

4.4 CATEGORY-LEVEL INSTANCE-BALANCING EXPERT BUFFER

Lastly, we propose to evenly divide the expert buffer B into many slots {82} (j = 1,...,n) of
the same size, where n is the number of training instances. Trajectories of one instance 07, either
from expert demonstrations or self-generated successful ones, can only occupy its corresponding
slot B, yielding our category-level instance-balancing (CLIB) expert buffer. At the beginning of

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 1: Main Results and Ablation Studies on the four tasks of ManiSkill Challenge Benchmark

Progressive CLIB OpenCabinet OpenCabinet
Method GAIL Growing of SILFD Expert Task P 3 P PushChair MoveBucket Avg
o Drawer Door
Discriminator Buffer
I v Train 0.434+0.03 0.25+0.03 0.1940.02 0.161+0.02 0.26+0.03
Val 0.36+0.03 0.1540.03 0.11£0.01 0.11£0.02 0.18£0.03
I v v Train 0.5240.03 0.38+0.06 0.21£0.03 0.1940.03 0.334+0.03
Val 0.49+0.04 0.2740.04 0.16+0.04 0.161+0.03 0.2740.04
o v v Train 0.454+0.02 0.25+0.05 0.21+0.03 0.1740.02 0.2740.02
Val 0.414+0.06 0.244+0.03 0.16+0.02 0.1440.03 0.2540.02
v v v v Train 0.584+0.05 0.374+0.05 0.23+0.05 0.2540.05 0.361+0.03
Val 0.624+0.04 0.30+0.04 0.18+0.04 0.161+0.03 0.314+0.03
v v v v v Train 0.61+0.04 0.41+0.05 0.27+0.04 0.2740.04 0.39+0.03
Val 0.65+0.04 0.33+0.05 0.24+0.03 0.191+0.04 0.361+0.04

the training, we initialize Bij with the expert trajectories of O7. In each iteration of GAIL, Bij is
updated by adding the success trajectories of O7 in a FIFO (First In First Out) manner.

The motivation of this design is to avoid bias in the expert buffer and improve generalization to
novel object instances. For training our proposed generative adversarial self-imitation from demon-
stration, manipulation on some instances may happen to succeed very earlier than on the others and
trajectories from these instances will quickly pop up in the expert buffer, leading to a highly biased
distribution (see Fig. [5). These instances that succeed in the early stages are usually similar to each
other, so GAIL may over-fit in this particular kind of instance, leading to difficulty in learning to
manipulate other kinds of object instances. This is basically the Matthew Effect. Also, if some
instances are harder than the others and need more time to be harnessed, our CLIB expert buffer will
always keep their expert demonstrations until their successful manipulation arrives.

5 EXPERIMENT

5.1 BENCHMARK

We evaluate our methods on ManiSkill Benchmark (Mu et al., [2021b)) (ManiSkill). There are four
tasks in ManiSkill and these tasks cover different types of object motions. See section for more
details about statistics for the four tasks, the observation and the dense reward of the benchmark.

5.2 RESULTS AND ANALYSIS

The results are summarised in Table [l We evaluated our methods on four tasks via 100 trials
with three different random seeds. In Table E} with [Progressive Growing of Discriminator], [Self-
Imitation Learning from Demonstrations] and [CLIB Expert Buffer], our (Method V) outperforms
[GAIL] (Method I) by 13% and 18% averaged across four tasks on training and validation sets. In
the following, we will analyze the contribution from each individual technique we introduce.

5.2.1 EFFECT OF THE PROGRESSIVE GROWING OF DISCRIMINATOR ON TOP OF GAIL

From Table[I| we can see that compared with [GAIL] (Method I), [Progressive Growing of Discrim-
inator](Method II) significantly improves success rate by 7% and 9% averaged across four tasks on
train and validation sets, respectively. Fig. [3] shows the expert reward curve from the discrimina-
tor during training. With a strong discriminator, the expert reward from the discriminator in GAIL
will quickly drop to a very low level. This will have a significant negative impact on RL learn-
ing, which is largely dependent on the reward’s guidance. However, when the discriminator grows
from a simpler network to a more sophisticated network, the reward provided by the discriminator
is more stable. By progressive growth, the discriminator can be shaped as a more complex structure
to produce more comprehensive rewards, which will, in turn, boost the generalization ability of RL.
Moreover, by comparing the method of progressively growing both the generator and the discrimi-
nator with the method of only growing the discriminator, we find that with the growing generator,
the method will decrease by 17% and 15% averaged across four tasks on training and validation
sets (Table[2), respectively. We consider that different from PG-GAN which increases the generation
resolution from coarse to fine, the output of our generator is always in the same action space so we
only need a strong generator and gradually increase the sophistication of the discriminator.

