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Abstract

We consider the problem of best policy identification in discounted Linear Markov
Decision Processes in the fixed confidence setting, under both generative and
forward models. We derive an instance-specific lower bound on the expected
number of samples required to identify an ε-optimal policy with probability 1− δ.
The lower bound characterizes the optimal sampling rule as the solution of an
intricate non-convex optimization program, but can be used as the starting point
to devise simple and near-optimal sampling rules and algorithms. We devise such
algorithms. In the generative model, our algorithm exhibits a sample complexity
upper bounded by O((d(1 − γ)−4/(ε + ∆)2)(log(1/δ) + d)) where ∆ denotes
the minimum reward gap of sub-optimal actions and d is the dimension of the
feature space. This upper bound holds in the moderate-confidence regime (i.e.,
for all δ), and matches existing minimax and gap-dependent lower bounds. In the
forward model, we determine a condition under which learning approximately
optimal policies is possible; this condition is weak and does not require the MDP
to be ergodic nor communicating. Under this condition, the sample complexity of
our algorithm is asymptotically (as δ approaches 0) upper bounded by O((σ?(1−
γ)−4/(ε+ ∆)2)(log( 1

δ ))) where σ? is an instance-specific constant, value of an
optimal experiment-design problem. To derive this bound, we establish novel
concentration results for random matrices built on Markovian data.

1 Introduction

In Reinforcement Learning (RL), an agent interacts with an unknown controlled stochastic dynamical
system, with the objective of identifying as quickly as possible an approximately optimal control
policy. In this paper, we consider dynamical systems modelled through discounted Markov Decision
Processes (MDPs), and investigate the problem of best policy identification in the fixed confidence
setting. More precisely, we aim at devising (ε, δ)-PAC RL algorithms, i.e., algorithms identifying
ε-optimal policies with a level of certainty greater than 1− δ, using as few samples as possible. Such
a learning objective has been considered extensively in tabular MDPs both in the discounted and
episodic settings, most often using a minimax approach, see e.g. [15, 13, 7, 4, 22, 2, 19, 9, 5, 6]
and more recently adopting an instance-specific analysis [21, 20]. According to the aforementioned
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work, in tabular MDPs, the minimal sample complexity for identifying an ε-optimal policy with
probability at least 1 − δ scales as SA

ε2 log(1/δ) (ignoring the dependence in the time-horizon or
discount factor), where S and A represent the sizes of the state and action spaces, respectively. These
results illustrate the curse of dimensionality (tabular MDPs with limited state and action spaces only
are learnable), and highlight the need for the use of function approximation towards the design of
scalable RL algorithms.

Despite the empirical successes of RL algorithms leveraging function approximation, our theoretical
understanding of these methods remain limited. In this paper, we investigate the so-called linear
MDPs, where linear functions are used to approximate the system dynamics and rewards. We aim at
devising statistically and computationally efficient algorithms for the best policy identification with
fixed confidence learning task. We address this task under both (i) the generative model, where in
each round, a sample of the transition and reward from any given state-action pair can be observed;
and (ii) the forward model, where the learner has access to a single controlled trajectory of the system.
Our contributions are summarized below.

(a) Sample complexity lower bounds. We derive instance-specific lower bounds that any (ε, δ)-
PAC algorithm must satisfy, for both the generative and forward models. These lower bounds are
characterized by the solution of an intricate optimization problem. We propose a careful relaxation
of these optimization problems. These relaxations suggest an experiment design approach based on
G-optimal design to define the sampling strategy used to explore the MDP.

(b) Algorithms with a generative model. When the learner has access to a generative model, inspired
by our sample complexity lower bounds, we devise G-Sample-and-Stop (GSS), a simple (ε, δ)-
PAC algorithm that relies on G-optimal design [17, Chap. 21], least-squares estimators, and a
proper stopping rule. We show that the expected sample complexity of GSS scales at most as
((d(1−γ)−4)/(∆M+ε)2)(log(1/δ)+d) (up to logarithmic factors), where ∆M is an appropriately
defined instance-specific sub-optimality gap that depends on the MDPM. This upper bound holds
in the moderate-confidence regime (i.e., for all δ ∈ (0, 1)), and matches existing minimax and
gap-dependent lower bounds.

(c) Algorithms with the forward model. Again inspired by our sample complexity lower bounds, we
propose G-Navigate-and-Stop (GNS). The analysis of GNS or other algorithms for the forward model
presents many challenges: (i) In contrast with episodic setting, we do not have the ability to restart
the trajectory at each episode. Hence, suitable conditions are required to ensure that learning is even
possible from a single controlled trajectory. (ii) Because of the linear structure, the uniqueness of
the optimal sampling policy that arise from our lower bounds is not guaranteed, and the set of such
optimal policies does not have nice properties such as convexity. Therefore, a careful sampling scheme
is required. (iii) The data generated when exploring the MDP is Markovian, which implies that new
concentration results for random matrices with Markovian data must be derived. We overcome these
challenges. First, we determine conditions under which learning approximately optimal policies is
possible; these conditions are weak and do not require the MDP to be ergodic nor communicating.
Then, under such conditions, we establish concentration bounds on random matrices with Markovian
data. Finally, we show that the sample complexity of GNS, under the learnability conditions, is
asymptotically (as δ approaches 0) upper bounded by O

(
((1− γ)−4σ?M,for/(∆M + ε)2) log(1/δ)

)
where σ?M,for is an instance-specific constant, value of an optimal experiment design problem.

2 Related Work

Linear models in RL have attracted a lot of attention over the last few years. We summarize below
the recent results, related to first episodic MDPs and then discounted MDPs.

Episodic linear MDPs. Most of the studies have aimed at devising algorithms minimizing regret. Jin
et al. [12] propose an optimistic Least Squares Value Iteration (LSVI) algorithm that achieves a regret
upper bound of order Õ(

√
d3H3T ) and that can be implemented in polynomial time. [10] presents

UCRL-VTR, a confidence based algorithm adapted to the linear MDP setting. The algorithm achieves
a gap dependent regret of order Õ(((d2H5)/∆min) log (T/δ)

3
). When it comes to best policy identi-

fication problems, in [27], Wagenmaker et al. establish a sample complexity minimax lower bound
for the task of identifying an ε-optimal policy. the lower bound scales as Ω(d2H2/ε2). The authors
also propose an a reward-free algorithm with sample complexity of order Õ(d/ε2)(log(1/δ) + d)H5.
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In a subsequent work, Wagenmaker et al. [28] introduce PEDEL, an elimination based algorithm
with instance-specific sample complexity guarantees. In the worst case, the sample complexity upper
bound scales as Õ((dH5/ε2)(dH2 + log(1/δ))). This bound hides a dependence on λ?min, the maxi-
mal minimum eigenvalue of the covariates matrix that can be induced by a policy. As in our work, the
derived instance-specific sample complexity guarantees are related to G-optimal design and take the

following form: C0G + C1 where G = H4
∑H
h=1 infΛexp maxπ∈Π

‖φπ,h‖Λ−1
exp

log( |Π|δ )
max{V ?(Π)−V π,∆min(Π),ε2} with

C0 = log
(

1
ε

)
polylog (H, log(1/ε)) and C1 = poly (d,H, 1/λ?min, log(1/δ), log(1/ε), log(|Π|)).

Note that PEDEL requires as input a set of policies Π. The authors propose a way to approximate
the set of all policies using restricted linear soft-max policies Πε which leads to an overall sample

complexity of order C0H
4
∑H
h=1 infΛexp maxπ∈Πε

‖φπ,h‖Λ−1
exp

(dH2+log( 1
δ ))

max{V ?−V π,ε2} + C1. In Zanette et al.
[30], the authors also investigate the problem of identifying an ε-optimal policy with a generative
model and propose a Linear Approximate Value Iteration algorithm (LAVI). They leverage the idea
of anchor (state, action) pairs but require a set of such anchor pairs for each layer h ∈ [H].

Discounted linear MDPs. In [29], Yang et al. focus on the ε-optimal policy identification problem
in the generative setting and present Phased Parametric Q-Learning (PPQ-learning), an algorithm
with sample complexity of order Õ( d

(1−γ)3ε2 log( 1
δ )) under the restrictive assumption that a so-called

set of (state, action) anchor pairs exist (see Assumption 2) and that it is of size d. More precisely,
this assumption states that there exists K ⊂ S × A, a set of anchor (state, action) pairs such that
for all (s, a) ∈ S × A, φ(s, a) can be written as convex combination of features of anchor pairs.
The authors further assume that |K| = d and that all features have non-negative entries and that the
features correspond to probability vectors. The authors finally provide a matching minimax lower
bound of order Ω̃( d

ε2(1−γ)3 ).

Lattimore et al. [18] also consider the ε-optimal policy identification problem in the generative setting.
They devise a sampling rule based on G-optimal design and use an approximate policy iteration
algorithm to recover the optimal policy. Their algorithm seeks to estimate the Q function directly at
each iteration, by first evaluating the value of Q at anchor (state, action) pairs (determined by the
G-optimal design) via rollout, and by then generalizing using least squares. The sample complexity
of their algorithm is of the order Õ( d

√
d

ε2(1−γ)8 log( 1
δ )).

Finally it is worth mentioning [31], where Zhou et al. consider the regret minimization problem in
the forward model. The notion of regret for discounted MDPs is not easy to define. Here, the authors
consider the accumulated difference of rewards between an Oracle policy and the proposed policy but
along the trajectory followed under the latter policy (this policy could well lead the system into regions
of the state space). The proposed algorithm achieves a regret scaling at most as Ô(d

√
T/(1− γ)2).

3 Models and Objectives

3.1 Notation

We denote by ‖x‖ the Euclidean norm of a vector x ∈ Rd. For a given definite positive matrix
M ∈ Rd×d, we denote by ‖x‖M =

√
x>Mx the weighted Euclidean norm of the vector x ∈ Rd. We

denote by ‖M‖ the operator norm of a matrix M ∈ Rd×p. For a positive definite matrix M ∈ Rd×d,
we denote its highest (resp. smallest) eigenvalue by λmax(M) (resp. λmin(M)), respectively. For a
given pair of two symmetric matrices A,B ∈ Rd×d, we write A � B (resp. A � B) to mean that
A−B is positive definite (resp. positive semi-definite).

