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Abstract

Effectively decoding semantic frames in task-
oriented dialogue systems remains a challenge,
which typically includes intent detection and
slot filling. Although RNN-based neural mod-
els show promising results by jointly learning
of these two tasks, dominant RNNs are pri-
marily focusing on modeling sequential depen-
dencies. Rich graph structure information hid-
den in the dialogue context is seldomly ex-
plored. In this paper, we propose a novel
Graph-to-Sequence model to tackle the spoken
language understanding problem by modeling
both temporal dependencies and structural in-
formation in a conversation. We introduce a
new Graph Convolutional LSTM (GC-LSTM)
encoder to learn the semantics contained in
the dialogue dependency graph by incorporat-
ing a powerful graph convolutional operator.
Our proposed GC-LSTM can not only capture
the spatio-temporal semantic features in a di-
alogue, but also learn the co-occurrence rela-
tionship between intent detection and slot fill-
ing. Furthermore, a LSTM decoder is utilized
to perform final decoding of both slot filling
and intent detection, which mutually improves
both tasks through global optimization. Exper-
iments on benchmark ATIS and Snips datasets
show that our model achieves state-of-the-art
performance and outperforms existing models.

1 Introduction

Spoken language understanding (SLU) in task-
oriented dialogue systems, including intent detec-
tion and slot filling (Tur and Mori, 2011), has
been greatly advanced by deep learning techniques.
It aims to parse users’s utterances into semantic
frames in order to capture a conversation’s core
meaning. The input of SLU is a sequence of words,
whereas the output is a sequence of predefined slot
types represented in In-Out-Begin (IOB) format. A
specific intent label is also assigned for the whole
sentence. For example, in Table 1, given an ut-
terance "Flights from Charlotte to Miami", SLU is

Sentence | Flights ‘ from ‘ Charlotte ‘ to ‘ Miami
Intent Flight
Slots O [ O [ B-fromloc [ O [ B-toloc

Table 1: An example utterance annotated with its intent
and semantic slots (IOB format).

supposed to determine the users’ intention as Flight
and to map each word into predefined slots.

Early studies modeled intent detection and slot
filling separately in a pipelined manner, and were
insufficient to take full advantage of all supervised
signals, as they intrinsically shared semantic knowl-
edge. What’s more, in the pipelined architecture,
errors made in upper stream modules may propa-
gate and be amplified in downstream components,
which, however, could possibly be eased in joint
models (Zhang and Wang, 2016). Thus, jointly
modeling intent detection and slot filling has at-
tracted significant attention, and achieved promis-
ing results with recurrent neural networks (RNNs)
(Liu and Lane, 2016; Goo et al., 2018; Li et al.,
2018). However, these RNN-based models are
primarily focusing on modeling sequential depen-
dencies, and inherently unstable over long-time
sequences as RNNs tend to focus more on short-
term memories (Weston et al., 2014). Indeed, this
weakness of sequential RNN-based models leads
to a large portion of slot filling errors (Tur et al.,
2010).

Subsequently, Zhang et al. (2020) attempted to
address the limitation of sequential models by uti-
lizing S-LSTM to learn the graph structure in dia-
logue utterances, and achieved promising improve-
ment compared with sequential RNNs. Neverthe-
less, this model still suffers from three major is-
sues: 1) Modeling dialogue graphs. Although
the n-gram context graph used in S-LSTM has to
some extent captured the influence of neighboring
words within a specific window, closely-related

words, such as "parents", "children" and "siblings"



in a dialogue graph can be outside this window
and unfortunately neglected. Actually, these words
should have substantial impact on slot tag decod-
ing. Furthermore, unrelated words within the n-
gram window are acting as noise, leading to more
slot filling errors. 2) Learning spatial structures
in dialogues. S-LSTM is incapable of capturing
spatial structures in a conversational context, and
we observe that this property plays a vital role
in modeling a fully graph-structured dialogue. 3)
Jointly decoding intent detection and slot filling
in a stand-alone decoder. Zhang et al. (2020) uti-
lized a S-LSTM to both encode dialogue states and
decode final intents and slot tags. This puts too
much burden on the S-LSTM and deteriorates SLU
performance.

