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Abstract

This paper studies the complexity of finding an e-stationary point for stochastic bilevel optimization
when the upper-level problem is nonconvex and the lower-level problem is strongly convex. Recent
work proposed the first-order method, F>SA, achieving the (7)(6’6) upper complexity bound for
first-order smooth problems. This is slower than the optimal £2(e~*) complexity lower bound in
its single-level counterpart. In this work, we show that faster rates are achievable for higher-order
smooth problems. We first reformulate F?SA as approximating the hyper-gradient with a forward
difference. Based on this observation, we propose a class of methods F2?SA-p that uses pth-order
finite difference for hyper-gradient approximation and improves the upper bound to @(pe"l*z/ P)
for pth-order smooth problems. Finally, we demonstrate that the £2(¢~*) lower bound also holds
for stochastic bilevel problems when the high-order smoothness holds for the lower-level variable,
indicating that the upper bound of F2SA-p is nearly optimal in the highly smooth region p =
Qloge=1/logloge™1).

1. Introduction

Many machine learning problems, such as meta-learning [39], hyper-parameter tuning [5, 17, 36],
and adversarial training [19] can be abstracted as solving the bilevel optimization problem:
min o(z) = f(z,y"(z)), y'(z)=arg min g(z,y), (D
xERdz yeR%
We call f and g the upper-level and lower-level functions, respectively, and call ¢ the hyper-
objective. In this paper, we consider the most common nonconvex-strongly-convex setting where
f : R% — R is smooth and possibly nonconvex, and g : R% — R is smooth jointly in (z,y)
and strongly convex in y. Under the lower-level strong convexity assumption, the implicit function
theorem indicates the following closed form of the hyper-gradient [18]:

Vi(x) = Vo f(@,y"(x)) = Viyg(@,y" (@) [Vi9(@ y" (@) 'V, f(z,y" (). @

Following the works in nonconvex optimization [3, 6, 7], we consider the task of finding an e-
stationary point of ¢, i.e., a point z € R% such that |[Vy(x)|| < e. Motivated by many real
machine learning tasks, we study the stochastic setting, where the algorithms only have access to
the stochastic derivative estimators of both f and g.
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The first efficient algorithm BSA Ghadimi and Wang [18] for solving the stochastic bilevel
problem leverages both stochastic gradient and Hessian-vector-product (HVP) oracles to find an
e-stationary point of ¢(x). Subsequently, Ji et al. [22] proposed stocBiO by incorporating multiple
enhanced designs to improve the complexity. Both BSA and stocBiO require the stochastic Hessian
assumption (6) on the lower-level function, which means g has an unbiased stochastic Hessian
estimator with bounded variance. For finite-sum problems, such an assumption is stronger than
standard SGD assumptions and equivalent to the mean-squared-smoothness assumption (7) on the
lower-level gradient estimator G [2, Observation 1 and 2].

To avoid estimating HVP oracles, Kwon et al. [28] proposed the first fully first-order method
F?SA that works under standard SGD assumptions on both f and g (Assumption 2.1). The main
idea is to solve the following penalty problem [33, 34, 41]:

wmin f<w,y>+A<g<w,y> ~ in g(w,z>), 3
rcRIz ycR%Y 2cR%

where ) is taken to be sufficiently large such that A = €(e~1). Thanks to Danskin’s theorem, the
gradient of the penalty function in Eq. (3) only involves gradient information. Therefore, F?SA
does not require the stochastic Hessian assumptions (6). More importantly, by directly leveraging
gradient oracles instead of more expensive HVP oracles, the F?SA is more efficient in practice
[23, 40, 42] and it is also the only method that can be scaled to 32B sized large language model
(LLM) training [38].

Kwon et al. [28] proved that the F2SA method finds an e-stationary point of o (z) with O(e3)
first-order oracle calls in the deterministic case and @(6_7) stochastic first-order oracle (SFO) calls
in the stochastic case. Recently, Chen et al. [11] showed the two-time-scale stepsize strategy im-
proves the upper complexity bound of F>SA method to (7)(6_2) in the deterministic case, which is
optimal up to logarithmic factors. However, the direct extension of their method in the stochas-
tic case leads to the @(6_6) SFO complexity [11, 29] , which still has a significant gap between
the 2(e=*) lower bound for SGD [3]. It remains open whether optimal rates for stochastic bilevel
problems can be achieved for fully first-order methods.

In this work, we revisit F>’SA and interpret it as using forward difference to approximate the
hyper-gradient. Our novel interpretation in turn leads to straightforward algorithm extensions for
the F2SA method. Observing that the forward difference used by F2SA only has a first-order error
guarantee, a natural idea to improve the error guarantee is to use higher-order finite difference
methods. For instance, we know that the central difference has an improved second-order error
guarantee. Based on this fact, we can derive the F2SA-2 method that solves the following symmetric
penalty problem:

1
min_ 1 (f(:v,y)JrAg(a:,y) ~ in (—f(:v,Z)JrAg(:v,Z)))- @
xRz ycR¥W z€R%

A similar approach has recently been discovered by Chayti and Jaggi [8] in the context of meta-
learning, but they only show its empirical benefit without rigorous theoretical justifications. In this
work, we show that F>’SA-2 returns an e-estimation to Vi (z) under the setting A = Q(e~1/2)
instead of Q(e~!) in F2SA, which further improves the SFO complexity of F2SA from O(e0)
to @(6*5) for second-order smooth problems. Our idea is generalizable for any pth-order prob-
lems. We recall that in numerical analysis there exists the pth-order central difference that uses p
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points to construct an estimator to the derivative of a unitary function with pth-order error guarantee
(Lemma C.1). Motivated by this fact, we propose the F2SA-p algorithm and show that it allows
A = Q(e/P) for pth-order smooth problems, which further leads to the improved O(pe42/P)
SFO complexity for finding an e-stationary point stated by our Theorem 3.1.

To examine the tightness of our upper bounds, we further extend the Q(e~*) lower bound for
SGD [3] from single-level optimization to bilevel optimization. Note that existing constructions
for bilevel lower bound [14, 29] do not satisfy all our smoothness conditions in Definition 2.2. We
demonstrate in Theorem F.1 that a fully separable construction for upper- and lower-level variables
can immediately yield a valid Q(e~*) lower bound for the problem class we study, showing that
F2SA-p is optimal up to logarithmic factors when p = Q(loge~!/loglog ¢~1). We summarize our
main results, including both the lower and upper bounds, in Table 1 and discuss open problems in
the following.