3.2 Discounted linear MDPs

We consider an infinite time-horizon discounted MDP, denotedM = (S,A, pM, qM, γ), where
S and A are the state and action spaces, respectively, pM and qM are the dynamics and reward
distributions, respectively, and γ ∈ (0, 1) is the discount factor. More precisely, starting from state
s and given that action a is selected, the probability to move to state s′ is pM(s, a, s′) and the
distribution of the collected reward is qM(s, a). We assume that qM(s, a) has support on [0, 1],
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and we denote by rM(s, a) the expected reward of qM(s, a). S and A are finite sets of respective
cardinalities S and A.

Each state-action pair (s, a) is associated to a feature vector φ(s, a) ∈ Rd. We assume that the feature
map φ is known to the learner, that for all (s, a) ∈ S × A, ‖φ(s, a)‖ ≤ 1, and that the features
(φ(s, a))(s,a)∈S×A span Rd. We are interested in the class of the so-called Linear MDPs, denoted by
M, and defined as follows [12]:
Definition 3.1 (Linear MDPs). We sayM is a Linear MDP if there exists µM, a family of dmeasures
over S , seen as S × d-dimensional matrix, and θM ∈ Rd, such that for all s, s′ ∈ S and a ∈ A,

pM(s, a, s′) = φ(s, a)>µM(s′), and rM(s, a) = φ(s, a)>θM, (1)

with max{‖θM‖, ‖µM(S)‖} ≤
√
d.

A deterministic stationary control policy π maps states to actions. We denote by sπt the state at
time t under the policy π, and by π(s) the action selected by π. The performance of a policy π is
expressed through its state value function V πM and its state-action value function QπM defined by: for
all state-action pairs (s, a) ∈ S ×A,

V πM(s) = EM

[
+∞∑
t=0

γtrM(sπt , π(sπt ))|sπ0 = s

]
,

and
QπM(s, a) = rM(s, a) + γ

∑
s′∈S

pM(s, a, s′)V πM(s′).

An optimal policy π?M for the MDPM maximizes the value function for any state, i.e., for any
policy π, we have V π

?
M
M (s) ≥ V πM(s) for all s ∈ S . The state and state-action value functions of π?M

are referred to as the value function V ?M and the Q function Q?M, respectively. A policy π is said
ε-optimal if maxs∈S V

π
M(s)−V ?M(s) ≤ ε point-wise, and we denote by Π?

ε(M) the set of ε-optimal
policies ofM.

3.3 Best policy identification

We aim at designing a learning algorithm interacting with the MDPM so as to identify an ε-optimal
policy as quickly as possible. We formalize this objective in a PAC framework, where a learning
algorithm consists of (i) a sampling rule, (ii) a stopping rule and (iii) a decision rule.

(i) Sampling rule: We distinguish between the generative and the forward model:
1. Generative model: In each round t, the sampling rule may select any (state, action)

(st, at) to explore depending on past observations.
2. Forward model: Under this model, the learner is forced to follow the trajectory of the

system, and only the action may be selected.
Under both models, from the selected pair, the learner observes the next state and receives a
sample of the corresponding reward.

(ii) Stopping rule: This rule is defined through a stopping time τ deciding when the learner
stops gathering information and wishes to output an estimated ε-optimal policy.

(iii) Decision rule: Based on the observations gathered before stopping, the learner outputs an
estimated optimal policy π̂τ .

We are interested in learning algorithms that are (ε, δ)-PAC in the following sense:
Definition 3.2 ((ε, δ)-PAC algorithms). An algorithm is said (ε, δ)-PAC if at the time it stops τ , it
ouputs a policy π̂τ satisifying:

PM
(

max
s∈S

(
V ?M(s)− V π̂τM (s)

)
< ε

)
≥ 1− δ

Our goal is to design (ε, δ)-PAC algorithms with minimal sample complexity EM[τ ]. In contrast
with most existing analyses, we will derive instance-specific lower and upper bounds on the sample
complexity of such algorithms (ε, δ)-PAC algorithms. In particular, we wish these bounds to depend
on the sub-optimality gap of the MDPM defined by ∆M = mins∈S,a 6=π?M(s)(V

?
M(s)−Q?M(s, a)).
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4 Sample Complexity Lower Bounds

To state our instance-specific lower bounds, we first introduce the following notation. Given two
MDPsM andM′ in M, we writeM�M′ if for every pair (s, a) ∈ S×A, we have3 pM(s, a, ·)�
pM′(s, a, ·) and qM(s, a) � qM′(s, a). In this case, we define the Kullback-Leibler divergence
betweenM andM′ by:

KLM|M′(s, a) = KL(qM(s, a)‖qM′(s, a)) + KL(pM(s, a, ·)‖pM′(s, a, ·)).

We also denote by kl(a, b) the Kullback-Leibler divergence of two Bernoulli distributions of respective
means a and b. Finally, we introduce the following set of MDPs. This set includes MDPs for which
the set of ε-optimal policies does not contain an ε-optimal policy forM.

Altε(M) =

{
M′ ∈M :

{
M�M′
Π?
ε(M) ∩Π?

ε(M′) = ∅

}
We refer to Altε(M) as the set of alternative MDPs w.r.t.M. Let ΣS×A be the probability simplex
in RSA, and define for all ω ∈ ΣS×A,

TM(ω)−1 = inf
M′∈Altε(M)

∑
s,a

ωs,aKLM|M′(s, a). (2)

With a generative model. For the generative model, we establish the following lower bound.

Proposition 4.1. Let ε > 0, δ ∈ (0, 1). The sample complexity τ of any (δ, ε)-PAC algorithm must
satisfy: EM[τ ] ≥ T ?M,gen kl(δ, 1− δ) where T ?M,gen = infω∈ΣS×A TM(ω).

The derivation of the lower bound in Proposition 4.1 relies on standard change-of-measure arguments.
We defer the proof to Appendix A. The vector ω ∈ ΣS×A solving the optimization problem and
leading to T ?M,gen can be interpreted as the optimal proportions of times an optimal algorithm
should sample the various (state, action) pairs. It turns out, as in the case of tabular MDPs (see
[21]), that analyzing and computing this allocation is difficult. Instead, our strategy will be to
derive instance-specific upper bounds of the T ?M,gen that can be computed in a computationally
efficient manner. To state the upper bounds, we introduce the following quantities: let ω ∈ ΣS×A,
Λ(ω) =

∑
(s,a)∈S×A ωs,aφ(s, a)φ(s, a)>, and σ(ω) = max(s,a)∈S×A ‖φ(s, a)‖2Λ(ω)−1 . Λ(ω) is

referred to as the feature matrix. Furthermore, observe that the function σ(·) corresponds to the
so-called G-optimality criterion (see e.g. Chap. 21 in [17]). Our next result is to establish a link
between TM(·) and σ(·).

Theorem 4.2. For all ω ∈ ΣS×A, it holds that

TM(ω) ≤ 10σ(ω)

3(1− γ)4(∆M + ε)2
. (3)

Consequently, we have T ?M,gen ≤ U?M,gen , 10d
3(1−γ)4(∆M+ε)2 .

Theorem 4.2 relates the experiment-design approach based on G-optimality to our instance dependent
lower bound. A similar link has been established in the case of best-arm identification in linear
bandits [23]. However, establishing such a link in the case of Linear Discounted MDPs is more
challenging and requires a careful relaxation of the optimization problem leading to the definition of
TM(ω) in (2). The proof of Theorem 4.2 is deferred to Appendix A.

From an algorithmic perspective, Theorem 4.2 tells us that sampling according to a G-optimal design
ω? (i.e., ω? ∈ arg minω∈ΣS×A σ(ω)) is sufficient to identify an ε-optimal policy with a sample
complexity upper bounded by the gap-dependent quantity U?M,gen log(1/δ). ω? only depends on the
feature map φ and not the uknowns µM and θM, and therefore may be computed prior to the learning
process.

3Here� refers to the standard symbol for absolute continuity between probability measures.
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With a forward model. Proposition 4.1 and Theorem 4.2 can be immediately extendend to the
forward model. To simplify the exposition, we will restrict our attention to the asymptotic lower
bounds when δ → 0. As in [20], we can establish that if ωsa denotes the expected proportion of
rounds where the state-action pair (s, a) is visited, then the allocation ω, asymptotically, must satisfy
the balance equations of the Markov chain induced by the controlled system dynamics: for all s ∈ S ,∑

a∈A
ωs,a =

∑
(s′,a′)∈S×A

pM(s′, a′, s)ωs′,a′ . (4)

Define Ω(M) ={ω ∈ ΣS×A : the constraints (4) hold}.
Proposition 4.3. Let ε > 0, δ ∈ (0, 1). In the forward model, the sample complexity τ of any
(ε, δ)-PAC algorithm must satisfy: EM[τ ] ≥ T ?M,for kl(δ, 1− δ) where T ?M,for = infω∈Ω(M) TM(ω).

Theorem 4.4. Let σ?M,for = infω∈Ω(M) σ(ω). Then, we have

T ?M,for ≤ U?M,for ,
10 σ?M,for

3(1− γ)4(∆M + ε)2
. (5)

The proof of Proposition 4.3 and Theorem 4.4 are presented in Appendix A. The upper bound we
obtain on T ?M,for, suggests an experiment design approach where the objective is to sample according
to an allocation ω? ∈ arg minω∈Ω(M) σ(ω). This objective is similar in spirit to that considered in
[28] for Episodic Linear MDPs.

5 The G-Sample-and-Stop Algorithm

We propose G-Sample-and-Stop (GSS), an algorithm whose sample complexity matches the complex-
ity measure U?M,gen log(1/δ) presented in Theorem 4.2. The algorithm samples the state-action pairs
according to a G-optimal design, and stops when it has gathered enough information. The adaptive
nature of the stopping rule ensures a gap-dependent sample complexity upper bound.

5.1 Sampling rule

Prior to the learning process, under the GSS algorithm, we start by finding4 an optimal allocation
ω? ∈ arg minω∈ΣS×A σ(ω). Then, at each round t, the algorithm proceeds by sampling a state-
action pair (st, at) according to ω?. Define Pt =

∑t
`=1 φ(s`, a`)φ(s`, a`)

>. Standard concentration
arguments on random matrices ensure that the random matrix Pt converges to the matrix tΛ(ω?). In
particular, tmax(s,a)∈S×A ‖φ(s, a)‖2

P−1
t

will converge towards σ(ω?). We present this fact in the
following proposition, and its proof is deferred to Appendix B.
Proposition 5.1. Let δ ∈ (0, 1). We have

P
(
t max

(s,a)∈S×A
‖φ(s, a)‖2

P−1
t
≤ 2σ(ω?)