Table 2: Ablation Studies on Progressive Growing

Progres.swe Task OpenCabinet OpenCabinet PushChair MoveBucket Avg
Growing Drawer Door
Discriminator Train 0.52+£0.03 0.38+0.06 0.21£0.03 0.19£0.03 0.33£0.03
Val 0.49+0.04 0.27+0.04 0.16+0.04 0.16+0.03 0.27+0.04
Discriminator Train 0.25+0.03 0.194+0.03 0.11+0.04 0.10£0.02 0.161+0.02
and Generator Val 0.16+0.03 0.16+0.04 0.10+0.02 0.06+0.01 0.1240.02

6

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

OpenCabinetDrawer OpenCabinetDoor PushChair MoveBucket
100

00 05 To 15 20 00 05 10 s 20 25 00 05 To 1s 20 25 00 05 10 15 20 25
Step 1e6 Step. 1e6 Step 1e6 Step. 1e6

Figure 3: The expert reward curve during training. The expert reward comes from the discrim-
inator. When the expert reward is relatively small, it indicates that the discriminator can easily
distinguish between the expert data and the data generated by the policy. Notice that our method
(curve V) always achieve the highest value.

5.2.2 EFFECT OF THE SILFD oON TOP OF GAIL

From Table |l| we can see that though the per-
formance on training does not show a signif-
icant increase, [GAIL] plus [SILFD](Method

R & o IIT) outperforms [GAIL](Method I) by 7% on
B the validation sets of four tasks on average.

% . im Since the [SILFD] (Method II) updates the ex-
w v " pert buffer with the successful trajectories gen-

e S T erated by the recent SAC policy, the trajec-

AL tories in the expert buffer will resemble the
e —] ‘ generated trajectories. This will let the re-
G © 7 " ward from the discriminator converge to a rel-
atively high value, as shown in Fig. [3] Instead
of only imitating from initial expert demon-
strations which are circumscribed by the dif-
ference between each instance, Self-Imitation
Learning provides expert buffer with more var-
ious trajectories, thus improving generaliza-
tion ability. Fig.] shows a visual comparison
of features using t-SNE between the initial data
in the expert buffer and the data in the expert
buffer after certain epochs of training. The ini-
tial expert data is generated by different single-instance-specialized RL agents on different instances
and thus has many separate manifolds in the feature space and can be easily divided into clusters
of different instances. On the other hand, the manifold of trajectories generated by our generalized
policy is more smooth and continuous and has a well-mixed distribution.

Figure 4: A t-SNE visual comparison of the fea-
ture extracted by the trained discriminator from
the initial data in the expert buffer and the data in
the expert buffer at 2 x 10° steps for MoveBucket
task using our SILFD method. (a) initial data in
the expert buffer. (b) data in the expert buffer at
2 x 106 steps which are mainly generated by our
own policy during training. Each color represents
the data of an instance.

5.2.3 EFFECT OF CLIB EXPERT BUFFER

From Table [I| we can observe that by making the expert buffer balanced during training, our
[CLIB Expert Buffer](Method IV) method surpasses [Self-Imitation Learning from Demonstra-
tions](Method III) by 6% on the validation sets of four tasks on average. Besides, the improvement
is significant when the instances vary greatly in size, shapes, etc. like cabinet drawers in OpenCab-
inetDrawer task. Fig. [5] shows the distribution of data in the expert buffer on different instances
in the later stage of training. It shows that during training, our [CLIB Expert Buffer](Method IV)
method ensures that the data in the expert buffer is evenly distributed on instances while the expert
data is much unevenly distributed on instances without using the method. This means the successful
trajectories in the expert buffer on some instances may be less and less or even there is no successful
trajectory on these instances if the RL hasn’t generated successful trajectories on these instances in
the early time of training. Thus, the RL may lose the guidance of expert data on these instances.
An example of loss of guidance is shown in Fig. [f] Some instances of the drawer with handles that
would not easily be grasped by paralleled gripper (ID: 13 & 16) are also hard to be manipulated.
Without Category-Level Instance-Balancing (CLIB), these instances’ demonstrations will soon be
ejected out of expert buffer, so the policy network will have great difficulties in learning how to oper-
ate these drawers. However, with the help of CLIB, the expert buffer always reserves demonstrations
for these drawers so that the agent also gets some successful knowledge on these instances.

