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ABSTRACT

Evaluating layout-guided text-to-image generative models requires measuring
both semantic alignment with textual prompts and spatial fidelity to prescribed
layouts. Existing benchmarks are limited in scale and coverage, hindering sys-
tematic comparison and reducing interpretability of model capabilities. In this
paper, we introduce a scalable closed-set benchmark (C-Bench), automatically
built through a pipeline combining template- and LLM-based prompt generation
with constraint-driven layout synthesis. C-Bench spans seven scenarios designed
to isolate key generative capabilities and provides varying levels of complexity in
both prompt structure and layout. To complement this controlled setting, we pro-
pose an open-set benchmark (O-Bench) derived from Flickr30k Entities, enabling
evaluation on natural prompts and layouts. We further develop a unified evalu-
ation protocol that combines semantic and spatial accuracy into a single score,
enabling consistent model ranking. Using our benchmarks, we conduct a large-
scale evaluation of six state-of-the-art layout-guided diffusion models, totaling
319,086 generated and evaluated images. Results show that MIGC achieves the
highest overall performance (0.7082 on C-Bench and 0.7548 on O-Bench), es-
tablishing it as the most reliable model, particularly in layout alignment. Models
trained explicitly with layout information consistently outperform Stable Diffu-
sion—based approaches, which lag significantly behind. Overall, our benchmarks
and evaluation protocol provide a scalable and interpretable framework for assess-
ing progress in controllable image generation. Code and benchmarks are attached
in Supplementary Materials.

1 INTRODUCTION

Recent advances in generative artificial intelligence have been driven by diffusion models, which
now dominate text-to-image generation. These models are able to synthesize coherent and semanti-
cally faithful images from natural language prompts, and they are increasingly used in applications
ranging from fashion image editing (Baldrati et al., [2023) to synthetic dataset generation (Parolari
et al., [2024). In parallel, significant efforts have focused on fine-grained controllability (Li et al.,
2023; [ Xie et al., 2023; |Zhou et al., [2024), ensuring that the generated image also adheres to addi-
tional constraints such as layout, sketch or depth mask.

Among these, layout-guided generation has advanced rapidly due to its ease of use, yet evaluation
has lagged behind (Grimal et al.,[2024). Unlike standard text-to-image tasks, assessing these models
requires considering two distinct but complementary dimensions: semantic alignment, which cap-
tures whether the correct objects appear in the image, and spatial alignment, which measures whether
they are placed according to the prescribed layout. Without a standardized and scalable framework
that accounts for both aspects, it is difficult to compare methods fairly or to track genuine progress.

An important first step in this direction was the introduction of 7Bench (Izzo et al.| |2025) that, with
respect to previous benchmarks (summarized in Tab.[I), introduced the evaluation of text and layout
alignment. 7Bench is a benchmark made by prompt-layout pairs targeting a narrow set of challenges.
It offers a systematic evaluation protocol for testing layout-guided diffusion models and makes an
effort towards establishing a common ground for comparison. However, despite its value, the bench-
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Benchmark Venue #Scenario  #Instructions  Prompt Layout
DrawBench (Saharia et al., |2022) NeurIPS 4 200 T X
Visor (Gokhale et al.|[2022) arXiv 1 25k T X
HSR-Bench (Bakr et al.| 2023 ICCV 13 45k E X
TIFA v1.0 (Hu et al., 2023 ICCV 12 4k T X
T2I-CompBench (Huang et al.,[2023)  NeurIPS 6 6k T X
Layout-Bench (Cho et al.}[2024) CVPR 1 8k T+L v
7Bench (Izzo et al.,|2025) ICPR 7 224 T v
Ours - 7+1 6.6k T+L+E v

Table 1: Comparison of existing benchmarks. The column #Scenario indicates the number of cate-
gories while #Instructions shows the number of examples in benchmark. The Prompt column spec-
ifies whether prompts are template-based (T), generated through an LLM (L) or taken from existing
datasets (E). The Layout column indicates whether instructions include bounding boxes.

mark suffers from significant limitations. Its small size, consisting of only 224 manually designed
prompts, makes it overly sensitive to what the authors call “unlucky prompts” or ambiguous cases,
leading to anomalous evaluation results. The manual design and annotation process makes scaling
impractical, limiting extensions of the benchmark. Although human-annotated, its design constrains
prompts to a narrow set of artificial patterns that lack the diversity and naturalness of human-written
descriptions. Moreover, semantic and spatial fidelity are measured with separate metrics, which
prevents the establishment of a clear and consistent ranking of models.

This work addresses these limitations with a three-fold contribution, also illustrated in Fig. E} (i) We
introduce a scalable closed-set benchmark (C-Bench) for systematically evaluating layout-guided
text-to-image models under controlled conditions. The benchmark mimics 7Bench, but is automat-
ically constructed through a pipeline that removes the need for costly manual annotations. This
pipeline combines template- and LLM-based prompt generation with constraint-driven layout syn-
thesis. Despite being automatically constructed, C-Bench covers varying levels of prompt and layout
complexity at scale, analyzing specific generative capabilities such as object-attribute binding and
spatial relations. (ii) To complement the controlled conditions of C-Bench, we introduce an open-set
benchmark (O-Bench) derived from Flickr30k Entities (Plummer et al., 2017). O-Bench assesses
models using natural prompts and real-world layouts, exposing them to the variability of human
language and diverse object arrangements. This offers a realistic evaluation of model generaliza-
tion in real-world settings. (iii) We introduce a unified evaluation protocol that combines semantic
alignment and spatial fidelity into a single unified score. This metric enables comprehensive, in-
terpretable assessment of generative models, supporting consistent ranking, direct comparison, and
analysis of strengths and weaknesses in layout-guided image generation.