)
≥ 1− δ,

provided t ≥ 10d log
(

2d
δ

)
.

5.2 Least-squares estimation

The stopping and decision rules of GSS leverage the least-squares estimators of the parameters
µM and θM. We provide below explicit expressions for these estimators and derive concentration
inequalities characterizing their performance. When the algorithm selects (state, action) pair (st, at)
in round t, it observes the next state s′t and receives the reward rt. Overall, in round t, the algorithm
gathers the experience (st, at, rt, s

′
t). The regularized least-squares estimators with parameter λ > 0

of µM and θM after t experiences are given by: for all s ∈ S,

µ̂t(s) = (Pt + λId)
−1

t∑
`=1

φ(s`, a`)1{s′`=s}, and θ̂t = (Pt + λId)
−1

t∑
`=1

φ(s`, a`)r`. (6)

4Finding a G-optimal design is well studied problem. We refer the reader to Chap. 21 in [17] and further
computational considerations are discussed in Appendix B.
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In what follows, we choose λ = 1/d and denote by M̂t the MDP associated to the corresponding
least-squares estimators. Let V̂t and Q̂t be its value functions. The performance of the least-squares
estimators can be controlled in the following sense:
Proposition 5.2. Irrespective of the sampling rule, we have for all δ ∈ (0, 1),

P
(
∀t ≥ 1,

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

Pt
≤ β(δ, t)

)
≥ 1− δ (7)

with the threshold β(δ, t) = C
(1−γ)2 (log (e/δ) + d log (dt)) for some universal constant C > 0.

The proof of Proposition 5.2 is presented in Appendix C along with the precise constants. Importantly,
the threshold β does not exhibit any dependence in S but only in d. This is thanks to the linear
structure that characterizes the value function. Such a structure allows us to use a net argument on
the space of all possible optimal value functions. This idea is borrowed from [12] and repurposed to
our needs.

5.3 Stopping and decision rules

Let us start by describing the stopping rule. For all t ≥ 1, we define the random variable Z(t) and
the threshold β(δ, t) as follows

Z(t) =
3(1− γ)4(∆M̂t

+ ε)2

10 max(s,a)∈S×A ‖φ(s, a)‖2
P−1
t

, and β(δ, t) = C
(

log
(e
δ

)
+ d log (dt)

)
.

The random variable Z(t)/t may be interpreted as an empirical estimator of the lower bound
on U?M,gen established in Theorem 4.2. The choice of the threshold β(δ, t) is motivated by the
concentration result of Propostion 5.2 with C being the universal constant in the statement of the
proposition. Finally, the stopping rule of GSS is defined by the stopping time

τ = inf {t ≥ 1 : Z(t) > β(δ, t)} . (8)
This stopping rule is inspired by classical log-likelihood based stopping rules. When the algorithm
stops, it computes π̂τ , an optimal policy for the MDP M̂τ . The description of GSS is now complete
and summarized in Algorithm 1.

Algorithm 1: G-Sample-and-Stop (GSS)
Compute ω? = arg minω∈ΣS×A σ(ω)
while Z(t) ≤ β(δ, t) do

sample (st, at) according ω?
observe the experience (st, at, rt, s

′
t)

update (µt, θt) according to (6) and set t = t+ 1
end
return π̂ = π?t the optimal policy of M̂t

The following Lemma establishes the (ε, δ)-PAC correctness of GSS. It is a consequence of Propositon
5.2 and its proof is deferred to Appendix C.
Lemma 5.3. Under the GSS algorithm, we have: P (τ < +∞, π̂τ /∈ Π?

ε(M)) ≤ δ.

5.4 Sample complexity guarantees under GSS

Finally, in Theorem 5.4 we present the sample complexity guarantee enjoyed by GSS.
Theorem 5.4. The sample complexity of GSS satisfies, for all ε > 0, δ ∈ (0, 1),

E[τ ] ≤ CU?M,gen

(
log
(e
δ

)
+ d log

(
U?M,gen

))
(9)

where C > 0 is a universal constant. Furthermore, GSS is an (ε, δ)-PAC algorithm.

The proof of Theorem 5.4 is presented in Appendix D. First, observe that the sample complexity
guarantee is valid for all δ ∈ (0, 1) which contrasts with most existing asymptotic results in best
policy identification. Additionally, our guarantee is matching, up to a constant multiplicative factor,
the upper bound established in Theorem 4.2 as δ → 0.
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6 The G-Navigate-and-Stop algorithm

In this section, we present G-Navigate-and-Stop (GNS), an algorithm whose sample complexity
matches the complexity measure U?M,for log(1/δ) presented in Theorem 4.4. The design of GNS, as
that of GSS, is guided by our lower bounds. In particular, the stopping and decision rules are the
same as those of GSS and all guarantees related to these components also hold for GNS, namely
Proposition 5.2 and Lemma 5.3. The major difference lies in the sampling rule where now we have to
account for navigation constraints.

6.1 Sampling rule

In what follows, we denote, for ease of notations, for all ` ≥ 1 , φ` = φ(s`, a`). Recall that
Pt =

∑t
`=1 φ`φ

>
` . As already mentioned in the study of the generative model, this random matrix

plays a crucial role. In the forward model, the role Pt is more pronounced and in fact all our
learnability conditions concern this matrix.

6.1.1 Forced exploration

Learning from a single trajectory requires the existence of at least a policy that explores the MDP
sufficiently. Additionally if there is any hope for finding an optimal exploration strategy then we
need at least to guarantee that while searching for such a policy, we do not get trapped in states that
irrevocably limit our exploration. This motivates the definition of (m,λ)-covering policies.
Definition 6.1 ((m,λ)-covering policy). A policy π is said to be an (m,λ)-covering policy ofM if
there exists m ≥ 1 and λ > 0 such that:

min
s∈S

λmin

(
1

m
EπM

[
m∑
t=1

φtφ
>
t

∣∣∣s1 = s

])
> λ. (10)

We make the following assumption, which is necessary to ensure that learnability is possible.
Assumption 6.2. There exists an (m,λ)-covering policy πe. Furthermore, the learner is aware of the
policy πe and of m.

It is worth noting that Assumption 6.2 does not require a priori that the MDP M is ergodic nor
communicating. For a more detailed discussion on this assumption, refer to Appendix B. We are now
ready to present our forced exploration scheme.
Lemma 6.3 (Forced exploration). Let (bt)t≥1 be an arbitrary sequence of actions, possibly adver-
sarially chosen. Under Assumption 6.2, let (at)t≥1 be a sequence of actions sampled according
to:

at = (1− xt)bt + xtπe(·|st) (11)

where xt = 1 with probability t−1/2m and xt = 0 with probability 1 − t−1/2m. Then, we have
P
(
λmin

(∑t
`=1 φ`φ

>
`

)
≥ λ

2

√
t
)
≥ 1− δ, provided that t ≥

(
8m
λ2 log

(
2d
δ

))2
.

The proof of Lemma 6.3 relies on a careful decomposition of Pt and using a matrix martingale
Bernstein concentration bound. We refer the reader to Appendix B for the proof. As it turns out, the
high probability guarantee on the growth of the smallest eigenvalue in Lemma 6.3 is sufficient to
ensure consistency of the least-squares estimator of µM. This is required for the sample complexity
analysis of GNS.

6.1.2 Tracking

Before we present our tracking procedure, we present what we refer to as the oracle policy of a given
allocation ω.

Oracle policy. As in [3], given an allocation ω ∈ Ω(M), we define the oracle policy πo(ω) as
follows: for all (s, a) ∈ S ×A,

πo(ω)(a|s) =

{
ωs,a∑
a∈A ωs,a

if
∑
a∈A ωs,a > 0,

1
|A| otherwise.

(12)
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It is not difficult to verify that the policy πo(ω) indeed induces the allocation ω.

Optimal allocations. Next, we make the following assumption to avoid unnecessary technical
issues that may arise characterizing the set of optimal allocations.

Assumption 6.4. There exists η > 0 such that
(
arg minω∈Ω(M) σ(ω)

)
∩ Ωη(M) = ∅ where

Ωη(M) , {ω ∈ Ω(M) : Λ(ω) � 2ηId}. Furthermore, the learner has access to η.

Under Assumption 6.4, we can characterize the set of optimal allocations5 as being non-empty,
compact and convex. However, it is not guaranteed that the optimal allocation is unique6. This
complicates the design of the tracking procedure. In particular, we cannot use the C-tracking rule
used for instance in tabular MDPs as in [3]. To circumvent this issue, we use lazy updates or a
doubling trick. Let T = {2k : k ∈ N}. The allocation ωt that GNS tracks is updated only when
t ∈ T .

Optimization oracle. We assume that the learner has access to an optimization oracle that given a
model M̂, outputs an allocation ω? ∈ arg min

ω∈Ωη/2(M̂)
σ(ω). This optimization problem is convex

and therefore computationally tractable.

We are now ready present the sampling rule of GNS. When t ∈ T , the alogrithm computes ω? ∈
arg min

ω∈Ωη/2(M̂)
σ(ω), and updates πt as πo(ωt). Now in each round t, bt is sampled according

to πt(·|st) and GNS selects the action at defined in (11). The pseudo-code of GNS is presented in
Algorithm 2.

Algorithm 2: The G-Navigate-and-Stop
Initialize π1 to be the uniform policy
while Z(t) ≤ β(δ, t) do

If t ∈ T then compute ωt ∈ arg min
ω∈Ωη/2(M̂t)

σ(ω) and set πt ← πo(ωt) following (12)
sample bt ∼ πt(·|st), and at according to (11)
update (µt, θt) according to (6), and set t = t+ 1

end
return π̂t an optimal policy of M̂t

Next, we provide tools for the sample complexity analysis of GNS. One crucial step is to guarantee
that under our sampling scheme, certain random matrices concentrate.

Assumption 6.5. There exists κ > 0, such that for all ω ∈ Ωη/2(M), u ∈ SSA−1, (s, a) ∈ S ×A,
the following holds

Eπ
o(ω)

(
lim
t→∞

Mt(u)|s1 = s, a1 = a
)
≤ κ,

where Eπo(ω) means that the expectation is taken with respect to trajectories generated by policy
πo(ω), and Mt(u) =

∑t
`=1

(
|u>Λ(ω)−1/2φ`|2 − 1

)
.

