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Abstract

Adapter modules enable modular and efficient
zero-shot cross-lingual transfer, where current
state-of-the-art adapter-based approaches learn
specialized language adapters (LAs) for indi-
vidual languages. In this work, we show that
it is more effective to learn bilingual language
pair adapters (BAs) when the goal is to op-
timize performance for a particular source-
target transfer direction. Our novel BAD-X
adapter framework trades off some modularity
of dedicated LAs for improved transfer per-
formance: we demonstrate consistent gains in
three standard downstream tasks, and for the
majority of evaluated low-resource languages.

1 Introduction

Massively multilingual Transformers (MMTs) such
as mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), and mT5 (Xue et al., 2021)
have dominated research in multilingual NLP and
cross-lingual transfer recently. Pretrained on large
amounts of unlabelled data in 100+ languages,
they have been shown to achieve impressive perfor-
mance for a wide range of languages and tasks, and
in zero-shot cross-lingual transfer in particular (Wu
and Dredze, 2019; K et al., 2019). However, their
representational capacity is known to be limited by
the curse of multilinguality: a trade-off between the
language coverage and model capacity (Conneau
et al., 2020), which typically favors high-resource
languages. Their limitations are thus especially
pronounced in low-resource scenarios, in transfer
between distant languages and towards resource-
poor target languages (Hu et al., 2020; Lauscher
et al., 2020; Ansell et al., 2021, inter alia).

A standard approach to zero-shot cross-lingual
transfer with MMTs (i) fine-tunes the full MMT
on task-specific data in the source language and
then (ii) applies it directly to make predictions in
the target language (Hu et al., 2020). On top of
the expensive fine-tuning of the entire large model,

this standard procedure also does not ‘prepare’ the
MMT to excel at a particular target language or
for a particular source-target transfer direction.

This has been alleviated through modular
parameter-efficient adaptations of the MMTs
(Bapna and Firat, 2019; Philip et al., 2020; He
et al., 2021) which bypass full fine-tuning, most
prominently through lightweight adapters (Rebuffi
et al., 2017; Houlsby et al., 2019): additional train-
able parameters inserted into the MMT’s layers.
They have recently been used for language and
task specialization of the MMTs (Pfeiffer et al.,
2020b), offering improved and more efficient zero-
shot cross-lingual transfer.

Previous work (Pfeiffer et al., 2020b; Üstün et al.,
2020, 2021; Vidoni et al., 2020; Ansell et al., 2021,
inter alia) focused on creating: 1) dedicated lan-
guage adapters (LAs) for each individual language,
and 2) individual task adapters (TAs). Creating
single-language LAs enables a very modular ap-
proach to cross-lingual transfer, where a source
language LA (used in training) can be directly
swapped with any target language LA at inference.
Yet, this procedure still does not prepare nor adapt
the MMT for a particular source-target transfer di-
rection. Put simply, if one’s incentive is to optimize
the performance of a particular target language Lt

given annotated data in a particular source language
Ls, especially under low-data regimes, one might
try to capture the interplay between the two lan-
guages instead of learning separate LAs.

To address this gap, in this work we introduce
the BAD-X framework: bilingual adapters (BAs)
for zero-shot cross-lingual transfer (see Figure 1),
designed towards improving transfer performance
for a particular transfer direction, with a focus on
low-resource target languages. The goal of BAD-X

is to specialize the MMT for a particular language
pair, while preserving all its existing knowledge
encoded into the MMT’s parameters.

We experiment with three standard tasks in cross-



lingual transfer (Lauscher et al., 2020; Ansell et al.,
2021): part-of-speech tagging (POS), dependency
parsing (DP) and natural language inference (NLI),
and with a total of 20 low-resource target languages.
Our results demonstrate that trading off modularity
of single-language LAs for less modular BAs (tai-
lored for language pairs) indeed yields improved
transfer performance over the current state-of-the-
art (SotA) adapter-based transfer framework MAD-
X (Pfeiffer et al., 2020b), in all three tasks and for
the large majority of target languages. We also
show that, under the fixed fine-tuning budget and
resources, further task performance gains can be
achieved by varying the ratio of Ls-vs-Lt unan-
notated data when learning BAs. Finally, aiming
to delve deeper into the trade-off between modu-
larity and training efficiency, we experiment with
multilingual adapters that are trained on the source
language and all target languages under considera-
tion at once. We show that such adapters, despite
being more efficient to train, are unable to match
the performance of their more specialized counter-
parts across a diverse set of target languages.