Method Smoothness Reference Complexity
F2SA Ist-order [28] O(poly(k)e™)
F?SA Ist-order [29] O(poly(k)e®)
F2SA 1st-order [11) O(r'2e7)

F2SA-p Ist-order Theorem 3.1 ~ O(pk9+2/Pe—4-2/p)

Lower Bound pth—orc-il-er iny Theorem F.1 Qe™)

Table 1: The SFO complexity of different methods to find an e-stationary point for pth-order smooth
first-order bilevel problems with condition number x under standard SGD assumptions.

Notations. We use || - || to denote the Euclidean norm for vectors and the spectral norm for
matrices and tensors. We use O(-) and €(-) to hide logarithmic factors in O(-) and Q(-). We
also use hy < hg to mean hy = O(hg), h1 2 he to mean hy = Q(hs), and hy < hg to mean that

both hy < ho and hy 2 hs hold. Additional notations for tensors are introduced in Appendix A.

2. Preliminaries

The goal of bilevel optimization is to minimize the hyper-objective (), which is in general non-
convex. Since finding a global minimizer of a general nonconvex function requires exponential
complexity in the worst case [37, § 1.6], we follow the literature [6, 7] to consider the task of
finding an approximate stationary point.

Definition 2.1 Let ¢ : R% — R be the hyper-objective defined in Eq. (1). We say © € R% is an
e-hyper-stationary point if ||[V(x)| < e

Next, we introduce the assumptions used in this paper.
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Assumption 2.1 There exists stochastic gradient estimators F (x,vy) and G(x,y) such that
EF(x,y;¢) = Vf(z,y), El|F(z,y)-Vf(zy)l <o
EG(z,y;¢) = V(z,y), E[G(z,y) - Vg(z,y)|* < %,

where o > 0 is the variance of the stochastic gradient estimators. We also partition F' = (Fy, F))
and G = (G, Gy) such that F, ), G, G, are estimators to V. f, NV f, Vg, Vg, respectively.

Assumption 2.2 The hyper-objective defined in Eq. (1) is lower bounded, and we have

~ inf <A,
plao) — inf p(x) <

where A > 0 is the initial suboptimality gap and we assume xg = 0 without loss of generality.

Assumption 2.3 g(x,y) is p-strongly convex in vy, i.e., for any y1,ys € R%, we have

I
9(®,y2) 2 g(@,y1) + (Vyg(x, Y1), y2 — y1) + 5”!/1 — 2,
where p > 0 is the strongly convex parameter.

Assumption 2.4 For the upper-lower function f and lower-level function g, we assume that
1. f(x,y) is Lo-Lipschitz in y.
2. Vf(x,y)and Vg(x,y) are Li-Lipschitz jointly in (x,y).
3. Viyg(a:, y) and Vf,yg(w, y) are Lo-Lipschitz jointly in (x,y).

We refer to the problem class that jointly satisfies all the above Assumption 2.1, 2.2, 2.3 and 2.4
as first-order smooth bilevel problems, for which [11, 29] showed the F2SA method achieves the
@(6*6) upper complexity bound. In this work, we show an improved bound under the following
additional higher-order smoothness assumption on lower-level variable y.

Assumption 2.5 (High order smoothness in y) Given p € N, we assume that
1. %Vf(w, y) is Lgi1-Lipschitz forallg =1,--- ,p— 1.

2. ;%;Vg(:c, y) is Lqio-Lipschitziny forallg =1,--- ,p— 1.

We refer to problems jointly satisfying all the above assumptions as pth-order smooth bilevel
problems, and also formally define their condition numbers as follows.

Definition 2.2 (pth-order smooth bilevel problems) Givenp € N., A >0, Lo, L1, -+, Ly11 >
0, and v < Ly, we use F"*“(Lo, -+, Lpy1, i1, A) to denote the set of all bilevel instances satis-
fyving Assumption 2.2, 2.3, 2.4 and 2.5. For this problem class, we define the largest smoothness
constant L = maxo<;<p L;j and condition number r = L/ p.

There are also other prior works demonstrating that additional assumptions can lead to acceler-
ation in bilevel optimization. We compare these works in Appendix B.
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Algorithm 1 F2SA-p (o, yo), evenp

1: yé:yo, VjeN
2 fort=0,1,---,T—1
2

3. Sample random i.i.d indexes {( ]y,CJy)}?L and {(£7,¢F) Y2,

7p/2 T
4. forj=—-p/2,—p/2+1,--- ,p/2
s 5.0 _
: Yi Yi
6: fork=0,1,--- K —1
j k+1 ik . ik i,k
8 end for
, K
9: yfﬂ =y}
10:  end for

11:  Let {a;}! i 2_ be the pth-order central coefficients defined in Lemma C.1.
I j=—p/2 ,
| Galznyly: c;f))

s 2 : j
12: Bp=LE37 Z?ifp/z o (ij(wt,y§+1;§f) ”

13: Tl = Tt — nm(bt/H(I)tH
14: end for

3. The F?SA-p Method

Let 4, (z) = ming cga, {9v(,y) == vf(x,y) + g(x,y)} and y} (x) = arg min, cpa, g, (2, y).
Under this notation, we can interpret [28, Lemma 3.1] as stating that the partial derivatives with re-
: 92 92
spect to & and v are commutable, i.e., 5o5-00(T)|v=0 = gogylv(T)lb=0 = Ve(x). Now, let
v = 1/Xin Eq. (3). Then we can observe that the F2SA method [11, 28] is exactly using forward
20, (x)— 2 lo(x)
v

T

difference to approximate V(x), ie., ~ V(x). However, the forward differ-
ence is not the only way to approximate a derivative. Essentially, it falls into a general class of
pth-order finite difference [4] that can guarantee an O(v?) approximation error (Lemma C.1). Mo-
tivated by this fact, we propose a method called F2SA-p that applies the pth-order finite difference
for hyper-gradient approximation and also analyze its theoretical guarantee.

