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ABSTRACT

How can we effectively regularize BERT? Although BERT proves its effective-
ness in various downstream natural language processing tasks, it often overfits
when there are only a small number of training instances. A promising direc-
tion to regularize BERT is based on pruning its attention heads based on a proxy
score for head importance. However, heuristic-based methods are usually subop-
timal since they predetermine the order by which attention heads are pruned. In
order to overcome such a limitation, we propose AUBER, an effective regulariza-
tion method that leverages reinforcement learning to automatically prune atten-
tion heads from BERT. Instead of depending on heuristics or rule-based policies,
AUBER learns a pruning policy that determines which attention heads should or
should not be pruned for regularization. Experimental results show that AUBER
outperforms existing pruning methods by achieving up to 9.39% better accuracy.
In addition, our ablation study empirically demonstrates the effectiveness of our
design choices for AUBER.

1 INTRODUCTION

How can we effectively regularize BERT (Devlin et al. (2018))? In natural language processing
(NLP), fine-tuning a large-scale pre-trained language model has greatly enhanced generalization. In
particular, BERT has demonstrated effectiveness through improvements in many downstream NLP
tasks such as sentence classification and question answering.

Despite its recent success and wide adoption, fine-tuning BERT on a downstream task is prone
to overfitting due to over-parameterization; BERT-base has 110M parameters and BERT-large has
340M parameters. The overfitting worsens when the target downstream task only has a small number
of training examples. Devlin et al. (2018) and Phang et al. (2018) show that datasets with 10,000 or
less training examples sometimes fail to fine-tune BERT.

To mitigate this critical issue, multiple studies attempt to regularize BERT by pruning parameters or
using dropout to decrease its model complexity (Michel et al. (2019); Voita et al. (2019); Lee et al.
(2020)). Among these approaches, we regularize BERT by pruning attention heads since pruning
yields simple and explainable results and it can be used along with other regularization methods.
In order to avoid combinatorial search, whose computational complexity grows exponentially with
the number of heads, the existing methods measure the importance of each attention head based
on heuristics such as an approximation of sensitivity of BERT to pruning a specific attention head.
However, these approaches are based on hand-crafted heuristics that are not guaranteed to be directly
related to the model performance, and therefore, would result in a suboptimal performance.

In this paper, we propose AUBER, an effective method for regularizing BERT. AUBER overcomes
the limitation of past attempts to prune attention heads from BERT by leveraging reinforcement
learning. When pruning attention heads from BERT, our method automates this process by learning
policies rather than relying on a predetermined rule-based policy and heuristics. AUBER prunes
BERT sequentially in a layer-wise manner. For each layer, AUBER extracts features that are useful
for the reinforcement learning agent to determine which attention head to be pruned from the current
layer. The final pruning policy found by the reinforcement learning agent is used to prune the
corresponding layer. Before AUBER proceeds to process the next layer, BERT is fine-tuned to
recapture the information lost due to pruning attention heads. An overview of AUBER transitioning
from the second to the third layer of BERT is demonstrated in Figure 1.

Our contributions are summarized as follows:
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Figure 1: An overview of AUBER transitioning from Layer 2 to Layer 3 of BERT-base.
• Method. We propose AUBER for automatically learning to regularize BERT by reinforce-

ment learning. AUBER is designed to carefully represent the state of BERT and reduce
the action search cost by dually-greedy search space pruning.

• Analysis. We theoretically justify our design choice of using L1 norm of the value matrix
of each attention head as an element of a state (see Theorem 1).

• Experiments. We perform extensive experiments, and show that AUBER successfully
regularizes BERT improving the performance by up to 9.39% and outperforms other head
pruning methods. Through ablation study, we empirically show that our design choices for
AUBER are effective.

2 PRELIMINARY

We describe preliminaries on multi-headed self-attention (Section 2.1), BERT (Section 2.2), and
deep Q-learning (Section 2.3).

