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ABSTRACT

Consistency models excel at few-step inference in generative tasks across various
scenarios, but typically rely on pre-trained diffusion model distillation, involving
additional training costs and performance limitations. In this paper, we propose a
motion latent consistency training framework that learns directly from data rather
than distillation for efficient and text-controllable human motion generation. For
representation optimization, we design a motion autoencoder with quantization
constraints that enable concise and bounded motion latent representations. Focus-
ing on conditional generation, we construct a classifier-free guidance (CFG) for-
mat with an additional unconditional loss function that extends the CFG technique
from the inference phase to the training phase for conditionally guided consistency
training. We further propose a clustering guidance module to provide additional
references to the solution distribution at minimal query cost. By combining these
enhancements, we achieve stable and consistent training in non-pixel modality and
latent representation spaces for the first time. Experiments in benchmarks demon-
strate that our method significantly outperforms traditional consistency distillation
methods with reduced training cost, and enhances the consistency model to per-
form comparably to state-of-the-art models with lower inference cost. Our code
will be open source.

1 INTRODUCTION

Synthesizing human motion sequences from specific text prompts is a fundamental task in robotics
and virtual reality. Recent advancements in text-to-motion diffusion frameworks (Tevet et al., 2023;
Zhang et al., 2022) have generated increasingly realistic and diverse motion sequences. These works
(Chen et al., 2023; Kong et al., 2023; Jin et al., 2023; Lu et al., 2022a) exhibit powerful distribution
estimation capabilities and controllability, but at the cost of a hundred-fold increase in computational
burden involved in the expensive and numerous function evaluation iterations required. For efficient
sampling, previous work (Chen et al., 2023; Kong et al., 2023) has attempted to introduce numer-
ical solvers (Liu et al., 2022) to solve rapidly within well-designed latent spaces. However, larger
sampling strides are associated with large numerical errors due to the nonlinear nature of the diffu-
sion trajectories, causing significantly reduced fidelity of these methods at lower NFEs. Efficiency
bottlenecks in motion diffusion frameworks is emerging as a critical bottleneck in its application.

Recent advances attempt to shift expensive iterations to the training phase and learn pre-computed
diffusion trajectories for large-scale skip-step or single-step sampling during inference, which are
known as the consistency model (Song et al., 2023). Typical precalculated trajectory methods are
consistency distillation (Luo et al., 2023; Wang et al., 2023) and consistency training (Yang & Pra-
fulla, 2024; Kong et al., 2024). Consistency distillation rely on a well-trained diffusion model as the
teacher, and training them from scratch is both computationally expensive and time-consuming. Ad-
ditionally, the distillation process is constrained by the sample quality of the teacher model, which
caps the performance ceiling. Conversely, consistency training with lower training costs, which cal-
culate the log probability gradient ∇xt

log p(xt) directly from raw data during the reverse diffusion
stage, avoid these limitations. However, estimating trajectory distributions from individual raw data
presents greater challenges than distillation guidance, resulting in suboptimal performance. Despite
the advances (Yang & Prafulla, 2024) in raw pixel representation in recent work, such performance
challenges of consistency training in non-pixel modalities, especially latent spaces, remain serious.
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Figure 1: Overview of the distinctions between our method with traditional methods. (a) Tradi-
tional diffusion methods calculate diffusion trajectories at the inference phase, involving expensive
sampling iteration costs. (b) Consistent distillation precalculates the diffusion trajectories in the
training phase through the teacher model and constrains the metric loss from the output of the con-
sistency model S between adjacent perturbed states to achieve few-step sampling in inference. (c)
Consistent training escapes the constraints of the pre-trained model. Additionally, we optimize the
latent representation as bounded and concise and present the conditional guidance and clustering
guidance to optimize the diffusion trajectories from individual raw data.

To tackle these challenges, we propose the motion latent consistency training (MLCT) framework
from the following three aspects. (i) Latent representation design. Variational motion representa-
tions based on Kullback-Leibler (KL) constraints struggle in consistency training, since precisely in-
ferring diffusion trajectories in unbounded continuous solution spaces is intractable without teacher
guidance. Inspired by the success of consistency training in pixel space, our first insight is to extend a
motion autoencoder with the quantization constraint to construct pix-like latent representations with
bounded and finite states. To this end, we restrict the representation boundaries with the hyperbolic
tangent (Tanh) function and force the continuous representation to map to the nearest predefined
clustering center. Such representations offer simplified solution spaces and quantization mecha-
nism between adjacent state contributes to counteracting cumulative errors in consistency model. In
addition, previous practice (Lu et al., 2022b) demonstrates that the boundedness of the representa-
tions contributes to sustaining stable inference in classifier-free guidance (CFG) techniques (Ho &
Salimans, 2021). (ii) Conditional guidance. Traditional consistency training neglects conditional
trajectory guidance since the latter is essentially enhancement techniques for the inference phase of
diffusion models and relies heavily on well-trained diffusion models as preconditions. Our second
insight is to present a conditionally guided consistency training framework based on CFG format
online simulation. It treats the ground truth latent representation as the simulation of the conditional
prediction and replaces the unconditional estimation with an online updated model based on the ad-
ditional loss term. The constructed CFG format facilitates distinguishing diffusion trajectories across
conditions in highly perturbed states. (iii) Clustering guidance. For traditional consistency models,
the current perturbed state solution distribution is guided only by the previous perturbed state, result-
ing in an inefficient training process. Our third insight is to propose a clustering guidance module
based on the attention-like calculation and the K-Nearest Neighbor (KNN) algorithm. Specifically,
we utilize KNN to construct clustering dictionaries with textual representation cluster centers as keys
and mean motion representations values in the same category as values. It leverages an attention-like
query mechanism to provide solution distribution references based on given textual conditions.

