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Figure 1: Our method can robustly grasp 500+ unseen objects with various shapes, materials, and
masses, including challenging thin, small, heavy, deformable, or transparent objects (a). It can keep
robust grasping under unexpected collision, imprecise object observation, or external forces (b).

Abstract: The ability to robustly grasp a variety of objects is essential for dexter-
ous robots. In this paper, we present a framework for zero-shot dynamic dexterous
grasping using single-view visual inputs, designed to be resilient to various dis-
turbances. Our approach utilizes a hand-centric object shape representation based
on dynamic distance vectors between finger joints and object surfaces. This rep-
resentation captures the local shape around potential contact regions rather than
focusing on detailed global object geometry, thereby enhancing generalization to
shape variations and uncertainties. To address perception limitations, we integrate
a privileged teacher policy with a mixed curriculum learning approach, allowing
the student policy to effectively distill grasping capabilities and explore for adap-
tation to disturbances. Trained in simulation, our method achieves success rates
of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects,
demonstrating remarkable generalization. Quantitative and qualitative results val-
idate the robustness of our policy against various disturbances. Additional results
and supplementary videos are provided on our project website.
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1 Introduction

Grasping is a fundamental capability in robotic manipulation, forming the foundation for higher-
level tasks such as pick-and-place, articulating hinged objects, tool use, and in-hand manipulation.
Dexterous hands, with their high degrees of freedom, enable more flexible and adaptive grasping.
Realizing this potential, however, requires precise closed-loop control with real-time feedback to
ensure robustness under environmental variations and disturbances. Previous research on dexterous
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grasping has mainly focused on settings with fully observable or pre-scanned known objects [1, 2],
human-to-robot demonstration transfer [3—5], or the execution of predicted static grasping poses or
fingertip positions [6—8]. However, these approaches often rely on pre-scanned objects or object-
specific human demonstrations, which limit their efficient deployment to novel objects. Moreover,
grasping strategies based on static pose execution limit real-time adaptability, resulting in reduced
robustness to disturbances, especially when predefined poses become infeasible.

In this paper, we propose a framework for zero-shot dexterous grasping of diverse objects using
single-view visual inputs. Similar to human capabilities, our system can adapt in real-time to dis-
turbances such as unexpected collisions arise from noisy observations or external perturbations.
Our approach utilizes a hand-centric object shape representation with dynamic distance vectors be-
tween finger joints and object surfaces, focusing on potential interactions rather than global shapes.
This design improves robustness to shape variations and perceptual uncertainty caused by limited
viewpoints. Robust adaptation to disturbances requires continuous observation feedback, yet per-
ception during grasping is often constrained by occlusion and the lack of tactile sensing. We address
this challenge through a two-step training paradigm: first training a teacher policy using privileged
visual-tactile information, then employing a mixed curriculum learning approach to train a student
policy. The curriculum starts with imitation learning to efficiently distill the core grasping behaviors
of the teacher policy, and gradually transitions to reinforcement learning to promote exploration of
adaptation to disturbances. During student policy training, observation noise and dynamic random-
ization are introduced to simulate real-world perturbations and encourage robust adaptation.

We conduct comprehensive experiments to evaluate the generalization and robustness of our method.
Our approach shows strong generalizability in grasping a wide range of novel objects with random
poses on a tabletop. Trained entirely in simulation, it achieves success rates of 97.0% on 247,786
simulated objects and 94.6% on 512 real-world objects. Furthermore, our method facilitates real-
time adaptation during grasping, exhibiting superior robustness against disturbances such as un-
expected external forces. An ablation study further confirms the importance of key components,
validating their contributions to overall performance.

In summary, our contributions are 1) A robust dexterous grasping framework designed for general
objects, equipped with real-time adaptation capabilities to handle disturbances effectively. 2) A
sparse hand-centric object shape representation tailored for real-world dexterous grasping, which
captures interaction potential and facilitates robustness against shape variations and perceptual un-
certainty. 3) A mixed curriculum learning method that integrates imitation learning for efficient
grasping behavior distillation and reinforcement learning for adaptive motion exploration, under
limited perception. 4) Our method, trained in simulation, demonstrates exceptional generalization
across 247,786 unseen objects in simulation and 512 unseen objects on a real robot. It also ex-
hibits robust adaptive motions in response to disturbances such as external forces. Additionally, we
qualitatively showcase the practical applications enabled by our robust grasping capability.