2.1 MULTI-HEADED SELF-ATTENTION

An attention function maps a query vector and a set of key-value vector pairs to an output. We com-
pute the query, key, and value vectors by multiplying the input embeddings Q,K, V ∈ RN×d with
the parameterized matrices WQ ∈ Rd×n, WK ∈ Rd×n, and WV ∈ Rd×m respectively, where N
is the number of tokens in the sentence, and n,m, and d are query, value, and embedding dimension
respectively. In multi-headed attention, H independently parameterized attention heads are applied
in parallel to project the input embeddings into multiple representation subspaces. Each attention
head contains parameter matrices WQ

i ∈ Rd×n, WK
i ∈ Rd×n, and WV

i ∈ Rd×m. Output matrices
of H independent attention heads are concatenated and projected by a matrix WO ∈ RHm×d to
obtain the final result. This process can be represented as:

MultiHeadAtt(Q,K, V ) = Concat(Att1...H(Q,K, V ))WO, (1)
where

Atti(Q,K, V ) = softmax(
(QWQ

i )(KWK
i )T√

n
)VWV

i . (2)

A multi-headed self-attention follows the same mapping methods as general multi-headed attention
function except that all the query, key, and value embeddings come from the same sequence.

2.2 BERT

BERT (Devlin et al. (2018)) is a multi-layer Transformer (Vaswani et al. (2017)) pre-trained on
masked language model and next sentence prediction tasks. It is then fine-tuned on specific tasks
including language inference and question answering. BERT-base has 12 Transformer layers and
each layer has 12 self-attention heads. Despite its success in various NLP tasks, BERT sometimes
overfits when the training dataset is small due to over-parameterization. Thus, there has been a
growing interest in BERT regularization through various methods such as dropout (Lee et al. (2020)).
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Figure 2: Overall flow of AUBER while pruning layer i. It first trains DQN and then uses the
trained DQN to make the final decision on which heads to prune.
2.3 DEEP Q-LEARNING

A deep Q network (DQN) is a multi-layer neural network that outputs a vector of action-value pairs
for a given state s. It is a function that maps a ds-dimensional state space to a da-dimensional action
space. Two important features of the DQN algorithm are target network and experience replay (Mnih
et al. (2013)). The target network has the same architecture as that of the policy network, and its
parameters are copied every τ steps from the policy network. For experience replay, transition tuples
(i.e. (state, action, reward, next state)) are stored in a first-in-first-out memory buffer, and a subset
of those tuples, uniformly sampled from the buffer, update the parameters of the policy network.

3 PROPOSED METHOD

We propose AUBER, our method for regularizing BERT by automatically learning to prune at-
tention heads from BERT. After presenting the overview of the proposed method in Section 3.1,
we describe how we frame the problem of pruning attention heads into a reinforcement learning
problem in Section 3.2. Section 3.3 explains how states are represented in AUBER and provides a
justification for the process. Section 3.4 describes how AUBER reduces the extremely large search
space, and describe the full algorithm.

3.1 OVERVIEW

We observe that BERT is prone to overfitting for tasks with a few training data. However, the existing
head pruning methods rely on hand-crafted heuristics and hyperparameters, which give sub-optimal
results. The goal of AUBER is to automate the pruning process for successful regularization. De-
signing such regularization method entails the following challenges:

1. Automation. How can we automate the head pruning process for regularization without
resorting to sub-optimal heuristics?

2. State representation. When automating the regularization process as a reinforcement
learning problem, how can we represent the state of BERT in a way useful for the pruning?

3. Action search space scalability. BERT has many parameters and attention heads in each
layer. How can we handle prohibitively large action search space for pruning?

We propose the following main ideas to address the challenges:
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1. Regularization with reinforcement learning (Section 3.2). We exploit reinforcement
learning, specifically DQN, with accuracy enhancement as reward. DQN has shown a
superior performance for many tasks, and is a natural choice for model-free and off-policy
learning (Sutton & Barto (2018)), which is exactly our setting. Experience replay also
allows efficient usage of previous experiences and stable convergence (Mnih et al. (2013)).

2. L1 norm of value matrix as state representation (Section 3.3). We use L1 norm of value
matrix of each attention head to represent the state of a layer. When a head is pruned, the
corresponding value is set to 0.

3. Dually-greedy search space pruning (Section 3.4). To reduce the search space, we use
two greedy methods: 1) we prune layer-by-layer, and an action is performed only within a
layer, and 2) in each layer, we prune one attention head at a time to reduce the search space.

