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ABSTRACT

Multimodal Large Language Models (MLLMs) have gained increasing popular-
ity as a promising framework for leveraging the strong language reasoning capa-
bilities in the vision-language domain. Given a wide range of MLLMs, model
merging potentially offers a cheap way to aggregate their diverse knowledge into
a single MLLM. However, directly plug-in existing model merging approaches
often leads to suboptimal performance due to (1) inclusion of harmful models
that have over-confident predictions in the target task; (2) the lack of special-
ized designs for vision-language inputs. To tackle these pain points, we con-
duct pioneering investigations to dissect the merging procedures and propose an
uncertainty-guided MLLM merging algorithm, i.e., UQ-Merge, which i) identi-
fies beneficial candidates for merging, ii) determines the merging order and the
number of helpful candidates, and iii) performs appropriate merging. Within our
framework, we consider uncertainty quantification on both text and vision inputs
to examine the MLLM prediction confidence, and then decide whether and when
a MLLM needs to be included. It is worth mentioning that our vision-language
uncertainty quantification does not require access to sample labels, making it more
practical in various scenarios. Extensive experiments consistently demonstrate the
superior MLLM merging performance of UQ-Merge in both held-in and held-
out vision-language benchmarks. For example, compared to existing state-of-
the-art merging methods, UQ-Merge brings substantial performance improve-
ments of up to 44.3% on average accuracy in 12 datasets. Codes are available at
https://anonymous.4open.science/r/UQ-Merge-7CD7.

1 INTRODUCTION
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Figure 1: The average accuracy of the
best single model, merge all models,
and merge UQ-Merge selected models.
Held-in datasets refer to datasets used for
UQ. Held-out datasets are benchmarks
unused for model selection.

Multimodal Large Language Models (MLLMs) have
achieved numerous successes in various visual-language
tasks including visual reasoning (Yin et al., 2023), au-
tonomous driving (Cui et al., 2024), visual question an-
swering (Zhang et al., 2024a), etc. A popular paradigm
to reach impressive vision-language reasoning capabil-
ities typically combines a LLM backbone with a pre-
trained vision encoder (Alayrac et al., 2022; Liu et al.,
2024b;a; McKinzie et al., 2024; Tong et al., 2024; Xue
et al., 2024). Fine-tuning of pre-trained MLLMs has
been explored in many vision-language domains like
biomedicine answering (Li et al., 2024b) and text-rich
image understanding (Zhang et al., 2023), pushing the
need to incorporate knowledge from diverse domains.
To achieve this, rather than collecting all datasets and
spending massive computing costs to train a new model
from scratch, model merging has been widely explored
as a method to overcome high training costs and ag-
gregate knowledge from different datasets, by leverag-
ing existing models and merging them in a training-free
manner. Existing studies have shown superior merg-
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ing results across tasks, highlighting its advantage of efficiently integrating separate advance-
ments (Ding et al., 2024; Goddard et al., 2024; Wan et al., 2024; Yang et al., 2024; Lu et al., 2024).

However, the model merging in the MLLM domain remains less explored. To begin with, we apply
a single-modal merging method (Figure 1 (yellow)) and it achieves stronger performance compared
to the best single model (Figure 1 (green)). Meanwhile, we observe that by selectively merging
MLLMs (Figure 1 (orange)), the performance of the merged model can be further improved.

Despite the performance gain, applying single-modal merging methods on MLLM merging has
limitations. Firstly, existing merging methods assume that all models are beneficial for merging
performance. As pointed out by (Zhao et al., 2024) and observed in Figure 1, this assumption
may not hold true in real-world scenarios where models to merge are trained on divergent datasets.
Some models produce over-confident predictions on target tasks and merging them will result in a
performance decrease of the merged model. Secondly, these merging methods are designed solely to
focus on single-modal model merging. Given these limitations, an ideal MLLM merge mechanism
should be selective and aware of multimodal inputs.

To address these challenges, we propose UQ-Merge, an uncertainty quantification guided MLLM
merging algorithm that features vision-language optimized design to ameliorate performance degra-
dation caused by merging over-confident models. Specifically, UQ-Merge ❶ uses image-text
perturbation-based uncertainty quantification (UQ) to evaluate models, and ❷ sorts models by the
descending order of uncertainty to reduce the impact of over-confident models. ❸ UQ-Merge in-
crementally enlarge the group of models to merge, and ❹ return the merged model with the lowest
uncertainty. Our contributions are summarized as follows:

• Due to the inclusion of over-confident models and the lack of vision-language specific de-
signs, directly applying single-modal merging methods results in suboptimal performance.
To resolve these issues, we conduct pioneering work in the MLLM field.

• To investigate design factors influencing MLLM merging performance, we raise and an-
swer research questions: What is a more effective metric for selecting helpful models?
How to decide the merging order and select models? How to implement UQ for MLLM?
And how to appropriately merge selected models?

• We propose an MLLM-tailored image-text perturbation-based uncertainty quantification
method and introduce UQ-Merge, an uncertainty guided MLLM merging method that
could identify and exclude over-confident models.

• Experiments demonstrate that UQ-Merge consistently outperforms single-modal merging
methods. With the same number of models used for merging, UQ-Merge achieves an av-
erage accuracy improvement of 2.62% on held-in datasets and 1.06% on held-out datasets
compared to existing merging methods. Furthermore, UQ-Merge can surpass single-
modal merging methods that have access to more models, by 0.54% on held-in datasets
and 1.3% on held-out datasets.