2 Related Work

We list our differences with existing dexterous grasping methods in Tab. 1 for a better comparison.

Pose-based Dexterous Grasping. Dexterous grasping is a long-standing research topic [9-11].
Traditional methods typically predict contact points or fingertip positions by optimizing analytical
metrics for stable grasping, such as the differentiable approximations of shape closure [2] and force
closure [12] metrics. These works mostly require accurate object models [9, 13—15] which limits
their generalization ability in real-world deployment. Recently, some works have explored dealing
with object shape uncertainty with compliant control algorithms [7, 16—19]. They usually utilize
analytical dynamic models to calculate joint torque commands according to static target poses, lim-
iting their robustness to unmodeled disturbances such as inaccurate joint actuator models or external
forces. Instead of optimizing grasping poses or fingertip positions, some other methods learn to pre-
dict grasping poses from datasets [8, 20]. Overall, these methods usually focus on generating static
grasping poses and executing them in an open-loop manner without adaptation, which limits hand



Table 1: Comparison with other dexterous grasping works

Single-view  Dynamic Zero-shot Unseen Object  Unseen Object

Method Observation  Grasping  Generalization Number (Sim) Number (Real)
GraspXL [35] X v v 503,409 -
Agarwal et al.[37] X v X 2 6
SpringGrasp [7] v X v - 14
DextrAH-G [38] v v v - 30
DexGraspNet2.0 [8] v X v 1319 32

Ours v v v 247,786 512

dexterity and robustness to external disturbances, as the hand cannot adaptively change poses when
the object moves unexpectedly. In contrast, our method predicts real-time joint actions according to
current status, leading to adaptive motions to disturbances and more robust grasping.

Dynamic Dexterous Grasping. Rather than predicting static grasping poses, recent works explore
real-time joint action prediction for dynamic dexterous grasping. Many of these approaches leverage
human demonstrations [3-5, 21, 22] or robot demonstrations [23—-27] to learn such actions. How-
ever, collecting real-world data remains costly, limiting generalization to out-of-distribution scenar-
ios. Reinforcement learning (RL) has shown promise in handling disturbances across environments,
particularly in robot locomotion [28-30]. Through exploration in simulation under disturbances,
policies can learn dynamic actions and perform real-time adaptation. However, due to complex
hand-object interactions that are challenging to explore and simulate, current RL-based dexterous
grasping methods are often limited in specific settings (e.g., category-level generalization [31]) and
suffer from sim-to-real gaps. Overall, most RL-based dynamic dexterous grasping methods are still
confined to simulation [32-36]. Some RL-based methods leverage human data to simplify explo-
ration and enable deployment on real robots. For example, [37-39] simplify RL exploration with a
lower-dimensional action space using PCA components derived from human grasping data, limiting
hand dexterity as admitted in their papers. [37] relies on a multi-camera system with only category-
level generalization, while [38, 39] use analytical dynamic models for control commands, limiting
adaptation to unmodeled disturbances. Huang et al. [1] leverage human grasping poses while relying
on known object meshes. Overall, requirements for specific human data, accurate dynamic models,
and known objects limit their potential to scale up or adapt to unmodeled disturbances. Our method,
in contrast, can be deployed on real robots with a single camera, achieving zero-shot generalization
to 512 unseen real-world objects without any human data or known object meshes, while performing
real-time proprioception-based adaptive motions to external disturbances.

3 Method

We aim to tackle dexterous grasping of various unseen objects using single-view visual perception.
Given a single-view object point cloud, we control a robotic arm with a dexterous hand to grasp the
object while adapting to disturbances. Fig. 2 illustrates our pipeline. We first train a teacher policy
using reinforcement learning (RL) with access to real-time, fully observable object point clouds and
hand-object contacts and impulses, noted as a visual-tactile policy. Then we train a student policy
with perception available on real robots, including single-view point clouds and noisy joint states
without tactile perception. The student policy training is driven by a mixed curriculum learning
method, starting with imitation learning (IL) to efficiently distill the teacher’s grasping capabilities,
then gradually transitioning to RL to explore for adaptive motions to noises and disturbances. Both
policies output target hand and arm joint positions for low-level PD controllers.