In this paper, we propose a novel Graph-to-
Sequence (Graph-to-Seq) framework to perform
joint intent detection and slot filling in task-oriented
dialogue systems. The proposed model learns
spatio-temporal semantic features hidden in dia-
logues by modeling dialogue structure as a depen-
dency graph, and by employing a Graph Convolu-
tional LSTM (GC-LSTM). Graph Convolutional
operation further enables a deeper level of semantic
modeling of the dialogue context. A separate SLU
decoder is also used to jointly decode slot tags and
intents in a globally optimal way.

In short, our contributions are threefold:

* To the best of our knowledge, our work is the
first one that introduces spectral graph convo-
lution to model the graph structures in SLU.

* We propose a novel GC-LSTM to effectively
learn graph-structured representations in di-
alogues. We model a dialogue graph as an
enhanced dependency tree by adding forward
and backward edges between words in order
to capture both sequential and structural infor-
mation in dialogues.

* We introduce a novel Graph-to-Seq frame-
work to perform joint SLU. A stand-alone
RNN decoder is greatly beneficial to improve
SLU performance by relieving encoders from
decoding burden, and by enabling the interac-
tion between intent detection and slot filling.

2 Related Work

Joint Intent Detection and Slot Filling Zhang
and Wang (2016) proposed a joint work using

RNNs for learning the correlation between intents
and slots. Hakkani-Tiir et al. (2016) adopted a
RNN for slot filling and the last hidden state of
the RNN was used to predict the utterance intent.
Liu and Lane (2016) introduced an attention-based
RNN encoder-decoder model to jointly perform
intent detection and slot filling.

Most recently, some work modeled the intent in-
formation for slot filling explicitly in joint models.
Goo et al. (2018); Li et al. (2018) proposed a gating
mechanism to explore incorporating the intent in-
formation for slot filling. However, as the sequence
becomes longer, it is risky to simply rely on the
gate function to sequentially summarize and com-
press all slots and context information in a single
vector (Cheng et al., 2016). Zhang et al. (2018a)
proposed a hierarchical capsule neural network to
model the hierarchical relationship among words,
slots, and intents in an utterance. Niu et al. (2019)
introduced a SF-ID network to establish the interre-
lated mechanism for slot filling and intent detection
tasks. However, these RNN-based models suffer
from being weak at capturing long-range depen-
dencies. Then Wu et al. (2021) explicitly modeled
the long-term slot context via a key-value memory
network beneficial to both slot filling and intent
detection. Unfortunately, None of these models did
take the rich structure information in dialogues into
consideration. Subsequently, Zhang et al. (2020)
attempted to address the limitation of sequential
models by utilizing S-LSTM with a context-gated
mechanism to learn the local context in dialogue
utterances, and achieved promising improvement
compared with sequential RNN models. Compared
with this work, our work differs significantly by
proposing a novel Graph-to-Seq framework with
Graph Convolution LSTM on enhanced dialogue
dependency graphs.

Graph Convolutional LSTM Graph convolu-
tional networks (GCNs) generalize convolutional
neural networks to graphs. Spectral GCNs trans-
form graph signals on graph spectral domains and
then apply spectral filtering on graph signals. Def-
ferrard et al. (2016) proposed a spectral formulation
for the convolutional operator on graph with fast
localized convolutions. Kipf and Welling (2017)
introduced Spectral GCNSs for semi-supervised clas-
sification on graph-structured data. Subsequently,
in order to incorporate temporal features, Seo et al.
(2016) proposed a graph convolutional LSTM to
capture the spatial-temporal features of graph struc-



tures. This was an extension of GCNs to have
a recurrent architecture. Si et al. (2019) further
improved graph convolutional LSTM network by
introducing attention to effectively extract discrim-
inative spatial and temporal features in Skeleton-
Based Action Recognition.