Due to space limitations, we only present Algorithm 1 designed for even p in the main text. The
algorithm for odd p can be designed similarly, and we defer the concrete algorithm to Appendix E.
Our Algorithm 1 follows the double-loop structure of F2SA [11, 29] and modifies the hyper-gradient
estimator according to the pth-order finite difference (Lemma C.1). In the following, we give a
detailed introduction to the procedures of the two loops of F?SA-p:

1. In the outer loop, the algorithm first samples a mini-batch with size S and uses Lemma C.1 to
construct ®; via the linear combination of %Ej,,(mt) for j = —p/2,--- ,p/2 every iteration.
After obtaining ®; as an approximation to V(a;), the algorithm then performs a normalized
gradient descent step @1 = x; — 1, P /|| P¢|| with total T iterations.

2. The inner loop returns an approximation to %Ej,,(a:t) forall j = —p/2,---,p/2. Note
that Danskin’s theorem indicates a%ﬁjl,(:z:t) = a% gjv (2, yjy(a:t)). It suffices to approxi-
mate y7, (z;) to sufficient accuracy, which is achieved by taking a K -step single-batch SGD
subroutine with stepsize 7, on each function g;, (x, ).
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For the pth-order finite difference to have an improved error guarantee, we require a%&,(x) being
pth-order Lipschitz continuous in v. We formally show it in the following lemma.

Lemma 3.1 Letv € (0,1/(2k)]. For any instance in the pth-order smooth bilevel problem class
Fres¢(Lo, -+, Lpt1, p, A) in Definition 2.2, %E,,(a:) is O(k?P+LL)-Lipschitz continuous in v.

Our result generalizes the prior result for p = 1 [28] to any p € N and also tightens the prior
bounds for p = 2 [11] as we discuss in Remark D.1.

Theorem 3.1 (Main theorem) For any instance in the pth-order smooth bilevel problem class
Fre3¢(Lo, -+, Lpt1, p, A) as per Definition 2.2, set the hyper-parameters as
2.2

. R ( € )1/p € Ve
v=min{ —, (—— S S
Kk’ \ Lk2p+1 » e Lqk3’ "y Liko?’

2 2 2 I A
§=7 Kvﬁalog<R 1FL),TX,

v2e2’ v2e2 ve Ne€

®)

where R = ||lyo — y*(xo)||. Run Algorithm 1 if p is even or Algorithm 2 if p is odd. Then we can
provably find an e-stationary point of ¢(x) with the total SFO calls upper bounded by

72/p~2,942/p T
pT(S+K) =0 (pALlL 0°K log (RL;L/@)) '

ed+2/p

The above theorem shows that the F2SA-p method can achieve the O (prt2/Pe=4=2/7 Jog(x/e))
SFO complexity for pth-order smooth bilevel problems. In the following, we give several remarks
on the complexity in different regions of p.

Remark 3.1 (First-order smooth region) Under the case of p = 1, our upper bound becomes
O(k'"e=5), which improves the O(k'?e¢=5) bound in [11] by a factor of k. The improvement comes
from a tighter analysis in the lower-level SGD update and a careful parameter setting.

Remark 3.2 (Highly smooth region) Under the case of p = Q(log(r/¢)/loglog(x/e)), the com-
plexity of O(pr?e=*(x/e)%/P log(r/e)) in Theorem 3.1 can simplify to O (k%€ *1og3(x/c) / log log(x/e))
= @(H96_4), which matches the best-known complexity for Hessian-vector-product-based methods
under stochastic Hessian assumption (6) established by Ji et al. [22]. In Theorem F.1, we show an
Q(e=*) lower bound via a reduction to single-level minimization problems [3], demonstrating that
the upper bound of F?SA-p in this region is nearly optimal when  is a constant.

4. Conclusions and Future Works

This paper proposes a class of fully first-order method F2SA-p that achieves the @(pe_4_2/ P) SFO
complexity for pth-order smooth bilevel problems. Our result generalized the best-known @(6*6)
result [11, 29] from p = 1 to any p € N, . We also complement our result with an (e~*) lower
bound to show that our method is near-optimal when p = Q(loge~!/logloge™!). Nevertheless,
a gap still exists when p is small, and we still do not know how to fill it even for the basic setting
p = 1. Another possible direction is to extend our theory to structured nonconvex-nonconvex bilevel
problems studied by many recent works [9, 10, 23, 30, 42, 43].
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Appendix A. Notations for Tensors

We follow the notation of tensors used by Kolda and Bader [27]. For two p-way tensors X €
RmMxn2XXnNp gpd ) € R™MX"2X XN their inner product z = (X', )) is defined as

niy N2 Np

(X, ) = Z Z Z Xiy iy oe i Vin i, sip-

i1=liz=1  ig=1

For two tensors X' € R™M*"2X"p gpnd ) € R™M1*™M2"XMaq _ their outer product Z = X ® Y is a
tensor Z € RN xXn2xXnpXmixmaX--XMq whoge elements are defined as

(X ® y)i17i27“. 77;1)7]‘17.7‘27'“ 7-7q = Xi17i2".. ’/pri17127. 77:p‘

The operator norm of a tensor X' € R™1*"2X" X" g defined as

[X[=  sup (X, ur@uz® - @up).

Equipped with the notion of norm, we say a mapping 7 : R — R™*"2X X" jg [)-bounded if
IT(x)| <D, YxeR
We say 7T is C-Lipschitz continuous if

[T(x) =Tl <Cllz-yl, Yz,yecR.

Appendix B. Comparison to Previous Works

All our above assumptions align with [11] except for the additional Assumption 2.5. Since we
are not the first work to demonstrate that additional assumptions can lead to acceleration in bilevel
optimization, we first give a detailed discussion on other assumptions made in related works to see
our differences before we show our improved upper bound.

Stochastic Hessian assumption. Ghadimi and Wang [18], Ji et al. [22] assumes the access to a
stochastic Hessian estimator H (x, y) such that

EH(z,y) = V’g(x,y), E|H(z,y)— Vg(z,y)| < o> (6)

Under this assumption, in conjunction with Assumption 2.2, 2.3, and 2.4, Ghadimi and Wang [18]
proposed the BSA method and showed that it can find an e stationary point of ¢(x) with O(¢~©)
stochastic gradient oracles and @(6*4) stochastic HVP oracles. Later, Ji et al. [22] proposed the
stocBiO method which only requires (5(6_4) stochastic gradient and HVP oracles. Compared to
them, we consider the setting where the algorithms only have access to stochastic gradient estima-
tors, and we make no assumptions on the stochastic Hessians.