Essentially, Assumption 6.5 guarantees the convergence of 1
t

∑t
`=1 φ`φ` towards Λ(ω) when the

sample trajectory is generated with the fixed policy πo(ω). The uniform bound κ across state-action
pairs in S × A, allocations in Ωη(M), and all unit vector in RSA may appear strong. However, it
can be shown for instance that ifM is ergodic then κ = O(tmix/η) where tmix is a the mixing time
of the MDPM. We provide further discussions on this assumption in appendix B. Now, we present
our concentration bounds on random matrices with Markovian data.

Proposition 6.6. Let ωk be the optimal allocation used by GNS between tk < t ≤ tk+1 for some
k ≥ 1. Furthermore, assume that ωk ∈ Ωη(M). Then, under GNS with the forced exploration (11),

5This claim follows from Berge’s maximum theorem. Refer to appendix D for a formal statement.
6The non-unicity of the optimal allocation also occurs in best arm identification for linear bandits (see

e.g.,[11]). The non-unicity is a consequence of Caratheodory’s theorem.
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under Assumption 6.5, we have, for all ε > 0, δ ∈ (0, 1)

P

(
1

tk+1 − tk

tk+1∑
t=tk+1

φtφ
>
t � (1− ε)Λ(ωk)

)
≥ 1− δ,

provided that tk+1 − tk ≥ C max
((

16κ
ε

)2
, 16κ

3ε

) (
log
(
e
δ

)
+ d
)

for some universal constant C > 0.

The proof of Proposition 6.6 relies on decomposing
∑tk+1

t=tk+1 φtφ
>
t using Poisson’s equation [8] so

as to obtain a martingale that can be easily controlled under Assumption 6.5. We defer the proof to
Appendix B along with the precise constants.

6.2 Sample complexity guarantees under GNS

Finally, in Theorem 6.7, we present a sample complexity upper bound for GNS.
Theorem 6.7. The sample complexity of GNS, satisfies for all ε > 0,

E[τ ] ≤ CU?M,for

(
log
(e
δ

))
+ o

(
log
(e
δ

))
(13)

for some universal constant C > 0. Furthermore, the GNS algorithm is (ε, δ)-PAC.

The proof of Theorem 6.7 is slightly more complex than that of Theorem 5.4 due the navigation
constraints. We present the proof in Appendix D. Observe that the GNS algorithm attains a sample
complexity that matches, up to some multiplication constant and assymptotically (as δ → 0), the
complexity measure U?M,for log(1/δ) presented in Theorem 4.4.

7 Conclusion

In this paper, we have first derived instance-dependent lower bounds on the sample complexity of
best policy identification in discounted linear MDPs. As of now, these instance-dependent bounds
remain challenging to exploit algorithmically. Instead, we proposed a relaxation that links these lower
bounds to experiment-design criteria based on the G-optimal design. These criteria lead to the sample
complexity measures U?M,gen log(1/δ) and U?M,for log(1/δ) for the generative model and forward
model, respectively. Importantly, these complexity measures are instance-dependent as they exhibit a
dependence on the minimum gap ∆M.

Furthermore, we have established that these experiment design criteria can be exploited algorithmi-
cally by proposing the algorithms GSS amd GNS with sample complexity upper bounds matching
asymptotically U?M,gen log(1/δ) and U?M,for log(1/δ), respectively, as δ → 0. In fact, GSS enjoys a
stronger guarantee that holds for all δ ∈ (0, 1) and matches existing minimax lower bounds (in the
episodic case, these bounds are of the order Ω(d2/ε2)). In the forward model, we are the first, to
the best of our knowledge, to investigate the problem of ε-best policy indentification for discounted
linear MDPs. Notably, we establish, for this model, conditions under which learnability is possible.
These conditions are a priori weaker than ergodicity and communication.

As a future direction, we believe that it would be interesting to improve the relaxations of the lower
bounds, as well as devising, for the forward model, algorithms with sample complexity guarantees in
the moderate confidence regimes.
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A Sample Complexity Lower Bounds

A.1 Proof of Propositions 4.1 and 4.3

The proofs of the two propositions follows a standard change-of-measure argument (see [14, 3] and
references therein). In our case, this argument is summarized in the following lemma.
Lemma A.1 (Change-of-measure lemma). For any (ε, δ)-PAC algorithm, for allM′ ∈ Altε(M),
we have ∑

(s,a)∈S×A

E[Ns,a(τ)]KLM|M′(s, a) ≥ kl(δ, 1− δ)

where Ns,a(τ) =
∑τ
t=1 1{(st, at) = (s, a)}.

Lemma A.1 is borrowed from [3] (see Lemma 9 in [3]), therefore we omit its proof. Now introducing,
for all (s, a) ∈ S ×A, ωs,a = EM[Ns,a(τ)]/EM[τ ], we immediately see that

EM[τ ]TM(ω)−1 = EM[τ ] inf
M′∈Altε(M)

∑
(s,a)∈S×A

EM[Ns,a(τ)]

EM[τ ]
KLM|M′(s, a) ≥ kl(δ, 1− δ)

(14)

where we recall that TM(·) is defined in (2). From here, to obtain the statements of Proposition 4.1,
it suffices to optimize the quantity TM(ω), more precisely we take T ?M,gen = infω∈ΣS×A TM(ω).
The proof of Propoisition 4.3 follows similarly, but this time we optimize TM(ω) over ω ∈ Ω(M),
namely by setting T ?M,for = infω∈Ω(M) TM(ω). However, note that for thiscase, we require δ → 0,
so that E[τ ] → ∞, to ensure that ω ∈ Ω(M). Therefore, the lower bound in Propoisition 4.3 is
asymptotic in δ.

A.2 Gap bounds and value difference lemmas

Next, we present key difference lemmas, that will be useful to relax the optimization problem that
appears in the lower bound.
Lemma A.2. Let ε > 0 and letM′ be an MDP such that π?M /∈ Π?

ε(M′). Then, we have:

∆M + ε ≤ ‖V ?M − V
π?M
M′ ‖∞ + ‖Q?M −Q?M′‖∞. (15)

Proof of Lemma A.2. π?M /∈ Π?
ε(M′) implies that ε ≤ maxs∈S V

?
M′(s) − V

π?M
M′ (s). Denote s the

state maximizing this quantity. We have π?M′(s) 6= π?M(s). Indeed if it was not the case then

V ?M′(s)− V
π?M
M′ (s) = Q?M′(s, π

?
M′(s))−Q

π?M
M′ (s, π

?
M′(s))

= γpM′(s, π
?
M′(s))

>(V ?M′ − V
π?M
M′ )

≤ γmax
s′∈S

(V ?M′(s
′)− V π

?
M
M′ (s′))

= γ(V ?M′(s)− V
π?M
M′ (s))

which is a contradiction since γ < 1. Now, since π?M′(s) 6= π?M(s), we have ∆M ≤ V ?M(s) −
Q?M(s, π?M′(s)). We can then write

∆M + ε ≤ V ?M(s)−Q?M(s, π?M′(s)) + V ?M′(s)− V
π?M
M′ (s)

= V ?M(s)− V π
?
M
M′ (s) +Q?M′(s, π

?
M′(s))−Q?M(s, π?M′(s))

≤ ‖V ?M − V
π?M
M′ ‖∞ + ‖Q?M −Q?M′‖∞.

Lemma A.3. Let π be any deterministic policy. We have:

‖V πM−V πM′‖∞ ≤ ‖QπM−QπM′‖∞ ≤
1

1− γ
max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V πM

)∣∣ .
(16)
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Proof of Lemma A.3. For any s ∈ S, we have V πM(s) − V πM′(s) = QπM(s, π(s)) − QπM′(s, π(s)).
Hence the first inequality holds. Now, we can write for any pair (s, a) ∈ S ×A

QπM(s, a)−QπM′(s, a) = φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V πM

)
+ γpM′(s, a)>(V πM − V πM′),

so that

‖QπM −QπM′‖∞ ≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V πM

)∣∣+ γ‖V πM − V πM′‖∞

≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V πM

)∣∣+ γ‖QπM −QπM′‖∞,

which implies the second inequality.

Lemma A.4. We have:

‖V ?M−V ?M′‖∞ ≤ ‖Q?M−Q?M′‖∞ ≤
1

1− γ
max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?M

)∣∣ .
(17)

Proof of Lemma A.4. Let s ∈ S. We have by optimality of π?M′ that

V ?M(s)− V ?M′(s) = Q?M(s, π?M(s))−Q?M′(s, π?M′(s))
≤ Q?M(s, π?M(s))−Q?M′(s, π?M(s))

≤ ‖Q?M −Q?M′‖∞.

V ?M′(s)− V ?M(s) can be bounded the same way using the optimality of π?M, so that this inequality is
true in absolute value which gives the first inequality. Now, we can write for any pair (s, a) ∈ S ×A

Q?M(s, a)−Q?M′(s, a) = φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?M

)
+ γpM′(s, a)>(V ?M − V ?M′),

so that

‖Q?M −Q?M′‖∞ ≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?M

)∣∣+ γ‖V ?M − V ?M′‖∞

≤ max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?M

)∣∣+ γ‖Q?M −Q?M′‖∞

which implies the result.

Remark A.5. In Lemma A.3 and Lemma A.4 we have used the fact that for any (s, a), ‖pM′(s, a)‖1 =

1, but only withM′ and not withM. When working with the LSE estimators θ̂t and µ̂t, we will
construct a MDP M̂t whose transitions probabilities, defined as φ(s, a)>µt, may not be actual
probability vectors. This is not an issue since these lemmas will only be used with M̂t taking the
place of the first MDP which does not require such property.

A.3 Proof of Theorems 4.2 and 4.4

In this section, we prove Theorems 4.2 and 4.4. First, we establish the following Lemma.

Lemma A.6. LetM∈M be a discounted linear MDP. Then, for all ω ∈ ΣS×A, we have:

TM(ω) ≤ UM(ω) :=
10σ(ω)

3(1− γ)4(∆M + ε)2
. (18)

Proof. We are actually going to show (18), but by considering in the definition of TM(ω) an infimum
over the set of MDPsM′ such that π?M /∈ Π?