Our contributions are four-fold: (1) We extend motion latent representations based on the quantiza-
tion constraint, which are bounded finite states, providing a powerful latent space embedding scheme
in the consistency training framework. (2) We present the conditionally guided consistency training
framework, which extends CFG from the inference phase to the training phase. To the best of our
knowledge, we have explored consistency training in latent space for the first time, and are also the
first to introduce CFG into consistency training. (3) We propose a clustering guidance module that
contributes to providing additional solution distribution references at minimal query cost. (4) Our
work achieves performance matching state-of-the-art methods on two datasets: KIT and HumanML,
with an inference speed of only 54 ms and without any diffusion model pre-training cost. Extensive
experiments indicate the effectiveness of the proposed methods and each component.
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2 RELATED WORK

Human motion generation. Human motion generation aims to synthesize human motion sequence
under specified conditions, such as action categories (Lee et al., 2023; Xu et al., 2023), audio (Li
et al., 2022; Pang et al., 2023), and textual description (Ahuja & Morency, 2019; Tevet et al., 2023;
Chen et al., 2023). Recent advancements in multi-step generative methods have proven success-
ful, notably auto-regressive (Zhang et al., 2023a; Guo et al., 2024) and diffusion methods (Zhang
et al., 2022; Tevet et al., 2023; Chen et al., 2023). Among these, diffusion methods are increasingly
prominent due to their stable distribution estimation and high-quality sampling results. Motiondif-
fuse (Zhang et al., 2022) and MDM (Tevet et al., 2023) were the pioneers in implementing diffusion
frameworks for motion generation. MLD (Chen et al., 2023) realizes the latent space diffusion,
which significantly improves the efficiency. ReMoDiffuse (Zhang et al., 2023b) explores initial
state guidance through hybrid retrieval to generate more realistic motion. GraphMotion (Jin et al.,
2023) leverages semantic role processing tools for fine-grain controllable generation. While these
advances offer significant improvements in generation performance, the tradeoff is the high cost of
sampling iterations. Efficient sampling strategies are categorized into two approaches: large-stride
numerical sampling, which employs higher-order ordinary differential equation (ODE) approxima-
tion methods (Lu et al., 2022a; Song et al., 2021a), and pre-calculated diffusion trajectories, which
are represented by diffusion distillation (Liu et al., 2022; Xu et al., 2022; Song et al., 2023). Numer-
ical methods face constraints due to the nonlinear nature of diffusion trajectories, often requiring
more than 20 function evaluations (NFE) to diminish numerical errors from large strides. Distilla-
tion methods use a well-trained diffusion model as a teacher to generate precomputed trajectories,
enabling few-step generation, but incur high training costs and face performance ceilings. Recent
advances include consistency models (Song et al., 2023), particularly the consistency training free
from the distillation mode, which show promise for high-quality few-step generation at lower costs.

Consistency model. Consistency models (Song et al., 2023) are categorized into consistency dis-
tillation and consistency training based on precomputed trajectory methods. It achieves efficient
trajectory distillation and single-step inference through maintaining consistency of model outputs
on the same diffusion trajectory. Consistency distillation is a typical diffusion distillation method
that relies on strong teacher model guidance and is adapted to well established diffusion model im-
provement techniques, such as CFG, Lora, and control net. The stable diffusion guidance enables its
extension into various fields (Luo et al., 2023; Wang et al., 2023; Kim et al., 2023; Ye et al., 2023;
Lu et al., 2024; Fei et al., 2024; Xiao et al., 2023). We note contemporaneous work (Dai et al., 2024)
that extends consistent distillation to human motion generation tasks. However, constrained from
the high training cost and performance ceiling of the teacher distillation mode, the existing methods
remain significant gaps with the state-of-the-art diffusion frameworks. Comparatively, consistency
training simulates diffusion trajectories within the raw data, freeing from the limitations of pre-
trained models. Nevertheless, its performance is significantly inferior to distillation-based methods
due to the lack of guidance, and the advances are stuck in the earliest proposed raw pixel representa-
tions. ICM (Yang & Prafulla, 2024) further explores and improves consistency training methods to
obtain similar performance to consistency distillation without pre-trained models. But its research
object is still raw pixel representations, and consistency training in non-image modal data as well as
latent representations remains unexplored. Additionally, previous studies have neglected guidance
techniques in consistency training, such as conditional guidance and initial state guidance, which of-
fer potential for improvement. To address these shortcomings, our work focuses on constructing the
latent consistency training paradigm to improve the performance of consistency models in motion
modalities to state-of-the-art levels with lower training and inference costs.