3.1 Hand-centric Object Shape Representation

Effectively capturing shape features that generalize for grasping diverse
objects remains a fundamental challenge, especially under shape uncer-
tainty arising from limited viewpoints. To address this, we introduce a
sparse hand-centric object representation. As shown in Fig. 3, we con-  Figure 3: Hand-centric
struct a 51-dimensional vector by concatenating the distance vectors from Shape Representation
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Figure 2: Framework overview. We first train a teacher policy with privileged visual-tactile per-
ception driven by RL. Then we train a student policy with single-view object point clouds and noisy
proprioception, driven by our mixed curriculum learning method, which starts with IL for efficient
teacher policy distillation, and gradually transitions to RL for exploration under disturbances.

each finger joint (including the wrist and fingertips) to their nearest points from the object point
clouds. This compact representation efficiently encodes interaction-relevant local shape features in-
stead of fine-grained global geometry, which filters out irrelevant shape variations in non-contact
areas, facilitates generalization to novel object shapes, and improves robustness under perceptual
uncertainty. Its effectiveness is verified in Sec. 4.4.

3.2 Visual-tactile Policy Training

We first train a policy with RL to control the robot arm and dexterous hand, which has access to
real-time full object point clouds and hand-object binary contacts and impulses of each finger link.

Observation. The observation space of the policy is represented with s; = (a;_1, q;, O, ¢;), where
t is the current time step, a,_; is the action of the previous step, q, is the current arm and finger
joint angles, Oy is the real-time fully observable object point cloud, ¢; = {b;,f;} includes the
binary contact states b; and impulses f; of each finger link with the object. We omit the notation “;”
for simplicity in this section. Given a, q and O, we extract the following features with a functlon
®(a,q,0) = (d,h, T, Aq). Specifically, d is the vector from each finger joint to the closest point
of O. h is the vertical distance of each arm and hand link to the table. T is the wrist orientation and
position. Aq is the tracking error, which means the difference between current joint angles q, and
previous action a,_;. The extracted features are then fed to the policy together with q and c.

Reward Design. We design the reward function to encourage robust and safe grasping with the
formulation 7 = rgis + Tcontact T Theight T Treg-

The distance reward rg;s encourages the hand to approach the object by penalizing the link-object
distances with 74 = — S.7, w? - ||d;|[2, where w is the weights and L is the number of hand links.

The contact reward rcontact promotes desired hand-object contacts while penalizing undesired con-
tacts, including self-collision, robot-table collision, and arm- object collision, with the formulation
Teontaet = iq bi(w? +w!f2) = ST by (w4 wl " f1). wed ws, w!? w!* are the weights for de-
sired and undesired binary contact states and impulses, b; and b; are the desned binary contact states
of the 74, hand link and undesired binary contact states of the ji, hand or arm link, f7 and f}* are
the magnitude of desired hand impulses on the 7;; link and undesired hand or arm impulses on the

J¢n link, and M is the number of arm links.

The height reward ryeigne promotes table collision avoidance by discouraging the robot links from
excessively approaching the table, achieved by penalizing link-table distances when they are smaller
than 2 cm with ryeign = 31wl - log(min{h;,0.02}), where w! is the weight and h; is the vertical

distance to the table of the i, link.



The regularization reward r., penalizes unnecessary object motion and extreme robot movements
With e = wh || Th[2 4 wo![To||2 + wi|[lo|| + w,||d, ||, Where wy,, w,, wy, w, are the weights, Tj, and
T, are the linear and angular velocities of the hand and object, 1, is the object displacement, and q,
is the arm joint velocities.

All weight values can be found in SupMat.

3.3 Student Policy Training with Limited Perception

With the teacher policy trained using real-time visual-tactile perception, we further train a student
policy with single-view object point clouds and noisy proprioception without tactile information.
We randomize the friction coefficients and proprioception of robot joint angles when training the
student policy. Besides, we also randomize the PD gains of the low-level joint controllers to simulate
unstable hardware actuator stiffness and damping, potentially caused by factors like overheating
(especially for finger joint actuators). All randomization parameters can be found in SupMat.

Observation. The visual-tactile policy requires real-time fully observable object point clouds Oy
and contact states ¢;, which are privileged information inaccessible on the real robots. For hardware
deployment, the student policy should utilize the single-view object point cloud O, and noisy joint
state proprioception ¢,. Specifically, we utilize an LSTM-based encoder to reconstruct the contact
states ¢; = {Bt, f't} from joint state and action histories. Intuitively, the actions correspond to the
joint actuator torques, while the misalignment between the actuator torques and joint state changes
can indicate external forces induced by contacts.