10
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Mean-squared smoothness assumption. Besides Assumption 2.1, 2.2, 2.3, 2.4 and the stochastic
Hessian assumption (6), Khanduri et al. [26], Yang et al. [46, 47] further assumes that the stochastic
estimators to gradients and Hessians are mean-squared smooth:

E||F($,y) - F(m,ay,)HQ < E%”(Cﬁ,y) - (m,7y/)‘|27
E|G(z,y) - G, y)|I” < Li[|(z, y) — (=, )] (7
E|H (z,y) - H(z',y")|* < L3||(z,y) - («',y")[*.

Under this additional assumption, they proposed faster stochastic methods with upper complexity
bound of O (€73) via variance reduction [13, 16]. However, variance reduction are typically inef-
fective in practice [15] since the mean-squared smoothness constants L and Ly can be arbitrarily
worse than the smoothness constants L; and Lo. In this paper, we only consider the setting without
mean-squared smoothness assumptions and study a different acceleration mechanism from variance
reduction.

Jointly high-order smoothness assumption. Huang et al. [21] introduced a second-order smooth-
ness assumption similar to but stronger than Assumption 2.5 when p = 2. Specifically, they assumed
the second-order smoothness jointly in (x, y) instead of y only:

V2 f(x,y) is Ly-Lipschitz jointly in (,y); ®
V3g(x,y) is Ls-Lipschitz jointly in (x, y).

The jointly second-order smoothness (8) ensures that the hyper-objective () has Lipschitz con-
tinuous Hessians, which further allows the application of known techniques in minimizing second-
order smooth objectives. Huang et al. [21] applied the technique from [1, 24, 25, 44] to show that
an HVP-based method can find a second-order stationary point in (7)(6_2) complexity under the
deterministic setting, and in @(6*4) under the stochastic Hessian assumption (6). Yang et al. [45]
applied the technique from [31] to accelerate the complexity HVP-based method to @(6_1’75) in
the deterministic setting. Chen et al. [11] also proposed a fully first-order method to achieve the
same @(6_1'75) complexity. Compared to these works, our work demonstrates a unique accelera-
tion mechanism in stochastic bilevel optimization that only comes from the high-order smoothness

iny.

Appendix C. Hyper-Gradient Approximation via Finite Difference

Recall our notations that

gv(z,y) = vf(z,y) +g(x,y),

Y, (@) := arg min g, (x,y),
yeRY
ly(x) := min g,(z,y),
yeR%

where g, is the perturbed lower-lever problem with y;;(x) and ¢, (x) being its optimal solution
and optimal value, respectively. Since the constraint y = arg min,cga. g(, 2) is equivalent to
requiring g(x,y) < min,pa, g(x, 2), it can be shown [11, Lemma B.3] that %Ky(m)h,:o =

11
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¢(x) holds under Assumption 2.3 and 2.4. Furthermore, Kwon et al. [28] showed that the partial
derivatives with respect to  and v are commutable, which leads to

0? 0?
(@m0 = 5 (@m0 = V(@) ©)

Let v = 1/X in Eq. (3). Then the fully first-order hyper-gradient estimator [11, 28] is exactly using
forward difference to approximate V(x), that is,

8%&,(.%) — a%ég(a:) 0?2
v ~ ovox

However, the forward difference is not the only way to approximate a derivative. Essentially, it falls
into a general class of pth-order finite difference [4] that can guarantee an O(vP) approximation
error. We restate this known result in the following lemma and also provide a self-contained proof
for completeness.

ly(@)]y—0 = V(). 10)

Lemma C.1 Assume the unitary function : R — R has C-Lipschitz continuous pth-order deriva-

tive. If p is even, there exist pth-order central difference coefficients {c; }fi 2_p /2 such that

1 p/2
Y agpy) - v(0)] = oew),
Jj=-p/2

where ag = 0 and o = a—j forall j = 1,--- ,p/2. If p is odd, there exist pth-order forward
difference coefficients {3; ?:0 such that

p/2
LSS et - v'0)] = o),

J——p/2

Proof If ¢)(P) (1) is C-Lipschitz continuous in v, then by Taylor’s theorem we have
P

V(v R h i

k=1

If p is even, we choose the generalized central difference. If p is odd, we choose the generalized

forward difference. Our choices underpin the following proof. Below, we analyze the case when p
is even or odd separately.

py L y#10) + 0 (0v) (11)

If pis even. For the coefficients {c; }fi 2_p /9> W set
aj=a_j, Vj=0,1,---,p/2.

Then, summing up Eq. (11) with coefficients «; gives

1 Jj=p/2 p/2 p/2—-1 jkyk_l
=D ) =2) a5 Y v +0 (7).
j=—p/2 j=1 k=13,

(%)

12
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To let term (*) be equivalent to '(0), we let {c; }?fl satisfy the following equations:

p/2

QZajjk:]-k‘:h \v/k:17375p/2_17
j=1

which is equivalent to let {ja; }? i 21 satisfy the following linear equation

1 1 1 . 1 a1 1/2
12 22 32 . (p/2)? 200 0
14 24 3 (p/2)t 3as —| o

lp/.gfg 2p/.272 3p/.2*2 . 2 .p/2*2 ( /2) 0

(p/2) P/=)Cp)2

Since the coefficient matrix in the above linear equation is a Vandermonde matrix, we know this
equation has a unique solution, which gives the value of {c; }? i 21.

If p is odd. For the coefficients {3; ?:0’ we first let them satisfy the constraint Z?:o Bj = 0.