3.2 AUTOMATED REGULARIZATION WITH REINFORCEMENT LEARNING

AUBER leverages reinforcement learning for efficient search of regularization strategy without
relying on heuristics. We exploit DQN among various reinforcement learning frameworks which
have shown a superior performance in model-free and off-policy environment. The overall flow is
described in Figure 2. In this section, we introduce the detailed setting of our reinforcement learning
framework.

Initial state. Each layer of BERT has multiple attention heads, each of which has its own query,
key, and value matrices. For layer l of BERT, we derive the initial state sl using L1 norm of the
value matrix of each attention head. Further details for this computation is elaborated in Section 3.3.

Action. The action space a of AUBER is discrete. For a BERT model with H attention heads per
layer, the number of possible actions is H + 1 (i.e. a ∈ {1, 2, . . . , H,H + 1}). When the action
a = i ∈ {1, 2, . . . , H − 1, H} is chosen, the corresponding ith attention head is pruned. The action
a = H + 1 signals the DQN agent to quit pruning. To facilitate exploration via off-policy learning,
actions are chosen in a decaying-epsilon-greedy manner: the agent chooses a random action with
probability ε that decays over time or otherwise selects an action based on the current policy, where

ε = εfinal +
εinitial − εfinal

es/!decay
(3)

Here, s is the total number of actions taken by the agent up to the current episode, εinitial is the
starting value of ε (i.e. when s = 0), εfinal is the value that ε converges to as s → ∞, and εdecay is
a hyperparameter that adjusts the rate of decay of ε.

Next State. After the ith head is pruned, the value of ith index of sl is set to 0. This modified
state is provided as the next state to the agent. This mechanism allows the agent to recognize which
attention heads have been pruned and decide the next best pruning policy based on past decisions.
When the action a = H + 1, the next state is set to the terminating state which ends an episode.

Reward. To evaluate the reward, the training data split into two sets: mini-training set and mini-
dev set. We use the data in mini-training set for fine-tuning and data in mini-dev set for reward
evaluation. The reward of AUBER is the change in accuracy

∆acc = current accuracy − prev accuracy, (4)
where current accuracy is the accuracy of the current BERT model evaluated on the mini-dev set,
and prev accuracy is the accuracy obtained from the previous state or the accuracy of the original
BERT model if no attention heads are pruned.

If we set the reward simply as current accuracy, DQN cannot capture the differences among
reward values if the changes in accuracy are relatively small. Setting the reward as the change in
accuracy has the normalization effect, thus stabilizing the training process of the DQN agent. The
reward for action a = H + 1 is a hyper-parameter that can be adjusted to encourage or discourage
active pruning. In AUBER, it is set to 0 to encourage the DQN agent to prune only when the
expected change in accuracy is positive.

Fine-tuning. After the best pruning policy for layer l of BERT is found, the BERT model pruned
according to the best pruning policy is fine-tuned with a smaller learning rate. This fine-tuning step
is crucial since it adjusts the weights of remaining attention heads to compensate for the information
lost due to pruning. Then, the initial state of the layer l + 1 is calculated and provided to the agent.
Since frequent fine-tuning may lead to overfitting, we separate the training dataset into two: a mini-
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validation dataset and a mini-training dataset. The mini-validation dataset is the dataset on which
the pruned BERT model is evaluated on to return a reward. After the optimal pruning policy is
determined by using the mini-validation dataset, the mini-training dataset is used to fine-tune the
pruned model. When all layers are pruned by AUBER, the final model is fine-tuned with the entire
training dataset with early stopping.

3.3 STATE REPRESENTATION

The initial state sl of layer l of BERT is computed through the following procedure. We first calcu-
late the L1 norm of the value matrix of each attention head. Then, we standardize the norm values
to have a mean µ = 0 and a standard deviation σ = 1. Finally, the softmax function is applied
to the norm values to yield sl. The justification of using L1 norm is given by Theorem 1 (proof in
Appendix A.1) that L1 norm of the value matrix of a head bounds the L1 norm of its output matrix,
which implies the importance of the head in the layer.