3 PRELIMINARIES

3.1 SCORE-BASED DIFFUSION MODELS

The diffusion models (Ho et al., 2020) is a class of generative model that gradually injects Gaussian
noise into the data and then generates samples from the noise through a reverse denoising process.
Specifically, it gradually transforms the data distribution pdata(x0) into a well-sampled prior dis-
tribution p(xT ) via a Gaussian perturbation kernel p(xt|x0) = N (xt|αtx0, σ2

t I), where αt and σt
are noise schedules. Recent studies have formalized it into a continuous time form, described as
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stochastic differential equations (SDEs),

dxt = f(t)xtdt+ g(t)dwt, (1)

where t ∈ [ϵ, T ], ϵ and T are the fixed positive constant, wt denotes the standard Brownian motion,
f and g are the drift and diffusion coefficients respectively. They are related the noise schedules as
follows.

f(t) =
d logαt
dt

, g2(t) =
dσ2

t

dt
− 2

d logαt
dt

σ2
t . (2)

Previous work has revealed that the reverse process of Equation 1 shares the same marginal proba-
bilities with the probabilistic flow ODE:

dxt = [f(t)xt −
1

2
g2(t)∇xt

log p(xt)]dt, (3)

where ∇x log p(xt) is named the score function, which is the only unknown term in the sampling
pipeline. An effective approach is training a time-dependent score network Sθ(xt, t) to estimate
∇x log p(xt) based on conditional score matching, parameterized as the prediction of noise or initial
value in forward diffusion. Further, Equation 3 can be solved in finite steps by numerical ODE
solvers such as Euler (Song et al., 2021b) and Heun solvers (Karras et al., 2022). Upon the above
study, previous work also has explored conditional probabilities p(xt|y) for the more controlled
generation, where y is the condition such as text or action. One successful approach is known as
Classifier-Free Guidance (CFG), which is parameterized as a linear combination of unconditional
and conditional noise predictions, i.e. z̃θ(xt, t, c) = (1 + ω)zθ(xt, t, c) − ωzθ(xt, t, ∅), where ω is
guidance scale.

3.2 CONSISTENCY MODELS

Theoretically, the reverse process expressed by Equation 3 is deterministic, and the consistency
model (Song et al., 2023) achieves one-step or few-step generation by pulling in outputs on the
same ODE trajectory. It is formally expressed as,

Sψ(xt, t) ≈ Sψ(xt′ , t′) ≈ Sψ(xϵ, ϵ) ≈ ϵ ∀t, t′ ∈ [ϵ, T ], (4)

which is known as the self-consistency property. To maintain the boundary conditions, existing
consistency models are commonly parameterized by skip connections, i.e.,

Sψ(xt, t) := cskip(t)xt + cout(t)Ŝψ(xt, t) (5)

where cskip(t) and cout(t) are differentiable functions satisfied cskip(ϵ) = 1 and cout(ϵ) = 0. For
stabilize training, the consistency model maintaining target model S−ψ , trained with the exponential
moving average (EMA) of rate γ, that is ψ− ← γψ− + (1 − γ)ψ. The consistency loss can be
formulated as,

Lcm = Ex,t
[
d
(
Sψ(xtn+1

, tn+1),Sψ−(x̂tn , tn)
)]

(6)

where d(·, ·) is a metric function such as mean square or pseudo-huber metric, and x̂tn is a one-step
estimation from xtn+1

with ODE solvers applied in Equation 3.

As indicated in Equation 6, the output of the current state in the traditional consistency model is
exclusively determined by the output of the preceding state. It leads to cumulative errors between the
outputs of adjacent perturbed states being transferred to the initial state along the diffusion trajectory,
and lacks immediate reference to the solution distribution.

4 METHOD

In this section, we construct the latent consistency training paradigm from three perspectives: latent
representation design, conditional guidance, and clustering guidance, as illustrated in Figure 2.

4.1 LATENT REPRESENTATION WITH THE QUANTIZATION CONSTRAINT

For motion representation optimization, we construct the motion autoencoder G = {E ,D} for en-
coding and reconstruction between the raw motion sequence x and the motion latent representation

4
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Figure 2: Approach overview. (a) Motion sequences are encoded through quantization constraints
(QC) and characterized as bounded finite states, analogous to pixel representations. (b) Constructing
conditional diffusion trajectories during the training phase via CFG format online simulation. (c)
Providing the solution distribution reference based on the given textual condition via constructing the
clustering dictionary using the KNN algorithm and employing an attention-like query mechanism.

z. It relies on quantization constraints to ensure boundedness and regularity of z. Specifically, each
dimension of z is sampled from a finite setM of size 2l + 1 as follow,

M = {zi;−1,−j/l, · · · , 0, · · · , j/l, · · · , 1}lj=0. (7)

For brevity, we denote l as the quantization level. It is structurally analogous to the normalized
primitive pixel representation and shares the distinctive characteristics of finite continuous states
and enforced intervals between adjacent states. Our work denotes z ∈ Rn,d as n learnable tokens
with d dimension, aggregating the motion sequence features via attention computation (Vaswani
et al., 2017). The hyperbolic tangent (Tanh) function is employed on the output of the encoder E
to constrain the boundaries of the representation, and then quantize the result by the round operator
R. Furthermore, the gradient of quantized items is simulated by the previous state gradient to back-
propagate the gradient normally, which is known as the straight-through estimator (STE) (Bengio
et al., 2013). The latent representations zm are sampled by the following format,

zm = R
(
l · tanh(E(x))

)
/l. (8)

The proposed approach diverges from earlier quantitative research (Mentzer et al., 2023) by em-
phasizing the robustness of the continuous representation generated through forced clustering via
quantization constraints, whereas prior studies primarily concentrate on the discrete characteristics
of quantization for codebook construction. Due to memory and computational limitations associated
with codebooks, previous work often employs a limited number of candidate states, which constrains
reconstruction performance. In contrast, our method does not rely on a codebook, enabling a greater
number of candidate states to be incorporated intoM, thereby reducing reconstruction error.