We share our code and pretrained BAs online at:
https://github.com/parovicm/BADX.

2 BAD-X: Methodology

Motivation and Overview. The main idea can be
summarized into the following: instead of adapting
the MMT to languages Ls and Lt separately as
done in the SotA adapter-based MAD-X framework
(Pfeiffer et al., 2020b), cross-lingual transfer might
be more effective by adapting the MMT directly
to the language pair (Ls, Lt). This means that we
learn a bilingual language-pair adapter instead of
two separate monolingual LAs. We then learn a
task adapter directly on top of the BA: since we
focus on the zero-shot setting, this means using
task-annotated examples only from Ls to fine-tune
the TA. This procedure is summarized in Figure 1.1

BAD-X Adapters. BAD-X adapts the MAD-X

adapter framework, where BAs are learnt instead
of single-language LAs. The architecture of the
adapter in each layer l consists of a down- and

1Inspiration for BAD-X originates from neural machine
translation (NMT), where bilingual adapters have been trained
on parallel corpora of two languages to recover performance
of a massively multilingual NMT model for high-resource
languages (Bapna and Firat, 2019). BAD-X, however, proposes
bilingual adapters (i) without the use of any parallel data, (ii)
with the goal to support the downstream cross-lingual transfer,
and (iii) it targets low-resource target languages.
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Figure 1: BAD-X adapter module at one MMT layer,
showing the BAD-X BA for one language pair (English-
Wolof: En-Wo) and the POS TA. The same module (but
different parameters) is added at each MMT layer.

up-projection with a residual connection. More
specifically, let the down-projection be a matrix
Dl ∈ Rh×d and the up-projection be a matrix
Ul ∈ Rd×h where h is a hidden size of the MMT
and d is the hidden size of the adapter. Let us de-
note MMT’s hidden state and the residual at layer l
as hl and rl, respectively. The adapter computation
of layer l is then given by:

Al(hl, rl) = Ul(ReLU(Dl(hl))) + rl, (1)

with ReLU as the activation function. This for-
mulation subsumes LAs and TAs in MAD-X, as
well as BAs and TAs in BAD-X, where LAs/BAs
receive the input from the (frozen) Transformer
layer, while TAs receive the input from the (frozen)
LA/BA put on top of the frozen Transformer layer
(Figure 1).2

MAD-X LAs are trained via masked-language
modeling (MLM) objective on the Wikipedia of
the corresponding language, while TAs are trained
on annotated task data. Once LA for Ls is avail-
able, TA is trained by stacking it on top of the fixed
source LA. Transfer is done by replacing the Ls

LA with the Lt LA. Unlike MAD-X, BAD-X trains
a single bilingual adapter via MLM, alternating be-
tween the unlabelled (Wikipedia) data from both
Ls and Lt. The ‘data alternations’ are done ac-
cording to a predefined ratio: e.g., the ratio of N :1
denotes that the model would see N Ls sentences
followed by 1 Lt sentence. The motivation for this
is twofold: 1) seeing a data mixture from the two
languages could produce a BA that is better for
transfer than having two independent LAs; 2) LAs
for low-resource Lt-s might otherwise overfit due
to unlabelled data scarcity in Lt, and thus could
benefit from additional Ls data.

In BAD-X, TA is then again trained on top of

2MAD-X also relies on so-called invertible adapters for
slightly improved performance, see (Pfeiffer et al., 2020b) for
further details; they have a similar effect on BAD-X, but we
omit them to boost simplicity and clarity of the design and the
experimental setup.

https://github.com/parovicm/BADX


the fixed BA, and the same BA-TA configuration is
retained at inference, see Figure 1 again.

Advantages and Limitations. BAD-X allows
parameter-efficient transfer to arbitrary tasks and
languages by learning modular bilingual and task
representations. It trades-off some modularity of
MAD-X for increased performance and expressive-
ness when the goal is to perform a transfer for a
fixed pair of languages. A disadvantage of BAD-X

with respect to modularity is that it no longer of-
fers a zero-cost transfer (once all LAs are learnt)
between all language pairs under consideration: it
requires training of separate BAs for all pairs of in-
terest. However, as we show further in §3, BAD-X

might be preferable over MAD-X in the cases when
the goal is to improve a particular source-target
direction, which is our targeted use-case.