2 RELATED WORK

Multimodal Large Language Models (MLLMs). Large Language Models (LLMs) have demon-
strated strong reasoning and instruction-following capability (Zhao et al., 2023; Touvron et al.,
2023a;b). In light of this, many works (Alayrac et al., 2022; Liu et al., 2024b;a; McKinzie et al.,
2024; Tong et al., 2024; Xue et al., 2024) propose to further incorporate pre-trained vision back-
bones (Radford et al., 2021; Zhai et al., 2023) to enable visual perception capabilities in existing
LLMs, producing Multimodal Large Language Models (MLLMs). These models extend the power-
ful capabilities of LLMs into the domain of visual comprehension and reasoning. The mainstream
architecture of MLLMs generally consists of three components: a vision encoder that extracts fea-
tures from visual inputs, a modality adapter that projects the outputs of the vision encoder into the
token embedding space of the LLM backbone, and an LLM backbone that processes both image and
text inputs to generate responses (Yin et al., 2023; Zhang et al., 2024a). Modality adapter imple-
mentations include projection-based, query-based, and fusion-based variants (Zhao et al., 2023; Li
et al., 2023b; Radford et al., 2021; Alayrac et al., 2022). The typical training process of an MLLM
involves two stages: pre-training and instruction tuning. During the pre-training stage, the vision
encoder and the LLM are kept frozen, while the adapter is trained on a large corpus of image-text
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pairs. The objective of this stage is to train the adapter so that visual tokens can be effectively em-
bedded into the language token space. Following pre-training, visual instruction tuning (Liu et al.,
2024b;a) is conducted using instruction-following examples from diverse vision question answering
(VQA) tasks. This step aims to improve the model’s ability to follow instructions in VQA or image
captioning scenarios. Given individual MLLMs, it remains under-explored how to leverage these
mdoels and aggregate their knowledge. Motivated by this, we propose UQ-Merge, a UQ-based
MLLM merging method to incorporate models fine-tuned on different tasks.

Model Merging. Model Merging (Ainsworth et al., 2023) combines multiple pre-trained or fine-
tuned models into a unified, powerful model, leveraging the strengths of specialized models while
maintaining versatility without requiring additional training. Early zero-shot merging methods, such
as weight averaging and Linear Mode Connectivity (Nagarajan & Kolter, 2021; Wortsman et al.,
2022), laid the foundation for this approach. Task Arithmetic Ilharco et al. (2023) manipulates
task vectors for effective merging, while TIES (Yadav et al., 2023) addresses parameter interference
through trimming and conflict resolution. DARE (Yu et al., 2024) selectively optimizes parameters
to enhance merging without extra training, utilizing the geometric properties of weights (Shoemake,
1985; Jang et al., 2024). In the latest works, DELLA merges models by pruning and re-scaling
weights based on their magnitude (Deep et al., 2024), and Model Stock finds the optimal inter-
polation ratio between merging candidates, using a pre-trained model to identify a robust anchor
point (Jang et al., 2024). In the multimodal domain, model merging has similarly proven its ability
to transform modality-specific models into modality-agnostic models (Sung et al., 2023). These
existing merging studies motivate us to explore model merging in the MLLM domain.

Uncertainty Quantification (UQ). Uncertainty quantification (UQ) in predictions from deep neu-
ral networks (DNNs) has been a longstanding and essential problem (Abdar et al., 2021; Gaw-
likowski et al., 2023). The sources of uncertainty can be categorized into data uncertainty (aleatoric
uncertainty) and model uncertainty (epistemic uncertainty). Broadly, UQ methods can be catego-
rized into four groups (Gawlikowski et al., 2023): single-inference deterministic methods (Nandy
et al., 2020; Oala et al., 2020; Sensoy et al., 2018), Bayesian neural network (BNN) methods (Gal &
Ghahramani, 2016; Loquercio et al., 2020), ensemble-based methods (Rahaman et al., 2021; Lak-
shminarayanan et al., 2017) and test-time augmentation methods (Ayhan & Berens, 2018; Ashukha
et al., 2020). For UQ in LLMs, Sampling with Perturbation for UQ (SPUQ) (Gao et al., 2024) is a
test-time augmentation method that generates a set of perturbed prompts and quantifies uncertainty
based on the similarity between the responses. In the MLLM domain UQ is less explored. One
recent work applies conformal prediction (CP) for UQ in MLLMs (Ye et al., 2024; Kostumov et al.,
2024). However, the CP method requires labeled data to estimate the model’s uncertainty, which
is infeasible in many real-world applications due to the lack of ground truth. In (Daheim et al.,
2023), the authors propose to utilize gradient-based UQ to mitigate mismatches of gradients when
merging models trained on various tasks. However, it still requires labels to compute the gradients
and needed Hessian matrices To address this, we propose a vision-language perturbation-based UQ
method for MLLM that does not require labels.

3 METHODOLOGY

3.1 PRELIMINARIES

The Architecture Overview of Multimodal Large Language Model. The definition of Multi-
modal Large Language Models (MLLMs) is LLM-based models with the ability to receive, reason,
and output with multimodal information (Yin et al., 2023). Prior to MLLMs, many works were
devoted to multimodality learning (Radford et al., 2021; Li et al., 2021; Wang et al., 2021). In this
paper, we focus on MLLMs that process image-text inputs and use (xv, xt) to represent an input
image xv and text xt pair to an MLLMM(·, ·). The most common MLLM architecture for image-
text inputs (Liu et al., 2024b;a; Chen et al., 2024; McKinzie et al., 2024; Tong et al., 2024) typically
comprises a pre-trained vision encoder V (·), an adapter A (·) and an LLM backbone F (·). An
overview of the model architecture is provided in Figure 2 (a). The text input xt is split into textual
tokens ht. The vision encoder extracts visual features from the input image xv , represented as visual
tokens zv = V (xv), which are then mapped by the adapter into the embedding space of language
tokens, yielding hv = A (zv). The LLM processes both visual tokens hv and language tokens ht

to generate an output F (hv,ht) to the textual query.
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Figure 2: The overview of our proposed UQ-Merge. (a) illustrates the common architecture of
MLLMs. In (b) it shows vanilla merging fails when no selection is considered, and in contrast perfor-
mance gains by selectively merging. (c) shows the two steps in UQ-Merge: (1) UQ-Merge quan-
tifies and sorts models by descending order of their uncertainty. (2) After sorting, each model is
gradually included and merged, and returns the model with the lowest uncertainty.
Model Merging. The goal of model merging is to aggregate knowledge from two or more models
with the same architecture into a unified model that retains the strengths and capabilities of the
original models. Formally, given a set of models {M1, . . . ,Mn}, model merging can be expressed
as M∗ = Merge (M1, . . . ,Mn), where M∗ represents the merged model and Merge(·) is a
merging method. In MLLM merging, as the vision encoders V of models with the same architecture
are usually initialized from the same pre-trained model and kept frozen during the pre-training and
fine-tuning process (Liu et al., 2024b;a; Lin et al., 2024; Xue et al., 2024), their weights are identical
and do not require merging. For this reason, Merge(·) only considers the adapter A and the LLM
backbone F when applied on MLLMs.
3.2 UQ-MERGE : UNCERTAINTY QUANTIFICATION (UQ) GUIDED MLLM MERGING

