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Abstract

Ensuring the safety of large language models (LLMs) is crucial as they become
increasingly integrated into real-world applications. Despite advances in training
and fine-tuning techniques, LLMs remain vulnerable to generating harmful or
unsafe content, especially under adversarial prompts. In this work, we investigate
the internal attention mechanisms that detect harmful content and refusal behaviors
in LLMs. We introduce systematic methods to identify detection heads, which are
highly sensitive to harmful prompts, and refusal heads, which contribute to the
model’s tendency to reject unsafe requests. Building on these insights, we introduce
the Detection—Refusal Advanced LLM (DRefA), an enhanced model in which
detection and refusal heads are scaled to improve safety. Safety is quantified as the
proportion of responses judged safe by L1ama-Guard-3-8B, which we refer to as
the safety rate. DRefA achieves substantial robustness gains—for instance, the
safety rate of LLaMA3 increases from 77% to 99% under GCG attacks and from
15% to 99% under ADV-LLM attacks. Our findings provide mechanistic insights
into the structural components of LLM safety and offer practical interventions to
mitigate harmful outputs, contributing to the development of more trustworthy Al
systems.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, enabling diverse
applications ranging from conversational agents to content generation. However, the increasing
deployment of LLLMs has raised significant concerns regarding the generation of harmful, biased,
or otherwise unsafe content [Weidinger et al.,[2021]. Such outputs not only risk causing real-world
harm but also undermine user trust and pose ethical challenges for Al developers and society at large.
Consequently, ensuring the safety and reliability of LLMs is a critical and active area of research.

Existing approaches to improving LLM safety include reinforcement learning from human feedback
(RLHF) [Lambert, [2025]], adversarial training [Yu et al.,[2025]], and prompt filtering [Pingua et al.,
2024]). Despite these efforts, sophisticated adversarial attacks and jailbreak prompts, such as ADV-
LLM [Sun et al.| 2025a]] and GCG [Zou et al., [2023]], continue to exploit vulnerabilities of LLMs,
highlighting the need for a deeper understanding of the internal mechanisms that govern LLM’s
behavior with respect to harmful content. Recent work such as CHG [Nam et al., [2025] provides a
principled framework for identifying and categorizing attention heads based on their causal impact
on model performance.

In this work, we focus on the interpretability and intervention of attention mechanisms within LLMs
to enhance safety. Specifically, we identify detection heads—attention heads sensitive to harmful
prompts—and refusal heads—components that contribute to the model’s refusal to generate unsafe
responses. Our analysis reveals that detection heads can trigger the activation of refusal heads,
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suggesting a causal relationship in which harmful-content detection drives refusal behavior. By
investigating this interaction, we aim to uncover how LLMs internally coordinate to detect and
mitigate harmful content.

Our contributions are threefold:

* We propose a method to systematically identify detection heads and refusal heads using
paired harmful-neutral prompts.

* We analyze the interaction between detection and refusal heads, showing evidence that
detection heads may trigger refusal heads, thereby uncovering a causal link in safety-related
mechanisms.

* We conduct intervention experiments on these heads, demonstrating that modulating their
influence improves robustness against harmful content generation.

Through this approach, we provide new insights into the structural safety components of LLMs and
demonstrate practical interventions that contribute to safer and more trustworthy language generation.

2 Method

Our approach consists of two main stages: (1) identifying key attention heads involved in harmful
content detection and refusal, and (2) intervening on these heads to enhance safety.

2.1 Identify Key Attention Heads

In transformer-based language models [[Vaswani et al., [2017]], certain attention heads may play a
disproportionately important role in specific behaviors. Specifically, in this paper, we find that some
heads are responsible for recognizing harmful content or generating refusals. We refer to these as key
heads. Identifying key heads allows us to selectively intervene in the model’s computations, targeting
safety-related behaviors while minimally affecting general performance. The overview pipeline is
shown in Figure[I]

2.1.1 Detection Heads

We identify detection heads—attention heads that are highly sensitive to harmful content—using an
input-based differential attention method.