3 Experiments and Results

Tasks and Languages. We evaluate BAD-X on
three standard cross-lingual tasks which allow
for experimentation with low-resource target lan-
guages: POS, DP, and NLI. For POS and DP, we
sample ten low-resource languages from the Uni-
versal Dependencies (UD) 2.7 dataset (Zeman et al.,
2020), taking into account: 1) the availability and
the size of the corresponding Wikipedia; and 2)
typological diversity to ensure that different lan-
guage families are covered.3 For NLI, we rely on
the recent AmericasNLI dataset (Ebrahimi et al.,
2022), spanning ten low-resource languages from
the Americas. For AmericasNLI languages, we use
Wikipedia if available; otherwise we use the unla-
belled data previously used by Ansell et al. (2022).
English is the source language in all experiments
for all tasks.4 All languages along with their lan-
guage codes are listed in Table 3 in the Appendix.

3.1 Experimental Setup

MMT. In all our experiments, we use mBERT, an
MMT model pretrained on the Wikipedias of 104
languages (Devlin et al., 2019).5

Training Setup: LAs, BAs. To enable a fair
comparison between MAD-X and BAD-X under the

3As a result, our ten languages cover eight different lan-
guage families and five different writing systems.

4For UD target languages, we use the training split for eval-
uation if available, since it is larger than the test or evaluation
splits.

5mBERT demonstrated a slight edge in transfer perfor-
mance over XLM-R for lower-resource languages in prior
work (Pfeiffer et al., 2020b).

same training and inference conditions, we train
our own MAD-X LAs from scratch with the MLM
objective on monolingual Wikipedias: training is
run for 25,000 steps, with a batch size of 64 and a
learning rate of 1e−4. We evaluate the LAs every
500 training steps and finally choose the LA that
yields the lowest perplexity, as evaluated on the 5%
of the Wikipedia data that acts as a validation set.

Pfeiffer et al. (2020b) empirically established
that strong task performance of MAD-X on low-
resource languages can be achieved already after
20,000 LA training steps, and that longer train-
ing offers only modest to negligible performance
gains. Driven by their findings, we train MAD-X

LAs for 25,000 iterations due to computational
constraints, a large number of experiments, and the
low-resource nature of our target languages.

BAD-X BAs are trained on the Wikipedia data
of both Ls and Lt. The standard BAD-X vari-
ant termed Balanced BAD-X (also BAD-X 1:1) is
trained by alternating one batch of the Ls data (i.e.
English) followed by one batch of the Lt data, for
50,000 iterations (i.e., this way we match the total
number of iterations performed by training MAD-
X Ls and Lt LAs for 25,000 iterations each), and
we adopt all the hyperparameters from MAD-X LA
training. We select as the final BA the one with
the lowest Lt perplexity. Bilinguality of the BAD-X

BAs allows us to directly train TA on top of it and
perform the inference with the same configuration.

Multilingual Adapter (MA). Given N target lan-
guages of interest, one could alternatively train a
multilingual adapter on unlabelled text from Ls

and all N target languages Lt: while this is more
computationally efficient than both BAD-X and
MAD-X6 it could, presumably, again lead to the
“curse of multilinguality”, as the adapter parame-
ters would be shared across N+1 languages. On
the other hand, MA has the chance to benefit from
similarities between target languages (especially
in the case of AmericasNLI). Concretely, we train
two multilingual adapters: one for the set of UD
languages and the other for the set of AmericasNLI
languages. Multilingual UD adapter is trained by
alternating one batch of English Wikipedia and one
batch from each of 10 UD languages’ Wikipedia
for 50,000 iterations. Multilingual AmericasNLI

6In particular, with one source language and N target
languages one needs to train: i) N+1 different MAD-X LAs
(one for Ls and one for each of the N Lts); ii) N different
BAD-X BAs (one for each (Ls, Lt) pair) and, iii) only one MA
(using Ls and all Lts at once).



adapter is obtained following the same procedure,
only using Wikipedias of the NLI target languages.

Training Setup: TAs. For POS and DP, TA is
trained by stacking it on top of the source (i.e. En-
glish) LA (with MAD-X), the English-Lt BA (with
BAD-X) or the multilingual adapter MA and per-
forming 15,000 steps with a batch size of 8 and a
learning rate of 5e−5. We evaluate the TAs every
250 steps on English validation set, and select as
the final TAs the ones with the best accuracy (POS)
and LAS score (DP). The adapter reduction factor
(Pfeiffer et al., 2020a) is 2 for LAs and BAs and 16
for TAs. For AmericasNLI, we train its TA using
the English MultiNLI data (Williams et al., 2018)
following the setup of Ebrahimi et al. (2022): 5
epochs with a batch size of 32, and a learning rate
of 2e−5. We evaluate the TA every 625 steps and
choose the one with the best English validation
accuracy.