To overcome the aforementioned challenges of over-confident merging candidate models and the
lack of vision-language oriented merging method, we propose UQ-Merge, which consists of a
vision-language perturbation-based MLLM uncertainty quantification (Section 3.3) to evaluate mod-
els, and a merging algorithm based on the uncertainty of models (Section 3.4). The procedure of
UQ-Merge is described in Figure 2 (c). First, UQ is applied to MLLMs to quantify their uncertainty,
and models are sorted in descending order of uncertainty to later consider potentially over-confident
models. Then, UQ-Merge incrementally merge the sorted models and record the uncertainty scores
of the merged model at each step. Finally, the merged model with the lowest uncertainty during the
process is selected as the final output. Throughout the process, UQ-Merge adopts the same UQ
function described in Section 3.3.
3.3 VISION-LANGUAGE PERTURBATION-BASED UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) (Mehrtash et al., 2020; Guo et al., 2024; Gao et al., 2024) has
demonstrated superior effectiveness in evaluating models without labels, which is highly practical
in real-world scenarios. UQ provides a quantified score for a model, indicating its confidence level
reliability and performance (Wang et al., 2022; Si et al., 2023). In light of this, we develop a vision-
language perturbation-based UQ to evaluate MLLMs for model merging. Specifically, given input
image-text pair xv and xt, our perturbation-based MLLM UQ(·, ·, ·) on a MLLM modelM of this
sample is defined as:

UQ (M, xv, xt)︸ ︷︷ ︸
Model uncertainty

≈ H

 1

J

J∑
j=1

Mj
ϵ

(
Pj
v(xv),Pj

t (xt)
)

︸ ︷︷ ︸
Total uncertainty

− 1

J

J∑
j=1

H
(
Mj

ϵ

(
Pj
v(xv),Pj

t (xt)
))

︸ ︷︷ ︸
Data uncertainty

,

(1)
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where J is the number of perturbations, xv and xt are original image-text input, Mj
ϵ is the jth

perturbed model, Pj
v(·) is the jth perturbation function for the image input, Pj

t (·) is the jth text
perturbation function, and H(·) is the entropy function. The perturbed model Mj

ϵ is derived by
adding Dropout (Srivastava et al., 2014) to the attention score. We implementPj

v(·) as a composition
of image transformation functions such as Shear, Translate, Rotate, Equalize, and Posterize (Cubuk
et al., 2018; Hendrycks et al., 2020). Pj

t (·) is implemented by adding randomly selected prompts
(e.g., “you are a helpful assistant”) to the original text input. Following previous works (Ye et al.,
2024; Kostumov et al., 2024), we employ the prompt1 to ask the model to answer directly with an
option and extract the logits of option letters from the first newly generated token, and entropy is
computed on the logits. The model uncertainty is the difference between total and data uncertainty,
where the total uncertainty is the entropy of the average prediction, and the data uncertainty is the
average entropy of each prediction. In the literature below, we use UQ(M) to represent the average
uncertainty ofM over samples by using UQ(·, ·, ·).

3.4 UNCERTAINTY-GUIDED MERGING FOR MODEL SELECTION

Algorithm 1 UQ-Merge

1: Input: Models {M1, . . . ,Mn}, UQ function UQ(·),
Merging method Merge(·)

2: Output: Merged modelM∗

3: Compute vision-language uncertainty {u1, · · · , un} for
each model in {M1, . . . ,Mn}

4: {M′
1, . . . ,M′

n} ← Sort {M1, . . . ,Mn} by descending
order of vision-language uncertainty {u1, · · · , un}

5: Initialize the uncertainty of the merged model as u∗ ←∞
6: Initialize the merged model asM∗ ←M′

1
7: for a modelM′

t in {M′
1, . . . ,M′

n} do
8: Mt

merged ← Merge(M′
1, . . . ,M′

t)

9: ut
merged ← UQ(Mt

merged)

10: if ut
merged < u∗ then

11: M∗ ←Mt
merged; u∗ ← ut

merged

12: end if
13: end for
14: returnM∗

Given models to merge, we sort the
models in descending order of un-
certainty to reduce the impact of
over-confident models for merging
(Step (1) in Figure 2 (c)). Start-
ing from the model with the low-
est uncertainty, UQ-Merge grad-
ually considers each model. At
each step, one model Mi is
added to the merging group, and
merging method Merge(·) is em-
ployed to produce a merged model
Mmerged, and UQ(·) is applied to
quantify its uncertainty. In our
practice of UQ-Merge, Merge(·)
is implemented as linearly aver-
aging the weights of all mod-
els. UQ-Merge allows different
choices of merging functions, but
as will be shown in Table 6, linear
merging is simple and brings strong
performance. After using all models, UQ-Merge returns the merged model with the lowest uncer-
tainty (Step (2) in Figure 2 (c)). As the merged model aggregates knowledge from diverse domains,
we view low uncertainty after merging as a signal of strong capability on tasks and select the model.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model Preparation. In our experiments, we begin with the pre-trained LLaVA-v1.5-7B
model (Liu et al., 2024a), which utilizes Vicuna-1.5-7B (Chiang et al., 2023) as the LLM backbone
F , a CLIP-ViT-L-336px (Radford et al., 2021) as the vision encoder V , and a two-layer MLP with a
hidden dimension of 4096 as the modality adapter A. Then the pre-trained model is fine-tuned with
instruction-tuning datasets that focus on diverse vision-language capabilities to create the models
for merging. Each model is trained on a distinct dataset. Specifically, we follow the instruction-
tuning practices of LLaVA-v1.5 and use the same datasets, which can be categorized into: visual
reasoning datasets (Hudson & Manning, 2019; Kazemzadeh et al., 2014; Mao et al., 2016); text-rich
datasets (Mishra et al., 2019; Sidorov et al., 2020); knowledge-based VQA datasets (Marino et al.,
2019; Schwenk et al., 2022); GPT-generated datasets (Liu et al., 2024b; ShareGPT, 2023); and gen-
eral VQA datasets (Goyal et al., 2017; Krishna et al., 2017). All models are trained following the
default training configuration from LLaVA-v1.5-7B, using AdamW (Loshchilov & Hutter, 2019)

1”Answer with the option’s letter from the given choices directly.”
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as the optimizer and the learning rate starts from 2 × 10−5 and decreases according to a cosine
annealing scheduler. Models are trained in the distribution of 4 × A100 GPUs using DeepSpeed
ZeRO-3 (Aminabadi et al., 2022) with gradient checkpointing enabled, and the batch size per device
is set to 16. On each fine-tuning dataset, the pre-trained model is fine-tuned for 1 epoch.