The standard optimization target is to reconstruct motion information from z with the decoder D,
i.e., to optimize the l1 smooth error loss,

Lz = Ex
[
d
(
x,D(zm)

)
+ λjd

(
J (x),J (D(zm))

)]
, (9)

where J is a function to transform features such as joint rotations into joint coordinates. λj is the
balancing weight.

4.2 CONDITIONALLY GUIDED CONSISTENCY TRAINING

The diffusion stage begins with the variance preserving schedule (Song et al., 2021b) to perturbed
motion latent representations xϵ = z with perturbation kernel N (xt;α(t)x0, σ

2(t)I),

αt := e−
1
4 t

2(β1−β0)− 1
2 tβ0 , σt :=

√
1− e2α(t). (10)

The consistency model Sθ has been constructed to predict xϵ from perturbed xt in a given PF-ODE
trajectory. To maintain the boundary conditions that Sψ(xϵ, ϵ, c) = xϵ, we employ the same skip

5
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setting for Equation 5 as in LCM (Luo et al., 2023), which parameterized as follow:

Sψ(xt, t, c) :=
η2

(10t)2 + η2
· xt +

10t√
(10t)2 + η2

· S̃ψ(xt, t, c), (11)

where S̃ψ is a transformer-based network and η is a hyperparameter, which is usually set to 0.5.
Following the self-consistency property (as detailed in Equation 4), the model Sψ has to maintain
the consistency of the output at the given perturbed state xt with the previous state x̃t−∆t on the
same ODE trajectory. The latter can be estimated from Equation 3 via the DPM++ solver:

x̃t−∆t ≈ Φ(xΦϵ , xt, xt−∆t) =
σt−∆t

σt
· xt − αt−∆t · (e−ht − 1) · xΦϵ , (12)

where ht := λt−∆t − λt, λt := log(αt/σt), and xΦϵ is the estimation of xϵ under the different
sampling strategies. In particular, xΦϵ can be parameterized as a linear combination of conditional
and unconditional latent presentation prediction following the CFG strategy, i.e.,

xΦϵ (xt, t, c) = (1 + ω) · Fψ(xt, t, c)− ωFψ(xt, t, ∅), (13)

where Fψ(·) is well-trained and xϵ-prediction-based motion diffusion model.

It is worth noting that xϵ can be utilized to simulate Fψ(xt, t, c) as used in the vanilla consistency
training pipeline. Furthermore, Fψ(xt, t, ∅) can be replaced by Sψ(xt, t, ∅) with online updating
based on the additional unconditional loss item. Thus Equation 13 can be rewritten as:

xΦϵ (xt, t, c) = (1 + ω) · xϵ − ωSψ(xt, t, ∅). (14)

We refer to Equation 14 as the conditional trajectory simulation. The optimization objective of the
consistency model Sθ is that,

Lc = Ex,t
[ 1

∆t
d
(
Sψ(xt, t, c),Sψ−(x̃t−∆t, t−∆t, c)

)
︸ ︷︷ ︸

Consistency Loss

+ d
(
Sψ(xt, t, ∅), xϵ

)
︸ ︷︷ ︸

Unconditional Loss

]
,

(15)

where d(x, y) =
√
(x− y)2 + γ2 − γ is pseudo-huber metric, γ is a constant. The target network

Sψ− is updated after each iteration via EMA. More details of consistency training setting as well as
training and inference pseudo-code are shown in the Appendix B.

4.3 CLUSTERING GUIDANCE MODULE

To enhance solution distribution guidance under specific textual conditions, we present the clustering
guidance module. Prior to training, a clustering dictionary is constructed for the training set. Specif-
ically, we employ the K-Nearest Neighbor (KNN) algorithm to classify the embedded features of
each text in the training set into K classes. The clustering centers for each class are utilized as keys
to construct the clustering dictionary, denoted as K ∈ RK,dc , where dc represents the dimension of
the text representations. Subsequently, we calculate the mean values of the corresponding motion
representations within the same text categories to establish the values of the clustering dictionary,
denoted as V ∈ RK,n,dm represent the token count and the dimension of the motion representations.

In the training and inference phases, the clustering dictionary is invoked via an attention-like compu-
tation. For instance, given a text instruction for constructing a query vector, denoted as Q ∈ R1,dc .
The motion clustering guidance representation I ∈ R1,n,dm can be computed in the following form:

I = softmax(Q · KT ) · V. (16)

The clustering guidance provides a more flexible scheme that allows the model to rapidly localize
the solution distribution at a lower query cost. To manage computational complexity, the query
computation is performed only once during a single inference process. For the input x(i) of the i-th
block in the backbone network, we map the query results I into dimensions consistent with the x(i)
via a linear layer and implement feature fusion using an element-wise summation operator.

6
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Table 1: Average inference time for single sample inference. It is first measured on the RTX 4090
GPU, and then aligned on the Tesla V100 GPU using the MLD as an intermediary benchmark.