Finally, we combine these methods together. Fig. [3|reveals that when using Self-Imitation Learning
from Demonstrations, the reward is higher and stabler than the method that only uses progressive

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Data Distribution of Expert Buffer

0.15 ID:3 ID: 8
0.125
0.1
H Without CLIB Expert Buffer 74% 35%
§ 007 CLIB Expert Buffer 78% 54%
3
0.05
0.025
ID: 13 ID: 16
! 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Figure 5: The data distribution of expert winoucusespersutor 0% 3%
CLIB Expert Buffer 27% 46%

buffer on different instances at 2 x 10° steps for _
OpenCabinetDrawer task. The black line rep- Figure 6: The success rate on some variant in-
resents the data distribution of the expert buffer stances before and after using our CLIB ex-
using our CLIB Expert Buffer method which pert l?uffer. The handles of cabinets have many
is evenly distributed on different instances. The variations, and some handles, for example, nail
blue bar represents the data distribution of the ex- shaped, are hard to be opened (ID:13). With-
pert buffer without using this method. The X- out CLIB, the Expert Buffer will soon forget the
axis and Y-axis represent different instances and initial demonstrations for these instances and the

the proportion of their data in the expert buffer. agent will not learn to finish these tasks.

growing of discriminator. This occurs since Self-Imitation Learning from Demonstrations will up-
date expert buffer with self policy generated trajectories, which adds difficulties to discriminate be-
tween newly generated trajectories and those stored in the expert buffer. Therefore the expert reward
remains higher in Self-Imitation Learning from Demonstrations methods. However, the structure
of the discriminator does not change in GAIL with Self-Imitation Learning from Demonstration,
the discriminator will be misled and gradually loses its discriminative power. The combination of
Self-Imitation Learning from Demonstrations, CLIB Expert Buffer, and progressive growing of dis-
criminator can help to solve this problem. Our final method reaches the highest success rate on both
training set and validation set, improving 13% success rate on average training and 18% success
rate on average validation.

5.3 MORE RESULTS WITH HANDCRAFTED DENSE REWARD
Table 3: Additional Experiments with Dense Reward

OpenCabinet OpenCabinet

Drawer Door PushChair MoveBucket Avg

Method ‘ Task

SAC Train 0.93+0.02 0.69+0.03 0.5240.02 0.76+0.04 0.724+0.04

Val 0.92+0.02 0.354+0.03 0.35+0.04 0.61+0.04 0.56+0.03

GAIL + Train 0.97+0.02 0.9240.02 0.5440.03 0.50+0.03 0.73+0.04
Dense Reward Val 0.88+0.01 0.78+0.02 0.4240.04 0.474+0.04 0.63+0.04
V+ Train 0.99-+0.01 0.94+0.02 0.61+0.04 0.64+0.05 0.80+0.04
Dense Reward Val 0.96+0.01 0.7610.04 0.46+0.04 0.63+0.04 0.70+0.05

Additionally, we evaluate our methods with additional handcrafted dense reward provided by Man-
iSkill. The results are summarised in Table 3] We simply combine the expert reward from the
discriminator and the environment reward together and use this total reward to update the policy
and value networks in RL. We find that our methods with additional dense reward, which ranks the
first place on the “no external annotation” track of ManiSkill Challenge 2021, can outperform the
GAIL+SAC baseline by 7% averaged across four tasks on both training and validation sets.

6 CONCLUSION

In this paper, we, for the first time, tackle the problem of category-level object manipulation via gen-
erative adversarial self-imitation learning from demonstrations. We build our method upon GAIL
with SAC. We propose several important techniques to improve the baseline, including combining
GAIL with self-imitation learning from demonstrations, progressive growing of discriminator, and
instance-balancing for expert buffer. Our experiments have shown that our methods can reach a
much higher success rate on four manipulation tasks from ManiSkill benchmark than existing base-
lines and our ablation studies further validates the contribution of each proposed technique.

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

REFERENCES

Ben Abbatematteo, Stefanie Tellex, and George Konidaris. Learning to generalize kinematic models
to novel objects. In Proceedings of the 3rd Conference on Robot Learning, 2019.