Using our benchmarks, we perform a large-scale evaluation of six state-of-the-art layout-guided
diffusion models, totaling 319,086 generated and evaluated images. Our experiments demonstrate
that MIGC delivers the strongest overall performance, making it the most reliable model, especially
regarding layout alignment. Models trained explicitly with layout information consistently surpass
Stable Diffusion-based approaches, indicating the importance of proper pre-training. Our analysis
further shows that layout-guided generation performance decreases as the number of objects in the
prompt increases, and that mixing multiple aspects raises task complexity and impacts accuracy.
This aligns with previous work focusing solely on text alignment (Grimal et al., 2024). These
findings emphasize the value of our comprehensive benchmarks and unified evaluation protocol,
providing an interpretable framework for comparing and selecting models for downstream tasks. We
hope these insights facilitate clearer evaluation of model outputs and support their use in generating
synthetic datasets for domains where data are scarce, costly, or difficult to collect.

2 SCALABLE CLOSED-SET BENCHMARK

We construct the closed-set benchmark using an automatic pipeline that generates the instruction set
employed to probe generative models. The pipeline consists of two main components. The Prompt
Generation Engine (PGE) produces textual prompts by combining template-based rules and large
language models. The Layout Generation Engine (LGE) then creates layouts through a constraint-
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Figure 1: Overview of our evaluation framework. We introduce the closed-set benchmark, automat-
ically built by generating prompts and layouts, and the open-set benchmark derived from Flickr30k

Entities. A layout-guided model generates images from these prompts and layouts, forming the eval-

uation set. The evaluation protocol assesses the images providing text-alignment, layout-alignment

and unified scores for both interpretability and consistent model ranking.

based procedure, arranging bounding boxes in a realistic manner while controlling randomness ac-
cording to the content of each prompt. Despite its scalability, the pipeline preserves generality:
the instruction set spans seven distinct scenarios (described later) and includes prompts with vary-
ing numbers of objects, thereby introducing structural and spatial complexity. An overview of the

pipeline is depicted in Fig.[I] (top-left).

2.1 PROMPT GENERATION ENGINE

Textual prompts are generated using a combination of template-based rules and Large Language

Models (LLMs). To ensure full control over the input and enable fair evaluation of outputs, we

design six scenarios inspired by 7Bench (Izzo et al., |2025) with the goal to evaluate a specific

generative capability. Specifically, we investigate:

object biding, i.e. the abil-
ity to generate elements de-
scribed in the prompt;

object relationship, i.e. the
ability to depict objects in re-
lations, e.g. above, below, far
from, to the left of, etc.;

color binding, i.e. the adher-
ence of generated objects to
color attributes;

small bboxes, i.e. the ability
to depict objects whose size is
between 3 and 10% of the im-
age area;

attribute binding, i.e. the ad-
herence to generic attributes
like color, shape, material, ap-
pearance, and dimension;

overlapped bboxes, i.e. the
ability to depict objects that
overlaps in terms of layout.

For each scenario, we design a template that strictly constrain text structure, object-attribute com-
binations, and inter-object relations, thereby isolating the intended capability under evaluation. The
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Scenario Template

Object binding “det(01) 01, det(02) 09, det(03) 03 and det(04) 04”

Color binding “det(cq) c1 01, det(c3) cg 09, det(c3) c3 03 and det(cy) c4 04”
Attribute binding “det(a1) a1 01, det(as) as 02, det(as) ag o3 and det(ay) ay 04”
Object relationship ~ “det(01) r12 det(02) 02 and det(03) t34 det(o4) 04

Small bboxes “det(01) 01, det(02) 02, det(03) 03 and det(o4) 04”

Overlapped bboxes  “det(01) 01, det(o2) 02, det(o3) 03 and det(o4) 04”

Table 2: Templates used by the Prompt Generation Engine for each scenario. Templates are shown
with their full complexity, i.e. N = 4 objects.

templates are described with a formalism inspired by the disentangle representation theory (Trager
et al., [2023), and are reported in Tab.[2] Each prompt describes up to four objects. For example, a
template with N= 2 objects can be:

t = “det(o1,a1) a1 01 rel(and, v13) det(os,a2) as 02” (1)

where, 0; € O the set of objects, a; € A the set of attributes, det(0;,a;) is a determinant that depends
on the object or attribute if present, and rel(and, v;;) is the coordinating conjunction and or a relation
7;; € [R—the set of relations—if present. To generate actual prompts, templates are instantiated by
randomly picking objects, attributes and relations from their respective sets. We detail each set in

Appendix [A.3]