Then, summing up Eq. (11) with coefficients 3; gives

1j=p P p jkyk_l i
=D By =) 8y v (0)+0 (Cvr).
j=0 J=0 k=1

To let term (*) be equivalent to ¢’ (0), we let {3; }5:0 satisty the following equations:

p
Zﬁjjk:lk:h Vk:1,27-'-,p’
j=1

which is equivalent to let {j 5}§:1 satisfy the following linear equation

1 1 r - 1 B1 1
1 2 3 - p 252 0
12 22 32 ... p? 3831 =10
=t oop=l o gp=l L gppl By 0

As before, the coefficient matrix in the above linear equation is also a Vandermonde matrix. There-
fore, we know this equation has a unique solution, which gives the value of {3; }?:1 and the coeffi-
cient 5y can be calculated by 5y = 1 — ?:1 Bj. |

When p = 1, we have fy = —1, 1 = 1, and we obtain the forward difference estimator
Y(v) —(0)/v; When p = 2 we have a_; = —1/2, a1 = 1/2 and we obtain the central difference
estimator (¢(v) — ¥ (—v))/(2v). Lemma C.1 tells us that in general we can always construct a
finite difference estimator O(vP) error with p points with for even p or p + 1 points for odd p under
the given smoothness conditions. This leads to the hyper-gradient estimator used in Algorithm 1.

13
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Remark C.1 A subtlety to use Lemma C.1 for hyper-gradient estimation is that it only applies to a
unitary function while %EV (x) is a vector-valued function in v. However, the approximation error
still holds for the whole vector under the Euclidean norm if we apply the lemma on each dimension
and note that the finite difference coefficients are the same for all dimensions.

Appendix D. Proof of Lemma 3.1

The proof relies on the high-dimensional version of the Faa di Bruno formula. To formally state
the result, we define the following notions. For a mapping 7 : R™ — R™ > X" we define its
kth-order directional derivative evaluated at z € R™ along the direction (uq,--- ,ug) as

VE T = VR (ur, ).

We let the symmetric products of uy, - ,ug as

1
u1VuQ\/---\/uk:H Z uﬂ(1)®uﬂ(2)®---®uﬂ(;€),

m€Perm(k)

where Perm(k) denotes the set of permutations of {1,2,--- ,k}. Also, we define the set of all
(unordered) partitions of a set A into k pairwise disjoint non-empty sets as

P(A ) = {P = (P, P) CB(A) | A= Ui Py 0 ¢ Py PN Py =0,%i < j

where B(A) is the power set of A, i.e., the set of all subsets of A. We also abbreviate P({1 : ¢}, k)
as P(q, k). Using the above notions, we have the following result.

Lemma D.1 ([32, Proposition 3.1]) Let 71 and T2 be two mappings. If T1 and Ts are k-times
differentiable at the point z and T (z), respectively, then the composite mapping Ta o Ty is k-times
differentiable at the point z and we have

VITo T)(Viw) = > Ve (VT (Vienw), - VT (Viepw) )
1<k<g,
PeP(q,k)
Recall Danskin’s theorem that %E,}(m) = %gy(m, y:(x)). We can apply Lemma D.1 with
Ti =y, (x)and T; = a%gy(a:, y) to obtain that

gt okl olnl oP

ayqame Z 6yk8mg”( z,y,(x)) (W%(w)f“ 7myy(cc) . (12)
1<k<g,
PeP(q:k)

Symmetrically, using the first-order optimality condition % gv(x,y)(x)) = 0 and where the first
identity uses the Lemma D.1 with 7; = y;(x) and 71 = % gv(x,y) yields that

ok+1 lLet O Pkl
0= > gy ))( yo(®), s ey (@) | (13)
dyk+1 v oyl Pl v Ol Pel 7Y
1<k<q,
PG_P(_q(,Ik)

14
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Since P(g, 1) contains only one element, the above identity implies that

q
8ayqyu( ) - (V ygV(CC yu Z Wk P>
2<k<q,
PcP(q,k) (14)
. o . orl ol
where ’wk,P—Wgu(mayy(w)) o |p1"!lu( z), - amyy(m) .

Based on Eq. (14), we can prove by induction that %y;(w) is O(x?7*1)-Lipschitz continuous in
vforallg =0,---,p. The induction base for ¢ = 0, 1 is already proved by Chen et al. [11].

Lemma D.2 (Chen et al. [11, Lemma B.2 and B.5]) Ler v € (0,1/(2k)]. Under Assumption 2.3
and 2.4, y(x) and %y;’j(m) is O(k)- and O(k3)-Lipschitz continuous in v, respectively.

Since Eq. (14) also involves (ngg,,(ac, yi(z))) !

its boundedness and Lipschitz continuity constants.

, we also need the following lemma that gives

Lemma D.3 (Chen et al. [11, Lemma B.1 and Eq. 18]) Ler v € (0,1/(2k)]. Under Assumption
2.3 and 2.4, (Vyyg,(z, y5(x))) "L is 2/ p-bounded and O(k?/ u)-Lipschitz continuous in v.

In the remaining proofs, we will use Eq. (14) prove by induction that 59 “yi(x) is O(k29Hh)-

Lipschitz continuous in v, then we can eas1ly use Eq. (12) to show that -2 ayq 5z lv(x) is O(K?1H1L)-
Lipschitz continuous in v for all ¢ = 0,--- ,p. Note that the computational graph of either
%yj(w)) or %él,(a:) in Eq. (12) or (14) defines a tree, where the root is output, the leaves
are inputs, and the other nodes are the intermediate results in the computation. We can analyze the
Lipschitz continuities of all the nodes from bottom to top using the following lemma.

Lemma D.4 (Luo et al. [35, Lemma 12]) Let 71 and T3 be two tensor-to-tensor mappings. If Tq
is D1-bounded and C1-Lipschitz continuous, T is Da-bounded and Csy-Lipschitz continuous, then
the product mapping Ty X Ty is D1 Da-bounded and (C1 Dy + Co D1 )-Lipschitz continuous.

Now, let us restate Lemma 3.1 and then prove it.

Lemma 3.1 Let v € (0,1/(2k)]. For any instance in the pth-order smooth bilevel problem class
Fres¢(Lo, -+, Lpt1, p, A) in Definition 2.2, 8‘?j;gw€ (x) is O(k**LL)-Lipschitz continuous in v.