Theorem 1. For a layer with H heads, let N be the number of tokens in the sentence and m, n,
and d be the value, query, and embedding dimension respectively. Let Q,K, V ∈ RN×d be the
input query, key, and value matrices, and WQ

i , WK
i , and WV

i be the weight parameters of the ith

head such that WQ
i ,WK

i ∈ Rd×n and WV
i ∈ Rd×m. Let Oi be the output of the ith head. Then,

‖Oi‖1 ≤ C‖WV
i ‖1 where the constant C = N‖V ‖1. □

Algorithm 1: AUBER: Automatic BERT Regularization
Input : A BERT model Bt fine-tuned on task t, # L of layers in BERT model, # H of

attention heads per layer of BERT model, and # E of episodes.
Output: Regularized Bt.

1 for l ← 1 to L do
2 Initialize policy network P and replay memory M
3 for e ← 1 to E do
4 B∗

t ← copy(Bt)
5 sl ← B∗

t .state vector(l)
6 prev accuracy ← eval(B∗

t )
7 while action ∕= H + 1 do
8 if B∗

t .one head left then
9 action ← H + 1

10 else
11 action ← P.choose action(sl)
12 end
13 if action = H + 1 then
14 s∗l ← Terminal State
15 reward ← 0
16 else
17 B∗

t .prune head(action)
18 s∗l ← copy(sl)
19 s∗l [action] ← 0
20 current accuracy ← eval(B∗

t )
21 reward ← current accuracy − prev accuracy
22 prev accuracy ← current accuracy
23 end
24 M.push(sl, action, s

∗
l , reward)

25 sl ← s∗l
26 end
27 P.optimize(M)
28 end
29 Bt.prune(P.final policy(l))
30 Bt.finetune()
31 end
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3.4 DUALLY-GREEDY SEARCH SPACE PRUNING

The total number of attention heads in 12-layer BERT is 144, when 12 attention heads are used.
Naively designing actions would lead to 2144 possible actions which are prohibitively large. Our idea
to reduce the search space is dually-greedy pruning: we prune layer-by-layer in a greedy manner
(from lower to upper layers), and in each layer we greedily prune 1 attention head at a time.

For each layer l with H attention heads, the agent receives an initial layer embedding sl which
encodes useful characteristics (l1 norm of the attention heads) of this layer. Then, the agent outputs
the index of an attention head that is expected to increase the training accuracy when removed. After
an attention head i is pruned, the value of the ith index of sl is set to 0, and it is provided as the next
state to the agent. This process is repeated until the action a becomes H + 1. The model pruned up
to layer l is fine-tuned on the training dataset, and a new initial layer embedding sl+1 is calculated
from the fine-tuned model.

Algorithm 1 illustrates the process of AUBER. Algorithm 1 receives a BERT model Bt, which
is fine-tuned on a specific task t, and the parameters for BERT and reinforcement learning. The
algorithm aims to output the regularized Bt. In line 2, we initialize a policy network P and a replay
memory M for layer l. Lines 3-28 train the policy network P for E episodes. For each episode,
lines 8-25 choose an action based on the current state vector sl, prune an attention head based on
the action, compute the resulting reward and the next state s∗l , and store the transition tuple into
M . This process is repeated until action = H + 1, which indicates the termination of pruning.
In line 27, we optimize P with transition tuples sampled from M . Finally, in lines 29-30, we use
the trained policy network to find the optimal pruning policy for layer l, prune Bt according to the
policy, and finally fine-tune Bt. After pruning a layer l, we proceed to prune the next layer l + 1 up
to layer L.

4 EXPERIMENTS

We conduct experiments to answer the following questions of AUBER.

Q1 Accuracy (Section 4.2). Given a BERT model fine-tuned on a specific NLP task, how well
does AUBER improve the accuracy of the model?

Q2 State Representation (Section 4.3). How useful is the L1 norm of the value matrices of
attention heads in representing the state of BERT?

Q3 Order of Processing Layers (Section 4.4). How does the order in which the layers are
processed by AUBER affect regularization?

4.1 EXPERIMENTAL SETUP

Datasets. We test AUBER on four GLUE datasets (Wang et al. (2019)) - MRPC, CoLA, RTE,
and WNLI which contain less than 10,000 training instances; it has been observed that datasets with
10,000 or less training examples often fail in fine-tuning BERT (Devlin et al. (2018); Phang et al.
(2018)). Detailed information of these datasets is described in Table 1.