Beyond the template-driven cases, we introduce a seventh scenario: complex compositions, where
all previously isolated challenges are combined into a single setting. Here, prompts are generated
by an LLM conditioned on the same sets of objects, attributes, and relations. Unlike rigid tem-
plates, LL.Ms are well suited for this task, as they can produce natural, fluent, and contextually rich
sentences while still adhering to the required constraints. Specifically, we employ few-shot learn-
ing (Brown et al., [2020) and provide instructions accompanied by example outputs. The LLM is
given O, A, and (R and instructed to combine them freely into coherent descriptions, while also
guided to mention a specified number of objects (1-4), to enable fine-grained analysis. The full
prompt template used for this scenario is reported in Appendix [A.6]

2.2 LAYOUT GENERATION ENGINE

To collect the large number of bounding boxes associated to the prompts without relying on costly
manual annotation, we designed a constraint-based Layout Generation Engine (LGE). It produces
a reasonable layout for any given prompt. Specifically, we first obtain the set {03» é-Vzl of objects
described in the ¢-th prompt. In case this set is not provided by the Prompt Generation Engine (e.g.
when prompts are LLM-generated), we extract the relevant objects automatically with a natural
language parser such as spaCy (Honnibal et al.,[2020). Then, for each object o§, the LGE produces

a bounding box: bé = [x?““, y}"i“, i, y;-"a"] with 0 < m;"i“ <z <land0 < y;-“i“ <y <L

Bounding box coordinates are chosen according to different constraints. Box size depends on the
number of objects in the prompt: single-object prompts allow larger boxes (150-500 px per side),
while two, three, and four objects use progressively smaller ranges (120-250, 100-180, and 80-150
pX, respectively) to reduce clashes. For single-object prompts, the box is placed randomly within
the image boundaries. For multi-object prompts, placement strategies vary: if spatial relations are
involved (e.g., above, far from, to the left of), boxes are positioned accordingly. The first box
is sampled randomly, leaving sufficient space for subsequent boxes to satisfy the relation; invalid
placements trigger retries until a valid configuration is obtained. In case of overlapping scenarios,
subsequent boxes are forced to overlap with at least one previously placed box. For prompts with
multiple objects but no explicit relations, bounding boxes are placed randomly while enforcing non-
overlap through rejection sampling, while complex composition does not follow any constraint.

3  OPEN-SET BENCHMARK

While the closed-set benchmark evaluates generative models under controlled conditions—using
structured prompts and carefully designed bounding boxes—the open-set dataset is intended to as-
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sess them in more natural settings. However, instead of relying on costly manual annotation of
prompts and bounding boxes, we re-frame the purpose of Flickr30k Entities (Plummer et al., 2017),
a widely used dataset in fine-grained visual-language tasks such as Visual Grounding (Rigoni et al.,
2023). Flickr30k Entities provides real-world images paired with multiple human-annotated cap-
tions, each associated with bounding boxes localizing the mentioned objects. We carefully select
these realistic prompts and unconstrained layouts to construct our open-set benchmark: this process
is described in the next section and visually depicted in Fig. [I] (top-right).

3.1 DATA CURATION

We construct our open-set benchmark (O-Bench) on the Flickr30k Entities test set (Plummer et al.,
2017), to avoid potential data leakage with the training sets of layout-guided text-to-image models.
It comprises 4,969 captions which we down-sample to approximately two-thirds of its original size,
resulting in 3,319 prompts. We down-sample the test set to avoid excessively large datasets, which
would make evaluation impractical given the slow inference speed of current models. As later
described in the evaluation setup, we generate 8 images per example with different random seeds to
ensure robustness. This greatly increases computation time: for instance, BoxDiff (Xie et al., [2023)
requires over 13 GPU-days to process the full test set, while the down-sampled version reduces this
to 7.81 GPU-days.

Sampling was performed to preserve the original distribution of objects per sentence while discard-
ing outlier prompts. Outliers, defined as prompts in the long tail of the distribution, were removed
to reduce class imbalance, as they did not yield meaningful results. The final benchmark includes
prompts describing different real-life situations including 1 to 8 objects, offering a realistic range
for evaluation.

4 EVALUATION PROTOCOL

To evaluate the alignment between generated images and their input prompts, we adapt and ex-
tend the text-alignment score s and the layout-alignment score Spuyou Originally introduced in
7Bench (Izzo et al.| 2025)). Furthermore, we introduce a novel metric that provides a more compre-
hensive assessment by combining both dimension in one single score, thus, enabling precise ranking
of models: the unified score syifieq. An overview is given in Fig.|l| (bottom).

4.1 TEXT-ALIGNMENT SCORE

The text-alignment score is defined as the TIFA score (Hu et al., 2023)), a widely adopted measure
of semantic consistency in text-to-image generation. TIFA quantifies alignment as the proportion
of correct responses provided by a Vision Question Answering (VQA) model when analyzing the
generated images. To perform the evaluation, a set of questions and corresponding answers are
automatically derived from the input prompt using a Large Language Model (LLM), ensuring in-
dependence from the image generation process. The VQA model is then queried on the generated
image, and its responses are compared against the expected answers to compute the final score.
Formally, let X' = {(T;, I;) }}_, be the set of input text prompts and generated images. For each ex-

ample i, a set of questions, expected answers and actual answer is obtained: {Q; ;, 4, ;, AVQA}ju i
The layout alignment score for example 7 is defined as the average accuracy of VQA answers over

expected answers. The overall score is then obtained as the mean across all examples:

N
1 )
slexl § 1 AVQA ] z] Stext = N E leXl(Z)‘ (2)
j=1 i=1

’L

To better understand model behavior, we extend the base score six by conditioning the evaluation
on two axes: the scenario and the number of objects in the prompt. Analyzing the score along one
or the other enhances interpretability in the evaluation process. Let C be the set of scenarios (e.g.,
object binding, color binding, etc), and ©® = {1, 2, 3,4} the number of objects in the prompt. Let

o(i) € C be the scenario of example 4, and v (i) € C its number of objects. We obtain the set of
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indices Z.q = {t € {1,...,N} : 0(i) = ¢, v(i) = d} and overload the definition of Siex:

c,d 1 . d 1 c,d 1 c,d

Stext = |z | Z stext(l)7 Stext = |z | Z Stexty Stcext = |Z | Z Sext- (3)
e,d 1€Zc,q d 1€Zc,qVe ¢ 1€Zc,qVd

For example, s2,, is the text-alignment score on all examples with exactly two objects in the prompt

from any scenario, while s> P""¢ jq the text-alignment score on all examples from object binding

scenario and any number of objects in the prompt.

4.2 LAYOUT-ALIGNMENT SCORE

We define the layout-alignment score sjqyour € [0, 1] as the Area Under Curve (AUC) of accu-
racy @k values computed over a range of Intersection over Union (IoU) thresholds. The siqyout
score captures the spatial accuracy of objects’ placement within the generated images.

Specifically, let X' = {(T;,0;, ;) }L,, be the set of input text prompts, objects with locations
and generated images. Each prompt describe M; objects (1 < M; < 4), and for each object 0]
we are also gives its target position as a bounding box t; Through an object detector, such as
OWLv2 (Minderer et al.,|2023)), we obtain a set of K detections associated with their corresponding
label and confidence score for each example i: D' = {(di,l},c})}5 ;. For each j, we filter the
set of detections by matching the label with the object, thus D; = {(di,li,ci) e D; | Il = ;}
Among the filtered detections D?, we select the bounding box with the higher confidence score

d; = arg MaX (i gi ci)eDi k- We then compute the IoU between the selected detection d and

the target bounding box t;, denoted as IOU§- = IoU(té, cf;) Subsequently, these IoU values are
thresholded at multiple levels & € {0,0.1,...,1} to calculate Acc@k? = = ZMH 1[IOU; > k.

j=
The layout-alignment score for the single example is the area under the resulting Acc@Fk curve, and

the overall score is averaged across all examples:

M; N
y- L3t i LS®
Slayout(z) - ﬁ AUC(ACC@kj); Slayout = N slayout(z)~ (4)
tj=1 i=1

Similarly to the text-alignment score, we extend the formulation to evaluate along different axis:
scenario s, (), number of object sil, (i) and both slc;jout(i).

4.3 UNIFIED SCORE

Ranking the performance of layout-guided text-to-image models poses a complex challenge, as it
requires capturing both semantic alignment with the input text and spatial fidelity to the given layout.
While text and layout alignment enable fine-grained interpretability of the generation capabilities, a
unified metric that accounts for both aspects is necessary to compare and rank different models. For
this reason, we propose the unified score, Sunifica, as the combination of Siex and Sjayout:

2 - Stext Slayout . (5)

Sunified = H(stexta Slayoul) =
Stext T Slayout

The harmonic mean penalizes imbalances between the two components, ensuring that strong perfor-
mance requires both textual and spatial consistency. This choice is inspired by its widespread use in
multi-objective evaluation settings, such as the F1 score in information retrieval (Blair, [1979).

Similarly to text and layout alignment scores, we generalize Sypifieq for the analysis along scenarios,

. . ¢ . d . c,d .
number of objects or both axis: s¢i5eq(?), SGhifiea(?) and sy e (7).

5 EXPERIMENTAL EVALUATION

5.1 SETUP

C-Bench Following the pipeline described in Sec. |2} we generated the closed-set benchmark (C-
Bench), resulting in 3,328 instructions. C-Bench is more than 14X larger than 7Bench, which
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.. Base Throughput Memory
Model Training-free model (secs per image) VRAM (GB)
SD v1.4 (Rombach et al., 2022) X - 7.62 6.25
CA Guidance (Chen et al.,|2024) v SDvl4 19.98 6.27
GLIGEN (Li et al.[[2023) X - 12.50 7.13
Attn. Refocus (Phung et al.|[2024) v GLIGEN 28.26 22.77
BoxDiff (Xie et al.|[2023) v GLIGEN 20.66 28.26
MIGC (Zhou et al.|[2024) X - 9.40 8.84

Table 3: List of models under test. Throughput and memory footprint have been measured on a node
with an Intel Xeon processor, 60GB of RAM and one Nvidia RTX A6000 GPU.

contains only 224 samples evenly distributed across the seven scenarios. Thanks to the scalability
of our pipeline, C-Bench ensures a balanced number of prompts per scenario, maintains a fair distri-
bution of object occurrences, and provides comprehensive coverage of bounding box sizes without
requiring costly manual annotations.

From a technical standpoint, each sample in C-Bench consists of a textual prompt paired with a set
of bounding boxes, one for each object described. Furthermore, for every object, the benchmark also
provides a noun phrase that specifies the entity together with its attributes and qualifiers. Prompts for
the complex composition scenario are generated by ChatGPT (Hurst et al., [2024). The benchmark
organized as a CSV file is attached in the Supplementary Materials.