3 Proposed Model

Given a sequence of words w = (w1, wa, ..., wy,)
in an utterance and an associated dialogue depen-
dency relation graph G = (V, £), intent detection
can be defined as a classification task that out-
puts an expected intent label o/, where V and &
denote the set of word nodes and relations in G,
and n is the utterance length. Slot filling can be
seen as a sequence labeling task that maps the in-
put utterance w into a predefined slot sequence

0% = (0f,05...,0})).

3.1 Model Overview

We propose a novel Graph-to-Seq framework to
combine the merits of S-LSTM and GCNs to ef-
fectively learn the spatio-temporal representation
of the dialogue context. Our proposed model is
composed of two major components: a GC-LSTM
encoder, and a SLU decoder, as shown in Figure 1.
The GC-LSTM encoder learns fixed-length vec-
tors to represent the dialogue context structurally.
Not only can it model spatial graph structure infor-
mation, but also it learns the semantic correlation
between slots and intents. Message passing in our
graph convolutional operation improves on captur-
ing the long-range dependencies. We further add
a context gate to improve our model’s ability to
utilize local context information. In our decoder, a
dedicated LSTM is employed to integrate hidden
states of the GC-LSTM for generating slot tagging
and final intents. Our decoder first decodes slot
tags and then outputs an expected intent. We inten-
tionally choose this mechanism to improve intent
accuracy since the slot information is beneficial to
intent detection. Both intent detection and slot fill-
ing are optimized simultaneously via joint learning.
In the following sections we detail each component
thoroughly.

3.2 Spectral Graph Convolutions

Graph convolutional neural networks are an effec-
tive framework for learning the representation of
graph structured data. As it is difficult to express
a meaningful translation operator in the vertex do-

main, Defferrard et al. (2016) proposed a spectral
formulation for the convolutional operator on graph
*g. Based on this definition, a spectral convolution
on graphs is defined as the multiplication of a graph
signal x € RY (a scalar for every node) with a
non-parametric kernel filter g9 = diag(f) parame-
terized by # € RY in Fourier domain, where N is
the number of vertices, as follows:

goxgr=UgU"x (1)

where U € RV*N is the matrix of eigenvectors
of the normalized graph Laplacian L =
D 2AD"3 = UAUT with a diagonal matrix of
its eigenvalues A and U” z being the graph Fourier
transform of z. gy can be thought as a function
of eigenvalues of L, i.e. gg(A). However, evaluat-
ing Equation (1) is computationally expensive as
the multiplication with U is O(N?). What’s more,
calculating the eigendecomposition of L might be
prohibitively expensive for large graphs. Thus, Def-
ferrard et al. (2016) parameterized gy as a truncated
expansion, up to (K — 1) order of Chebyshev
polynomials 7}, such that:

In —

-1
~ Y 0kTH(A) 2)

where the parameter # € RX is the vector of
Chebyshev coefficients and Tj(A) is the Cheby-
shev polynomial of order %k evaluated at A =
2A/Amaz — IN. Amas denotes the largest eigen-
value of L. The graph filtering operation can then
be written as

K—
go*g T~ Z 0k Ti(L 3)
k=0

where L = 2L/ Amaz — In. Equation (3) can
be evaluated by using the stable recurrent relation
Ti(z) = 22T (x) — Tk—2(x) with Ty = 1 and
T; = z in O(K|&|) operations, where & is the
number of edges. As pointed out by Defferrard
et al. (2016), when the filtering operation Equa-
tion (3) is an order K polynomial of the Laplacian,
it is K-localized and depends only on nodes that
are maximum K hops away from the central node,
that is, the K -neighborhood.