Method MDM
(Tevet et al., 2023)

MotionDiffuse
(Zhang et al., 2022)

MLD
(Chen et al., 2023)

GraphMotion
(Jin et al., 2023)

ReMoDiffuse
(Zhang et al., 2023b)

T2M-GPT
(Zhang et al., 2023a)

AITS (s) 24.74 14.74 0.217 1.495 0.417 0.598

Method AttT2M
(Zhong et al., 2023)

MoMask
(Guo et al., 2024)

MotionLCM (NFE 1)
(Dai et al., 2024)

Our
NFE 1

Our
NFE 2

Our
NFE 4

AITS (s) 0.717 0.118 0.030 0.031 0.038 0.054

Table 2: Comparisons to state-of-the-art methods on the HumanML3D test set. ”↑” denotes that
higher is better. ”↓” denotes that lower is better. ”→” denotes that results are better if the metric is
closer to the real motion. The gray background indicates the sota method of the current framework.
Bold and underlined indicate the best and second-best results, respectively.

Method
R-Precision ↑

FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MDM 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MotionDiffuse 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MLD 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

GraphMotion 0.504±.003 0.699±.002 0.785±.002 0.116±.007 3.070±.008 9.692±.067 2.766±.096

ReMoDiffuse 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

T2M-GPT 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

AttT2M 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 9.700±.090 2.452±.051

MoMask 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

Our (NFE 1) 0.530±.002 0.726±.002 0.822±.002 0.264±.007 2.888±.007 9.799±.061 2.188±.049

Our (NFE 2) 0.538±.003 0.734±.002 0.828±.002 0.094±.003 2.822±.005 9.595±.075 2.325±.061

Our (NFE 4) 0.537±.003 0.732±.002 0.826±.002 0.060±.003 2.819±.010 9.545±.068 2.571±.051

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our framework on two mainstream benchmarks for text-driven motion gen-
eration tasks, which are the KIT (Plappert et al., 2016) and the HumanML3D (Guo et al., 2022).
The former contains 3,911 motions and their corresponding 6,363 natural language descriptions.
The latter is a large 3D human motion dataset comprising the HumanAct12 (Guo et al., 2020) and
AMASS (Mahmood et al., 2019) datasets, containing 14,616 motions and 44,970 descriptions.

Evaluation Metrics. Consistent with prior research, we evaluate the proposed framework across
four aspects. Motion Quality: we use the Fréchet Inception Distance (FID) to assess the distance
between feature distributions of generated and real data. Condition Matching: we apply R-Precision
to measure the correlation between text descriptions and generated motion sequences, recording the
probabilities of the first matches for k = 1, 2, 3. We then calculate the distance between motions
and texts using the Multi-Modal Distance (MM Dist). Diversity: we assess feature differences
with the Diversity metric and measure generative diversity for the same text input using the Multi-
modality (MM) metric. Computational Burden: we measure inference efficiency using the Average
Inference Time per Sentence (AITS) in seconds. Detailed metrics are shown in the Appendix E.

Implementation Details. The architecture of our network is consistent with the baseline model
MLD (Chen et al., 2023). Specifically, both the encoder E and decoder D contain 7 layers of
transformer blocks with input dimensions 256, and each block contains 4 learnable tokens. The
quantization levels default set l = 256. The consistency model S contains 9 layers of transformer
blocks with input dimensions 512. More training details are shown in the Appendix B.

5.2 COMPARISONS TO STATE-OF-THE-ART METHODS

To illustrate the efficiency advantage of our method, we present the average sampling time of the
proposed approach in comparison to state-of-the-art methods, as shown in Table 1. Additionally,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparisons to state-of-the-art methods on the KIT test set. Marker meaning is consistent
with Table 2.

Method
R-Precision ↑

FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

MDM 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MotionDiffuse 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MLD 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

GraphMotion 0.429±.007 0.648±.006 0.769±.006 0.313±.013 3.076±.022 11.12±.135 3.627±.113

ReMoDiffuse 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

T2M-GPT 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.921±.108 1.570±.0.39

AttT2M 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.043 2.281±.047

MoMask 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

Our (NFE 1) 0.441±.006 0.667±.005 0.792±.006 0.389±.012 2.764±.017 11.197±.102 1.562±.035

Our (NFE 2) 0.445±.005 0.669±.006 0.797±.004 0.389±.016 2.740±.020 11.216±.100 1.517±.030

Our (NFE 4) 0.441±.006 0.665±.005 0.790±.007 0.343±.011 2.739±.015 11.134±.098 1.552±.036
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Figure 3: Comparison with latent consistency distillation frameworks, including the latest proposed
MotionLCM and ablation experiments of the proposed method in distillation mode.

quantitative test results for the HumanML and KIT datasets are provided in Tables 2 and 3, respec-
tively. The results are categorized into three areas: previous diffusion frameworks, other generative
frameworks, and our proposed framework. Consistent with prior research (Tevet et al., 2023; Chen
et al., 2023), we conducted all evaluations 20 times and reported the averages with a 95% confi-
dence interval. Our approach performs comparably to state-of-the-art models. Specifically, for the
HumanML3D dataset, our method surpasses previous state-of-the-art motion diffusion frameworks
(Zhang et al., 2023b) across various metrics, particularly in maintaining high diversity despite in-
creased controllability, while achieving a reduction in inference costs exceeding 70%. Moreover,
our single-step inference performance is competitive, surpassing the baseline model of motion la-
tent diffusion methods (Chen et al., 2023). For recent advances (Guo et al., 2024) in masked trans-
former models, our approach achieves matching performance on FID metric (0.060 vs. 0.045 for
MoMask) with a 50% reduction in inference cost, while showing significant advantages in terms of
controllability and diversity. For the KIT dataset, our method maintains the optimal controllability
performance but is limited in the FID metric. This limitation arises from the encoding method based
on quantization constraints is more sensitive to datasets with smaller sample sizes, resulting in re-
duced motion encoding performance. The MultiModality metric also exhibits challenges with small
datasets but achieves performance comparable to the optimal metric for the Diversity metric (11.134
for our method vs. 11.10 for MotionDiffuse).