Mixed Curriculum Learning. While the teacher policy focuses on stable grasping with visual-
tactile perception, the student policy must learn to grasp and adapt to disturbances with limited
perception. To deal with this challenge, we propose a mixed curriculum learning approach. The
training begins with IL using two losses: a contact reconstruction 1loss L. = w;.(] |f)t —by|]? +
||ft7ft ||?) to reconstruct contacts ¢;, and an action imitation 10ss Lye; = Wt || —a||? to mimic the
teacher policy actions. This can help the student policy efficiently distill the grasping capability of
the teacher policy. Training then gradually transitions to RL by decreasing w,.; with a factor A and
increasing RL rewards by 1 — A (keeping w.. fixed). This transition encourages the student policy to
keep exploration for adaptation to disturbances from observation noises and actuator inaccuracies.
The student policy network is initialized with teacher policy weights to accelerate training.

4 Experiments

4.1 Experimental Setup

Hardware Setup. The robot platform used in this work
comprises a URS [40] robot arm paired with an Allegro [41]
dexterous robot hand. We utilize a top-view RealSense
D435i camera. An overview of the hardware setup is shown
in Fig. 4. The hand and arm are initialized with a partially
opened hand heading to object centers from 25cm away,
and enclosing the objects with the fingers. The policy runs
at 5 Hz as a high-level controller, while the low-level PD Dexterous

controllers for the hand and arm operate at 100 Hz. More R"Z';l‘e;*;“d:
details are explained in SupMat.

Top-view RGBD
Camera:
RealSense D435i

Robot Arm:
URS

A

Center of object
. e . . . . . . . . point clouds
Training Details. Our policy is trained in Raisim [42] sim-

ulation, using 35 objects including 3D assets from [43] and
scanned objects from [1]. Figure 4: Hardware setup

Metric. Since our focus is on robust grasping, we use the grasping success rate (Suc. Rate) as our
evaluation metric. Specifically, a grasp is considered successful only if the object can be lifted to a
height of 0.1 meters and remains stable without falling for at least 5 seconds.



Table 2: Large-scale evaluation (Sim)

Size | Small Medium  Large Total
Object Number ‘ 38,493 100,435 108,858 247,786
Success Rate \ 0.949 0.972 0.976 0.970

Table 3: Large-scale evaluation (Real)

Category | Suc. Rate | Category | Suc. Rate | Category | Suc. Rate | Category | Suc. Rate
Picnic Models 0.902 Building Blocks 0.963 Fruit & Vegetable Models 0.962 Tool Models 0.875
Animal Models 0.907 Toy Cars 0.979 Wooden Models 0.940 Snacks 0.974
Bottles & Boxes 0.970 Real Tools 0.893 Deformable Objects 0.957 Other Daily Objects 0.971
Average ‘ 0.946

4.2 Large Scale Evaluation

To demonstrate the strong generalization ability of our method, we evaluate it using 512 real objects
and 247,786 simulated objects, which are all unseen during training.

Simulation Evaluation. We begin by evaluating our method on objects from the Objaverse [44]
dataset. Following [35], we scale the objects into three sizes: small, medium, and large. Objects
that are infeasible to grasp from a tabletop setting (i.e., diameter < lcm, height < 2cm, or width >
15cm) are excluded, resulting in a final test set of 247,786 objects. Preprocessing details are provided
in SupMat. Objects are randomly placed on the table for grasping. As shown in Tab. 2, our method
achieves an overall success rate of 0.970, with consistently high performance across different object
sizes. Notably, while grasping smaller objects is more challenging due to the relatively large link
dimensions of the Allegro hand, our method still achieves a 0.949 success rate on small objects.
These results highlight the strong generalization capability of our approach across diverse object
shapes and scales, which we attribute to the proposed sparse hand-centric shape representation.