Table 1: Datasets.
dataset # of classes # of train # of dev

MRPC1 2 3668 408
CoLA2 2 8551 1043
RTE3 2 2490 277
WNLI4 2 635 71

1https://www.microsoft.com/en-us/download/details.aspx?id=52398
2https://nyu-mll.github.io/CoLA/
3https://aclweb.org/aclwiki/Recognizing_Textual_Entailment
4https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
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Table 2: Performance of AUBER and competitors on 4 GLUE tasks. The performance after fine-
tuning is measured. AUBER gives the best performance for the same number of pruned heads. Bold
font indicates the best accuracy among competing pruning methods.

MRPC CoLA RTE WNLI Average

Original 84.07 57.01 63.54 46.48 62.77

AUBER 85.62±0.51 60.59±0.73 65.34±1.30 56.06±0.63 66.90±0.79
Random 84.02±1.12 57.89±0.90 63.47±1.29 54.08±2.14 64.86±1.36
Confidence 83.70±0.47 57.69±2.19 64.26±1.64 55.77±0.77 65.36±1.27
Michel et al. (2019) 84.22±0.33 58.86±0.64 63.90±0.00 55.21±1.84 65.55±0.70
Voita et al. (2019) 83.92±0.71 55.34±0.81 64.12±1.65 52.96±5.51 64.08±2.17

BERT Model. We use the pre-trained bert-base-cased model with 12 layers and 12 attention heads
per layer provided by huggingface5. We fine-tune this model on each dataset mentioned in Table
1 to obtain the initial model. Initial models for MRPC, CoLA, and WNLI are fine-tuned on the
corresponding dataset for 3 epochs, and the initial model for RTE is fine-tuned for 4 epochs. The
maximum sequence length is set to 128, and the batch size per GPU is set to 32. The learning rate
for fine-tuning initial models for MRPC, CoLA, and WNLI is set to 0.00002, and the learning rate
for fine-tuning the initial model for RTE is set to 0.00001.

Reinforcement Learning. We use a 4-layer feedforward neural network for the DQN agent.
The dimensions of input, output, and all hidden layers are set to 12, 13, and 512, respectively.
LeakyReLU is applied after all layers except for the last one. We train the DQN agent for 150
episodes. For the epsilon greedy strategy for choosing actions, εinitial and εfinal are set to 1 and
0.05 respectively, and the epsilon decreases exponentially with the decay rate εdecay of 256. The
replay memory size is set to 5000, and the batch size for training the DQN agent is set to 128. The
discount value γ for the DQN agent is set to 1. The learning rate is set to 0.000002 when fine-tuning
BERT after processing a layer. Before processing each layer, the training dataset is randomly split
into 1 : 2 to yield a mini-training dataset and a mini-validation dataset. When fine-tuning the final
model, the patience value of early stopping is set to 20.

Competitors. We compare AUBER with other methods that prune BERT’s attention heads. If
AUBER prunes P number of attention heads from BERT, we prune P heads in all the competitors.

• Random. Prune attention heads randomly.
• Confidence. Prune P heads with the smallest confidence score, which is the average of

the maximum attention weight after a series of forward passes. A high confidence score
indicates that the weight is concentrated on a single token.

• Michel et al. (2019). Perform a forward and backward pass to calculate gradients and use
them to assign an importance score to each attention head.

• Voita et al. (2019). Construct a new loss function that minimizes both the classification er-
ror and the number of used heads so that unproductive heads are pruned while maintaining
the model performance.

We fine-tune the competitors after pruning in layer-wise manner for fair comparison. In other words,
we prune the attention heads in layer-wise manner and fine-tune the model every layer.

Implementation. We construct all models using PyTorch framework. All the models are trained
and tested on a GeForce GTX 1080 Ti GPU.

4.2 ACCURACY

We evaluate the performance of AUBER against competitors. Table 2 shows the results on four
GLUE datasets listed in Table 1. Note that AUBER outperforms all of its competitors on regu-
larizing BERT, providing the best accuracy for all the datasets. While most of the competitors fail
to improve performance of BERT on the dev dataset of MRPC and CoLA, AUBER improves the
performance of BERT by up to 9.39% on those datasets.