5.3 COMPARISONS TO CONSISTENCY DISTILLATION

We are motivated to enhance latent consistency training to achieve performance that matches or
exceeds traditional latent consistency distillation. To this end, we compare our approach with our
concurrent work, MotionLCM (Dai et al., 2024), which adheres to the consistency distillation frame-
work. The test results are presented in Figure 3. Our approach consistently outperforms MotionLCM
in terms of controllability, generation quality, and diversity under the same NFE. It is worth noting
that MotionLCM employs pelvic control, i.e., it requires previous awareness of the real pelvic trajec-
tory bootstrap, even during testing and inference. Considering the differences in detail between the
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Table 4: Ablation study about each part of our method on the HumanML3D test set. Marker meaning
is consistent with Table 2.

Quantization
Constraint

Conditionally
Guided CT

Clustering
Guidance

R-Precision
Top-3 ↑ FID ↓ MM-Dist ↓ Diversity →

(9.503) MModality ↑

✗ ✗ ✗ 0.639±.006 2.651±.021 4.021±.103 8.421±.040 3.909±.040

✓ ✗ ✗ 0.734±.004 0.615±.006 3.351±.008 9.248±.084 3.961±.059

✗ ✓ ✗ 0.778±.005 0.541±.008 3.201±.008 9.012±.093 2.570±.042

✗ ✗ ✓ 0.634±.004 2.596±.010 4.036±.007 9.401±.086 4.063±.065

✓ ✓ ✗ 0.821±.002 0.210±.005 2.886±.009 9.535±.069 2.411±.050

✓ ✗ ✓ 0.733±.004 0.542±.005 3.351±.007 9.234±.055 4.079±.043

✗ ✓ ✓ 0.784±.003 0.454±.007 3.017±.008 9.137±.034 2.346±.078

✓ ✓ ✓ 0.826±.002 0.060±.003 2.819±.010 9.545±.068 2.571±.051

Table 5: Ablation study of different token
counts n on the HumanML3D test set. Marker
meaning is consistent with Table 2.

n
R-Precision

Top-3↑ FID ↓ MModality ↑

1 0.810±.002 0.249±.009 2.935±.067

2 0.804±.003 0.210±.005 2.872±.069

3 0.814±.003 0.136±.005 2.828±.068

4 0.826±.002 0.060±.003 2.571±.051

5 0.826±.002 0.094±.010 2.716±.065

Table 6: Ablation study of different quantization
levels l on the HumanML3D test set. Marker
meaning is consistent with Table 2.

l
R-Precision

Top-3 ↑ FID ↓ MModality ↑

128 0.814±.002 0.113±.004 2.612±.065

256 0.826±.002 0.060±.003 2.571±.051

512 0.825±.003 0.121±.005 2.721±.043

1024 0.812±.003 0.142±.005 2.872±.072

2048 0.819±.002 0.134±.007 2.848±.066

Table 7: Ablation study of different guidance
scales ω on the HumanML3D test set. Marker
meaning is consistent with Table 2.

ω
R-Precision

Top-3↑ FID ↓ MModality ↑

1 0.806±.002 0.250±.008 2.958±.068

2 0.813±.002 0.213±.007 2.689±.046

3 0.820±.003 0.145±.004 2.532±.064

4 0.826±.002 0.060±.003 2.571±.051

5 0.825±.002 0.101±.009 2.442±.066

Table 8: Ablation study of different clustering
counts k on the HumanML3D test set. Marker
meaning is consistent with Table 2.

k
R-Precision

Top-3 ↑ FID ↓ MModality ↑

256 0.823±.002 0.129±.003 2.537±.059

512 0.825±.002 0.130±.004 2.545±.064

1024 0.823±.003 0.113±.004 2.567±.074

2048 0.826±.002 0.060±.003 2.571±.051

4096 0.829±.002 0.098±.003 2.549±.071

two approaches, we implemented latent consistency distillation with quantized representation and
clustering guidance, referred to as MLCD, with results also depicted in Figure 3. The experiments
demonstrate that our proposed enhancement techniques contribute to the consistency distillation.
The advantage of consistency training lies in its independence from the performance of the pre-
trained model, allowing it to exhibit greater potential. Additionally, it avoids the costs associated
with pre-training, reducing both computational and time overhead in the training process.

5.4 ABLATION STUDY

Effectiveness of each component. To further investigate the contributions of the proposed tech-
nique, we conducted ablation experiments for each combination of components within the approach
and presented the results in Table 5. For clarity, when the quantization constraint is denoted as ✗,
it signifies that the model utilizes the variational autoencoder with KL constraints; conversely, our
proposed quantized encoder incorporates quantization constraints. The experiments indicate that the
performance of consistency training significantly declines in the absence of any optimization tech-
niques. Each proposed boosting scheme enhanced the results to varying degrees, with conditionally
guided contributions yielding the highest improvements. The integration of the three techniques
achieved state-of-the-art performance, underscoring the effectiveness of the proposed method.