ε(M′) – which is larger than Altε(M) and thus gives a
smaller infimum than TM(ω)−1. From now on, we consider one such MDPM′. The proof proceeds
in two steps:

(Step 1) Lower bounds on the terms KLM|M′(s, a). The Kullback-Leibler divergence can be lower
bounded using Lemma A.10 (see below). For a given pair (s, a), let f = r + γV ?M(s′) where r and
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s′ denote the random reward and the random next state after playing the pair (s, a), respectively. f is
almost surely bounded by (1− γ)−1 and applying Lemma A.10 with this choice for f yields:

KLM|M′(s, a) ≥ 6(1− γ)2

5

(
EM(s,a)[r + γV ?M(s′)]− EM′(s,a)[r + γV ?M(s′)]

)2
=

6(1− γ)2

5

(
φ(s, a)>

(
θM − θM′ + γ(µM − µM′)>V ?M

))2
.

Summing over all state-action pairs,∑
(s,a)∈S×A

ωs,aKLM|M′(s, a) ≥ 6(1− γ)2

5

∥∥θM − θM′ + γ(µM − µM′)>V ?M
∥∥2

Λ(ω)
. (19)

(Step 2) Introducing the gaps ∆M. Putting together Lemma A.2, Lemma A.3 and Lemma A.4 (and
choosing π = π?M in Lemma A.3), we obtain a bound on the quantity ∆M + ε as follows

∆M + ε ≤ 2

1− γ
max
s,a

∣∣φ(s, a)>
(
θM − θM′ + γ(µM − µM′)>V ?M

)∣∣ .
Now, we can apply Lemma A.9 with n = 1, ∆ = 1−γ

2 (∆M + ε), Λ1 = Λ(ω) and φ1 the feature
maximizing the term above, and deduce that∥∥θM − θM′ + γ(µM − µM′)>V ?M

∥∥2

Λ(ω)
≥ (1− γ)2(∆M + ε)2

4‖φ‖2Λ(ω)−1

≥ (1− γ)2(∆M + ε)2

4σ(ω)
.

Putting the above inequality together with (19) and then taking the infimum overM′, we have:

TM(ω)−1 ≥ 3(1− γ)4(∆M + ε)2

10σ(ω)
. (20)

Proof of Theorem 4.2. Now, to obtain the statement of Theorem 4.2, we optimize the inequality (18)
obtained from Lemma A.6 over ω ∈ ΣS×A, and get

T ?M,gen = inf
ω∈ΣS×A

TM(ω) ≤
10 infω∈ΣS×A σ(ω)

3(1− γ)4(∆M + ε2)
= U?M,gen

Now, applying Kiefer-Wolfowitz theorem (see Theorem A.7 below) implies that infω∈ΣS×A σ(ω) =
d, and that ω?(M) which achieves the minimum is the so-called G-optimal design (see [17] and
references therein). This concludes the proof of Theorem 4.2.

Proof of Theorem 4.4. To obtain the statement of Theorem 4.4, we use the inequality (18) obtained
from Lemma A.6, and optimize it over ω ∈ Ω(M) to get

T ?M,for = inf
ω∈Ω(M)

TM(ω) ≤
10σ?M,for

3(1− γ)4(∆M + ε2)
= U?M,gen

A.4 Technical lemmas

Theorem A.7 (Kiefer-Wolfowitz [16]). Let Φ ⊆ Rd be a finite set such that span(Φ) = d. Let Σ be
the set of probability distributions on Φ. The following statements are equivalent:

(i) ω? = arg minω∈Σ maxφ∈Φ φ
>(
∑
φ∈Φ ω(φ)φφ>)−1φ,

(ii) ω? = arg maxω∈Σ log det(
∑
φ∈Φ ω(φ)φφ>),
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(iii) maxφ∈Φ φ
>(
∑
φ∈Φ ω

?(φ)φφ>)−1φ = d.

Remark A.8. The statement of the Kiefer-Wolfowitz theorem in [16] holds under a much weaker
assumption than that of a finite set Φ. For example, if Φ = {φ(x) : x ∈ X} where φ : X → Rd is a
continuous map on some compact set X , then the equivalence between the three statements (i), (ii)
and (iii) still holds.
Lemma A.9. Let ∆ > 0, φi ∈ Rd and Λi ∈ Rd×d some positive definite symmetric matrices for
i = 1, . . . , n. We have:

inf
x∈Rn×d∑n

i=1 |φ>i xi|≥∆

n∑
i=1

‖xi‖2Λi =
∆2∑n

i=1 ‖φi‖2Λ−1
i

. (21)

Proof of Lemma A.9. The absolute values can be removed from the constraint
∑
i |φ>i xi| ≥ ∆, as

we can then apply it adding arbitrary signs before each φi and get the same result since ‖−φi‖Λ−1
i

=

‖φi‖Λ−1
i

. The Lagrangian of the problem without the absolute value is

L(x, ν) =

n∑
i=1

‖xi‖2Λi − ν

(
n∑
i=1

φ>i xi −∆

)
and the KKT conditions for optimality are

∀i, 2Λixi − νφi = 0,

ν

(
∆−

n∑
i=1

φ>i xi

)
= 0,

∆ ≤
n∑
i=1

φ>i xi,

ν ≥ 0.

The first one gives 2xi = νΛ−1
i φi. This formula together with the third condition imply that ν > 0,

so that the third condition is an equality and

ν =
2∆∑n

i=1 φ
>
i Λ−1

i φi
=

2∆∑n
i=1 ‖φi‖2Λ−1

i

.

Finally we have

xi = ∆ · Λ−1
i φi∑n

i=1 ‖φi‖2Λ−1
i

,

and the solution of the optimization problem is∑n
i=1 φ

>
i Λ−1

i ΛiΛ
−1
i φi(∑n

i=1 ‖φi‖2Λ−1
i

)2 ∆2 =
∆2∑n

i=1 ‖φi‖2Λ−1
i

.

Lemma A.10. Let α and β be two probability measures and f be a bounded random variable such
that f ≥ 0. Then we have the following inequality:

KL(α‖β) ≥ 6

5‖f‖2∞
(Eα[f ]− Eβ [f ])2. (22)

Proof of Lemma A.10. We prove that if Eβ [f ] = 0 then

KL(α‖β) ≥ 6

5‖f‖2∞
Eα[f ]2.
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It then suffices to apply this result to f−Eβ [f ] and to notice that if f ≥ 0 then ‖f−Eβ [f ]‖∞ ≤ ‖f‖∞.

Let f be centered with respect to β. Using Donsker-Varadhan’s inequality, we know that for any
λ > 0,

KL(α‖β) ≥ Eα[λf ]− log(Eβ [exp(λf)]).

Now,

Eβ [exp(λf)] ≤ Eβ

[
1 + λf + f2

+∞∑
k=2

λk‖f‖k−2
∞

k!

]

≤ 1 +
Vβ [f ]

‖f‖2∞

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
≤ 1 +

1

4

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
.

Using log(1 + u) ≤ u,

KL(α‖β) ≥ Eα[λf ]− 1

4

(
eλ‖f‖∞ − λ‖f‖∞ − 1

)
.

Optimizing over λ, by choosing λ = 1
‖f‖∞ log

(
1 + 4 Eα[f ]

‖f‖∞

)
, we get:

KL(α‖β) ≥ 1

4

((
1 + 4

Eα[f ]

‖f‖∞

)
log

(
1 + 4

Eα[f ]

‖f‖∞

)
− 4

Eα[f ]

‖f‖∞

)
.

Using Bernstein’s inequality (1 + u) log(1 + u)− u ≥ u2

2(1+u/3) , we finally have

KL(α‖β) ≥

(
4 Eα[f ]
‖f‖∞

)2

8
(

1 + 4
3

Eα[f ]
‖f‖∞

) =
2Eα[f ]2

‖f‖2∞ + 2
3‖f‖∞Eα[f ]

≥ 6

5‖f‖2∞
Eα[f ]2.
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B Concentration of Random Matrices and Sampling Rules

In this section, we present all the results related to our sampling rules for both the generative
and forward models. An important quantity that arises in in the analysis is the random matrix
Pt =

∑t
`=1 φ(st, at)φ(st, at)

>. To guarantee any form of learnability, the minimum eigenvalue of
the matrix Pt has to grow with t sufficiently fast.

B.1 The generative model – Proof of Proposition 5.1

Sampling under the G-optimal design. It may be ambitious to target a sampling allocation that
corresponds exactly to the G-optimal design. Instead, we may focus on a solution that is only
approximately optimal. We will say that an allocation (or design) ω̃? ∈ ΣS×A is an ε-approximate
G-optimal design if it satisfies

max
(s,a)∈S×A

‖φ(s, a)‖2Λ(ω̃?)−1 ≤ (1 + ε) inf
ω∈Σ

max
(s,a)∈S×A

‖φ(s, a)‖2Λ(ω)−1 = (1 + ε)d. (23)

Such a solution may be obtained efficiently using a Frank-Wolfe algorithm (see [17] and references
therein). Classically, existing procedures, that use G-optimal design as a basis for their sampling
schemes, do that in a deterministic fashion by requiring a budget of samples ahead [18], or using
efficient rounding procedures coupled with a doubling trick [23]. For our purposes, we will simply
sample according to the obtained G-optimal design and that will be enough thanks to the concentration
results presented below.

We prove the following matrix concentration result, valid for all ε-approximate G-optimal designs.

Lemma B.1. Let ω̃? ∈ ΣS×A, be an ε-approximate G-optimal design for some ε > 0 (i.e., satisfying
(23)). Assume that the sequence of state action pairs (st, at)t≥1 are sampled according to ω̃?, then,
for all δ ∈ (0, 1), ρ > 0, we have:

∀t ≥ 2(1 + ε)

(
1

ρ2
+

1

3ρ

)
d log

(
2d

δ

)
, P ((1− ρ)Λ(ω̃?) � Λ(ωt) � (1 + ρ)Λ(ω̃?)) ≥ 1− δ.

Remark B.2. Note that the statement of Lemma B.1, along with the fact that ω̃? is an ε-approximate
G-optimal design, ensures that the event

d

1 + ρ
≤ max

(s,a)∈S×A
‖φ(s, a)‖2Λ(ωt)−1 ≤

(1 + ε)d

1− ρ

holds with probability at least 1 − δ, provided t ≥ 2(1 + ε)
(

1
ρ2 + 1

3ρ

)
d log

(
2d
δ

)
. Note that the

maximum over S ×A came for free thanks to the matrix concentration, and this concentration did
not require a priori any condition on the finiteness of the set S ×A. Actually, the above generalizes
immediately for any continuous and compact state-action spaces S ×A, provided we can compute
an ε-approximate G-optimal design.