Step 1: Paired Prompt Dataset
We construct a dataset of harmful-neutral prompt pairs {(Zharm, Zneut) }» Where each pair differs by
(1)

harm

only a single word (Figure . Harmful prompts z
while neutral prompts xf,;{n € Xpeut preserve similar syntax but lack harmful intent. Let 7; denote the
set of token positions ¢ in a prompt 2(*), with |T}| as the prompt’s length.

€ Xharm are designed to elicit refusal behavior,

Step 2: Extract Attention-head Information

For each prompt (*), we run inference and record the raw attention weights for every head h at every
layer I. For the head (I, h), the attention weights form a matrix A" (z()) € RIZAIXITil | where each
row corresponds to the attention distribution of a query token over all key tokens.

Next, we focus on the attention from the final token position, extracting the last row A" (2(9)[—1,:

], which encodes how the last token attends to all previous tokens. For a pair (ask(]azm, 1(162“) let

T; gitr € T; be the set of token positions where the two prompts differ. The per-head attention
difference is then defined as

D(l,h)( (1) (1) ) =

Tharms Lneut
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which quantifies how harmful content shifts the final token’s attention toward the differing positions.

Step 3: Select Top-k Heads 4
We aggregate by averaging D (") (x}(]?rm, ,S?ut) across all prompt pairs ¢ = 1, ..., N to obtain a single

score for each head (I, k). Formally, we define Dg(li’gh) = 4 vazl D(lvh)(xl(lz)rm, x,(fe)u[), where N is
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Figure 1: Overview of the refusal heads identification pipeline.

the total number of harmful-neutral prompt pairs. Heads are then ranked by D&gh), and the top-k

heads are designated as detection heads.

2.1.2 Refusal Heads

Refusal heads are attention heads that contribute most to the model refusing to generate unsafe or
harmful responses. Following |Sun et al.| [2025b]], we compute a refusal direction in the residual
stream and identify heads whose contributions align strongly with this direction.

Step 1: Response Generation

Using the same harmful-neutral prompt dataset {(x}(l?rm, xffein)} from the detection head identification,

we record the model’s responses to both harmful and neutral prompts. We denote the generated
response to the harmful prompt xlg;)rm as yl(l;zm and the response to the neutral prompt xr(,gn as yf];?n
These responses are used for refusal direction estimation and attribution analysis. Let Tgen(y(i)) be

the set of token positions generated in the model’s response 3/(*).

Step 2: Extracting Post-Attention Residual Representations
For each response y, we capture the residual stream after the multi-head attention block in every
transformer layer [. We summarize each response by averaging over its generated tokens:

; 1
M) = ey 2

()
‘Tgen(y )| tGTgcn(y“))

where r,gl) € R% is the post-attention residual at layer [ and token ¢, and 7} € R%. We then compute
mean residual vectors ;(!) for harmful and neutral responses respectively:
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O for layer [ is then defined as d,.; = [y — Hneut-

The refusal direction d, FeRrd

Step 3: Scoring and Selecting Refusal Heads

Using the layer-level refusal direction dfg, we estimate each attention head’s contribution as follow:

For a harmful response y € Yp.m, We extract the head-specific output contribution ch) (y), i.e., how
head (I, h) writes into the residual stream, averaged over the generated tokens of y. The similarity
score is then

1

S(l,h) _
|Yiwrm‘

(et (y), a2), @)

Y€ Yharm

where |Yiam| is the number of harmful responses. Heads with the highest positive similarity scores
are designated as refusal heads.

2.2 Intervention on Key Heads

After identifying the detection and refusal heads, we perform targeted interventions by scaling their
contributions within the transformer’s residual stream. Specifically:

* Detection heads: Amplified to increase the model’s sensitivity to detecting harmful inputs.

* Refusal heads: Amplified to strengthen refusal behaviors when faced with potentially
harmful prompts.

For each identified head (I,h), we intervene on its output projection block in layer I. Let
W((Jl ) € Rdmaxdmoai denote the output projection of the multi-head attention in layer I, which
can be partitioned by heads as W(()l) = [Wg’o) Wél’l) . Wg’H_l) ], Wg’h) € Rmoarxdn
where H is the number of heads and d}, = dioger/ H.