Models Under Test We evaluate 6 popular layout-guided text-to-image diffusion models on our
closed and open-set benchmarks. Models, summarized in Tab. [3] are all open source and have been
accurately chosen to explore a wide range of methods and techniques. In particular, we test GLIGEN
(G) (Li et al., |2023)) and MIGC (M) (Zhou et al.,2024), which are trained with layout information,
and three training-free approaches: Attention Refocusing (G_AR) (Phung et al. [2024), BoxDiff
(G_BD) (Xie et al., [2023)), and Cross Attention Guidance (SD_CAG) (Chen et al.| [2024). The first
two are built on top of GLIGEN, the last one uses Stable Diffusion as the underlying model. Finally,
we include Stable Diffusion v1.4 (SD) (Rombach et al.| |2022) in the analysis for a comparison in
terms of textual alignment.

Evaluation Setting Following previous works (Grimal et al., 2024} Izzo et al., [ 2025)), we generate
8 images for each instruction in the benchmark, varying the seed from 1 to 8 to ensure robustness
against sampling variability and to obtain a reliable estimate of model performance. Across all
models under test, the generation produced a total of 159,744 and 159,312 images for C-Bench and
O-Bench, respectively. Each image was generated with a resolution of 512 x 512 We evaluate the
generated images using the evaluation protocol described in Section[d] We use pre-trained weights
for TIFA [Jand OWLV%

5.2 RESULTS

We present the ranking on both closed and open set benchmarks according to our novel Sypifieq in
Tab. ] The unified score provides a single, comprehensive measure of performance, allowing mod-
els to be ranked consistently by their overall semantic and spatial alignment. From our evaluation
MIGC achieves a unified score of 0.7082 and 0.7548 on C-Bench and O-Bench respectively, signal-
ing its robustness in both semantic and spatial aspects of generation. GLIGEN-based models also
obtain decent performance (0.6070-0.6537, 0.7305-0.7517), showing the importance of pre-training
with layout information. Instead, Cross-Attention Guidance—which is based on Stable Diffusion—
obtains a unified score of 0.3747 and 0.5370: a considerable drop in performance with respect to
top-performing model. The following sections present a detailed breakdown of the results, offer-
ing deeper interpretability of the unified score and clearer insights into the specific capabilities and
limitations of each model.

Thttps://github.com/Yushi-Hu/tifa
“https://huggingface.co/docs/transformers/model_doc/owlv2
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Closed-set Open-set
Model Sunified A% | Sunifiea A%
MIGC (Zhou et al., 2024 0.7082 +0.0 | 0.7548 +0.0
BoxDiff (Xie et al., 2023 0.6537 -84 | 0.7410 —1.8
GLIGEN (Li et al.} 2023) 06143 —13.3 | 0.7517 —0.1
Attention Refocusing (Phung et al., 2024 0.6070 —14.3 | 0.7305 3.2
Cross-Attention Guidance (Chen et al., 2024) | 0.3747 —47.1 | 0.5370 —28.9
Stable Diffusion 1.4* (Rombach et ai.[ ’ﬁbp 0.2522 —64.4 | 0.4505 —40.3

Table 4: Ranking for the models evaluated on the closed-set benchmark. *Stable Diffusion does not
have layout capabilities. Bold = best model, Underline = second best. sypifieq represent our novel
unified score and A% is the performance delta between model’s score and top performer.

Object binding - 078 069 074 1,0000 ® so

@ sD_CAG
G

® G_BD

® GAR

oM

small bboxes - 074

0,7500

Overlapping bboxes 0,66

Colorbinding - 074 0,5000

Unified Score

Attribute binding -
0,2500

0,0000
Complex composition Y X X X .34 026 02 1 0bj 20bj 3 0bj 4 obj

SD_CAG D Number of objects

Models

(a) Performance by scenario. (b) Performance by number of objects in prompt.

Figure 2: Performance breakdown by scenario and object count, measured with the unified score for
the six models under test.

5.3 CLOSED-SET RESULTS BREAKDOWN

Breakdown by Scenario and Object Count To further interpret the ranking and provide a more
detailed view of model performance, we also report results broken down by scenario and by the
number of objects in the prompt. Fig. 23 confirms the overall ranking, with MIGC achieving the
highest scores across almost all scenarios. As expected, the complex composition scenario proves
more challenging than the others, with smaller performance gaps among models. Fig. 2b|addition-
ally illustrates how performance decreases as the number of objects in the prompt increases. All
models exhibit a decline in accuracy when handling more objects. Interestingly, aside from Stable
Diffusion—which does not support layout input—-models show a similar degradation pattern, suggest-
ing comparable sensitivity to object count.

Breakdown on Text and Layout Alignment Fig. 3] and Fig. ] report both text-alignment and
layout-alignment scores, revealing that the primary source of errors stems from layout alignment.
MIGC demonstrates strong performance in layout adherence across all scenarios. Interestingly,
while Cross-Attention Guidance (SD_CAG) performs well on sy, its performance drops sharply
for Sjayour. This drop explains why, as shown in the previous section, our unified metric sypifieq ranks
SD_CAG fifth out of six models, effectively penalizing good text alignment when accompanied by
poor layout fidelity. This trend is consistent also when analyzing the results by number of objects,
confirming that layout-aware models maintain an advantage even at higher complexity. While text
and layout alignment alone are not sufficient to evaluate overall performance, they provide valuable
interpretability into the sources of errors.