Proof Now, we formally begln to prove by induction that &,q “yi(x) is O(k27H1)-Lipschitz con-
tinuous in v for all ¢ = 0,--- ,p. Recall that the induction base follows Lemma D.2. In the
following, we use the induction hypothesis that 5 kyy( ) is O(k2¥*+1)-Lipschitz continuous in

vforall k = 0,---,q — 1 to prove that 2o yx(z)) is O(k2*!)-Lipschitz continuous in v. We
know that gk% gv(z,y:(x)) is O(L)-bounded and O(kL)-Lipschitz continuous in v. Therefore,
we can use Lemma D.4 to conclude that each wy, p is O(k Zia @A L) = O(k*7*L)-bounded
and O(L - k27542 4 k[ - k27F) = O(K%1~ k“L) -Lipschitz continuous in v. It further implies
that the summation w := > oy <, pep(qk) Wk,P 18 O(k?7=2L)-bounded and O (k%4 L)-Lipschitz
continuous in v. Then, we can recall Lemma D.3 that (V,g,(z, y}(z))) ! is 2/u-bounded and
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O(k?/u)-Lipschitz continuous in v, and use Eq. (14) to finish the induction that %y;ﬁ(a}) =
— (V2,90(, y;i(arz)))_1 w is O(k21+1)-Lipschitz continuous in v for all ¢ = 0,--- , p. Finally,
by analogy with the similarity of Eq. (12) and (14), we can follow the same analysis to show that

%E,,(m) is O(k24*1 L)-Lipschitz continuous in v for all = 0, - - - , p. [

Remark D.1 (Tighter bounds for p = 2) Note that the variables x and v play equal roles in our
analysis. Therefore, our result in p = 2 essentially implies that %ﬁy(w) is O(k°L)-Lipschitz
continuous in v around zero, which tightens the O(x°L) bound of Hessian convergence in [11,
Lemma 5.1a] and is of independent interest. The main insight is to avoid the direct calculation of
V2p(x) = %‘;J,j(w)\yzo which involves third-order derivatives and makes the analysis more

complex, but instead always to analyze it through the limiting point lim,, o, aﬁw&, (x).

Appendix E. Proof of Theorem 3.1

Algorithm 2 F2SA-p (xq,yo), odd p
I: yézyo, VjeN
2 fort=0,1,---, T —1

3. Sample random i.i.d indexes {(¢¥,¢Y)}7_ and {(£7,¢F)}L,

4. forj=0,---,p
5 Y0 =
6 fork=0,1,---  K—1

k1 ik , ik ik
7: y =yt -y (Jva(wt,yi ;&) + Gyl yy ;Cf))
end for
) K
9: Y =Y
10:  end for

11:  Let{3; }?ZO be the pth-order forward difference coefficients defined in Lemma C.1.
PCHCR <f>>

v

S , j
12: P = %21:1 Z?:o Bj (]Fm(wt,yiﬂ?ff)

13: Tit1 = Tt — nmq)t/H(I)t”
14: end for

In the main text, we only present the algorithm when p is even. The algorithm when p is
odd follows a similar design, which is presented in Algorithm 2 for completeness. Our algorithms
consist of a double loop, where the outer loop performs normalized SGD (NSGD) and the inner loop
performs SGD. Before we give the formal proof, we first recall the convergence result for (N)SGD.
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Lemma E.1 (Cutkosky and Mehta [12, Lemma 2]) Consider the NSGD update xy+1 = x; —
nFy/||Fy| to optimize a function f : RY — R with L-Lipschitz continuous gradients. We have

T-1

= S E[V@)) <
t=0

T-1

(f(xo) — inf cpd f(x)) + 3L + % Z E||Fy — V f(z)].
t=0

nT 2

Lemma E.2 (Kwon et al. [29, Lemma C.1]) Consider the SGD update x;+1 = x; — nFy/||Fi|
to optimize a p-strongly convex function f : R% — R with L-Lipschitz continuous gradients. Let
x* = argmingcpa f(x) be the unigue minimizer to f. Suppose Fy is an unbiased estimator to

V f(x¢) with variance bounded by o?. Setting n < 2/(u + L), we have

2
* * o
Ella; — 2*|? < (1 — ) o — *|2 + 1

The following two lemmas are also useful in the analysis.

Lemma E.3 (Chen et al. [11, Lemma 4.1]) Under Assumption 2.3, and 2.4, the hyper-objective
o(x) = f(z,y*(x)) is differentiable and has L, = O(Lk3)-Lipschitz continuous gradients.

Lemma E.4 (Chen et al. [11, Lemma B.6]) Let v € (—1/k,1/k). Under Assumption 2.3, and
2.4, the optimal (perturbed) lower-level solution mapping y;(x) = arg min ly(x,y) is 4k-
Lipschitz continuous in x.

yeR

Now, we first restate Theorem 3.1 and then prove it.

Theorem 3.1 (Main theorem) For any instance in the pth-order smooth bilevel problem class
F13€(Lo, -+, Lpt1, p, A) as per Definition 2.2, set the hyper-parameters as

. R ( € )1/17 € v2e?
y=<min{ —, [ =——— = — S
K\ Lr2rt+l » e Lyk3’ My Liko?’

2 2 2 I A
s=2 Kv&alog(R 1H),Tx,

v2e2’ v2e2 ve Ne€

&)

where R = ||lyo — y*(xo)||. Run Algorithm 1 if p is even or Algorithm 2 if p is odd. Then we can
provably find an e-stationary point of @(x) with the total SFO calls upper bounded by

pAL, L?/Pg29+2/p RL\Lk
pT(S+K)=0 ( A12/p log :

Proof We separately consider the complexity for the outer loop and the inner loop.