In our intervention, we scale the block corresponding to each identified detection or refusal head:

3
Qtref Wg’h), (l7 h) S Href ( )

W {ade[ Wo™, (1h) € e
where ager > 1 and ager > 1 denote the scaling factors for detection and refusal heads, respectively,
and Hge, Hrer are the sets of detection and refusal heads.

This operation directly amplifies the contribution of the selected heads to the residual stream.

We use Llama-Guard-3-8B [Grattafiori et al., |2024] to evaluate the effect of these interventions
across 4 different LLMs under strong jailbreak attacks like ADV-LLM [Sun et al.| 2025a]. As shown
in Figure 2] increasing the scaling factors consistently improves safety when model produces a safe
response even upon harmful query, confirming that detection and refusal heads serve as critical
leverage points for mitigating harmful model outputs.

Llama-Guard vs Detection Heads Intervention Factor aget Llama-Guard vs Refusal Heads Intervention Factor aes
Model Model
guanaco 0.8 guanaco
0.8 —&— llama2 —&— llama2
—e— llama3 —e— llama3
206 —&— mistral 0.6 —&— mistral
T T
o o
50_4 50.4
0.2 0.2
1.0 15 2.0 2.5 3.0 1.0 15 2.0 2.5 3.0
Detection Heads Intervention Factor aget Refusal Heads Intervention Factor aes
(a) Intervention on Detection Heads (b) Intervention on Refusal Heads

Figure 2: Safety rate improvements from interventions on (a) detection heads and (b) refusal heads.
Safety rate refers to the proportion of harmful queries for which the model produces a safe response.



3 Experiment

In this section, we investigate the role of detection and refusal heads in model safety. We conducted 3
experiments: (1) analyzing the causal relationship between detection and refusal heads, (2) reinforcing
these heads to improve safety rates, and (3) testing whether the reinforced model (DRefA) can
withstand adversarial attacks while preserving general accuracy.

3.1 Experiment I: Examining Causal Relationship Between Detection and Refusal Heads

Setup We begin by studying whether detection heads causally influence refusal heads. Specifically,
during inference we suppress detection heads by scaling their output projection weights with a
negative factor (e.g., -2.0). We measure the resulting change in refusal head contributions, where
contribution is quantified as the similarity score S defined in Equation [2| The baseline is the
unaltered model with scaling factor 1.0.

Results and Insights Visualizes refusal head contributions in Mistral-7B-Instruct-v0.2 under
baseline (left) and intervention (right) in Figure [3] Suppressing detection heads with factor -2.0
(mid) and -4.0 (right) leads to a sharp drop in refusal head contributions compared to the baseline
(left), demonstrating that refusal heads no longer emit strong refusal signals when detection capability
is removed. This provides causal evidence that detection and refusal heads form a safety circuit:
detection heads first identify harmful content and then write signals into the residual stream that
activate refusal heads. Disabling detection heads directly weakens this circuit and suppresses refusal
behavior.

Lo Mistral Average Refusal Contribution Mtst)tra\ Average Refusal Contribution, factor: -2.0 Mli_sotral Average Refusal Contribution, factor: -4.0
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(a) Baseline (b) Intervention (—2.0) (c) Intervention (—4.0)

Figure 3: Refusal head contributions S(*) in Mistral-7B-Instruct-v0.2. Suppressing detection
heads reduces refusal head activity, with stronger suppression (—4.0) leading to a further decrease,
demonstrating that detection heads causally drive refusal behavior.

3.2 Experiment II: Reinforcing Detection and Refusal Heads

Setup Motivated by the causal link discovered in Experiment I, we next test whether reinforcing
detection and refusal heads improves safety. We scale the output projection weights of the top 3%
identified heads in each category with positive factors: 3.0 for detection heads and 2.0 for refusal
heads. This intervention is applied to the following 4 instruction-tuned LLMs:

e LLaMA3 (Llama3-8B-Instruct) [Grattafior1 et al., 2024,

e LLaMA2 (Llama-2-7b-chat-hf) [Touvron et al.l[2023],

e Mistral (Mistral-7B-Instruct-v0.2) [Jiang et al.l[2023],

e Guanaco (Guanaco-7B) [Dettmers et al., 2023].
We first attack each model using harmful prompts and two attack methods: GCG [Zou et al.,[2023]
and greedy decoding ADV-LLM attacks [Sun et al., [2025a]]. The generated responses are then

evaluated for safety using LlamaGuard Check, where a response is considered safe if classified as
non-harmful by L1ama-Guard-3-8B [Grattafiori et al., 2024].