Ablation study on the different model hyperparameters. For motion encoding, we present ab-
lation experiments with different token counts n and quantization levels l in Table 5 and 6. Unlike
MLD where more tokens are less effective, increasing the token counts in our framework signifi-
cantly improves the generation quality. Experimentally, lower quantization levels l result in a more
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MDM
(AITS 24.74)

MLD
(AITS 0.217)

ReMoDiffuse
(AITS 0.417)

MoMask
(AITS 0.118)

Our
(AITS 0.054)

Figure 4: Qualitative analysis of our model and previous models. We present three texts to guide
the motion visualization results. Our model demonstrates improved motion generation performance,
matching textual conditions with lower inference costs. The color of humans darkens over time.

concise solution space but impact the reconstruction performance of the decoder. At larger token
counts, the conciseness from lower quantization levels is traded off with the reconstruction per-
formance. For the guidance scale ω, we demonstrate the test results in Table 7. We observed that
various levels of the guidance scale contribute positively to generation quality. As the guidance scale
ω increases, controllability gradually improves, with a corresponding decrease in diversity. This is
consistent with previous experience with CFG techniques in diffusion inference. For the number of
clustering categories, we show the ablation experiment results in Table 8. The experiments show
no contribution to generation performance when the clustering category number is small, whereas a
larger number allows for more fine-grained guidance.

5.5 TIME COST AND QUALITATIVE RESULTS

We present a qualitative analysis of our approach with two baselines (MDM and MLD) and two
state-of-the-art models (ReMoDiffuse and MoMask) in Figure 4. While previous works have accu-
rately captured the general instruction semantics, they insufficiently responded to the details such as
orientation. In contrast, our approach enables the generation of fine-grained, high-quality motions
with reduced inference time.

6 CONCLUSION

In this paper, we present a motion latent consistency training framework, designed for fast, high-
fidelity, text-matched motion generation. This framework encodes human motion sequences into
tokens using a quantization constraint, which ensures bounded finite states to optimize the latent
representation. Additionally, we propose a conditionally guided consistency training framework and
a clustering guidance module to enhance conditional controllability and provide supplementary so-
lution distribution references. Our model and its components have been validated through extensive
experiments, demonstrating an optimal trade-off between performance and computational efficiency
with minimal NFE. Our approach serves as a reference for training subsequent latent consistency
training across various tasks.
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This appendix provides additional discussions (Section A), more implementation details (Section
B), more qualitative results (Section C), user study (Section D), and details of evaluation metric
(Section E).

During the review phase, our code is available in the anonymous repository 1.

A ADDITIONAL DISCUSSIONS

A.1 INFERENCE COSTS OF COMPONENTS

We present the overall inference costs in Table 1. To aid readers in evaluating the efficiency of each
component, we measured the average single inference costs: the text encoder is 0.0186 seconds,
the clustering guidance module is 0.0008 seconds, the denoiser is 0.0071 seconds, and the motion
decoder is 0.0042 seconds. Notably, text encoding is relatively time-consuming, and the time cost
associated with clustering guidance during the inference process is minimal.

A.2 POTENTIAL NEGATIVE SOCIETAL IMPACTS

Our work enhances the efficiency of human motion synthesis and may be applied to generate fake
information, which may threaten information security and intellectual property rights. In embodied
intelligence, it may generate irrational robot joint mappings, which may cause property damage and
security risks.

A.3 LIMITATION

Our work still has some directions for improvement: (i) The MLCT follows the diffusion modeling
framework, and its stochastic nature favors diversity, but may sometimes produce undesired results.
Additionally, our frameworks learn distributions directly from data without involving physical laws.
This concern also arises in previous work such as GraphMotion or MLD. (ii) Improving the robust-
ness of latent autoencoders on small datasets is an open question. The performance of the proposed
framework on small datasets needs to be further explored. (iii) Our set of textual instructions focuses
on the annotated data of HumanML3D, but it may be limited, and out-of-domain instructions may
occur resulting in unreasonable sample generation.

A.4 FUTURE WORK

We would like to include more physical constraints in our follow-up work to minimize undesired mo-
tion generation and adopt a more appropriate text extractor for fine-grained motion control. Noting
the rise of large language models, subsequent works could utilize them to assist in understanding
a broader context of semantic instructions. In addition, zero-shot editing for consistency training
based on large language models is also worthy of research.

B MORE IMPLEMENTATION DETAILS

For balance training, we set λj as 10−3. Following the ablation experiments, we set the guidance
scale ω to 4. All the proposed models are trained with the AdamW optimizer with a learning rate of
10−4. For diffusion time horizon [ϵ, T ] intoN−1 sub-intervals, we set ϵ is 0.002, T is 1,N is 25. We
follow the consistency model (Song et al., 2023) to determine ti = (ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ))ρ,

where ρ = 7. In addition, we set the EMA rate to γ = 0.995 in all experiments. For better
reproducibility, we provide pseudo-code for training and inference, as shown in Algorithm 1 and
Algorithm 2, respectively.

1https://anonymous.4open.science/r/Efficient-Text-driven-Motion-Generation-via-Latent-Consistency-
Training-E4EF
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Algorithm 1: Motion Latent Consistency Training.

Input: Train set Γ = {(x(n), c(n))}Nn=1, Motion AutoEncoder G = {E ,D} with initial parameter θ, size
2l + 1 of finite setM, Joint Transform Function J , Motion Consistency Model S with initial
parameter ψ and ψ−, ODE Solver Φ, Timestep Scheduler {ti}Ii=0, Guidance Scale ω, Learning
Ratio η, EMA Ratio γ, Balance Weight λj ;

1 # Stage 1: Motion AutoEncoder Training.
2 repeat
3 Sample motion x ∼ Γ;
4 ze ← E(x); // Motion Encoding.