5.4 OPEN-SET RESULTS BREAKDOWN

To complement the global ranking, we also report results broken down by object count on the open-
set benchmark. We recall that the open-set benchmark includes prompts describing between 1 and 8
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Figure 4: Performance breakdown on number of objects in the prompt, measured by text-alignment
score (left) and layout-alignment score (right).

objects. Fig. [5|confirms expectations: model performance decreases as the number of objects in the
prompt increases. Similar to the closed-set benchmark, all models exhibit a comparable degradation
pattern, indicating consistent sensitivity to object count.
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evaluating layout-guided text-to-image gener-
ative models. By introducing a scalable
closed-set benchmark, an open-set benchmark
grounded in natural data, and a unified eval-
uation protocol, we enable systematic, fair,
and reproducible assessment of model perfor-
mance. We hope this work provides researchers
with the tools to interpret, rank, and evalu-
ate these models, enabling clearer assessment
of their outputs, informing their use in appli-
cations like synthetic dataset generation, and
tracking genuine progress in the field.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of benchmarks, pipeline, and evaluation
protocols in both the main paper and Appendix. Specifically, we describe the pipeline to obtain
C-Bench in Sec. [2]and detailed the set of object O, attributes A and relations R used for templates
in Appendix[A.3] We also report the full custom prompt used to obtain the complex composition in-
structions in Appendix[A.6] The O-Bench benchmark is detailed in Sec.[3] We include extra analysis
on the two benchmarks in Appendix [A.T|and[A.2] and visualize qualitative examples of instructions
and generated images in Appendix [A.4]and[A.5] All the details for the evaluation protocol are de-
scribed in Sec. |4l Code for obtaining both benchmarks, running and evaluating the layout-guided
generative models, as well as the benchmarks themselves are attached in the Supplementary Mate-
rial and will be made publicly available upon acceptance. In the code we provide documentation
with installation and usage instructions for the models as well as the evaluation protocol.
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A APPENDIX

A.1 OBJECTS AND BOUNDING BOXES DISTRIBUTION IN C-BENCH

To better understand the characteristics of C-Bench, we provide an analysis of its object and layout
distributions. Fig. [6a] reports the frequency of objects across all prompts, highlighting the coverage
and balance of categories represented in the benchmark. Fig.[6b]shows the distribution of bounding
box areas for each scenario, illustrating how object sizes vary across different settings. Together,
these analyses confirm that C-Bench offers both semantic diversity and spatial variability, while
maintaining controlled conditions for systematic evaluation.

Object
binding

Small
bboxes

Overlapping
bboxes
Color
binding
Attribute
binding

Object
relationship

Complex
composition

40 60
Bounding Box Area (% of the image area)

(a) Frequency of objects across all prompts on C-Bench. (b) Distribution of bounding boxes area per sce-
nario. Values are displayed percentage with re-
spect to the image size.

Figure 6: Analysis of the C-Bench. On the left we report the frequency of objects across all prompts,
while on the right we show the distribution of bounding box areas per scenario.
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rose
baby
bicycle
book
plant

boat

clock
toothbrush
baseball bat
flower
teddy bear
apple

tie

knife

cake
mouse
truck
frisbee
candle
shirt
hammer
bin
flashlight
desk
curtain
soap

oak

bed
person
chair

toilet
banana
bottle
parking meter
vase
sandwich
hot-dog
handbag
shower
baseball glove
cup
mushroom
zebra

hat

ladder
pillow
blender
leaf

sock
backpack
toolbox
ring

beetle
lamp

car

boy
cellphone
stop sign
umbrella
bench
surfboard
spoon
skateboard
horse
traffic light
crocodile
bowl
motorcycle
fire hydrant
ruler
charger
pan

basket
bucket
door
printer
drill
refrigerator

skyscraper
dog

bus

couch
microwave
donut

bird
platypus
tiger

pizza

kite
snowboard
bear
suitcase
hair drier
turtle

oven

shoe

mug

plate
screwdriver
monitor
scarf
remote
notebook

tree
laptop
cat

table
sheep
COwW
guitar
keyboard
train
carrot
broom
giraffe
toaster
fork
elephant
tennis racket
sink

ball

tape
shampoo
wallet
watch
speaker
glass
television

Table 5: List of objects © used by the Prompt Generation Engine to instantiate a template.

A.2 OBJECT DISTRIBUTION IN O-BENCH

Fig. [7] reports the distribution of prompts in O-Bench with respect to the number of objects they
describe. The dataset naturally exhibits variability in object counts, ranging from 1 to 8 objects in
single prompt. This analysis highlights the diversity of prompts and motivates the use of O-Bench
as a realistic benchmark for evaluating model performance under different levels of compositional

complexity.