Single-Modal Baselines. For sufficient comparison with our method that uses UQ to guide MLLM
merging, we compare UQ-Merge against various single-modal merging methods and test their per-
formance in multimodal scenarios. Specifically, we consider DARE (Yu et al., 2024), DELLA (Deep
et al., 2024), Linear (Wortsman et al., 2022), TIES (Yadav et al., 2023), Task Arithmetic (Ilharco
et al., 2023), and Model Stock (Jang et al., 2024). Due to the lack of model selection capability, we
compare these methods in ❶ average performance in random selections and ❷ merge all models.
Although baseline methods were originally designed for single-modal merging, they are capable of
merging models that have the same architecture. We consider adapter and LLM backbone when
using baselines, as a naive extension of these methods.

Vision-Language Classification Datasets for Uncertainty Quantification. We select vision-
language classification datasets as our benchmarks for UQ(·). Specifically, five datasets across five
domains are considered: MMBench (reasoning / perception (Liu et al., 2023a)), OODCV-VQA
(out-of-distribution robustness (Zhao et al., 2022)), ScienceQA (world knowledge (Lu et al., 2022)),
SEEDBench (spatial and temporal understanding (Li et al., 2023a)), and AI2D (diagrams (Kembhavi
et al., 2016)). In line with (Ye et al., 2024; Kostumov et al., 2024), we reformat the answers of these
datasets and introduce two additional choices, “I don’t know” and “None of the above,” to the list
of options. Since our vision-language perturbation-based UQ does not require labels, we treat these
datasets as held-in datasets and also use them for the evaluation of merged models’ performance in
vision-language classification format tasks.

Vision-Language Generation Datasets for Evaluation of Multimodal Capability. To more
comprehensively evaluate the merged models’ performance, we choose seven vision-language
generation tasks of six domains, including open real-world knowledge (OKVQA (Marino et al.,
2019), MMMU (Yue et al., 2024)), text understanding (TextVQA (Singh et al., 2019)), composi-
tional questioning answering (GQA (Hudson & Manning, 2019)), low-quality image understanding
(VizWiz (Gurari et al., 2018)), general visual QA (VQAv2 (Goyal et al., 2017)), and hallucination
(POPE (Li et al., 2023c)) as the benchmarks. As these datasets are not used for model selection in
UQ-Merge, in the literature below we refer to these datasets as held-out datasets.

4.2 UQ-MERGE IS EFFECTIVE FOR REMOVING HARMFUL MODELS

In this section, we compare our UQ-Merge against various single-modal merging methods on held-
in and held-out datasets to show the effectiveness of UQ-Merge in excluding harmful models.
For baseline merging methods, we evaluate them by measuring the average performance of their
merged models. For all baseline methods, each time the merged model is produced by merg-
ing a random model selection from all models we fine-tuned, and the number of models selected
each time is the same as the selection of our method UQ-Merge. Evaluation results are summa-
rized in Table 13 and Figure 3. From the results, the following observations can be drawn: ❶ Our
UQ-Merge demonstrates superior performance compared to all other merging methods. Specifi-
cally, UQ-Merge achieves 2.62% ∼ 44.3% and 1.06% ∼ 43.18% improvement on average accu-
racy of held-in and held-out datasets. In fact, the performance of UQ-Merge even surpasses the
maximum value among all baseline methods, as shown in Figure 3. This validates the effectiveness
of UQ-Merge in model selection to exclude over-confident models. ❷ On the held-in dataset, which
is used for uncertainty quantification, UQ-Merge obtains a more significant performance gain com-
pared to held-out datasets, with 4 out of 5 highest accuracy. This justifies our practice of using
UQ to perform model selection, as in real-world applications labels are usually unavailable and UQ
only relies on input to evaluate a model, and UQ-guided model selection can effectively improve
the performance on these applications and even generalize to held-out datasets. ❸ The performance
of single-modal merging methods varies a lot in MLLM merging. The gap of average accuracy for
baselines is 41.68% and 42.12% on held-in and held-out datasets, respectively. These large gaps
show the various effectiveness of state-of-the-art single-modal merging methods when the setting is
shifted to the MLLM merging.
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Table 1: The comparison between UQ-Merge, single-modal merging methods and LLaVA-v1.5 that
trains on the combined dataset. Baseline methods merge randomly selected the same number of
models to UQ-Merge. Average and standard error of the accuracy of baselines across selections
are reported. Results are measured with 3 selections. The best and second-best performances are
highlighted in bold and underline, respectively.

Vision-Language Classification Datasets

Average AI2D ScienceQA SeedBench MMBench OOD-CVMerging Methods 13.75 ± 3.09 8.01 ± 6.94 2.72 ± 2.60 5.73 ± 4.96 26.25 ± 0.75 26.04 ± 0.48
DELLA 53.15 ± 5.72 43.23 ± 7.63 57.97 ± 8.06 55.13 ± 7.55 70.26 ± 1.31 39.14 ± 4.95
Linear 55.43 ± 3.88 49.41 ± 3.64 64.15 ± 6.43 57.16 ± 5.07 69.82 ± 0.62 36.60 ± 3.70
TIES 51.10 ± 7.23 43.58 ± 7.81 52.40 ± 6.88 48.58 ± 14.28 70.02 ± 1.39 40.95 ± 6.07
Task Arithmetic 21.73 ± 7.27 18.22 ± 11.31 17.17 ± 19.61 20.35 ± 13.45 27.60 ± 1.14 25.32 ± 1.09
Model Stock 49.99 ± 0.58 43.81 ± 0.92 65.07 ± 0.06 49.11 ± 0.84 64.10 ± 0.82 27.86 ± 0.52