BAD-X: BA Variants. Besides Balanced BAD-
X, we consider other variants of BAD-X BAs that
differ in the data ratios between Ls and Lt; we
denote these variants as BAD-X 1:N , where 1 batch
of Ls data is followed by N batches of Lt data,
and vice versa: BAD-X N :1. With these variants,
we aim to answer the following question: given a
fixed number of MLM training steps (i.e., a fixed
computational budget) for BAs, is it possible to
further impact/improve transfer performance? Is
the optimal data sampling ratio task-dependent?

3.2 Results and Discussion

The results for all languages and tasks with MAD-X

and Balanced BAD-X are summarized in Table 1,
with additional results in the appendix. As a gen-
eral trend, we observe that the proposed Balanced
BAD-X variant outperforms MAD-X and MAs over
a majority of languages and across all three tasks:
besides offering higher average results, we also
report gains on 8/10 (POS; accuracy), 9/10 (DP;
UAS), and 8/10 (NLI; accuracy) target languages.
This confirms the positive impact of BA training,
which is able to capture additional interactions of
each language pair, in lieu of LA training.

Performance across Tasks. In particular, BAD-X

gains on average 1.06% in accuracy and 0.66% in
F1 compared to MAD-X on POS task. It outscores
the multilingual adapter on POS even more: 3.55%
in accuracy and 2.87% in F1 on average. The gains
over MAD-X are even more pronounced on the
more complex DP task, which shares the target lan-

guages set with POS: BAD-X outperforms MAD-X

on average with a gap of 2.62% in UAS and 2.38%
in LAS scores. The gain is particularly high for
Wolof, a West-African language spoken by more
than five million people, with ~9% improvement
over MAD-X in both UAS and LAS scores. Wolof
is also a language with one of the highest gains
in POS. In the DP task, BAD-X achieves similar
gains over the multilingual adapter: 2.22% UAS
and 2.82% in LAS scores on average. Multilin-
gual adapter achieves high scores on Wolof, which
re-establishes Wolof as a language that highly bene-
fits from the involvement of other languages during
training. We also observe the superiority of Bal-
anced BAD-X over MAD-X on NLI, now on another
set of low-resource languages, with average accu-
racy gains of 2.4%. The highest improvement of
6.67% is observed for Wixarika.

Performance across Languages. Importantly, we
find that improvements in all three tasks are met
for target languages coming from diverse language
families (e.g., for Uralic, Indo-European, Niger-
Congo, Turkic, Aymaran families) and with diverse
typological traits. We speculate that stacking TAs
on top of BAs instead of an English-specialized LA
forces the model to also take into account informa-
tion from the target language, which mitigates over-
fitting to English-only language properties. Further-
more, coupling two languages in the BA training
might also allow for some information flow be-
tween the languages (e.g., some sharing at lexical
level). This also might provide a positive impact on
transfer performance, while this effect cannot be
achieved with individual LAs as in MAD-X. Multi-
lingual adapters lag behind MAD-X and BAD-X as
they aim to fit too many languages into a small num-
ber of adapter parameters, which demonstrates the
necessity of language and especially language-pair
specialization when performance for a particular
source-target transfer direction is paramount.

BAD-X Variants. Figure 2 shows the ‘average-
across-languages’ scores for MAD-X and for all
tested BAD-X variants (based on data sampling ra-
tios at BA training; §3.1). The results indicate
several findings. First, all BAD-X variants outper-
form MAD-X on all three tasks on average. Second,
there is no single best-performing BAD-X variant
for all tasks, that is, the ‘winning’ variant seems to
be task-dependent. In particular, DP benefits the
most from 5:1 sampling, while for POS and NLI
the 1:2 variant outscores the others although DP



Task Method AF BM EU MYV KPV MT MR TE UG WO avg

POS
MAD-X 85.43* 41.61 58.90 66.84 47.63 69.94* 52.65 75.27 47.07* 61.78 60.71
MA 84.49 42.89* 58.87 61.59 42.95 62.24 52.73 75.41 40.79 61.05 58.50
BAD-X 84.94 42.40 59.48* 68.11* 50.26* 69.40 52.35 75.63* 46.67 64.50* 61.37