Hardware Evaluation. We further assess the effectiveness of our method in grasping a wide range
of novel real-world objects. To this end, we collect a set of 512 objects from different categories,
with variations in shape, weight (7 g to 610 g), material (e.g., plastic, styrofoam, rubber, wood,
glass, paper, metal, cloth, sponge), and size (from 3.5x3.5x1.5 cm to 40x20x13 cm). Detailed
object specifications are provided in SupMat. Each object is evaluated in three random table-top
poses. The average success rate per category is reported in Tab. 3. Using only single-view depth
observation without any prior knowledge of the objects, our method achieves an overall success
rate of 0.946. Notably, despite being trained exclusively on rigid objects in simulation, the learned
policy generalizes to deformable objects, demonstrating robust sim-to-real transfer. We attribute this
generalization to the reconstructed tactile information along finger links, which enables adaptive
finger closure until a stable force-closure grasp is formed. Most failure cases are caused by two
factors: noisy point cloud observations for thin or small objects, and insufficient finger torques for
heavy or slippery objects due to hardware limitations of the actuators.

4.3 Method Comparison

One key advantage of RL-based grasping is its real-time adaptation ability, especially under distur-
bances. To verify this, we first evaluate our method in real-world using 30 3D-printed ShapeNet [45]
objects (shown in SupMat), compared with the following baselines: 1) a naive controller that moves
the hand above the objects and gradually closes the fingers. 2) DexGraspNet [2] (with an extra ta-
ble collision penalty term), with the optimized grasping poses executed by PD controllers. We also
evaluate our method with two state-of-the-art methods using their settings and objects: 3) Spring-
Grasp [7], an optimization-based compliant grasping method. 4) DextrAH-G [38], an RL-based
dynamic grasping method. To further verify our robustness to disturbances, we compare our method
with DexGraspNet under external forces in both simulation and real-world settings. Each object is
tested across five random poses. More details of the baselines are in SupMat.



Table 4: Method comparison (Real)

Method Suc. Rate | Method Suc. Rate | Method Suc. Rate | Method Suc. Rate
Naive baseline 0.633 | DexGraspNet [2] 0.607 | SpringGrasp [7] 0.771 | DextrAH-G [38] 0.927
Ours 0.920 | Ours 0.920 | Ours 0.957 | Ours 0.964

Table 5: Robustness to external forces (Sim & Real)

Method | No Disturbance 2.5 N Force | Method | No Disturbance 2.5 N Force
DexGraspNet [2] (Sim) | 0.667 0.553 | DexGraspNet [2] (Real) | 0.607 0.480
Ours (Sim) | 0.953 0920 | Ours (Real) | 0.920 0.840

Real-world Comparison without External Disturbances. We first compare the real-world perfor-
mance of different methods without explicit external disturbances. It is worth noting, however, that
hardware experiments inherently involve disturbances due to noisy joint states, object observations,
and actuator inaccuracies (e.g., caused by overheating). Results are shown in Tab. 4. Our method
consistently outperforms all baselines, regardless of whether being evaluated on our or their settings
and object sets, highlighting the enhanced robustness of our RL-based policy. We argue that robust
grasping requires real-time adaptive control over finger selection, timing, and joint torques to accom-
modate diverse object properties, which are effectively learnt by our RL-based policy. In contrast,
the naive baseline and DexGraspNet often fail due to limited adaptability, particularly with thin,
smooth, or round objects, and may knock objects over due to misaligned finger contact. Spring-
Grasp optimizes fingertip positions, initial hand poses, and controller gains, allowing the hand to
grasp the object compliantly. However, it still lacks the capability to adjust grasping poses according
to real-time status, leading to lower performance compared with our method. Among all baselines,
DextrAH-G achieves the closest performance to ours, benefiting from its RL-based dynamic grasp-
ing. However, as acknowledged in their paper, its PCA-constrained action space restricts dexterity,
and its model-based table collision avoidance reduces performance on thin objects. In contrast, our
method preserves the full degree-of-freedom of the action space and actively handles rather than
rigidly avoids table contacts, leading to improved performance for thin objects as Fig. 1 shows.