Distribution of Objects in Sampled DataFrame

1000

Number of Captions

4 5
Number of Objects

A.3 OBIJECT, ATTRIBUTE, AND RELATION SETS

For template-based prompt generation in C-Bench, we define three sets: objects ©, attributes A,

Figure 7: Number of prompts per object count on O-Bench.

and relations (R. We detail each of them in Tab. [5] Tab. [6]and Tab. [7]respectively.
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aggressive dark large short tall
black fast pink silver warm
blue fluffy red small white
bright fuzzy rotten smooth wooden
clean green rough SNOWY yellow
crowded happy shiny soft

Table 6: List of attributes A used by the Prompt Generation Engine to instantiate a template.

above far from next to over to the right of
below near on under to the left of
beside

Table 7: List of relations R used by the Prompt Generation Engine to instantiate a template.

A.4 QUALITATIVE EXAMPLES OF INSTRUCTIONS

We present qualitative examples of the instruction set in Fig [8] consisting of paired prompts and
layouts. These examples illustrate the diversity and complexity of scenarios included in C-Bench,
ranging from simple single-object cases to more challenging multi-object compositions involving
attributes and spatial relations, as well as natural prompts in O-Bench. Each instruction defines both
the textual description and the corresponding spatial arrangement, ensuring precise control over what
is generated and where it should appear. The first figure showcases representative samples across
different scenarios and object counts, highlighting how the benchmark systematically isolates key
generative challenges while maintaining scalability and interpretability.

Scenario Instruction
1 | Object e [
bindi | | = —
1nding 200 200 200 5 ot
300 300 300 p) | 1 300
[ ] L. l““] L
2 | Color bind- ey
[T
g
w0 w0 w0 i ]
. . 100 100 R 100 2 snowy door
binding - [ ] [
L] —L
lean lagger  2shortbin
L L]
4 | Small
bb aaaaaaa aknte | ﬁ,n_l,
0Xes ﬁi [ ]
3001 s 300 300 e 300 ]
I | L [
400 400 L 400 R i SE— 400 [ e R S|
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1D 1659 1D 1780 1D 1799 1D 2008
a refrigerator a microwave and a pizza atruck, a watch and a flashlight a person, a giraffe, a turtle and a backpack
overiapping_bboxes overiapping_bboxes overiapping_bboxes overiapping_bboxes.
backoack

aluc

5 | Overlapped | .,

bboxes e
200 ’ 200 200 200 ERE

1D 2731
1D 2569 a cellphone next to a sandwich and a plant below a
a suitcase far from a speaker

object relationship object relationship, ,

6 | Object rela e
. . 100 L 100 3 plant
tionship ) e
| | e
L

7 Comple.x w [T ] e - pmm—— | PSS
Ccomposi- I O o | | R

tion “ - 200 ‘||_‘.‘_ H | 200 ﬁfljum

his i
(] o
8 | Open set
100 100 pendy 100 100 -
— | | .
200 i 200 shie st 200 200
| — | | pomena

Table 8: Examples of instructions, i.e. prompt-layout pairs, from both C-Bench (rows 1-7) and
O-Bench (row 8).

A.5 QUALITATIVE EXAMPLES OF GENERATED IMAGES

To provide a qualitative perspective on model behavior, we include additional examples of generated
images in Tab.[9] The figure shows, for each scenario in C-Bench successful generations, where
objects are correctly rendered with the expected attributes and spatial configuration as well as failure
cases, which highlight common challenges such as missing objects, incorrect attributes, or misplaced
elements.

Similarly, we

| [ Scenario | Prompt Success Fail
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1 | Object binding

A bus, a snowboard
and a bowl.

2 | Small bboxes

A bench, a truck
and a candle.

3 | Overlapping
bboxes

A book, a scarf and
a soap.

4 | Color binding

A pink oak, a brown
couch and a yellow
speaker.

5 | Attribute bind-

A wooden train and

ing a clean plate.
6 | Object rela- | A refrigerator be-
tionship side a tree.
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7 | Complex com- | A yellow bus stood
position above a rough
crocodile in the
quiet morning.

8 | Open set A soccer player is
running while kick-
ing a ball.

9 | Open set A baby boy in over-

alls is crying.

Table 9: Examples of generated images from both C-Bench (rows 1-7) and O-Bench (rows 8-9). The
Success column illustrates correct generations, where all objects appear with the intended attributes,
while the Fail column shows cases where generation errors occur.

A.6 CustoM LLM PROMPT FOR GENERATION OF COMPLEX COMPOSITIONS

As described in Sec.[2] we used large language models, specifically ChatGPT 2024), to
generate prompts for the complex composition scenario, where all previously isolated challenges are
combined into a single setting. The listing below shows the custom prompt used for N = 4 objects
per sentence, which can be easily adapted to cases with 1-3 objects. We executed this prompt four
times to obtain the complex compositions for each case.

Generate 128 natural compositional phrases with various structures and
creativity.

Each prompt must describe a scene involving exactly 4 unique objects.
Objects can be reused across multiple prompts, but each object must
appear only once within any given prompt. Each object must be
enriched with at least one descriptive attribute, which may describe:

Color, shape, material, appearance, or dimension

Or a spatial relation between objects in the same prompt

Each prompt should be a short, vivid sentence that situates the objects
in a dynamic or descriptive context, similar to the following
examples:

A bright pink flower swayed gently under the tall oak tree.

A black laptop rested beside a green coffee mug on the messy desk.
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Avoid passive or overly generic constructions—-aim for imaginative,
specific scenarios.