Outer Loop. According to Lemma E.3, the hyper-objective ¢(x) has L, = O(Lk3)-Lipschitz
continuous gradients. If we can guarantee the condition

then we can further set 7),, = €¢/6L,, and apply Lemma E.1 to conclude that the algorithm can provably
find an e-stationary point of (z) in T’ = [62/en,] = O(AL;x3€¢~2) outer iterations.
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Inner Loop. From the above analysis, the remaining goal is to show that the inner loop always
returns P, satisfying Eq. (15), which requires E||®; — Vo(x;)|| = O(e) forallt =0,--- , T — 1.
Note that the setting of mini-batch size S = Q) (¢?/12¢?) ensures that

Vag(@t, yiﬂ)
1%

E

by — Z?f_p/g Qj (jvxf(mtv yfﬂ) + ) || = O(e), p is even;

E

: : Vog(@, ylh) :
P, — Zﬁzo Bj (]fo(fBu Yii1) + DAL RV |- O(e), p is odd.

v

By Lemma 3.1 and Lemma C.1, setting v = O((¢/Lx?»+1)/P) can ensure that

Vag(@t, ’!J]*,,(wt))
v

Vet~ S22 o (39S ) + )|=ow.  pisen

. ng(xt, y*u(mt)) .
HVSO(iEt) — 30 0B <vaf(mt,y;f,,($t)) + y J > H = O(e), p is odd.
Therefore, a sufficient condition of E||®; — V(x| = O(e) is
191 = w5, (20) | = Ove/Ly), Vi =—p/2.--.p/2,  piseven o

i, — i ()|l = Olve/Ly), Vj=0,--,p, pis odd.

Our next goal is to show that our parameter setting fulfills Eq. (16). Note that for v = O(1/k), the
(perturbed) lower-level problem g;, (x,y) is €2(u)-strongly convex in y and has O(L1)-Lipschitz
continuous gradients jointly in (z, y). Therefore, if we set i, < 1/L;, then we can apply Lemma
E.2 on the lower-level problem g;, (, y) to conclude that for ant j, we have

Ellyir — yj(@)l? < (1= pny) lye — v}, (@) I + O(nyo? /).

Comparing it with Eq. (16), we can set 1, = O(v*¢*/L1x02) to ensure that for ant j, we have

Ellyen = y5, (@)l < (1= pmy) " llye = w5, ()| + O(ve/Ly).

Further, we can use Lemma E.4 and the triangle inequality to obtain that for ant j, we have

Ellyerr — g5 (@)l < (1= )™ (lye = (@e-1)l| + dille — ze-1]]) + O(ve/Lr). (A7)

The recursion (17) implies our setting of K can ensure that Eq. (16) holds forallt = 0,--- ;7T — 1.
We give an induction-based proof. To let the induction base holds for ¢ = 1, it suffices to set
K = Q(log(R1/ve) /uy, ) = Q(log(Ria/vr?a®/i2e2), where [y, (z0) — y*(®0)[|* = O(R) is due
to the setting of v = O(R/x) and the fact that y};(x) is x-Lipschitz in ¥ by Lemma D.2. Next,
assume that we have already guaranteed Eq. (16) holds for iteration ¢, we prove that our setting
of K implies Eq. (16) holds for iteration ¢ + 1. Note that the NSGD update in = means that
|l — xi—1]] = ne = O(¢/6L1x*). Therefore, Eq. (17) in conjunction with the induction hypothesis
indicates that

E _ut < (11— K(Pe ., € E‘
o il $ (0= ) (7o 15 ) 4 7
Therefore, we know that to let Eq. (16) holds for iteration ¢+1, it suffices to let K = Q(log(Y/v+*)/un, ) =
Q(log(1/vs*)r*a?/,2¢2). This finishes the induction.
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Total Complexity. According to the above analysis, we set v < (¢/Lu2r+1)1/P, § < 02/,2c2,
T =< AL1k3¢ 2, and K =< log(RLis/ve)r?a®/,2¢2 to ensure that the algorithm provably find an e-
stationary point of p(x). Since S < K|, the total complexity of the algorithm is

AL 3 2 2 I
pT(5+K)=(9(pTK)=0<p- CAR A 10g<R m))

€2 v2e2 Ve
0 pAL,L?/Pg29+2/p o RLk
N ed+2/p & Ve '

Remark E.1 (Comparison of results for odd p and even p.) Note that by Lemma C.I when p is
odd, we need to use p + 1 points to construct the estimator, which means the algorithm needs to
solve p+ 1 lower-level problems in each iteration to achieve an O(VP) error guarantee. In contrast,
when p is even, p points are enough since the pth-order central difference estimator satisfies that
ag = 0. It suggests that even when p is odd, the algorithm designed for odd p may still be better.
For instance, the F2SA-2 may always be a better choice than F>SA since its benefits almost come for
free: (1) it still only needs to solve 2 lower-level problems as the F>SA method, which means the per-
iteration complexity remains the same. (2) Although the improved complexity of F2SA-2 relies on
the second-order smooth condition, without such a condition, its error guarantee in hyper-gradient
estimation only degenerates to a first-order one, which means it is at least as good as F2SA.

Appendix F. An Q(¢~*) Lower Bound

In this section, we prove an (¢ ~*) lower bound for stochastic bilevel optimization via a reduction to
single-level optimization. Our lower bound holds for any randomized algorithms A, which consists
of a sequence of measurable mappings {At}le that is defined recursively by

(wt—‘rla yt+1) = Ay (Tv F($0, yO)? G(iﬂo,yo)), e aF(whyt)v G(xbyt))) ’ te N+7 (18)

where 7 is a random seed drawn at the beginning to produce the queries, and F, G are the stochas-
tic gradient estimators that satisfy Assumption 2.1. Without loss of generality, we assume that
(zo,yo0) = (0,0). Otherwise, we can prove the same lower bound by shifting the functions.

The construction. We construct a separable bilevel instance such that the upper-level function
f(x,y) = fu(x) and its stochastic gradient align with the hard instance in [3], while the lower-level
function is the simple quadratic g(x,y) = g(y) = uy?/2 with deterministic gradients. Specially,
we follow Arjevani et al. [3] to uniformly draw matrix U € R%*7T from the class of all column
orthogonal matrices such that U U = Iy and define the upper- and lower-level functions fy :
R? 5 R,g:R — Ras

Ly p?

fu(z) I,

nc T LiA 2 _H 9
P8 + Dl g(0) = 2 (19
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where L1 = 155, 8 = 4L1e/L1, p : RT — RT is p(z) = x/\/1+ [[z[]2/R2, R = 230VT,

A=1/5,and fr: RT — R is the nonconvex hard instance introduced by Carmon et al. [6]:

T
Fro(@) = =) U(1) + Y [D(—ai 1) P(—2;) — U(wi1) ().
i=2
In the above, the component functions ¥, ® : R — R are defined as
0 t<1/2 t
U(t) =<’ ) =1/2, and ®(t) = \/é/ exp(—t2/2)dt.
exp(l—1/(2t —1)%), t<1/2 —0
For our hard instance in Eq. (19), we define the stochastic gradient estimator Fyy and G as

Fy(z) I,

(B(Vo@) TUFH(UT pl@) + X&) and  Gly) = py. 20)
In the above, Fr : RT — R is the stochastic gradient estimator of V f* defined by

[FT(:E)]Z = vzfnc(x) (1 + 1@'>pr0gl/4(:p) (6/7 - 1)) y &~ Bernouui(f)/))

where prog,, (z) = max{i > 0 | |;| > a} and v = min{(46¢)?/o?,1}.