Robustness to External Forces. We further evaluate the robustness of our method against external
forces applied to objects after they have been grasped, comparing the performance with DexGrasp-
Net. In simulation, we apply an external force of 2.5 N with random directions at a random point on
the object. In the hardware experiment, we place a 250 g weight at a randomly selected location on
the object to introduce a 2.5 N downward force as a controlled external disturbance. As shown in
Tab. 5, our method achieves superior success rates with smaller performance degradation under dis-
turbances in both simulation and real-world environments, indicating enhanced robustness against
external forces. We argue the robustness comes from our policy’s ability to consistently generate
stable force-closure grasps and adapt in real time to in-hand object slips. This capability is rein-
forced through randomized PD gains and friction coefficients during training, requiring the student
policy to maintain stable grasps under dynamic disturbances. In contrast, the baseline struggles to
consistently achieve robust force-closure grasps and perform real-time adaptation, especially for thin
objects. We observe that heavier objects are more susceptible to external forces for both methods,
especially in hardware experiments due to the physical torque limits of the finger joint actuators.

4.4 Ablation and Analysis

We conduct an ablation study to assess the impact of individual components in both simulation and
the real world. We use the same 30 ShapeNet objects as in Sec. 4.3, with 5 random poses per object.

Simulation Ablation. In simulation, we first evaluate the effectiveness of our mixed curriculum
learning approach by comparing against the following variants that train the student policy: 1) with-
out the RL rewards (W.o. RL rewards), 2) without the action imitation loss (W.o. IL loss), 3) using
a fixed ratio for the RL rewards and imitation loss (W.0. Curriculum). Secondly, to examine the
necessity of a privileged teacher policy, we include a variant that directly trains the student policy



Table 6: Ablation (Sim & Real)

\ Setting | Suc. Rate | Setting | Success Rate
W.o. RL rewards 0.907 W.o. IL loss 0.933
Sim | W.o. Curriculum 0.913 W.o. Priv. learning 0.773
| Ours | 0953 | Teacherpolicy | 0.960
Real | Ours | 0920 | FullPointCloud | 0.933

from scratch using only RL rewards and contact reconstruction loss (W.o. Priv. learning). Finally,
we compare our student policy with the teacher policy to validate its effectiveness (Teacher policy).

The results are presented in Tab. 6. Compared to our full method, the variants without RL re-
wards and curriculum exhibit a similar decline in performance, underscoring the necessity of the
exploration enabled by RL. The marginally lower success rate achieved without IL loss indicates
its contribution to student policy training. Overall, starting with a larger IL loss facilitates a rapid
distillation of the grasping capabilities from the teacher policy, while subsequently increasing RL
rewards encourages effective exploration for adaptation to disturbances. This illustrates the effec-
tiveness of our mixed curriculum learning approach. Training the student policy from scratch (W.o.
Priv. learning) yields substantially lower performance and increased sensitivity to hyperparameters,
underscoring the importance of the privileged teacher in providing effective initialization and super-
vision during early training stages. The comparable success rates between our student and teacher
policies further validate the effectiveness of our mixed curriculum learning method.

Real-world Ablation. We further compare our original setting with a variant that utilizes real-
time, fully observable object point clouds in the real world (Full Point Cloud), which we get from
FoundationPose [46] along with known object meshes. In contrast, our approach uses single-view
object point clouds captured by the camera without object meshes, which can be directly applied
to novel objects for zero-shot generalization. The results are shown in Tab. 6, where the highly
comparable performances between the two settings highlight the effectiveness of our sparse object-
centric representation in extracting meaningful shape features from single-view object observations.

4.5 Qualitative Results

We qualitatively demonstrate the generalization and robustness of our method in Fig. 1. Our pol-
icy can deal with various challenging objects, and adaptively adjust grasping poses in response to
unexpected collisions caused by noisy joint states, inaccurate object observations, or actuator impre-
cision. It also effectively compensates for disturbances and maintains stable grasps under significant
external forces. Additional qualitative results are provided in the Suppl. Video, where we further
showcase various applications enabled by our robust grasping capability with different modules in-
tegrated, such as grasping in cluttered scenes with a segmentation model [47], task-driven grasping
with a VLM planner [48], and grasping moving objects with an object tracking module [49].

5 Conclusion

In this paper, we propose an RL-based framework for robust dexterous grasping from single-view
perception. Our method exhibits strong generalization capability, achieving success rates of 94.6%
on 512 real-world objects and 97.0% on 247,786 simulated objects. Compared to existing methods,
our RL-based dynamic grasping approach exhibits superior robustness and adaptability, especially
under randomly applied external forces and inherent internal disturbances such as observation noises
or actuator inaccuracies, which can lead to unexpected collisions and require pose adaptation. We
show that a sparse, hand-centric object shape representation enables effective generalization across
diverse object geometries under perceptual uncertainty. Furthermore, our mixed curriculum learning
framework facilitates the policy to learn real-time adaptive motions under varying disturbances with
limited perception. These components together constitute a robust, low-level grasping controller,
providing the foundation for diverse downstream applications as demonstrated in our Suppl. Video.