3.3 Graph Convolutional LSTM Encoder

Based on the graph convolutional operation defined
in Equation (3), we propose a GC-LSTM encoder



GC-LSTM Encoder

Flights—>!

from —>|

Charlotte —>|

Convolutional
Unit

Miami—>
\

. GC-LSTM /,/

Context Gating

ST
uy = hy

r
uy = by

SLU Decoder

Intent

FromLoc TolLoc Flight

[Self-attention
Unit

Figure 1: Graph-to-Sequence model for joint intent detection and slot filling.

to encode graph structures in dialogue utterances.
Utterance words are firstly transformed to word
embeddings e = (eq, €2, ..., e,,) by using the pre-
trained ELMo embeddings (Peters et al., 2018).
They are then fed into the GC-LSTM at each time
step. After T' steps, our GC-LSTM generates word-
level hidden states for decoding slot labels, and
sentence-level hidden states for predicting intents.

Dialogue Graph We model word relationships
by using dependency trees, as dependency links
are close to the semantic relationships for the next
stage of interpretation. In order to enable learning
various relationships of words such as dependency
relations, we first use the off-the-shelf parsing tool
called Spacy' to extract dependency relation graph
G among words in dialog utterances as shown in
Figure 2. To further support bi-directional infor-
mation flow, we explicitly add reverse edges and
sequential relations (i.e., Next and Prev) as well.
Enhanced dependency graphs allow information
flow between dependent words and head words
bidirectionally, enabling the learning process to
capture the rich semantic representation between
them.

prep
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. Next Next Next Next . .
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Figure 2: An example of our dialogue utterance graph

Graph Convolutional LSTM We introduce a
new GC-LSTM by extending S-LSTM (Zhang

'nttps://spacy.io/

et al., 2018b) to include a powerful graph con-
volutional operator in order to better learn graph-
structured semantics in a dialogue. GC-LSTM
views the whole sentence as a single graph G, con-
sisting of word-level nodes h; and a sentence-level
node g. At each time step ¢, the graph state is
represented as: H® = (kY kb, ..., ht g¢).

Like S-LSTM, GC-LSTM uses a recurrent state
transition process to model information between
sub states, which enriches state representations in-
crementally. Unlike S-LSTM, GC-LSTM updates
its word hidden states using the graph convolution
operation in order to capture spatial features of the
semantics. The graph state transition from H'~! to
H' consists of word-level node state change from
ht=! to h?, and sentence-level state transition from
g1 to g'. We set initial state h) = ¢° = h" in
HY, where h° is a parameter. The hidden state h!
is a function of word embedding e;, its neighboring
node hidden state h;‘l, and sentence-level state
g'~1, where j € N (i) and N (i) is the neighbor
nodes of word node 7. This updating function is
formulated as follow:

it = 6(Wjxg KL + Usel + Vig ™! + by)
fl=0(Wsxg h' L+ Usel + Vigt 4 by)
8 = 5(Ws xg k'™t + Uge! + Vg1 + by)
ol = 6(Wyxg W' + Upe! + V,og' 1 +b,)
ul = 5(Wy xg '™ + Upel + Vg™t + by)
it ft st = softmax(%t,ft, )
d=flodt+sdod +i'oud

h' = o' ® tanh(c")

“

where W, U,,V, and b, are model parameters
(x € {i, f,s,0,u}), d is the sigmoid function, and
©® denotes Hadamard product.
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Different than S-LSTM, GC-LSTM only con-
tains three gates: an input gate i*, a forget gate f°,
and an output gate o'. But similar to S-LSTM, GC-
LSTM also has one sentence gate s; controlling
information from sentence cell cg_l. These control
gates are normalized by a softmax function and
then served as probability weights to regulate new
cell states ¢; and hidden states h'.

Following Zhang et al. (2018b), the sentence-
level node g' is updated based on all word-level
nodes:

h= avg(hﬁ_l, hg_l, . hﬁfl)
fi=0(Weg'™" + Ugh + by)
fi=0Weg™" + Ushi™" +b5)
6tg = 5(Woggt_1 + Uogl_l + bog)

t t t it ittt
T s ’g = softmax( f7, ...,fn,fg)
n
t et t—1 1t t—1

d=frodt+y fiod
i=1
¢t = 02 ® tanh(ctg)

where W, U, and b, are model parameters (x €

t t t
{9, f,09}). f5,.... f';, and f'  are gates con-

trolling information from ctl_1 ct=1and ¢!~!

sy Cy ,
whereas og is an output gate regulating the re(g:ur—
rent cell ¢}, to g;.