For this separable bilevel instance, we can show that for any randomized algorithm defined in
Eq. (18) that uses oracles (Fy,G), the progress in @ can be simulated by another randomized
algorithm that only uses Fgs, meaning that the single-level lower bound [3] also holds.

Theorem F.1 (Lower bound) There exist numerical constants ¢ > 0 such that for all A >

0, Li,La,--+ ,Lpy1 > 0 and € < /L1, there exists a distribution over the function class
F13¢(Lo, Lo, - -+, Lpy1, 1, A) and the stochastic gradient estimators satisfying Assumption 2.1,

such that any randomized algorithm A defined as Eq. (18) can not find an e-stationary point of
o(x) = f(x,y*(x)) in less than Q(ALic%e~*) SFO calls.

Proof For any randomized algorithm A defined as Eq. (18) running it on our hard instance, we show
that it can be simulated by another randomized algorithm running on the variable « such that the
lower bound in [3] can be applied. Since G(y) = py is a deterministic mapping we know that any
randomized algorithm A induces a sequence of measurable mappings {2} };cn such that

($t7yt) = A;(f,F(CCO), 7F($t—1)7y07' o 7yt—1)~

Expanding the recursion for y,; shows that the above equation induces another sequence of measur-
able mappings {A} };+cn such that

(.’L‘t, yt) = A?(Ev F(m0)7 T 7F(wt—1))'

It means that the iterate ; can be simulated via a measurable mapping from (r, F'(xq), - - , F(2:—1)),
for which [3, Theorem 3] shows that the function fr; : R — R and its associated stochastic first-
order oracle Fyy : RT — R gives the Q(ALjo%¢~*) lower bound as required. |

The analysis is simple using our fully separable construction f(x,y) = fy(x) and g(y) =
uy? /2. But we are a bit surprised that our straightforward construction is not used in prior works
such as [14]. Below, we give a detailed discussion on the constructions in other works.
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Comparison to other bilevel lower bounds. Dagréou et al. [14] proved lower bounds for finite-
sum bilevel optimization via a similar reduction to single-level optimization. However, the di-
rect extension of their construction in the fully stochastic setting gives f(x,y) = fu(y) and
g(z,y) = (z — y)?, where the high-order derivatives of f(x,y) not O(1)-Lipschitz in y and
thus violates our assumptions. Kwon et al. [29] also proved an (¢~*) lower bound for stochastic
bilevel optimization. However, their construction f(x,y) = y and g(x,y) = (fu(x) — y)? violate
the first-order smoothness of g(x,y) in & when y is far way from fy(x). In this work, we use a
fully separable construction to avoid all the aforementioned issues in other works.

Appendix G. Experiments

In this section, we conduct numerical experiments to verify our theory. We consider the “learn-to-
regularize” problem on the “20 Newsgroup” dataset, which is a very standard benchmark in bilevel
optimization [11, 20, 22, 33]. In this task, we aim at learning the optimal regularizer for each
parameter of a model. We formulate this task into the following bilevel optimization problem:

min /'¥(y), st. y€arg min (T(y) + |Wayl?,
xTERP yERIXP

where @ parameterizes the regularization matrix via W, = diag(exp(x)), y parameterizes a linear
model that maps p = 130, 107 features to ¢ = 20 classes, while £**! and /" denote the validation and
training loss, respectively. Using the logistic loss function, it is clear that the objective is arbitrarily
smooth. The whole dataset contains 18,000 samples. We compare our proposed method F?SA-p
with both the previous best fully first-order method F>SA and other Hessian-vector-product-based
methods stocBiO [22], MRBO and VRBO [46]. We tune p in {1,2,--- ,5} and find that p = 2
is the optimal choice. One possible reason is that the instance of both p = 1,2 only requires
solving two lower-level problems at each iteration, but the instance of p > 3 requires solving
more than three lower-level problems and may not be concretely efficient. We regard F?SA-2 as
an important instantiation of F2SA-p and present its concrete procedure in Algorithm 3. For all the
algorithms, we search the optimal hyperparameters (including 7, 7,, ) in a logarithmic scale with
base 10 and present the experiment results in Figure 1, where we also include a line “w/o Reg” that
means the baseline without tuning any regularization. It can be observed that: (1) all the hessian-
vector-product-based methods are worse than fully first-order methods; (2) the variance reduction
technique in VRBO/MRBO is ineffective and may even harm the performance, which also aligns
with the findings in [33]; (3) our method F?SA-2 significantly outperforms all the other algorithms.
Our preliminary experiment results on the standard benchmark show the potential of F2SA-2 on
large-scale bilevel problems.
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Figure 1: Performances of different algorithms when learning the optimal regularization.

Algorithm 3 F2SA-2 (z¢, yo)

1:
2:
3:

10:

11:
12:

4
5
6:
7
8
9

20 = Yo
fort=0,1,---,7T—1
.. . Y Y z z T X S
Sample random i.i.d indexes (£Y, ¢Y), (€%, (%), and {(&F, CF)}o .
yg =Y, Z? =%t
fork=0,1,--- K -1
y =yl =y (vEy (ol €Y) + Gy(ze, yF; (V)
2 = 2F =y (—vFy (e, 25 67) + Gy (e, 285 ¢F))
end for
Y1 = Y,z = 20

1
o, = 3 Zf:l (Fx(a’tayt+1§€iz) + Fp(xy, 20415 87) +

Gm(wtaytJrl;CiI) - Gz(mtyzt+1§cz‘$)>

12
Tiy1 = T — Um‘I’t/H‘I’tH
end for
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