6 Limitations

Although our method demonstrates strong generalization and robustness across a wide range of
objects, it still has several limitations that we plan to address in future work. First, despite its
capability to grasp objects with diverse sizes and physical properties, the large link dimensions of
the Allegro Hand make it difficult to grasp very small objects (e.g., with diameters less than 1.5 cm).
Solving this limitation relies on a smaller dexterous robot hand with a similar scale to the human
hand. Second, although our policy can grasp moving objects as demonstrated in the Suppl. Video,
it struggles in highly dynamic environments such as catching a flying object. This limitation could
potentially be addressed by incorporating an explicit object motion prediction module. Finally,
our framework focuses specifically on robust grasping without addressing non-grasping interactions
like pushing objects, which are also essential in many manipulation tasks. Such interactions may be
enabled in the future through task-specific reward designs and policy training.
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A Experiment Details

A.1 Large Scale Object Details

In simulation, we utilize the Objaverse [44] objects processed to graspable sizes by [35], which
contain different scales: small, medium, and large. Furthermore, as [35] focuses on grasping motion
generation without hand-table collision, we filter out the objects that are not feasible to be grasped
from the table (diameter < 1cm, height < 2cm, or width > 15cm), leading to 247,786 objects in total.

For hardware experiments, we choose 512 objects from 12 categories as explained in the main paper,
which contains objects with various shapes, materials, masses, and sizes. The objects are visualized
in Fig. 5, and the physical attributes of each category are listed in Tab. 7.

Y 10 WM v

;‘@.eaua i Jo®
Jlene g | se0@@Ue
d19eB $9c e

63 0000 .@’)‘0".6

Figure 5: Real objects used for large-scale evaluation

Table 7: Physical Attributes of Real Objects

Category | Num. | Mass (g) | Scale (mm) | Material
Picnic Models 41 9-257 50%50*40 - 280*170*100 Plastic
Building Blocks 54 10-180 | 40*30*30 - 200%200*100 Plastic/Styrofoam
Fruit & Vegetable Models 35 7-196 70%50*50 - 330*80*80 Plastic/Styrofoam/Rubber
Tool Models 16 20-270 | 70*40%*15 - 400*140*130 Plastic
Animal Models 18 26-165 | 100*50*30 - 230*120*100 Rubber
Toy Cars 16 40-117 90*35*30 - 110*100*70 Plastic
Wooden Models 78 25-218 50%30%30 - 170*90*90 Wood
Snacks 38 22-570 60*40*40 - 350*130*70 -
Bottles & Boxes 67 15-550 35%35%*30 - 240%170*55 Plastic/Glass/Paper
Real Tools 50 16-610 40*40*30 - 130*100*90 Metal/Plastic/Rubber
Deformable Objects 31 8-142 70*50%50 - 220%180*90 | Rubber/Cloth/Sponge/Styrofoam
Other Daily Objects 68 19-454 | 40*30*30 - 270*130*100 -
Total | 512 | 7-610 | 35*30%15-400%200%130 | -

A.2 Baseline Details

DexGraspNet. Since DexGraspNet optimizes grasping poses without considering tables, we in-
corporate a table collision loss to generate collision-free poses for a fair comparison. Specifically,
given the object pose and corresponding table surface with height A4y, we add a loss term with the
formulation l;qpe = Efio |htavte — hil|? - Th,,,,.>h,» Where h; is the height of the 4, hand joints
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and N is the number of joints (including virtual joints for fingertips). To ensure a fair comparison,
the initial hand pose for DexGraspNet is set identically to that used in our method. As DexGraspNet
leverages full object point clouds, we provide such inputs by using known object meshes and pose
estimations from FoundationPose [46] during its hardware experiments. In contrast, our method
is evaluated with our original setting using only single-view point clouds without access to object
meshes. The 3D-printed ShapeNet [45] objects used for the evaluation are shown in Fig. 6.