At each time step, word-level nodes capture an
increasingly larger scope of the dialogue graph,
building up knowledge incrementally. On the other
hand, the sentence-level node gathers information
from all the word-level nodes to refine the whole
utterance representation. Slot nodes and the in-
tent node are interacting with each other via Equa-
tions (4) and (5), which learns the correlation be-
tween intent detection and slot filling. Unlike an
LSTM which uses only one state to represent the ut-
terances sequentially, our GC-LSTM uses multiple
states (i.e. n word-level states and 1 sentence-level
state) to learn deeper context information incre-
mentally with the aid of our graph convolutional
operation. In this way, our GC-LSTM can cap-
ture long-range dependencies. Finally, after T" time
steps, word-level hidden states h” and the sentence-
level hidden state g7 are used for predicting slot
labels and an expected intent.

Gated Context In order to make our encoder
fully context-aware, we introduce a context gate to
capture the contextual information for each token
like Zhang et al. (2020). The context gate includes

a convolution unit and a self-attention unit. The
convolution unit captures local context information,
such as the internal correlation of phrase structure.
Multi-head self-attention (Vaswani et al., 2017) is
used to capture diverse global contextual informa-
tion. The context gating is expressed as follow with
details in Zhang et al. (2020):

Z = ContextGating(HT) (6)

Encoder Output The final output of our GC-
LSTM encoder with context gating is:

U= (Ul,...un+1) = [iL,{, PN

) 7
hllg"]

3.4 SLU Decoder

Different than most existing joint models where
intent detection and slot filling are decoded sep-
arately, our framework decodes them in a shared
LSTM. We directly leverage the explicit slot decod-
ing context to help intent detection. By performing
a joint SLU decoding in a stand-alone LSTM, there
are mainly two advantages:

1. The architecture such as Zhang et al. (2020)
puts too much burden on one Graph LSTM
encoder as it is playing a dual role in both en-
coding and decoding. We observe that separat-
ing decoding from encoding can be beneficial
to overall performance improvement. Domi-
nant seq-to-seq models are primarily relying
on an independent autoregressive decoder to
generate slot tokens one-by-one conditioned
on all previously generated tokens.

2. Sharing slot decoding context with intent de-
tection improves intent detection performance
since those two tasks are related. This is sub-
stantiated by our following experimental re-
sults. With shared decoding states, the interac-
tion between intent detection and slot filling
can be further modeled and executed.

‘We use one unidirectional LSTM as a SLU de-
coder. At the decoding step i € [1,n + 1], the
decoder state hiD can be formalized as:

th = LSTM(h£17 yiD—17 uz) (8)

where hY) = tanh(WPu,), hP | is the previous
decoder state, y2 | is the previous emitted slot label
distribution, and WOD is the model parameter.



Finally, the slot filling is given by:
vy = softmax(WohP) ie[1,n]

)
0j = argmax(y;)
The intent detection is defined as follows:
I I;D
= softmax(W; h
) ( h n+1) (1 0)

ol = argmax(y")
3.5 Joint Training

The loss function for intent detection is £1, and
that for slot filling is £, which are defined as cross
entropy:

nr
L2 =% 5" log (y") (11)
i=1
and
n nsg
~Si S,
Lot =3 ) 97 log (?/j ’Z> (12)
j=11i=1

where ¢! and QJSZ are the gold intent label and
gold slot label respectively, and n; and ng are the
number of intent label types and the number of slot
tag types, respectively.