DP
MAD-X 54.50 12.17 32.06 33.64 23.01 44.16* 27.49 48.54 15.13 24.84 31.55
MA 55.08 14.91* 31.33 33.36 17.79 40.32 26.19 47.91 13.08 31.17 31.11
BAD-X 55.75* 14.47 33.30* 37.74* 25.81* 42.45 29.19* 51.51* 15.11 33.93* 33.93

CNI AYM BZD GN NAH OTO QUY TAR SHP HCH avg

NLI
MAD-X 42.53 46.67 44.53 54.53 47.56 41.18 49.47 37.87 41.73 38.40 44.45
MA 42.67 38.30 44.00 42.53 44.17 40.64 43.33 42.40* 46.67 42.80 42.80
BAD-X 48.13* 47.33* 44.93 58.00* 48.24* 41.44 49.33 38.93 47.07 45.07* 46.85

Table 1: Results of multilingual adapters (MA), MAD-X, and BAD-X (Balanced BAD-X, 1:1) on all tasks and
languages. Standard evaluation measures: F1 for POS, LAS for DP, and accuracy for NLI. Bold: the best
performing approach. An asterisk (*) indicates significant gains over the the other two competitor models (Student’s
t-test with p = 0.05).
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Figure 2: The average accuracy (POS and NLI) and
UAS scores of MAD-X and different BAD-X variants
(see §3.1). Full results are available in Appendix C.

and POS share exactly the same BA training data.

Note that, due to computational constraints, we
did not extensively search for the best sampling
ratios of the source and target language during BA
training, thus the optimal strategy might not be cov-
ered by our experiments. However, these findings
warrant further investigation in future work.

Multiple Runs. To validate that our results hold in
the presence of different parameter initializations,
we perform a comparison of MAD-X and Balanced
BAD-X when the scores are averages of 3 runs with
the same random seeds both for MAD-X and BAD-
X. Due to computational constraints, we select
only a subset of languages for this evaluation. In
particular, we choose 4 UD (MYV, KPV, TE and
WO) and 4 AmericasNLI languages (CNI, GN, SHP

and HCH) and compare MAD-X and Balanced BAD-
X by taking the average scores obtained from 3
runs. The results are shown in Table 2, and again
point to BAD-X’s superiority over MAD-X in terms
of transfer performance in all three tasks.

Task Method MYV KPV TE WO avg

POS MAD-X 67.13 47.86 75.66 59.56 62.55
BAD-X 68.40 48.95 76.07 63.86 64.32

DP MAD-X 34.19 22.41 49.07 24.64 32.58
BAD-X 37.95 23.66 50.20 34.51 36.58

CNI GN SHP HCH avg

NLI MAD-X 44.49 55.24 43.78 40.49 46.00
BAD-X 47.82 56.98 47.60 43.16 48.89

Table 2: Robustness of BAs: average scores across 3
runs (i.e., three different random seeds) for MAD-X and
BAD-X (Balanced, 1:1) for a subset of target languages.

4 Conclusion

We have presented BAD-X, a novel adapter-based
framework for zero-shot cross-lingual transfer.
BAD-X targets improving transfer performance for
particular fixed source-target transfer directions
through the introduction and use of dedicated bilin-
gual language-pair adapters (BAs). The effective-
ness of the BAs and the BAD-X framework has
been demonstrated on three standard transfer tasks,
across a plethora of low-resource languages. In fu-
ture work, we will experiment with more efficient
approaches to bilingual adapters, e.g., based on con-
textual parameter generation (Ansell et al., 2021),
and port the BAD-X framework to more languages
and tasks.
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A Details of the Experimental Setup

Computing Infrastucture. All experiments were
run on a single NVIDIA GeForce RTX 3090 GPU;
training one BAD-X BA or multilingal LA for
50,000 iterations took around 24 hours (MAD-X

LA for 25,000 steps took around 12 hours). Train-
ing of any TA took less than two hours. Evaluation
is performed within the AdapterHub framework
(Pfeiffer et al., 2020a).

Hyperparameters. All hyperparameters were
taken from (Pfeiffer et al., 2020b), as discussed
in the main paper, and no hyperparameter search
was done. All reported results except those in table
2 are from a single run.

B Languages

The list of languages in each task along with their
language codes is provided in Table 3.