Proof of Proposition 5.1. Specializing the result of Lemma B.1 to the G-optimal design ω? and
choosing ρ = 1/2 gives

∀t ≥ 28d

3
log

(
2d

δ

)
, P

(
max

(s,a)∈S×A
‖φ(s, a)‖2

P−1
t
≤ 2σ(ω?)

)
≥ 1− δ. (24)

This is exactly the statement of Proposition 5.1.

Proof of Lemma B.1. The proof is an application of Matrix Bernstein’s inequality [25]. Let δ ∈ (0, 1)
and t ≥ 1. First, we have:

(Λ̃?)−1/2Λ(ωt)(Λ̃
?)−1/2 − Id =

t∑
`=1

1

t

((
(Λ̃?)−1/2φ(s`, a`)

)(
(Λ̃?)−1/2φ(s`, a`)

)> − Id) .
where we denote Λ̃? = Λ(ω̃?). Denote (X`)1≤`≤t the summands appearing in the sum above.
Note that X` is a symmetric random matrix that satisfies for all ` ≥ 1, ‖X`‖ ≤ (1+ε)d

t a.s. and
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‖E[X2
` ]‖ ≤ (1+ε)d

t2 for the operator norm. Indeed, we have for any (s, a) ∈ S ×A,∥∥∥∥((Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>∥∥∥∥ = max

‖x‖=1
x>
(

(Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>

x

= max
‖x‖=1

((
(Λ̃?)−1/2φ(s, a)

)>
x

)2

≤ ‖φ(s, a)‖2(Λ̃?)−1

≤ (1 + ε)d

so that a.s.

‖X`‖ ≤
1

t
max

(∥∥∥∥((Λ̃?)−1/2φ(s`, a`)
)(

(Λ̃?)−1/2φ(s`, a`)
)>∥∥∥∥ , ‖Id‖) ≤ (1 + ε)d

t

and, since E(s,a)∼ω̃?
[(

(Λ̃?)−1/2φ(s, a)
) (

(Λ̃?)−1/2φ(s, a)
)> ]

= (Λ̃?)−1/2Λ̃?(Λ̃?)−1/2 = Id,

E[X2
` ] � E(s,a)∼ω̃?

[(
1

t

(
(Λ̃?)−1/2φ(s, a)

)(
(Λ̃?)−1/2φ(s, a)

)>)2
]

� 1

t2
E(s,a)∼ω̃?

[(
(Λ̃?)−1/2φ(s, a)

)(
(Λ̃?)−1/2φ(s, a)

)>]
×max

s,a

∥∥∥∥((Λ̃?)−1/2φ(s, a)
)(

(Λ̃?)−1/2φ(s, a)
)>∥∥∥∥

� (1 + ε)d

t2
Id.

Now, using Matrix Bernstein’s inequality (more precisely, we use Theorem 5.4.1. in [26], see also
[25]), we obtain that for all ρ > 0,

P

(∥∥∥∥∥
t∑
`=1

X`

∥∥∥∥∥ > ρ

)
≤ 2d exp

(
− tρ2

2(1 + ε)(1 + ρ/3)d

)
.

This implies that

∀t ≥ 2(1 + ε)

(
1

ρ2
+

1

3ρ

)
d log

(
2d

δ

)
, P

(∥∥∥∥∥
t∑
`=1

X`

∥∥∥∥∥ > ρ

)
≤ δ.

Finally, in order to conclude, observe that

‖(Λ̃?)−1/2Λ(ωt)(Λ̃
?)−1/2 − Id‖ ≤ ρ =⇒ (1− ρ)Λ̃? � Λ(ωt) � (1 + ρ)Λ̃?.

Thus, provided t ≥ 2(1 + ε)
(

1
ρ2 + 1

3ρ

)
d log

(
2d
δ

)
, it follows that

P((1− ρ)Λ̃? � Λ(ωt) � (1 + ρ)Λ̃?) ≥ P
(
‖(Λ̃?)−1/2Λ(ωt)(Λ̃

?)−1/2 − Id‖ ≤ ρ
)
≥ 1− δ.

B.2 The forward model

This part is devoted to the proof of Lemma 6.3 and Proposition 6.6. We start by some remarks on
Assumption 6.2.

B.2.1 Discussion on Assumption 6.2

We establish that assuming the existence of an (m,λ)-covering policy is weaker then assuming that
the underlying MDPM is ergodic or communicating. Lemma B.3 shows indeed that the former
assumption implies the latter.
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Lemma B.3. If anM is ergodic or communicating, then there exists an (m,λ)-covering policy π
for some m ≥ 1 and λ > 0.

Proof of Lemma B.3. If an MDPM is communicating, then for each state-pair i = (s, s′) ∈ S × S ,
there exists a policy πi, and an integer mi ≥ 1 such that Eπi [1{smi = s′}|s1 = s] > 0. Now
defining π = 1

S2

∑
i∈S×S πi, we can clearly see that there exists an m ≥ 1, such that for all

s, s′, a′ ∈ S ×A× S, Eπi [1{sπm = s′, aπm = a′}|s1 = s] > 0. Now, under the assumption that the
feature maps (φ(s, a))(s,a)∈S×A span Rd, it follows that

Eπ
[
m∑
`=1

φ(s`, a`)φ(s`, a`)
>∣∣s1 = s

]
> 0

Finally, to conclude we note that any ergodic MDP is also communicating, and therefore our results
are proven.

Remark B.4. We can also construct a linear MDPM that admits an (m,λ)-covering policy, but
that is not ergodic nor communicating. A simple example is when the underlyingM has disjoints
communicating classes (C1, . . . , Cn), in the sense that whatever the policy used, if the state is initially
in Ci then it remains in this class forever. SoM is not communicating. To get the covering property,
we need to ensure that for any i, there is a policy such that E[

∑mi
`=1 φ(s`, a`)φ(s`, a`)

>|s1 = s] > 0
for all s ∈ Ci, and for some mi ≥ 1.
Remark B.5. Assume that there exists an (m,λ)-covering policy, then we make the following
observations.

• In Assumption 6.2, the knowledge πe is without loss of generality. Indeed, if existence of an
(m,λ)-covering policy is guaranteed, then it is not difficult to see that the uniform policy is
also an (m′, λ′)-covering policy for some m′ ≥ 1 and λ′ > 0.

• In Assumption 6.2, the knowledge of m may be relaxed. In fact, when using the forced
exploration scheme (11), we only need an upper bound on m.

In view of the discussion above, we have established a minimal assumption under which λmin(Pt)
grows sufficiently fast (i.e. λmin(Pt) = Ω(tγ) for some γ > 0 with high probability).

B.2.2 Proof of Lemma 6.3

Proof. First, let us assume w.l.o.g. that K := t/m ∈ N \ {0}. For all k ∈ [K], i ∈ [m], let
φk,i = φ(s(k−1)m+i, a(k−1)m+i), and xk,i = x(k−1)m+i. Let us denote for all Denote k ∈ [K],

Λk =
1

m

(
m∑
i=1

φk,iφ
>
k,i

)(
m∏
i=1

xk,i

)
and note that

t∑
`=1

φ(s`, a`)φ(s`, a`)
> = m

K∑
k=1

1

m

(
m∑
i=1

φk,iφ
>
k,i

)
� m

K∑
k=1

Λk

Furthermore, let (Fk)k≥1 denote σ-algebra generated by the sequence
(s1, a1, ε1, . . . , skm−1, akm−1, xkm−1). By successive use of the tower rule we can easily
verify that:

E[Λk|Fk] =
1

m
E

[(
m∑
i=1

φk,iφ
>
k,i

)(
m∏
i=1

xk,i

)∣∣∣∣Fk
]

= Eπ [Λk|Fk]

(
m∏
i=1

P(xk,i = 1)

)

� λ
m∏
i=1

(
1

t

) 1
2m

Id

=
λ√
t
Id
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which implies that

K∑
k=1

E[Λk|Fk] � Kλ√
t
λ =

√
tλ

m
Id

We also have

‖Λk − E[Λk|Fk]‖ ≤ 2 a.s.

and

‖E[(Λk − E[Λk| Fk])
2 |Fk]‖ ≤ E[‖Λk‖2|Fk]

≤ E

∥∥∥∥∥ 1

m

m∑
i=1

φk,iφ
>
k,i

∥∥∥∥∥
2( m∏

i=1

xk,i

)2 ∣∣Fk


≤ E

[(
m∏
i=1

xk,i

)∣∣Fk]

≤
m∏
i=1

P(xk,i = 1)

≤ 1√
(k − 1)m+ 1

.

Observe that
∑K
k=1 Λk − E[Λk|Fk] is a matrix martingale difference. Therefore, applying Matrix

Bernstein’s inequality for martingales (see e.g. Theorem 1.2 in [24]) gives

P

(∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≥ ε
)
≤ 2d exp

(
− ε2

2σK + 4ε/3

)
,

with

σK =

K∑
k=1

1√
(k − 1)m+ 1

≤
2
√
m(K − 1) + 1

m
≤ 2
√
t

m
.

This leads to:

P

(∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≥ σKε
)
≤ 2d exp

(
−σK min

(
ε2,

3ε

2

))
.

Now observe that∥∥∥∥∥
K∑
k=1

Λk − E[Λk|Fk]

∥∥∥∥∥ ≤ σKε =⇒
K∑
k=1

Λk �
K∑
k=1

E[Λk|Fk]− σKεId �
√
t

m
(λ− 2ε) Id,

Setting ε = λ/4 gives

P

(
mλmin

(
K∑
k=1

Λk

)
<

√
tλ

2

)
≤ 2d exp

(
−
√
tλ2

8m

)
.

Finally, we get:

P

(
λmin

(
t∑
`=1

φ(s`, a`)φ(s`, a`)
>

)
<

√
tλ

2

)
≤ 2d exp

(
−
√
tλ2

8m

)
.
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B.2.3 Proof of Proposition 6.6

We present and establish Proposition B.6, which provides a stronger result than that of Proposition
6.6.