Adjust the articles of the objects if needed.

Object List (You can freely reuse any of these objects across different
prompts, but not within the same prompt.)

obj_with_articles = [

"a rose’, '"an oak’, ’'a beetle’, '"a skyscraper’, ’"a tree’, 'a baby’, ’'a
bed’, ’'a lamp’, ’'a dog’, ’'a laptop’, ’'a bicycle’, "a person’, ’'a car
! "a bus’, 'a cat’, ’'a book’, ’"a chair’, ’"a boy’, 'a couch’, ’'a
table’, ’"a plant’, ’"a toilet’, ’"a cellphone’, ’'a microwave’, ’'a
sheep’, ’"a boat’, ’"a banana’, ’"a stop sign’, ’"a donut’, ’"a cow’, ’'a
clock’, "a bottle’, ’'an umbrella’, ’'a bird’, ’'a guitar’, ’a
toothbrush’, ’"a parking meter’, ’'a bench’, ’'a platypus’, ’'a keyboard
", "a baseball bat’, ’'a vase’, ’'a surfboard’, ’a tiger’, ’a train’,
"a flower’, ’"a sandwich’, ’"a spoon’, "a pizza’, ’'a carrot’, ’'a teddy

bear’, ’'an hot-dog’, ’"a skateboard’, ’'a kite’, ’'a broom’, ’an apple
", ’"a handbag’, ’"a horse’, ’"a snowboard’, ’'a giraffe’, ’'a tie’, 'a
shower’, ’'a traffic light’, ’'a bear’, ’'a toaster’, ’a knife’, 'a
baseball glove’, ’'a crocodile’, "a suitcase’, ’"a fork’, 'a cake’, ’'a
cup’, '"a bowl’, ’"a hair drier’, ’an elephant’, 'a mouse’, ’a
mushroom’, ’a motorcycle’, ’'a turtle’, ’'a tennis racket’, ’"a truck’,

"a zebra’, ’"a fire hydrant’, ’an oven’, 'a sink’, ’"a frisbee’, ’a
hat’, ’"a ruler’, ’'a shoe’, ’"a ball’, "a candle’, ’'a ladder’, ’a
charger’, ’'a mug’, ’"a tape’, ’'a shirt’, 'a pillow’, 'a pan’, ’a
plate’, '"a shampoo’, ’"a hammer’, ’'a blender’, ’"a basket’, ’a
screwdriver’, ’'a wallet’, "a bin’, ’"a leaf’, "a bucket’, ’'a monitor
", "a watch’, ’"a flashlight’, ’'a sock’, ’"a door’, "a scarf’, 'a
speaker’, ’'a desk’, ’"a backpack’, ’"a printer’, ’a remote’, ’"a glass
", "a curtain’, ’'a toolbox’, 'a drill’, ’'a notebook’, ’'a television
", "a soap’, '"a ring’, ’'a refrigerator’

Allowed Attributes (for appearance or material):
attributes = [ ’"aggressive’, ’'black’, ’'blue’, ’'bright’, ’clean’, ’'crowded
", ’'dark’, ’"fast’, ’'fluffy’, ’fuzzy’, 'green’, ’'happy’,
"large’, 'pink’, ’red’, ’'rotten’, ’'rough’, ’shiny’, ’'short’, ’'silver’, '
small’, ’smooth’, ’'snowy’, ’'soft’, ’'tall’, ’'warm’, ’'white’, ’wooden’,
"yellow’

Allowed Colors (subset of attributes):

colors = [’black’, ’"blue’, ’'brown’, ’'gray’, ’'green’, ’'pink’, ’'purple’, ’
red’, ’'white’, ’yellow’, ’orange’]

Spatial Relations (to be used as part of attributes or composition logic)

spatial\_relations = [

"on top of’, ’'beside’, ’'under’, ’'above’, ’'next to’, ’'beneath’, ’'behind’,
"in front of’, ’between’, ’leaning on’,

"inside’, ’resting on’, ’'attached to’, ’surrounded by’, ’'placed near’

]

Output Format:

Return the result as a CSV with two columns:

prompt, objectl, object2,

Each row should contain:
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The generated sentence

The noun chunks used

Example output format (for N=2):
prompt,objectl, object2

A fluffy cat jumped onto the soft couch near the window" ,a fluffy cat, a
soft couch

A red bicycle leaned against a wooden bench in the park ,a red bicycle, a
wooden bench

The prompts should be inside quotes if needed to keep the correct number
of columns in the CSV.

In the sentence, keep noun chunks unbroken, adjectives modifying a noun
should not be split by commas. Treat the entire noun chunk as a
single unit (e.g., "a small red ball", not "a small, red ball").

The articles should remain consistent between the prompt and the noun
chunks.

A.7 USE OF LARGE LANGUAGE MODELS

We used ChatGPT-5 free as an assistive tool to improve the clarity, conciseness, and overall read-
ability of the manuscript. Specifically, the model was employed to refine sentence structure, enhance
paragraph flow, rephrase sections for scientific style, and suggest more concise formulations without
altering the scientific content or results. All conceptual contributions, experimental design, data col-
lection, analysis, and interpretations were performed solely by the authors. The LLM acted strictly
as a writing and language support tool and did not contribute to the research ideas, experimental
methodology, or scientific findings.
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