Ours 58.05 51.75 68.07 60.56 70.35 39.52

LLaVA-v1.5-7B 64.96 54.79 70.43 60.49 72.04 67.05

Vision-Language Generation Datasets
Merging Methods Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 12.83 ± 8.01 0.37 ± 0.35 5.48 ± 4.76 10.91 ± 9.82 26.22 ± 0.80 2.43 ± 2.11 19.77 ± 17.35 24.60 ± 21.64
DELLA 47.94 ± 3.75 40.53 ± 8.05 41.17 ± 1.77 43.96 ± 3.26 32.78 ± 1.31 41.92 ± 5.66 65.33 ± 3.46 69.87 ± 18.26
Linear 54.13 ± 0.72 44.61 ± 5.90 42.74 ± 1.83 49.83 ± 0.92 33.71 ± 0.95 52.80 ± 4.44 69.52 ± 1.77 85.71 ± 0.48
TIES 54.95 ± 1.18 50.16 ± 5.58 44.35 ± 0.35 52.87 ± 1.61 32.48 ± 1.11 46.66 ± 3.37 71.34 ± 1.57 86.81 ± 0.23
Task Arithmetic 18.06 ± 12.38 2.73 ± 2.36 13.61 ± 11.02 16.68 ± 15.07 26.22 ± 1.74 3.30 ± 2.65 28.67 ± 24.04 35.23 ± 31.08
Model Stock 37.79 ± 2.26 2.27 ± 0.96 34.36 ± 2.60 38.29 ± 1.26 32.59 ± 0.23 54.24 ± 0.20 59.19 ± 2.08 43.57 ± 11.01

Ours 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33

LLaVA-v1.5-7B 59.07 53.44 46.07 61.97 35.30 54.39 76.64 85.67
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Figure 3: Comparison of UQ-Merge against minimum, average, and maximum performance of
baselines in random selections on held-in (left) and held-out (right) datasets. T. A. and M. S. stand
for Task Arithmetic and Model Stock. Error bar represents the 95% confidence interval.

4.3 UQ GUIDED MODEL MERGING SURPASSES EXISTING MERGING METHODS

We further compare UQ-Merge in a more challenging setting, where baseline merging methods
have an “unfair” advantage to access all the knowledge within models and merge. Experiment results
show that ❶ Compared to baseline methods, UQ-Merge still achieves the best average accuracy on
both held-in and held-out datasets, surpassing these single-modal methods by 0.54% ∼ 51.69% and
1.3% ∼ 52.6% respectively. ❷ Compared to the average performance of merging randomly selected
portions of all models, all merging methods except DARE and Task Arithmetic enjoy performance
increase by adding more models. This suggests the benefit of incorporating more models from
diverse tasks to build a stronger model and supports our claim that model merging is a cheap way to
aggregate knowledge from different models. It is worth noting that existing single-modal merging
methods have a certain ability to resolve potentially harmful models when merging, by adopting
model weight level manipulation to resolve weight conflict and preserve knowledge from different
tasks (Ilharco et al., 2023; Yadav et al., 2023; Yu et al., 2024). However, these methods are limited
to single-modal model merging. Our UQ-Merge is orthogonal to these works, as we consider
model level removal of harmful over-confident models in MLLM merging situations to improve the
performance, and can benefit from the techniques to ameliorate weight conflict.

4.4 RESEARCH QUESTIONS AND ABLATION STUDY

In this section, we conduct an in-depth investigation of the designs adopted in UQ-Merge and how
they contribute to improved performance. Specifically, we address the following: (1) Is UQ a more
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Table 2: The comparison between UQ-Merge, single-modal merging methods and LLaVA-v1.5.
Baselines merge all 10 models. The best and second-best are in bold and underline.

Vision-Language Classification Datasets
Merging Methods Average AI2D ScienceQA SeedBench MMBench OOD-CV

DARE 6.36 0.00 14.10 17.54 14.10 17.54
DELLA 57.50 62.96 71.69 41.94 71.69 41.94
Linear 56.90 67.39 69.98 36.93 69.98 36.93
TIES 57.51 62.99 71.69 41.94 71.69 41.94
Task Arithmetic 10.94 0.29 26.58 25.78 26.58 25.78
Model Stock 51.55 65.21 65.74 29.47 65.74 29.47

Ours 58.05 68.07 70.35 39.52 70.35 39.52

LLaVA-v1.5-7B 59.07 46.07 35.30 54.39 76.64 85.67

Vision-Language Generation Datasets
Merging Methods Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 3.41 0.02 0.23 0.00 23.56 0.00 0.03 0.00
DELLA 54.69 47.84 44.79 51.65 33.56 48.38 70.51 86.12
Linear 54.71 44.51 44.23 48.56 35.00 55.21 70.21 85.23
TIES 54.70 47.89 44.81 51.65 33.56 48.39 70.51 86.11
Task Arithmetic 3.56 0.00 0.04 0.00 24.89 0.01 0.01 0.00
Model Stock 45.05 8.09 38.24 42.49 32.78 56.19 63.63 73.93

Ours 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33
LLaVA-v1.5-7B 59.07 53.44 46.07 61.97 35.30 54.39 76.64 85.67

Table 3: Comparison of uncertainty and accuracy as different guidance. Each guidance is imple-
mented with ascending and descending orders to sort models. Accuracy for merging guidance is
tested on held-in datasets, and all results are reported on held-out datasets. The best and second-best
performances are highlighted in bold and underline.

Guidance Performance with Different Guidance

Order Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

Uncertainty Ascending 54.30 45.64 44.61 45.31 34.56 54.52 70.05 85.42
Descending 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33

Accuracy Ascending 54.72 44.56 44.12 48.58 35.00 55.34 70.22 85.24
Descending 52.27 30.33 40.68 50.58 35.67 55.73 67.34 85.58

effective way to exclude harmful models, and how should uncertainty of models be used? (Section
4.4.1) (2) How to select models to merge after quantifying models’ uncertainty? (Section 4.4.2) (3)
How to design UQ? (Section 4.4.3) (4) After selection, how to merge models? (Section 4.4.4).

4.4.1 RQ1: IS UQ MORE EFFECTIVE THAN ACCURACY? HOW TO USE UNCERTAINTY? A1:
YES; SORT BY DECREASING UNCERTAINTY

In UQ-Merge, uncertainty is adopted to measure each model and exclude harmful models. An
intuitive alternative to uncertainty is the accuracy of the model on validation datasets, with sorting
done in either ascending or descending order. To address these research questions, we compare
uncertainty and accuracy to determine which serves as better guidance. We replace uncertainty
in UQ-Merge with accuracy on held-in datasets and test both kinds of guidance in ascending and
descending order. Other components in UQ-Merge are kept untouched. We evaluate these modified
designs on held-out datasets due to the usage of held-in datasets for testing accuracy. As shown in
Tab 3, sorting by descending uncertainty achieves the best average performance compared to other
options, confirming the effectiveness of our design. Compared to ascending uncertainty, descending
order leads to a better performance, which justifies our aim to exclude over-confident models.