Proposition B.6. Under Assumption 6.5, under the sampling rule (11), denote by πk the oracle
policy used by GNS between tk < t ≤ tk+1, and denote by ωk its induced allocation. Furthermore,
assume that ωk ∈ Ωη(M). Then, we have for all δ > 0, ε ∈ (0, 1)

P

(
(1 + ε)Λ(ωk) � 1

tk+1 − tk

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
> � (1− ε)Λ(ωk)

)
≥ 1− δ

provided that

tk+1 − tk ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)

for some positive constant C > 0.

Proof of Proposition B.6. We seek to establish a concentration bound on the∑tk+1

t=tk

(
φ(st, at)φ(st, at)

> − Λ(ωk)
)
. First, we renormalize and instead find a concentra-

tion result on the random matrix

W ,
tk+1∑
t=tk

((
Λ(ωk)−1/2φ(st, at)

)(
Λ(ωk)−1/2φ(st, at)

)>
− Id

)
.

We know that ‖W‖ = supu∈SSA−1 |u>Wu| since W is a symmetric matrix. We will use a net
argument to establish a concentration on ‖W‖. We introduce for all u ∈ SSA−1, (s, a) ∈ S × A,
fu(s, a) = |u>Λ(ωk)−1/2φ(s, a)|2 − 1, so that we may simply write

sup
u∈SSA−1

|u>Wu| = sup
u∈SSA−1

∣∣∣∣∣
tk+1∑
t=tk

fu(st, at)

∣∣∣∣∣
(Step 1) Using Poisson’s equation: We use Poisson’s equation to rewrite

∑tk+1

t=tk
fu(st, at) in a con-

venient form. First, let us denote the transition kernel under policy π := πk (to simplify the notations),
pπ(s′, a′|s, a) = π(a′|s′)p(s′|s, a), for all s, s′ ∈ S,a, a′ ∈ A. We have to find gu : S × A → R
such that Poisson’s equation (I − pπ)gu = fu holds. A natural candidate for gu (see [8]) is choosing

gu =

∞∑
j=0

(pπ)jfu.

We note that under Assumption 6.5, we have

max
(s,a)∈S×A

|gu(s, a)| ≤ κ (25)

which clearly implies that Poisson’s equation is satisfied. To shorten the notation, let Xt = (st, at).
Now by leveraging Poisson’s equation, we may write:∑
tk<t≤tk+1

fu(Xt) =
∑

tk<t≤tk+1

gu(Xt)− EX∼pπ(·|Xt)[gu(X)]

=
∑

tk<t≤tk+1

gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)] + E[g(Xtk−1)]− E[g(Xtk+1
)]

= S1 + S2 + S3 + S4
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where we define

S1 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
(1− xt),

S2 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
(xt − pt)

S3 =
∑

tk<t≤tk+1

(
gu(Xt)− EX∼pπ(·|Xt−1)[gu(X)]

)
pt

S4 =
∣∣E[g(Xtk−1)]− E[g(Xtk+1

)]
∣∣

where pt = E[xt] = t−1/(2m). Recall that xt is the Bernoulli r.v. involved in the definition of our
policy.

(Step 2) Bounding S1, S2, S3, S4: The terms S1 and S2 can be bounded immediately via standard
concentration inequalities and bounds on S3 and S4 follow immediately from the inequality (25).
Indeed:

• Observe that S1 is a martingale. Therefore, using a standard peeling argument combined
with Hoeffding’s Lemma and (25), gives a bound on the moment generating function of S1:

∀λ > 0, E[exp(λS1)] ≤ exp

(
(tk+1 − tk)λ2κ2

2

)
.

This leads via Markov inequality to the following bound:

P (S1 > (tk+1 − tk)ε) ≤ exp

(
− (tk+1 − tk)ε2

2κ2

)
. (26)

• Bounding S2 is immediate via Bernstein’s inequality together with (25) by noting that xt is
independent of x1, . . . , xt−1 and X1, . . . Xt for all t ≥ 1. Indeed, we have:

P (S2 > ε) ≤ exp

(
− ε2

2κ2
∑
tk<t≤tk+1

pt + 4
3κε

)

≤ exp

(
− ε2

2κ2(tk+1 − tk)ptk + 4
3κε

)
,

where we used the fact that (pt)t≥1 is a non-increasing sequence. After reparametrization,
we obtain the equivalent inequality:

P (S2 > (tk+1 − tk)ε) ≤ exp

(
− (tk+1 − tk)ε2

2κ2ptk + 4
3κε

)
. (27)

• We can easily bound S3 using (25) as follows

S3 ≤ 2κ(tk+1 − tk)ptk . (28)

• We can easily bound S4 using (25) as follows

S4 ≤ 2κ. (29)

(Step 3) Putting everything toegether: We use a union bound on and to obtain:

P

 ∑
tk<t≤tk+1

fu(Xt) > 2(tk+1 − tk)ε+ 2κ(tk+1 − tk)ptk + 2κ


≤ exp

(
− (tk+1 − tk)ε2

2κ2

)
+ exp

(
− (tk+1 − tk)ε2

2κ2ptk + 4
3κε

)
≤ 2 exp

(
− (tk+1 − tk)

2
min

(
ε2

κ2
,

3ε

κ

))
.
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Similarly we have:

P

− ∑
tk<t≤tk+1

fu(Xt) > 2(tk+1 − tk)ε+ 2κ(tk+1 − tk)ptk + 2κ


≤ 2 exp

(
− (tk+1 − tk)

2
min

(
ε2

κ2
,

3ε

κ

))
.

Thus, by union bound, we have:

P

∣∣∣∣∣∣
∑

tk<t≤tk+1

fu(Xt)

∣∣∣∣∣∣ > 4κ(tk+1 − tk)(ε+ ptk) + 2κ

 ≤ 4 exp

(
−

(tk+1 − tk) min
(
ε2, 3ε

)
2

)
.

(Step 4) Concluding with a net argument: We use an ε-net argument with ε = 1/2 (see Chap. 4 in
[26]) to obtain

P

 sup
u∈SSA−1

∣∣∣∣∣∣
∑

tk<t≤tk+1

fu(Xt)

∣∣∣∣∣∣ > 8κ(tk+1 − tk)(ε+ ptk) + 4κ


≤ 4(5d) exp

(
−

(tk+1 − tk) min
(
ε2, 3ε

)
2

)
.

We recall that tk = 2k = tk+1 − tk, therefore ptk = (tk+1 − tk)1/2m, thus as long as

tk = tk+1 − tk ≥
1

ε2m
,

we obtain the desired result.
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C Least Square Estimation and Stopping Rules

In this appendix, we show the correctness of our stopping rule presented in Lemma 5.3. This result
relies fundamentally on our proposed approach of relaxing of the optimization problem characterizing
the optimal sample complexity lower bounds. We also present the present the proof of Proposition
5.2 which corresponds to a certain concentration result for the least-squares estimators we use and
relies on the properties of linear MDPs. Finally, we highlight that Lemma 5.3 and Proposition 5.2
hold regardless of our the sampling strategy we use, consequently they hold under both the generative
and forward model.

C.1 Correctness of the stopping rule - Proof of Lemma 5.3

In the proof of Lemma 5.3, the fact that UM
(
ω
)−1

can be upper bounded as follows

UM
(
ω
)−1 ≤ inf

M′:π?t /∈Π?ε(M)

6(1− γ)2

5

∥∥θM − θM′ + γ(µM − µ′M)>V ?M
∥∥2

Λ(ω)
≤ TM(ω)−1

(30)

is critical in the analysis and allows us to construct a stopping rule even when ε = 0. This upper bound
is the fruit of our relaxation of the lower bound (see proof of Lemma A.6) and justifies the design of
our stopping rule as a relaxed generalized likelihood test τ = inf{t ≥ 1 : Z(t) = tUM̂t

(ωt)
−1 ≥

β(δ, t)},. It is worth mentioning that even though the form of U?M can be caracterized by the G-
optimal design, it does not a priori tell us how to design a stopping rule without the inequality (30),
especially if ε = 0.

Proof of Lemma 5.3. First, let us recall that ωt(s, a) = Ns,a(t)/t for all (s, a) ∈ S × A where
Ns,a(t) is the number of times the state-action pair (s, a) has been visited up to time t. Now
assuming that M̂t is a valid model, then following a similar reasoning as in the proof of Lemma A.6,
we can establish that

UM̂t

(
ωt
)−1

=
3(1− γ)4(∆M̂t

+ ε)2

10σ(ωt)

≤ inf
M′:π?t /∈Π?ε(M̂t)

6(1− γ)2

5

∥∥∥θ̂t − θM′ + γ(µ̂t − µM′)>V̂ ?t
∥∥∥2

Λ(ωt)
(31)

From the inequality (31), we immediately observe that under the event π?t /∈ Π?
ε(M), we have:

Z(t) = t UM̂t
(ωt)

−1 ≤ 6(1− γ)2

5

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

tΛ(ωt)
.

Hence, we have:

P (τ < +∞, π̂ /∈ Π?
ε(M)) = P (∃t ≥ 1 : Z(t) > β(δ, t), π?t /∈ Π?

ε(M))

≤ P
(
∃t ≥ 1 :

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

tΛ(ωt)
>

5

6(1− γ)2
β(δ, t)

)
≤ δ.

The fact that this last probability is bounded by δ is exactly the statement of Proposition 5.2 (proven
later in this appendix).

Remark C.1. Note that in the proof we assumed that M̂t is a valid linear model. This is not required
for the derivation inequality 31 (see Remark A.5). However, this is required for Proposition 5.2 to be
applied. We provide further remarks on how to adress this technical detail later on when presenting
the proof of Proposition 5.2.

C.2 Properties of linear MDPs

Under the linear MDP assumption, the value and action-value functions of any policy admit a linear
representation. This is presented in Lemma C.2 below, borrowed from [12]. We provide a proof for
completeness.
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Lemma C.2. LetM be a discounted linear MDP. For any policy π, there exists a vector ξπM ∈ Rd
such that for any pair (s, a) ∈ S × A, QπM(s, a) = φ(s, a)>ξπM. Moreover, we have ξπM =

θM + γµ>MV
π
M and ‖ξπM‖ ≤

√
d/(1− γ).

Proof of lemma C.2. Using the Bellman equation together with the linear assumptions, we directly
have QπM(s, a) = φ(s, a)>

(
θM + γµ>MV

π
M
)

(see also [12]). Then∥∥θM + γµ>MV
π
M
∥∥ ≤ ‖θM‖+ γ

∥∥∑
s∈S
|µM(s)|

∥∥‖V πM‖∞ ≤ √d+ γ

√
d

1− γ
=

√
d

1− γ
.