Miguel Arduengo, Carme Torras, and Luis Sentis. Robust and adaptive door operation with a mobile
robot. Intelligent Service Robotics, 14(3):409—-425, 2021.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103-129, 1995.

Sachin Chitta, Benjamin Cohen, and Maxim Likhachev. Planning for autonomous door opening
with a mobile manipulator. In 2010 IEEE International Conference on Robotics and Automation,
pp- 1799-1806. IEEE, 2010.

Coline Devin, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric representa-
tions for generalizable robot learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7111-7118. IEEE, 2018.

Samir Yitzhak Gadre, Kiana Ehsani, and Shuran Song. Act the part: Learning interaction strategies
for articulated object part discovery. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 15752-15761, 2021.

Yijie Guo, Junhyuk Oh, Satinder Singh, and Honglak Lee. Generative adversarial self-imitation
learning. arXiv preprint arXiv:1812.00950, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Tatsuya Harada, Antonio Tejero-de Pablos, Stefano Quer, and Francesco Savarese. Service robots:
A unified framework for detecting, opening and navigating through doors. In International Con-
ference on Software Technologies, pp. 179-204. Springer, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ajinkya Jain and Scott Niekum. Learning hybrid object kinematics for efficient hierarchical planning
under uncertainty. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5253-5260. IEEE, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations, 2018.

S Levine, N Wagener, and P Abbeel. Learning contact-rich manipulation skills with guided policy
search (2015). arXiv preprint arXiv:1501.05611, 2015.

Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran Song. Category-level
articulated object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3706-3715, 2020.

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Apari-
cio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne,
and Nicolas Heess. Learning human behaviors from motion capture by adversarial imitation.
arXiv preprint arXiv:1707.02201, 2017.

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Mayank Mittal, David Hoeller, Farbod Farshidian, Marco Hutter, and Animesh Garg. Articulated
object interaction in unknown scenes with whole-body mobile manipulation. arXiv preprint
arXiv:2103.10534, 2021.

Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and Xiaolong Wang.
A-sdf: Learning disentangled signed distance functions for articulated shape representation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13001-13011,
2021a.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Cathera Yang, Xuanlin Li, Stone Tao, Zhiao Huang,
Zhiwei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021b.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, pp. 3878-3887. PMLR, 2018.

L Peterson, David Austin, and Danica Kragic. High-level control of a mobile manipulator for door
opening. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2000)(Cat. No. 00CH37113), volume 3, pp. 2333-2338. IEEE, 2000.

Georgiy Pshikhachev, Dmitry Ivanov, Vladimir Egorov, and Aleksei Shpilman. Self-imitation learn-
ing from demonstrations. In Deep RL Workshop NeurlPS 2021, 2021.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pp. 101-103, 1998.

Andreas J Schmid, Nicolas Gorges, Dirk Goger, and Heinz Worn. Opening a door with a humanoid
robot using multi-sensory tactile feedback. In 2008 IEEE International Conference on Robotics
and Automation, pp. 285-291. IEEE, 2008.

Rishi Sharma, Shane Barratt, Stefano Ermon, and Vijay Pande. Improved training with curriculum
gans. arXiv preprint arXiv:1807.09295, 2018.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion:
Joint analysis of motion parts and attributes from 3d shapes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8876-8884, 2019.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. Advances in Neural Information Processing Systems, 30,
2017.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanx-
iao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11097-11107, 2020.

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More than a million ways to be
pushed. a high-fidelity experimental dataset of planar pushing. In 2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp. 30-37. IEEE, 2016.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rear-
ranging the visual world for robotic manipulation. arXiv preprint arXiv:2010.14406, 2020a.

Vicky Zeng, Timothy E Lee, Jacky Liang, and Oliver Kroemer. Visual identification of articu-
lated object parts. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2443-2450. IEEE, 2020b.