4.4.2 RQ2: HOW TO SELECT MODELS TO MERGE? A2: WHEN THE UNCERTAINTY OF THE
MERGED MODEL IS THE LOWEST

After sorting models by descending order of uncertainty, it remains unsure how to exclude harmful
models and select beneficial ones. In UQ-Merge, this process is conducted by picking the merged

8
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Table 4: The correlation among uncertainty, average accuracy on validation benchmarks, and aver-
age accuracy on held-out benchmarks. The lowest uncertainty, the highest validation accuracy and
the highest generation accuracy are marked in bold.

# Models 1 2 3 4 5 6 7 8 9 10

Uncertainty 0.21197 0.13290 0.05609 0.04866 0.04531 0.04155 0.03950 0.03954 0.03740 0.03675
Validation Accuracy 18.75 18.48 36.32 37.30 38.84 39.20 39.91 39.15 39.28 39.60
Held-out Accuracy 47.09 51.22 52.47 54.15 54.13 54.54 56.01 55.56 54.15 54.14

model that has the lowest uncertainty. To verify this, we evaluated the correlation between uncer-
tainty, accuracy on validation benchmarks, and accuracy on held-out datasets. In our experiments,
we used RealWorldQA (xAI, 2024), Seedbench 2 Plus (Li et al., 2024a), and OcrBench (Liu et al.,
2024c), which focus on real-world QA, multi-disciplinary knowledge, and text recognition, respec-
tively. As shown in Table 4, the lowest uncertainty and highest validation accuracy align with the
peak performance on held-out datasets. Our findings indicate that lower uncertainty corresponds
to better performance and supports our design. We attribute this to the enhanced capability of the
merged model that makes it more robust to input perturbation and could generate consistent answers.

4.4.3 RQ3: HOW TO DESIGN PERTURBATION? A3: VISION-LANGUAGE INPUT
PERTURBATION IS CRUCIAL

Table 5: Comparison of per-
turbation types. Results are
average accuracy on datasets.

Held-in Held-out

Input 56.82 56.00

Input & Model 56.80 56.01

In this research question, we aim to investigate how different
perturbation designs would affect the merging performance of
UQ-Merge. Specifically, we compare the input and model per-
turbation method adopted in UQ-Merge versus only using in-
put perturbation, by using them as different UQ functions in our
UQ-Merge framework and test the merged model. We implement
input perturbation following the same design of UQ-Merge, by
adding random image transformations and text prompts to the im-
age and text branches respectively. As shown in Table 5, when only use input perturbation, the per-
formance is slightly improved on held-in datasets. On held-out datasets, the performance is slightly
worse for input perturbation only. We attribute this to the robust capability of LLM backbones and
dynamic sparsity of LLM inference (Liu et al., 2023b), which makes model perturbation may not
significantly affect the performance of the LLM backbone.

4.4.4 RQ4: WHAT MERGING METHOD TO USE GIVEN A GROUP OF MLLMS? A4: TIES,
LINEAR OR DELLA

Table 6: Comparison of merging meth-
ods on the same group of models. Re-
sults are average accuracy on held-in
and held-out datasets.

Merging Methods Number of Models

7 10

DARE 22.30 4.64
DELLA 56.26 55.86
Linear 56.86 55.62
TIES 56.26 55.87
Task Arithmetic 22.21 6.64
Model Stock 46.82 47.76

Existing merging methods are designed to deal with
single-modal merging, and it remains unclear how these
merging methods perform for merging multimodal mod-
els. In this research question, we explore the performance
of these single-modal merging methods in the multimodal
scenario by evaluating their performance on a given group
of models. Specifically, we evaluate DARE, DELLA,
Linear, TIES, Task Arithmetic, and Model Stock on held-
in and held-out datasets and calculate the average perfor-
mance on all the datasets. From results in Table 6 we
observe that DELLA, Linear, and TIES perform better
than other methods. In 10-model merging, all instruction-
tuned models are merged. As shown in Table 6, given
the same ten models, TIES achieve the best performance.
When merging seven models with the highest uncertainty, we observe that ❶ The performance of all
merging methods improved, demonstrating the benefit of model selection. ❷ linear merging achieves
the best performance, which supports our choice in UQ-Merge that linearly merges models.

5 CONCLUSION

In this paper, we present a novel MLLM merging algorithm UQ-Merge to aggregate diverse knowl-
edge of models into a single MLLM. We design a vision-language perturbation-based UQ and em-
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ploy it to guide the merging process. As a result, UQ-Merge could identify beneficial models to
merge and use the uncertainty value to decide the merging order and number of models to merge,
and apply appropriate merging on selected models. Extensive experiments on datasets from diverse
domains consistently demonstrate the effective model selection and significantly improved perfor-
mance of our algorithm. Future works include the extension to more multimodal models and tasks
like audio-language models.
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A ADDITIONAL EXPERIMENT RESULTS

A.1 EVALUATION OF FINE-TUNED MODELS

Table 7: Uncertainty of all models on held-in datasets.

Tuning Dataset Average AI2D MMBench OOD-CV ScienceQA SeedBench

OKVQA 0.1314 0.1199 0.1073 0.1350 0.1149 0.1802
OCRVQA 0.0548 0.0555 0.0564 0.0669 0.0505 0.0446
GQA 0.2141 0.2032 0.2375 0.2136 0.2219 0.1941
VQAv2 0.0322 0.0286 0.0355 0.0350 0.0311 0.0306
TextCaps 0.0073 0.0078 0.0085 0.0115 0.0054 0.0030
A OKVQA 0.1078 0.1318 0.0746 0.1066 0.1132 0.1130
RefCOCO 0.0275 0.0250 0.0309 0.0311 0.0267 0.0238
LLaVA-Instruct 0.0713 0.0670 0.0767 0.0787 0.0672 0.0668
ShareGPT 0.0317 0.0246 0.0380 0.0386 0.0320 0.0255
VG 0.0379 0.0334 0.0412 0.0417 0.0360 0.0372

Tuning Dataset Average AI2D MMBench OOD-CV ScienceQA SeedBench

OKVQA 0.1305 0.1199 0.1072 0.1317 0.1152 0.1787
OCRVQA 0.0544 0.0550 0.0560 0.0663 0.0505 0.0444
GQA 0.2141 0.2024 0.2408 0.2084 0.2229 0.1962
VQAv2 0.0323 0.0288 0.0361 0.0347 0.0312 0.0307
TextCaps 0.0072 0.0077 0.0087 0.0114 0.0055 0.0029
A OKVQA 0.1077 0.1326 0.0751 0.1070 0.1117 0.1123
RefCOCO 0.0273 0.0251 0.0305 0.0305 0.0265 0.0238
LLaVA-Instruct 0.0713 0.0668 0.0771 0.0803 0.0662 0.0659
ShareGPT 0.0318 0.0246 0.0375 0.0394 0.0318 0.0255
VG 0.0378 0.0335 0.0408 0.0419 0.0361 0.0369