Finally the joint objective is formulated as fol-
lows by using hyper-parameters o:

Lo=alq+ Lo
4 Experimental Setup

(13)

4.1 Datasets

To evaluate our proposed model, we conduct exper-
iments on two widely used benchmark datasets:
ATIS (Airline Travel Information System) and
Snips. Both datesets follow the same format and
partition in Goo et al. (2018).

ATIS This dataset (Hemphill et al., 1990) con-
tains audio recordings of people making flight reser-
vations. The training set has 4,478 utterances and
the test set contains 893 utterances. We use another
500 utterances for the development set. There are
120 slot labels and 21 intent types in the training
sets.

Snips Dataset Snips (Coucke et al., 2018) is col-
lected from the Snips personal voice assistant. The
training set contains 13,804 utterances and the test
set contains 700 utterances. We use another 700
utterances as the development set. There are 72 slot
labels and 7 intent types. Compared to the single-
domain ATIS dataset, Snips is more complicated
mainly due to its large vocabulary and the diversity
of intents and slots (Goo et al., 2018).

4.2 Training Details

We implement our model in Pytorch, and trained it
on NVIDIA GeForce RTX 2080 Ti. In our experi-
ments, we set the dimension of GC-LSTM hidden
state to 200, and that of ELMo embedding to 1024.
During training, ELMo parameters are not updated
in order to reduce training time. The decoder hid-
den state dimension is set to 124 for Snips, and to
90 for ATIS. Dropout ratio is set to 0.5 to prevent-
ing overfitting, and the batch size is set to 32. The
model is trained end-to-end using Adam optimizer
(Kingma and Ba, 2014) to minimize the cross-
entropy loss, with learning rate = 1e=3, 31 = 0.9,
B2 = 0.98, and € = 1e~?. Finally our graph con-
volution operation is approximated by 1st-order
Chebyshev polynomials.

4.3 Baselines

We adopt three most popular evaluation metrics in
SLU studies: slot filling using F1 score, intent pre-
diction using accuracy, and sentence-level semantic
frame parsing using whole frame accuracy.

Baselines models are from some typical works
such as Joint Seq. (Hakkani-Tiir et al., 2016), At-
tention BiRNN (Liu and Lane, 2016), Sloted-Gated
(Goo et al., 2018), CAPSULE-NLU (Zhang et al.,
2019), SF-ID Network (Niu et al., 2019), Key-value
Memory (Wu et al., 2021), Unsupervised Transfer
+ ELMo (Siddhant et al., 2019) and Graph-LSTM
(Zhang et al., 2020).

5 Experimental Results

5.1 Automatic Evaluation Results

Table 2 shows the experimental results of our pro-
posed model on ATIS and Snips datasets. On
the ATIS dataset, our model substantially outper-
forms all the baselines by a noticeable margin in
all three aspects: slot filling (F1), intent detection
(Acc) and sentence accuracy (Acc), demonstrating
that explicitly modeling graph-structured dialogue
context and the correlation between slots and in-
tents can benefit SLU effectively via GC-LSTM.
Compared with the prior joint work Graph-LSTM
(Zhang et al., 2020), we achieve F1 score as 96.37%
and intent Acc 97.88%, a significant improvement
over 95.91% and 97.2%. This performance promo-
tion signifies that our GC-LSTM can effectively
model graph-structured dialogue context, and that
our Graph-to-Seq framework captures long-term
dependencies and models the correlation between
slot filling and intent detection.



Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) | Slot(F1) Intent(Acc) Sent.(Acc)
Joint Seq.(Hakkani-Tiir et al., 2016) 94.30 92.60 80.70 87.30 96.90 73.20
Attention BiRNN(Liu and Lane, 2016) 94.20 91.10 78.90 87.80 96.70 74.10
Sloted-Gated(Goo et al., 2018) 95.42 95.41 83.73 89.27 96.86 76.43
CAPSULE-NLU(Zhang et al., 2019) 95.20 95.0 83.40 91.80 97.30 80.90
SF-ID Network(Niu et al., 2019) 95.58 96.58 86.00 90.46 97.0 78.37
Key-value Memory(Wu et al., 2021) 96.13 97.20 87.12 95.13 98.14 88.14
Unsupervised Transfer + ELMo(Siddhant et al., 2019) 95.62 97.42 87.35 93.90 99.29 85.43
Graph-LSTM(Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71
Graph-to-Seq | 96.37 97.88 88.69 | 95.89 98.43 90.57

Table 2: SLU Performance evaluation results on ATIS and Snips datasets (%).