10

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 TRAINING DETAILS

We call one step a one-time-step interaction with the environment of a single agent, and for each
instance task, the max step for interaction is 200. 8 independent interactions run parallel to collect
trajectories in a single iteration. For each iteration, SAC networks sample batch size of 1024 from
replay buffer and update parameters for 4 times, and discriminator network also sample batch size
of 1024 from both Generated Buffer and expert buffer and update parameters for 5 times. The total
training step is set to 3 x 10° for all methods. Replay buffer size is set to 6 x 10°. For Generative
Adversarial Self-imitation Learning from Demonstration, the expert buffer size is set to 6 x 10,
and for Category-Level Instance-Balancing expert buffer, each instance expert buffer size is set to
6 x 103. The learning rate for value and discriminator network is 5 x 10~4, and the learning rate for
policy network is 3 x 1074,

A.1.2 NETWORK ARCHITECTURE

We use the PointNet model to process point cloud state input for the original discriminator network
and PointNet + Transformer model (Mu et al., 2021b) for the policy and value network in the SAC
part. The input of the point cloud state consists of the point cloud of the environment and robot
state. For the value and discriminator network, the action vector is concatenated to the robot state
to be processed together. Then robot state with action is concatenated to each point in the point
cloud. This concatenated point cloud is then processed as described in section 2] to form K+4
sub-features. For policy and value networks that are not progressive, the K+4 sub-features are sent
into PointNet + Transformer and output as a feature vector. The policy network uses MLP to turn
the feature into parameters of Gaussian distribution and sample an action vector. The value network
uses MLP to turn the feature into an estimated Q value.

In Fig. [2] the progressive growing can be divided into 3 stages. In the first stage, the o remains at
0 for several iterations of training until the network is stabilized. In the second stage, o increases
from O to 1 linearly as training goes, which will enable the transformer networks to be taken into
calculation. In the final stage, « keeps at 1, and the fully grown structure is the same as PointNet +
Transformer.

A.2 MORE DETAILS ABOUT BENCHMARK
A.2.1 STATISTICS FOR FOUR TASKS

Table 4: Statistics for Four Tasks

Task | Objects | Dual-arm | Action Space
P Collaboration Dimension
| Train Test | |
OpenCabinetDrawer 42 10 No 13
OpenCabinetDoor 25 10 No 13
PushChair 26 10 Yes 22
MoveBucket 29 10 Yes 22

There are four tasks in ManiSkill benchmark.

* OpenCabinetDrawer: In this task, a single-arm robot is required to open a designed
drawer on a cabinet.

* OpenCabinetDoor: In this task, a single-arm robot is required to open a designed door on
a cabinet.

* PushChair: In this task, a dual-arm robot is required to push a swivel chair to a target
location on the ground and prevent it from falling over.

* MoveBucket: In this task, a dual-arm robot is required to move a bucket with a ball inside
and lift it to a platform.

11

Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Statistics for the four tasks are summarized in Table 4]

A.2.2 OBSERVATION

The observation of the task is composed of two components: (i) robot state (a vector that describes
the agent’s state, including pose, velocity, the angular velocity of the moving platform of the robot,
joint angles, and joint velocities of all robot joints, positions, and velocities of the robot fingers) ; (ii)
point cloud of the scene(6+k dimensions: 3 XYZ positions for each point, 3 RGB values for each
point, k task-relevant segmentation masks).

A.2.3 DENSE REWARD

ManiSkill provides carefully designed well-shaped dense reward functions for each task. Since the
dense reward function is expensive to design and is task-specific in the robotic tasks and needs to
be manually adjusted for the particular task, we don’t assume we have it in the main experiments.
However, we provide an evaluation of our methods with an additional handcrafted dense reward
section[5.3]

A.2.4 LIMITATIONS

The limitation of applying our methods without any dense reward is revealed in long-horizon tasks.
For examples, in tasks of MoveBucket, these tasks require robot to achieve certain states at each
stage (e.g. firmly grasp the bucket handle before moving it). Without the guidance from an accurate
stage-wise reward function, the overall success rate is not yet perfect. However, our contributions
are orthogonal to reward engineering. It is very promising to combine our method with well-shaped
dense reward, yielding excellent performance on the tasks.

12

	Introduction
	Related Work
	Learning Generalizable Manipulation Skills
	Imitation Learning from Demonstrations
	3D Articulated Object Manipulation

	Problem Formulation
	Method
	GAIL with SAC
	Progressively Growing the Discriminator of GAIL
	Generative Adversarial Self-Imitation Learning from Demonstrations
	Category-Level Instance-balancing Expert Buffer

	Experiment
	Benchmark
	Results and Analysis
	Effect of the Progressive Growing of Discriminator on top of GAIL
	Effect of the SILFD on top of GAIL
	Effect of CLIB Expert Buffer

	More Results with Handcrafted Dense Reward

	Conclusion
	Appendix
	Implementation Details
	Training details
	Network Architecture

	More Details about Benchmark
	Statistics for Four tasks
	Observation
	Dense Reward
	Limitations