5https://github.com/huggingface/transformers
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Table 3: We compare AUBER with four variants: AUBER-Query, AUBER-Key, AUBER-L2,
and AUBER-Reverse on four GLUE datasets. AUBER-Query and AUBER-Key use the query
and key matrices respectively, and AUBER-L2 uses the L2 norm of the value matrix to obtain the
initial state. AUBER-Reverse processes BERT starting from the final layer (e.g. 12th layer for
BERT-base). Bold font indicates the best accuracy among competing pruning methods.

(a) MRPC (Accuracy)

Policy # of heads pruned dev

AUBER 20 86.03

AUBER-Query 27 83.33
AUBER-Key 42 84.56

AUBER-L2 33 83.33

AUBER-Reverse 58 86.52

(b) CoLA (Matthew’s correlation)

Policy # of heads pruned dev

AUBER 53 61.28
AUBER-Query 72 55.52
AUBER-Key 55 55.78

AUBER-L2 63 54.85

AUBER-Reverse 57 59.48

(c) RTE (Accuracy)

Policy # of heads pruned dev

AUBER 87 66.43
AUBER-Query 83 65.34
AUBER-Key 86 63.18

AUBER-L2 61 66.43
AUBER-Reverse 99 64.62

(d) WNLI (Accuracy)

Policy # of heads pruned dev

AUBER 86 56.34
AUBER-Query 96 56.34
AUBER-Key 101 56.34
AUBER-L2 94 53.52

AUBER-Reverse 101 54.93

4.3 EFFECT OF STATE REPRESENTATION

We validate that the L1 norm of value matrix of each attention head effectively guides AUBER to
predict the best action. Table 3 shows the performances of the variants of AUBER.

4.3.1 AUBER WITH THE KEY/QUERY MATRICES AS THE STATE VECTOR

Among the query, key, and value matrices of each attention head, we show that the value matrix
best represents the current state of BERT. Here we evaluate the performance of AUBER against
AUBER-Query and AUBER-Key. AUBER-Query and AUBER-Key use the query and key matri-
ces respectively to obtain the initial state. Note that AUBER, which uses the value matrix to obtain
state vectors, outperforms AUBER-Query and AUBER-Key on all four tasks.

4.3.2 AUBER WITH L2 NORM OF THE VALUE MATRICES AS THE STATE VECTOR

L1 norm of the value matrices is used to compute the state vector based on the theoretical derivation.
In this ablation study, we experimentally show that the L1 norm of the value matrices is appropriate
for state vector. We set a new variant AUBER-L2 which leverages L2 norm of the value matrices
to compute the initial state vector instead of L1 norm. The performance of AUBER is far more
superior than AUBER-L2 in most cases bolstering that L1 norm of the value matrices effectively
represents the state of BERT.

4.4 EFFECT OF ORDER OF PROCESSING LAYERS

We empirically demonstrate how the order in which the layers are processed affects the final perfor-
mance. We evaluate the performance of AUBER against AUBER-Reverse which processes BERT
layers in the opposite direction (i.e. starting from the 12th layer) to what AUBER does. As shown
in Table 3, AUBER provides a better performance than AUBER-Reverse in 3 out of 4 cases. This
shows that pruning lower layers first and then move to upper layers by AUBER is effective. A
possible explanation is that it is easier to train task-specific parameters (those in upper layers) after
learning general parameters (those in lower layers), rather than that in the reverse order.
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5 RELATED WORK

BERT Regularization. To prevent overfitting of BERT on downstream NLP tasks, various regu-
larization techniques have been proposed. Variants of dropout improves the stability of fine-tuning
large pre-trained language models even when presented with a small number of training examples
(Lee et al. (2020); Fan et al. (2020)). Using slanted triangular learning rate schedule and discrimina-
tive fine-tuning has been proven to effectively prevent overfitting (Howard & Ruder (2018)). Jiang
et al. (2019) propose SMART, which regularizes the model by smoothing it and preventing aggres-
sive update while Liu et al. (2019) train BERT model with multi-task learning algorithm to remedy
overfitting. Introducing adversarial training to enhance the generalization of BERT has been tackled
in Zhu et al. (2020). Pre-training tasks have also been changed for a better regularization. Xu et al.
(2020) modify the pre-training task, next sentence prediction, to additionally predict previous sen-
tence so that it can capture more correlation. Our method has definite advantages for it can be used
along with any of the aforementioned methods.