Tuning Dataset Average AI2D MMBench OOD-CV ScienceQA SeedBench

OKVQA 0.1306 0.1205 0.1067 0.1334 0.1157 0.1767
OCRVQA 0.0547 0.0554 0.0562 0.0668 0.0501 0.0448
GQA 0.2130 0.2020 0.2369 0.2115 0.2220 0.1926
VQAv2 0.0323 0.0288 0.0357 0.0344 0.0313 0.0311
TextCaps 0.0073 0.0078 0.0085 0.0115 0.0055 0.0030
A OKVQA 0.1082 0.1324 0.0758 0.1069 0.1123 0.1135
RefCOCO 0.0273 0.0249 0.0303 0.0308 0.0266 0.0238
LLaVA-Instruct 0.0713 0.0666 0.0763 0.0801 0.0667 0.0666
ShareGPT 0.0316 0.0245 0.0379 0.0388 0.0319 0.0247
VG 0.0376 0.0335 0.0406 0.0417 0.0360 0.0363

In Table 7, we provide uncertainty quantification results of fine-tuned models on held-in datasets.
We conduct evaluation three times and the final uncertainty is the average. As observed in Table 7,
the uncertainty is stable and consistent, showcasing the effectiveness and stability of our vision-
language perturbation-based UQ.
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A.2 EVALUATION OF BASELINES OVER RANDOM SELECTIONS

Table 8: Accuracy of baselines on held-in datasets when merging random model selections.

Merging Methods Vision-Language Classification Datasets

Average AI2D ScienceQA SeedBench MMBench OOD-CV

DARE 15.68 11.98 5.19 8.47 26.53 26.21
DELLA 46.73 34.42 50.05 46.97 68.76 33.45
Linear 57.85 51.65 67.83 60.25 70.19 39.35
TIES 55.60 49.29 55.96 56.14 70.74 45.85
Task Arithmetic 15.13 5.18 12.98 5.20 26.53 25.78
Model Stock 50.65 44.82 65.12 50.08 64.86 28.37

Merging Methods Average AI2D ScienceQA SeedBench MMBench OOD-CV

DARE 10.18 0.00 0.00 0.00 25.40 25.50
DELLA 55.02 47.54 57.70 56.57 70.81 42.47
Linear 57.48 51.36 67.90 59.91 70.17 38.07
TIES 54.95 46.76 56.78 57.49 70.90 42.83
Task Arithmetic 20.54 24.19 0.00 24.96 27.46 26.10
Model Stock 49.56 43.56 65.10 48.56 63.24 27.34

Merging Methods Average AI2D ScienceQA SeedBench MMBench OOD-CV

DARE 15.39 12.05 2.96 8.72 26.81 26.42
DELLA 57.69 47.73 66.16 61.86 71.20 41.51
Linear 50.95 45.21 56.73 51.31 69.10 32.39
TIES 42.77 34.68 44.47 32.11 68.41 34.16
Task Arithmetic 29.52 25.29 38.54 30.89 28.80 24.08
Model Stock 49.77 43.04 65.00 48.70 64.21 27.88
Ours 58.05 51.75 68.07 60.56 70.35 39.52
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Table 9: Accuracy of baselines on held-out datasets when merging random model selections.

Merging Methods Vision-Language Generation Datasets

Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 18.78 0.41 7.82 19.06 27.11 3.85 32.48 40.70
DELLA 43.78 41.69 39.74 40.83 31.67 40.75 62.46 49.32
Linear 53.78 39.45 40.67 49.65 34.67 57.20 69.01 85.83
TIES 56.31 56.08 44.75 54.72 33.33 45.32 73.03 86.94
Task Arithmetic 4.04 0.04 0.91 0.33 24.67 0.26 0.96 1.09
Model Stock 39.37 3.35 37.30 39.54 32.33 54.38 61.51 47.18

Merging Methods Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 3.71 0.00 0.00 0.00 26.00 0.00 0.00 0.00
DELLA 51.08 47.94 43.15 43.70 32.44 36.94 69.17 84.23
Linear 53.66 43.35 43.43 49.02 33.67 52.88 68.06 85.18
TIES 54.15 49.39 44.19 52.08 31.22 44.17 71.07 86.94
Task Arithmetic 22.70 4.47 20.60 19.69 25.89 4.53 41.02 42.72
Model Stock 38.79 1.95 33.38 38.30 32.67 54.34 58.55 52.33

Merging Methods Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 15.99 0.70 8.61 13.66 25.56 3.44 26.84 33.10
DELLA 48.95 31.97 40.62 47.34 34.22 48.07 64.35 76.06
Linear 54.96 51.04 44.12 50.83 32.78 48.33 71.48 86.11
TIES 54.40 45.01 44.11 51.81 32.89 50.50 69.93 86.54
Task Arithmetic 27.45 3.67 19.32 30.01 28.11 5.11 44.02 61.88
Model Stock 35.20 1.51 32.39 37.02 32.78 54.01 57.50 31.21

Ours 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33

In Table 8 and Table 9, we provide performance of baseline single-modal merging methods on held-
in and held-out datasets over model selections. As observed in tables, DELLA, Linear and TIES
consistently outperform other merging methods with a small variance. The average and standard
error are reported based on results above, and the error bar represents the 95% confidence interval.

A.3 EVALUATION DURING MERGING STEPS

Table 10: Accuracy on validation datasets during merging steps.

Validation Datasets Merging Steps

1 2 3 4 5 6 7 8 9 10

RealWorldQA 27.58 22.48 47.45 46.80 47.19 47.58 49.15 47.32 47.32 47.84
SeedBench 2 Plus 23.36 10.36 39.00 40.40 41.33 41.81 42.07 41.72 42.51 42.16
OCRBench 5.30 22.60 22.50 24.70 28.00 28.20 28.50 28.40 28.00 28.80

Table 11: Uncertainty on held-in datasets during merging steps.