5 zm ←R
(
l · tanh(ze)

)
/l; // Quantization Constraint.

6 Lz ← Ex
[
d
(
x,D(zm)

)
+ λjd

(
J (x),J (D(zm))

)]
; // Loss.

7 θ ← θ − η∇θLz . // Update θ.
8 until convergence
9 # Stage 2: Motion Consistency Training.

10 repeat
11 Sample motion x and condition c ∼ Γ, noise z ∼ N (0, I), timestep ti, ti−1 ∼ {ti}Ii=0;

12 xϵ ←R
(
l · tanh(E(x))

)
/l; // Motion Encoding.

13 xti ← αti · xϵ + σti · z; // Perturbed Data. αt and σt Detailed in Equ. 10.

14 xΦϵ ← (1 + ω) · xϵ − ωSψ(xti , ti, ∅); // CFG in Consistency Training.

15 xΦϵ ← clamp(xΦϵ ,−1, 1); // Clamp.

16 x̃ti−1 ← Φ(xΦϵ , ti, ti−1); // One-step Numerical Estimation with Equ. 12.

17 Lc ← Ex,t
[

1
ti−ti−1

d
(
Sψ(xti , ti, c),Sψ−(x̃ti−1 , ti−1, c)

)
+ d

(
Sψ(xti , ti, ∅), xϵ

)]
; // Loss.

18 ψ ← ψ − η∇ψLc; // Update ψ.
19 ψ− ← stopgrad(γψ− + (1− γ)ψ). // Update ψ−.
20 until convergence

Algorithm 2: Motion Latent Consistency Inferring.
Input: Motion AutoEncoder G = {E ,D}, Joint Transform Function J , Motion Consistency Model S,

Condition c, Max Number of Function Evaluations N , Timestep Scheduler {ti}Ni=0;
Result: Motion Sequence x.

1 Sample xtN , z ∼ N (0, I);
2 for i=N to 1 do
3 if i != N then
4 xti ← αti · xϵ + σti · z; // Perturbed Data.

5 xpredϵ ← Sψ(xti , ti, c); // Denoising.

6 xpredϵ ← clamp(xpredϵ ,−1, 1); // Clamp.

7 x = D(xt). // Motion Decoding.

C MORE QUALITATIVE RESULT

We show the more qualitative results under the few NFE in Figure 5.

D USER STUDY

Following the configuration in MLD, we set up UserStudy. We randomly generated 30 sets of text
descriptions in the test set of the HumanML3D dataset and used MLCT and MLD to generate the
corresponding text, respectively. We invited 36 participants to provide two comparisons: the MLCT
and the MLD, and the MLCT and the ground truth motion in the dataset. Each set of motions will
be compared for fidelity and condition matching. The results are reported in Figure 6. Our method
outperforms MLD with a low inference cost of 4 NFE and is even competitive with ground truth
results provided by motion capture devices in terms of fidelity and condition matching.
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Figure 5: More samples from our model for text-to-motion synthesis, which was trained on the
HumanML3D dataset. The color of humans darkens over time.
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34.16%

27.91%

37.93%

MLCT vs. GT 
 Condition Matching

 MLCT (Our)  MLD  GroundTruth  Distinctionless

Figure 6: User studies for quantitative comparison. We follow MLD Chen et al. (2023) that utilizes
the force-choice paradigm to ask ”which of the two motions is more realistic?” and ”which of the
two motions corresponds better to the text prompt?” We show the preference rate of MLCT over the
MLD and Ground Truth data.

E DETAILS OF EVALUATION METRIC

We utilize the standard feature extractor (Guo et al., 2022) to calculate the features of motions and
texts. The parameters of metrics are consistent with previous work (Chen et al., 2023; Jin et al.,
2023).

Frechet Inception Distance (FID). FID is the principal metric to evaluate the generation quality,
which examines the similarity between the generated motion distribution and the ground truth mo-
tion distribution. It is formalized as:

FID = ∥µgt − µgen∥2 + Tr(Σgt +Σgen − 2(Σgt · Σgen)
1
2 ), (17)
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where µ and Σ denote the mean and the covariance matrix of motion features, and Tr denotes the
trace of the corresponding matrix.

R-Precision. Given a motion feature and 32 textual descriptions (one of ground truth and the others
are randomly selected mismatched descriptions), we calculate the matching accuracy of text and
motion for Top 1/2/3.

Multimodal Distance (MM-Dist). For N randomly generated motions, we calculate the average
Euclidean distances between motion features and text features. It is formalized as:

MM-Dist =
1

N

N∑
i=1

∥fm,i − ft,i∥, (18)

where fm,i and ft,i denote the feature of i-th motion and text.

Diversity. We calculate the average Euclidean distances between two randomly divided groups of
generated motion features {x}Ni=1 and {x′}Ni=1. It is formalized as:

Diversity =
1

N

N∑
i=1

∥xi − x′i∥. (19)

Multimodality (MModality). For J text descriptions, we randomly sampled two subsets of
the same size N from all motions generated by j-th text descriptions, with motion features
{xj,1, · · · , xj,N} and {x′j,1, · · · , x′j,N}. We calculate the average Euclidean distance formalized
as:

MModality =
1

J ×N

J∑
j=1

N∑
n=1

∥xj,n − x′j,n∥. (20)

Average Inference Time per Sentence (AITS). We repeatedly test N times for generating the
longest motion, and report the average inference time.
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