BERT Pruning. A number of studies have analyzed the effectiveness of pruning parameters in
BERT. Gordon et al. (2020) experimentally prove overparameterization of BERT by showing that
pruning 30 − 40% of parameters does not affect model performance. Chen et al. (2020) find out
the best parameter pruning strategy from the viewpoint of the lottery ticket hypothesis while Guo
et al. (2019) deploy reweighted L1 regularization with proximal algorithm. However, these methods
primarily aim to compress BERT model not to regularize it, and, therefore, no specific method to
enhance the model performance has been proposed.

Thanks to the unique structure of BERT that consists of multi-headed attention, not only parameter
pruning but also structured attention head pruning has been addressed (Voita et al. (2019); Michel
et al. (2019); Kovaleva et al.; McCarley (2019)). Michel et al. (2019); Kovaleva et al.; Prasanna
et al. (2020) evaluate the role and importance of each attention head by measuring heuristics: the
average of its maximum attention weight, where average is taken over tokens in a set of sentences
used for evaluation, or the expected sensitivity of the model to attention head pruning. Their results
show that a large percentage of attention heads with low importance scores can be pruned without
significantly impacting performance. The approach to set L0 regularization term to minimize both
the training loss and the number of used attention heads has been also presented (Voita et al. (2019);
McCarley (2019)). However, they usually yield suboptimal results since they predetermine the order
in which the attention heads are pruned by using heuristics.

Automation of Neural Network Pruning To automate the process of Convolutional Neural Net-
work pruning, Lin et al.; He & Han (2018) have leveraged reinforcement learning to determine the
best pruning strategy for each layer. Important features that characterize a layer are provided to a
reinforcement learning agent to determine how much of the current layer should be pruned. To the
best of our knowledge, AUBER is the first attempt to use reinforcement learning to prune attention
heads from Transformer-based models such as BERT.

6 CONCLUSION

We propose AUBER, an effective method to regularize BERT by automatically pruning attention
heads. Instead of depending on heuristics or rule-based policies, AUBER leverages reinforcement
learning to learn a pruning policy that determines which attention heads should be pruned for better
regularization. Experimental results demonstrate that AUBER effectively regularizes BERT, in-
creasing the performance of the original model on the dev dataset by up to 9.39%. In addition, we
experimentally demonstrate the effectiveness of our design choices for AUBER.
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A APPENDIX

A.1 PROOF FOR THEOREM 1

Proof. For ith head in the layer, let

softmaxi = softmax(
(QWQ

i )(KWK
i )T√

n
) (5)

and
vi = VWV

i . (6)
The output of the head, Oi, is evaluated as Oi = softmaxivi. Then,

‖Oi‖1 =

N!

j=1

m!

k=1

|(Oi)jk| (7)

=

N!

j=1

m!

k=1

|((softmaxi)j·)
T
(vi)·k| (8)

≤
N!

j=1

m!

k=1

‖(softmaxi)j·‖2‖(vi)·k‖2 (9)

=

N!

j=1

‖(softmaxi)j·‖2
m!

k=1

‖(vi)·k‖2 (10)

Since the L1 norm of a vector is always greater than or equal to the L2 norm of the vector,

‖Oi‖1 ≤
N!

j=1

‖(softmaxi)j·‖1
m!

k=1

‖(vi)·k‖1 (11)

= N

m!

k=1

‖(vi)·k‖1 (12)

= N

N!

j=1

m!

k=1

|(vi)jk| (13)

= N

N!

j=1

m!

k=1

|(Vj·)
T
(WV

i )·k| (14)

≤ N

N!

j=1

m!

k=1

‖Vj·‖2‖(WV
i )·k‖2 (15)

= N

N!

j=1

‖Vj·‖2
m!

k=1

‖(WV
i )·k‖2 (16)

≤ N

N!

j=1

‖Vj·‖1
m!

k=1

‖(WV
i )·k‖1 (17)

= N‖V ‖1‖WV
i ‖1 (18)

where the norm of the matrices is entrywise norm, ‖A‖1 =
"

j

"
k Ajk. All heads in the same

layer take the same V as input and N is constant. Thus,
‖Oi‖1 ≤ C‖WV

i ‖1 (19)
for the constant C = N‖V ‖1.
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