Results and Insights Table [I| reports safety rates under different interventions. Scaling detection
heads alone already improves safety, and scaling refusal heads also provides gains. However, the
strongest results come from jointly reinforcing both detection and refusal heads, which consistently



achieves the highest safety rates across models and attack methods. This verifies that reinforcing both
ends of the detection—refusal circuit is an effective way to improve safety.

Table 1: Safety rates (%) under different attack methods (Pure Harmful Prompt / GCG / ADV-LLM)
four models. Jointly scaling detection and refusal heads achieves the highest safety.

Safety Rate(%) 1 \ LLaMA3 LLaMA2 Mistral Guanaco
Baseline (Original Model) \ 100/77/15 100/53/18 100/36/5 62/10/7
With Intervention:
Detection (ager = 3.0) 100/97/77 100/91/94 100/85/42 77/24/46
Refusal (ager = 2.0) 100/95/48 100/74/55 100/71/17 76/15/22

Detection (ager = 3.0) & Refusal (aer = 2.0) | 100/99/99 100/92/97 100/94/61 77/52/56

3.3 Experiment III: Robustness and Accuracy of DRefA

Setup Finally, we test whether the reinforced model can defend against adaptive attacks and whether
reinforcement harms general-purpose utility. We denote the reinforced model as DRefA (Detec-
tion—Refusal Advanced LLLM ), constructed by scaling detection heads by 3.0 and refusal heads by
2.0.

3.3.1 Robustness under Regenerated GCG Attacks

We regenerate GCG adversarial suffixes directly against DRefA to test robustness against adaptive
attackers. Table 2] shows that DRefA significantly improves safety rates for LLaMA3 (77% — 95%),
LLaMA2 (53% — 78%), and Mistral (36% — 47%), with Guanaco showing only limited gains.
This confirms that reinforcing detection and refusal heads strengthens safety circuits even when
adversaries adapt their strategies.

Table 2: Safety rates (%) under regenerated GCG attacks optimized against DRefA. Scaling detection
and refusal heads strengthens safety even under adaptive attacks.

Safety Rate(%) LLaMA3 LLaMA2 Mistral Guanaco

Baseline 77 53 36 10
DRefA 95 78 47 13

3.3.2 Effect on General Accuracy

We next evaluate whether reinforcement harms general utility. Using 1m-eval-harness [Gao et al.|
2024]], we test baseline vs. DRefA on three zero-shot benchmarks: HellaSwag [[Zellers et al., 2019],
PIQA [Bisk et al., 2020]], and ARC [Clark et al., 2018]]. TableE] shows consistent but modest drops:
2-4 points on HellaSwag, 2-3 points on PIQA, and up to 8 points on ARC. These results suggest that
reinforcement substantially improves safety with only minor trade-offs in general accuracy.

Table 3: Performance of baseline vs. DRefA on three benchmarks (Acc%). Reported as HellaSwag /
PIQA / ARC. DRefA improves safety but incurs modest drops in general accuracy.

Accuracy(%) LLaMA3 LLaMA?2 Mistral Guanaco
Baseline 57.72/78.51/81.60 57.81/76.50/73.86 66.02/80.00/81.60 59.60/78.94/75.17
DRefA 55.16/76.88/75.25 53.43/73.68/67.09 62.42/78.30/72.77 57.79/77.69/73.82

4 Conclusion

We investigated how detection heads influence refusal heads to form safety circuits in large language
models. Based on this insight, we introduced DRefA, a head-scaling intervention that improves
robustness across architectures and adversarial attacks. Our results show substantial safety gains with
modest accuracy trade-offs, offering both mechanistic insights and a practical framework for safer
LLMs. Future work can refine scaling strategies to better balance safety and utility.
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