On the Snips dataset, our model also achieves
good results in almost all cases, which indicates our
model has a better generalization capability than
baseline models. Specifically, for slot filling, we
achieve a F1 score of 95.89%, a salient enhance-
ment compared with 95.3% (Zhang et al., 2020),
and our sentence accuracy reaches at 90.57%. The
gain further demonstrates the effectiveness of our
proposed Graph-to-Seq framework. Although the
intent Acc. of Unsupervised Transfer + ELMo
model is slightly higher than ours, this is at the cost
of slot filling performance.

Generally, the ATIS dataset is a simpler SLU
task than Snips, so the room to be improved is rel-
atively small. However, we still obtain noticeable
improvement and set a new state-of-the-art result.
On the other hand, Snips dataset is more complex
crossing multiple domains. Thus, it is not surpris-
ing that most of baseline models are doing poorly
especially on slot filling. Surprisingly, our model
achieves a great performance jump especially on
slot filling. Again we attribute this to our Graph-to-
seq framework and GC-LSTM.

5.2 Ablation Study

In this section, we explore how each component
contributes to our full model by conducting three
important scenarios: (1) With only GC-LSTM. In
this case, we directly compare the performance be-
tween GC-LSTM and S-LSTM (Zhang et al., 2020)
to verify the effectiveness of our GC-LSTM. (2)
With GC-LSTM and LSTM decoder but with-
out decoding intent. This is to verify the effective-
ness of a LSTM decoder. (3) With full Graph-to-
Seq framework.

Table 3 shows the SLU performance variance on
these scenarios. First, we only consider GC-LSTM
to model spatio-temporal features of dialogue utter-
ances by replacing S-LSTM in Zhang et al. (2020).
From Table 3, we can see that GC-LSTM does

improve performance in almost all the cases espe-
cially on slot filling and shows its superiority over
S-LSTM. The result can be interpreted as that GC-
LSTM demonstrates great capability to model spa-
tial and temporal dependencies among the dialogue
context globally, whereas S-LSTM is more focused
on the local context. We then apply a stand-alone
LSTM decoder to perform slot decoding. It is no-
ticeable that slot filling is enhanced further, though
intent detection deteriorates. It is explainable that
using an autonomous autoregressive decoder to
generate slot tags token by token not only reduces
decoding errors by conditioning on all previously
generated tokens, but also alleviates the encoder’s
burden. However, this model unintentionally puts
too much weight on slot filling with the sacrific-
ing of intent detection performance, thus leading to
this unbalanced result. Finally, when we jointly per-
form decoding of slot filling and intent detection,
the performance further improves. We attribute this
to the fact that sharing slot decoding context not
only improves intent detection accuracy, but is also
beneficial to slot filling by minimizing intent detec-
tion objective function via joint training. To sum
up, in a joint SLU model leaning too much on one
task potentially worsens the other. Nevertheless,
it is salient that our model achieves a trade-off to
balance those two tasks.

ATIS Snips
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Figure 3: SLU performance on various time steps.

Furthermore, we also study how the parameter
time step in GC-LSTM impacts SLU performance.



Model ATIS Dataset Snips Dataset
Slot(F1) Intent(Acc) Sent.(Acc) | Slot(F1) Intent(Acc) Sent.(Acc)
Graph-LSTM baseline (Zhang et al., 2020) 95.91 97.20 87.57 95.30 98.29 89.71
With only GC-LSTM 96.21 97.01 87.68 95.40 98.43 89.71
With GC-LSTM and LSTM Decoder no decoding intent | 96.30 96.75 87.23 95.68 98.0 89.57
Our full model: Graph-to-Seq ‘ 96.37 97.88 88.69 ‘ 95.89 98.43 90.57

Table 3: Feature ablation study on our proposed model on ATIS and Snips datasets (%).