Figure 6: Objects used for comparisons and ablation

SpringGrasp. Since the exact objects used in SpringGrasp [7] are unavailable, we instead employ
highly similar alternatives, as illustrated in Fig. 7. Given that both our method and SpringGrasp
rely solely on depth information without RGB input, differences in object textures have minimal
impact on performance. In fact, the objects used in our evaluation may pose greater challenges
due to reflective surfaces or transparent materials, which introduce additional noise in the depth
observations. Focusing on robust grasping, we compare the success rates based on strictly successful
grasps. Following a consistent evaluation criterion, we label partially successful grasps defined in
SpringGrasp (objects are lifted but subsequently slip or slide) as failures for both methods.

Figure 7: Objects used for comparison with SpringGrasp [7] (a) and in their original experiment (b).
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B Implementation Details

B.1 Initial Pose

We propose a simple yet effective method to initialize the arm and hand joints (see Fig. 4), which are
easily reachable via inverse kinematics (IK) planning since the hand does not interact with the object
during initialization. The hand is initialized with partially open fingers using fixed joint angles q, =
[0.2,0.6,0.2,0.5,0.2, 0.6,0.2, 0.5, 0.2, 0.6, 0.2, 0.5, 1.3, 0.0, -0.1, 0.2]. To initialize the arm pose,
we define a heading direction x orthogonal to the palm (red arrow), pointing from the camera toward
the object point cloud center ¢. This allows the hand to approach the object from a direction with
minimal shape uncertainty. Next, we define a palm direction y (green arrow) aligned with the final
link of the arm. It is set to be orthogonal to x while minimizing the projection length of the object
point cloud along y. This helps the hand enclose the object from a narrow edge, which facilitates
easier grasping. The 6D wrist pose is finally defined by x, y, and an offset 25cm from ¢ along x,
which is used to initialize the arm joints by an Inverse Kinematics (IK) solver [50].

B.2 Object Point Cloud

To extract object point clouds from a continuous visual stream, we first segment the object before
grasping using SAM [47], obtaining an initial, unoccluded point cloud. During grasping, we esti-
mate the real-time point cloud under hand occlusion by tracking object pose changes with Cutie [51]
and BundleTrack [49]. To mitigate depth noise, particularly for transparent or reflective objects, we
apply outlier removal and per-frame smoothing to the initial point cloud over the first 50 frames.

B.3 Action Space

During grasping, our policy predicts both arm and hand target joint angles as actions. When the
objects are grasped during deployment, we set fixed target angles for the arm joints to lift the objects.

B.4 Domain Randomization

As explained in the main paper, we randomize the environment parameters when training the student
policy for robust sim-to-real transfer. The randomized parameters are listed in Tab. 8.

Table 8: Domain randomization parameters.

Variable | Randomization
Friction Coefficient {0.5,0.6,0.7,0.8,0.9}
Hand P Gain [0.9, 1.1] * 600
Hand D Gain [0.9, 1.1] * 20
Arm P Gain [0.5, 1.05] * 1.6e4
Arm D Gain [0.5, 1.05] * 600
Hand Joint Angles [-0.02, +0.02]rad + GT
Arm Joint Angles [-0.005, +0.005]rad + GT
Arm/Hand Link Position [-0.01, +0.01]m + GT
Arm/Hand Link Orientation [-0.02, +0.02]rad + GT

B.5 Training Details

Using a single NVIDIA RTX 3090 GPU and 12 CPU cores, the training of the teacher and student
policies takes approximately 30 hours in total. An overview of important parameters and reward
function weights are provided in Tab. 9 and Tab. 10.
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Table 9: Hyperparameters

Hyperparameters PPO | Value
Epochs 1.5e4
Steps per epoch 70
Environment steps per episode | 63
Batch size 2000
Updates per epoch 20
Simulation timestep 0.01s
Simulation steps per action 20
Discount factor ~ 0.996
Max. gradient norm 0.5
Value loss coefficient 0.5
Entropy coefficient 0.0
Hidden units 128
Hidden layers 2

Table 10: Weights of the Reward Function

Weights | Value
w® (fingertip) 2.0
w? (the other hand links) | 0.5
w (fingertip) 6.0
w°® (the other hand links) | 1.5
w'® (fingertip) 4.0
w’? (the other hand links) | 1.0
we -1.0
wlt -0.5
wh -0.05
Wh -1.0
W -15.0
wy -5.0
Wq -1.0
Wre 1.0
Wact 1.0
1.0 - iter_num/2000
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