Held-in Datasets Merging Steps

1 2 3 4 5 6 7 8 9 10

AI2D 0.201288 0.116523 0.068064 0.061422 0.057592 0.050615 0.046001 0.046755 0.043276 0.042478
MMBench 0.234769 0.118624 0.045755 0.039847 0.037836 0.035598 0.035828 0.034876 0.033679 0.033072
ScienceQA 0.211437 0.136477 0.066517 0.058877 0.053063 0.049049 0.045427 0.046717 0.043556 0.042217
SeedBench 0.221570 0.126527 0.055429 0.047013 0.043838 0.040794 0.038647 0.038368 0.037026 0.036064
OOD-CV 0.190767 0.166342 0.044704 0.036159 0.034233 0.031680 0.031603 0.030970 0.029448 0.029895

In Table 11, Table 10 and Table 12, we present the evaluation results during merging steps.
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Table 12: Accuracy on held-out datasets during merging steps.

Held-out Datasets Merging Steps

1 2 3 4 5 6 7 8 9 10

OKVQA 27.05 54.77 50.48 48.01 46.21 44.13 50.39 47.90 48.01 46.21
TextVQA 23.15 36.06 34.24 37.96 41.19 41.82 43.49 43.22 37.96 41.19
GQA 61.73 54.08 50.77 50.29 48.97 49.98 50.75 49.75 50.29 48.97
MMMU 30.00 29.78 33.78 34.22 34.44 35.00 35.22 35.22 34.22 34.56
VizWiz 44.25 34.69 46.72 54.36 54.61 55.66 54.13 55.31 54.36 54.61
VQAv2 60.03 66.09 66.70 68.30 67.81 68.71 71.77 71.25 68.30 67.81
POPE 83.39 83.07 84.60 85.91 85.68 86.46 86.33 86.29 85.91 85.66

Table 13: The comparison between UQ-Merge , single-modal merging methods and LLaVA-v1.5
that trains on the combined dataset. Baseline methods merge randomly selected the same number
of models to UQ-Merge. Average and standard error of the accuracy of baselines across selections
are reported. Results are measured with 3 selections. The best and second-best performances are
highlighted in bold and underline, respectively.

Vision-Language Classification Datasets

Average AI2D ScienceQA SeedBench MMBench OOD-CVMerging Methods 13.75 ± 3.09 8.01 ± 6.94 2.72 ± 2.60 5.73 ± 4.96 26.25 ± 0.75 26.04 ± 0.48
DELLA 53.15 ± 5.72 43.23 ± 7.63 57.97 ± 8.06 55.13 ± 7.55 70.26 ± 1.31 39.14 ± 4.95
Linear 55.43 ± 3.88 49.41 ± 3.64 64.15 ± 6.43 57.16 ± 5.07 69.82 ± 0.62 36.60 ± 3.70
TIES 51.10 ± 7.23 43.58 ± 7.81 52.40 ± 6.88 48.58 ± 14.28 70.02 ± 1.39 40.95 ± 6.07
Task Arithmetic 21.73 ± 7.27 18.22 ± 11.31 17.17 ± 19.61 20.35 ± 13.45 27.60 ± 1.14 25.32 ± 1.09
Model Stock 49.99 ± 0.58 43.81 ± 0.92 65.07 ± 0.06 49.11 ± 0.84 64.10 ± 0.82 27.86 ± 0.52

Ours 58.05 51.75 68.07 60.56 70.35 39.52

LLaVA-v1.5-7B 64.96 54.79 70.43 60.49 72.04 67.05

Vision-Language Generation Datasets
Merging Methods Average OKVQA TextVQA GQA MMMU VizWiz VQAv2 POPE

DARE 12.83 ± 8.01 0.37 ± 0.35 5.48 ± 4.76 10.91 ± 9.82 26.22 ± 0.80 2.43 ± 2.11 19.77 ± 17.35 24.60 ± 21.64
DELLA 47.94 ± 3.75 40.53 ± 8.05 41.17 ± 1.77 43.96 ± 3.26 32.78 ± 1.31 41.92 ± 5.66 65.33 ± 3.46 69.87 ± 18.26
Linear 54.13 ± 0.72 44.61 ± 5.90 42.74 ± 1.83 49.83 ± 0.92 33.71 ± 0.95 52.80 ± 4.44 69.52 ± 1.77 85.71 ± 0.48
TIES 54.95 ± 1.18 50.16 ± 5.58 44.35 ± 0.35 52.87 ± 1.61 32.48 ± 1.11 46.66 ± 3.37 71.34 ± 1.57 86.81 ± 0.23
Task Arithmetic 18.06 ± 12.38 2.73 ± 2.36 13.61 ± 11.02 16.68 ± 15.07 26.22 ± 1.74 3.30 ± 2.65 28.67 ± 24.04 35.23 ± 31.08
Model Stock 37.79 ± 2.26 2.27 ± 0.96 34.36 ± 2.60 38.29 ± 1.26 32.59 ± 0.23 54.24 ± 0.20 59.19 ± 2.08 43.57 ± 11.01

Ours 56.01 50.39 43.49 50.75 35.22 54.13 71.77 86.33

LLaVA-v1.5-7B 59.07 53.44 46.07 61.97 35.30 54.39 76.64 85.67

B MORE IMPLEMENTATIIN DETAILS

B.1 TEXT PERTURBATION

Prompts used for perturbation of text inputs:

• ’you are a helpful assistant’,

• ’you are a question-answering assistant’,

• ’you are a nice assistant’,

• ’You are a helpful assistant’,

• ’You are a question-answering assistant’,

• ’You are a nice assistant’,

• ’You are a helpful assistant.’,

• ’You are a question-answering assistant.’,

• ’You are a nice assistant.’
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B.2 IMAGE PERTURBATION

The image perturbation is implemented by utilizing the implementation of AugMix (Hendrycks
et al., 2020) in torchvision (Aug), and all parameters are set to default.

B.3 DATASETS FOR UNCERTAINTY QUANTIFICATION

We use the code from (Kostumov et al., 2024) to process MMBench (Liu et al., 2023a), OODCV-
VQA (Zhao et al., 2022), ScienceQA (Lu et al., 2022), SEEDBench (Li et al., 2023a), and
AI2D (Kembhavi et al., 2016) for vision-language perturbation-based UQ.

B.4 EVALUATION OF MODELS

We adopt LMMs-Eval (Zhang et al., 2024b) to conduct evaluation of models on all benchmarks ex-
cept MMBench and OODCV-VQA, which are evaluated directly using our pre-processed datasets.
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