Figure 3 shows the performance change with dif-
ferent time steps. It is easily observed that as the
time steps go up, the sentence-level accuracy in-
creases as well until reaching its peak. This is due
to the message passing mechanism trying to enable
word-level nodes to involve information spanning
the whole dialogue graph. We find that the optimal
time step for ATIS and snips datasets is 6 and 7,
respectively.

5.3 Dialogue Dependency Graph vs N-gram

5.4 Joint Model vs Separate Model

One of our main contributions is explicitly mod-
eling the correlation and interaction of slots and
intents by our GC-LSTM and joint decoding. The-
oretically, this explicit interaction between them
eventually promotes each other by achieving a
trade-off. To verify this conclusion, we compare
the SLU performance between the joint model
and separate models. The former is our proposed
model, whereas the latter is solely focusing on one
task, thus without any interaction between intent

Context Graph ; i : ;
detection and slot filling. It is easily observed from
Model ATIS Dataset Table 6 that the joint model generally performs
Slot(F1) Intent(Acc) Sent.(Acc) :

N-grom graph wilh window 1|~ 96.12 5700 T much better than t.wo separate models. This further
N-gram graph with window 2 | 96.27 96.64 87.57 buttresses our claim.
N-gram graph with window 3 | 96.28 96.42 87.35
Our dependency graph 96.37 97.88 88.69 Model ATIS Dataset Snips Dataset

Table 4: Performance comparison of dialogue depen-

Slot(F1) Intent(Acc)

Slot(F1) Intent(Acc)

Slot filling model
Intent detection model

96.05 -
97.20

95.38
98.0

dency graph and n-gram context graph on ATIS (%).

Snips Dataset
Model Slot(F1) Intent(Acc) Sent.(Acc)
N-gram graph with window 1 95.77 98.00 90.29
N-gram graph with window 2 95.61 97.71 89.71
N-gram graph with window 3 95.25 98.0 88.71
Our dependency graph 95.89 98.43 90.57

Table 5: Performance comparison of dialogue depen-
dency graph and n-gram context graph on Snips (%).

We argue that modeling dialogue structural infor-
mation by using our enhanced dependency graph is
superior to the use of the n-gram context graphs. In
order to verify this, we design some experiments to
only replace our dialogue dependency graph with
n-graph context graph with window size 1,2,3, re-
spectively. From Tables 4 and 5, it is noticeable
that our dependency graph constantly outperforms
the n-gram context graph with variable window
sizes in all cases. We attribute this to the fact that
modeling dialogue structural dependencies by our
enhanced dependency graph captures spatial fea-
tures globally, whereas the n-gram context graph is
more focusing on limited local context. Anything
outside the n-gram window has no impagt on the
decision being made.

Joint model 96.37 97.88 95.89 98.43

Table 6: Comparison between our joint model and sep-
arate models (%).

6 Conclusion

In this chapter, we propose a novel Graph-to-Seq
framework to jointly perform intent detection and
slot filling. The Graph Convolutional LSTM en-
coder not only captures the spatio-temporal sematic
features in dialogue utterances, but also learns the
co-occurrence relationship between intent detec-
tion and slot filling. In addition, a LSTM decoder
is employed to perform final decoding of both slot
filling and intent detection to alleviate GC-LSTM’s
burden and to fully exploring the interaction be-
tween these two tasks. On one hand, slot decoding
context promotes intent detection accuracy. On
the other hand, reciprocally, joint optimization also
enhances slot filling performance further by op-
timizing intent detection objective. Experiments
on two public datasets show the effectiveness of
our proposed model and achieve state-of-the-arts
results.
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