C BAD-X: Full results

Full results on all languages for MAD-X and all
BAD-X variants are given in Tables 4, 5 and 6 for
POS, DP and NLI, respectively.



Tasks Languages

POS, DP
Afrikaans Bambara Basque Erzya Komi-Zyryan Maltese Marathi Telugu Uyghur Wolof

AF BM EU MYV KPV MT MR TE UG WO

Treebank AfriBooms CRB BDT JR Lattice MUDT UFAL MTG UDT WTB

NLI
Asháninka Aymara Bribri Guarani Náhuatl Otomí Quechua Rarámuri Shipibo-Konibo Wixarika

CNI AYM BZD GN NAH OTO QUY TAR SHP HCH

Table 3: Lists of tasks with all of the languages.

Method AF BM EU MYV KPV MT MR TE UG WO avg

MAD-X 86.97/85.43 45.92/41.61 70.68/58.90 72.92/66.84 57.18/47.63 74.12/69.94 57.58/52.65 79.81/75.27 60.26/47.07 68.00/61.78 67.34/60.71
BAD-X 1:2 87.09/85.53 48.40/43.91 72.03/60.88 75.55/69.49 57.88/48.43 72.79/68.40 59.45/54.31 81.33/76.63 63.86/46.53 71.78/65.74 69.02/61.98
BAD-X 1:1 86.68/84.94 47.05/42.40 71.16/59.48 74.52/68.11 59.67/50.26 73.54/69.40 57.64/52.35 80.40/75.63 62.86/46.67 70.48/64.50 68.40/61.37
BAD-X 2:1 87.01/85.26 45.59/40.96 71.58/60.19 75.37/69.28 58.22/49.41 73.85/70.21 59.33/54.24 80.28/75.56 62.67/46.99 71.92/65.99 68.58/61.81
BAD-X 5:1 86.98/85.44 48.67/44.35 70.75/59.76 75.98/69.59 57.68/48.52 71.62/67.66 58.81/54.21 79.28/74.58 58.39/43.45 70.30/64.55 67.85/61.21

Table 4: Results of MAD-X and all BAD-X variants on POS. Scores are accuracy/F1. The last column is the average
score over all languages.

Method AF BM EU MYV KPV MT MR TE UG WO avg

MAD-X 66.64/54.50 35.19/12.17 54.71/32.06 55.18/33.64 43.74/23.01 60.74/44.16 46.08/27.49 63.77/48.54 33.74/15.13 46.04/24.84 50.58/31.55
BAD-X 1:2 67.83/55.42 37.70/15.10 53.88/31.84 58.46/38.07 44.20/22.95 61.79/43.29 48.71/30.53 68.93/52.58 33.03/14.94 51.72/30.77 52.62/33.55
BAD-X 1:1 68.02/55.75 37.20/14.47 55.42/33.30 58.61/37.74 44.34/25.81 61.87/42.45 48.01/29.19 68.69/51.51 35.07/15.11 54.82/33.93 53.20/33.93
BAD-X 2:1 67.81/55.70 36.35/14.11 54.78/33.40 58.78/37.58 43.04/22.81 63.18/43.68 49.88/30.40 66.90/49.98 34.31/14.40 55.66/33.69 53.07/33.58
BAD-X 5:1 68.03/56.03 36.56/14.40 53.65/31.84 62.03/42.22 45.86/24.67 62.68/42.28 49.52/30.40 66.65/48.54 35.74/14.31 57.08/36.78 53.78/34.15

Table 5: Results of MAD-X and all BAD-X variants on DP. Scores are UAS/LAS. The last column is the average
score over all languages.

Method CNI AYM BZD GN NAH OTO QUY TAR SHP HCH avg

MAD-X 42.53 46.67 44.53 54.53 47.56 41.18 49.47 37.87 41.73 38.40 44.45
BAD-X 1:2 45.60 52.13 45.47 56.93 45.53 45.05 54.13 39.07 47.20 45.47 47.66
BAD-X 1:1 48.13 47.33 44.93 58.00 48.24 41.44 49.33 38.93 47.07 45.07 46.85
BAD-X 2:1 46.27 50.27 46.13 51.47 48.10 40.51 53.20 37.60 48.13 43.60 46.53
BAD-X 5:1 43.20 52.13 45.73 56.27 46.75 43.18 55.73 37.47 50.40 42.53 47.34

Table 6: Results of MAD-X and all BAD-X variants on NLI. Scores are accuracy. The last column is the average
score over all languages.