In view of Lemma C.2, we know that the set of optimal value functions under the linear MDP
assumption (see Definition 3.1) all belong to the following set:

V? =

{
V ∈ RS : ∃ξ ∈ Rd, V (·) = max

a∈A
φ(·, a)>ξ, ‖ξ‖ ≤

√
d

1− γ

}
. (32)

A key observation is that we may construct an ε-net of V? with respect to the infinity norm ‖ · ‖∞
with minimal cardinality that only depends exponentially on the dimension d and not the size of the
state space S. This observation is made precise in the following lemma, which is borrowed from [12].
We provide a proof for completeness.
Lemma C.3. Let N be an ε-net of V? with respect to the inifinity norm ‖ · ‖∞, with minimal
cardinality. Then, we have

|N | ≤

(
1 +

2
√
d

(1− γ)ε

)d

Proof of Lemma C.3. Let V1, V2 ∈ V?, and let ξ1, ξ2 ∈ Rd be there corresponding representation as
ensured by Lemma C.2. We have

‖V1 − V2‖∞ ≤ max
s,a
‖φ(s, a)>(ξ1 − ξ2)‖ ≤ ‖ξ1 − ξ2‖.

Therefore, using this parametrization by ξ, an ε-net of V can be constructed from an ε-net of an
euclidean ball in Rd of radius

√
d/(1 − γ). Such net exists and has a cardinality that is at most(

1 + 2
√
d

(1−γ)ε

)d
(see e.g., [26]).

C.3 Self-normalized concentration tool

Proposition C.4 is the key concentration results we use to establish Proposition 5.2 and relies on the
self-normalized concentration bound established in [1].
Proposition C.4. Let (Ft)t≥1 be a filtration. Let (ηv,t)v∈V,t≥1 be a stochastic process indexed by
a time and the subset V ⊆ RS and taking values in RS . For each v ∈ V , the process (ηv,t)t≥1 is
martingale adapted to (Ft)t≥1 and satisifies supv∈V,t≥1 ‖ηv,t‖∞ ≤ L. Let (φt)t≥1 be a predictable
stochastic process with respect to (Ft)t≥1, taking values in Rd. Introducing the matrices Φt =

[φ1 . . . φt]
> and Ev,t = [ηv,1 . . . ηv,t]

> and assuming that the following holds:

(i) for any v, v′ ∈ V , for all t ≥ 1, ‖ηv,t − ηv′,t‖ ≤ ‖v − v′‖∞,

(ii) the set V admits for all ε ∈ (0, L) an ε-net Nε with respect to the infinity norm ‖ · ‖∞ of
finite cardinality,

then, for all δ ∈ (0, 1), ε ∈ (0, L), and t ≥ 1, we have: the following event

sup
V ∈V

∥∥Φ>t Ev,t
∥∥2

(ΦtΦ>t +λtId)
−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ

+ tdε2

(33)

holds with probability at least 1− δ, and where (λt)t≥1 is a sequence of positive scalars.
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Remark C.5. The threshold of the concentration result in Proposition C.4 can be simplied provided
we have a good upper bound on |Nε|, with a propoer choice of ε and λt. Indeed, considering that

det
((

Φ>t Φt + λtId
)

(λtId)
−1
)
≤ 1

λdt

(
tr
(
Φ>t Φt + λtId

)
d

)d
≤ 1

λdt

(
t+ dλt
d

)d
=

(
1 +

t

dλt

)d
,

and assuming we have |Nε| ≤
(

1 + 2L
√
d

ε

)d
. Then, choosing ε = 2L√

t
and λt = 1/d, gives after

further basic manipulations the following threshold

L2

(
2 log

(
1

δ

)
+ d log

(
8e4dt2

))
. (34)

Proof of Proposition C.4. The process can be easily controlled when focusing on a single v ∈ V due
to a self-normalized martingale concentration result. In order to control uniformly over the whole
set of parameters, we approximate it by a finite net, which raises an error term in the threshold. We
then control each parameters individually and conclude with a union bound. In the following, δ > 0,
ε ∈ (0, L) and t ≥ 1 are fixed. Define the events

C1 =

sup
v∈V
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ

+ tdε2

 ,

C2 =

max
v∈Nε

‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ


 ,

C3(v) =

‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ 2L2 log

 |Nε|det
((

Φ>t Φt + λtId
)

(λtId)
−1
)1/2

δ


 ,

where the last event is defined for any v ∈ Nε. Recall that our goal is to show that C1 holds with
probability at least 1− δ.

(i) Establishing ∀v ∈ Vε,P(C3(v)) ≥ 1 − δ/|Nε|. This result is a concentration inequality on
self-normalized processes. It can be found as Lemma 9 in [1] for example. To apply it, we use the
fact that under all the assumptions, for any V ∈ Vε, we have ‖xt(V )‖ ≤ L+ ε ≤ 2L.

(ii) Establishing P(C2) ≥ 1− δ. We can immediately see that C2 =
⋂
v∈Nε C3(v). Then an union

bound gives

P[C2] ≥ 1−
∑
v∈Nε

(
1− P(C3(V ))

)
≥ 1−

∑
v∈Nε

δ

|Nε|
= 1− δ.
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(iii) Establishing P(C1) ≥ 1− δ. We want to show that C2 ⊂ C1. Notice that if v ∈ V and v′ ∈ Nε
such that ‖v − v′‖∞ ≤ ε, then by using assumption (ii) we have∥∥Φ>t (Ev,t − Ev′,t)

∥∥2

(Φ>t ΦtλtId)−1 =
∥∥∥(Φ>t Φt + λtId)

−1/2Φ>t (Ev,t − Ev′,t)
∥∥∥2

=

d∑
i=1

∣∣∣((Φ>t Φt + λtId)
−1/2

)>
i

Φ>t (Ev,t − Ev′,t)
∣∣∣2

≤
d∑
i=1

(
t∑
`=1

∣∣∣((Φ>t Φt + λtId)
−1/2

)>
i
φ`

∣∣∣)2

‖(Ev,t − Ev′,t)‖2∞

≤ t
d∑
i=1

t∑
`=1

((
(Φ>t Φt + λtId)

−1/2
)>
i
φ`
)2

max
1≤`≤t

‖(ηv,t − ηv′,t)‖2

≤ t
t∑
`=1

∥∥∥(Φ>t Φt + λtId)
−1/2φ`

∥∥∥2

‖v − v′‖2∞

≤ tε2tr
(
Φt(Φ

>
t Φt + λtId)

−1Φ>t
)

= tε2tr
(
(Φ>t Φt + λtId)

−1(Φ>t Φt + λtId − λtId)
)

= tε2
(
d− λttr

(
(Φ>t Φt + λtId)

−1
))

≤ tdε2,
and we can finally write

max
v∈V
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 ≤ max

V ∈Vε
‖Φ>t Ev,t‖2(Φ>t Φt+λtId)−1 + tdε2,

which implies that C2 ⊂ C1 and concludes the proof.

C.4 Proof of Proposition 5.2

Proof of proposition 5.2. We show that under any sampling rule the (1/d)-regularized least square
estimators verify the following concentration inequality: For any δ ∈ (0, 1) the events

C(t) =

{∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

tΛ(ωt)
≤ 2

(1− γ)2

(
2 log

(√
eζ(2)t2

δ

)
+ d log

(
8e4dt2

))}
for all t ≥ 1 hold simultaneously with probability at least 1− δ. More precisely we are going to show
that for any t ≥ 1, P(C(t)) ≥ 1− δ

ζ(2)t2 . The desired result is then shown via a simple union bound
over t. It is hard to control this quantity with a dynamic value function, therefore we will control it
for all optimal value functions by controlling supv∈V?

∥∥θ̂t − θM + γ(µ̂t − µM)>v
∥∥2

tΛ(ωt)
instead,

assuming that M̂t is a valid model, and use a net argument.

Denote δt = δ
ζ(2)t2 for clarity. Recall the definitions of the 1

d -regularized least square estimators θ̂t
and µ̂t :

θ̂t =

(
Φ>t Φt +

1

d
Id

)−1

Φ>t Rt, µ̂t(s) =

(
Φ>t Φt +

1

d
Id

)−1

Φ>t St(s),

where Φt = (φ(s1, a1) · · · φ(st, at))
>, Rt = (r1 · · · rt)

> and St(s) =(
δs,s′1 · · · δs,s′t

)>
. Recall that tΛ(ωt) = Φ>t Φt. For any v ∈ V

θ̂t − θM + γ(µ̂t − µM)>v

=

(
Φ>t Φt +

1

d
Id

)−1(
Φ>t Rt −

(
Φ>t Φt +

1

d
Id

)
θM + γ

(
Φ>t S

>
t −

(
Φ>t Φt +

1

d
Id

)
µ>M

)
v

)
=

(
Φ>t Φt +

1

d
Id

)−1

Φ>t
(
Rt − ΦtθM + γ(S>t − Φtµ

>
M)v

)
− 1

d

(
Φ>t Φt +

1

d
Id

)−1 (
θM + γµ>Mv

)
=

(
Φ>t Φt +

1

d
Id

)−1

Φ>t Ev,t −
1

d

(
Φ>t Φt +

1

d
Id

)−1

ξ(v)
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where we denote ξ(v) =
(
θM + γµ>Mv

)
and define ηv,t = rt − φ>t θM + γ(v(s′t) − φ>t µ>Mv) =

rt − E[rt|Ft−1] + γ(v(s′t) − E[v(s′t)|Ft−1]) and Ev,t = Rt − ΦtθM + γ(S>t − Φtµ
>
M)v =

(ηv,a · · · ηv,t)
>. It follows that∥∥∥θ̂t − θM + γ(µ̂t − µM)>v

∥∥∥2

Φ>t Φt

≤

∥∥∥∥∥
(

Φ>t Φt +
1

d
Id

)−1

Φ>t Ev,t −
1

d

(
Φ>t Φt +

1

d
Id

)−1

ξ(v)

∥∥∥∥∥
2

Φ>t Φt+
1
d Id

=

∥∥∥∥Φ>t Ev,t −
1

d
ξ(v)

∥∥∥∥2

(Φ>t Φt+
1
d Id)−1

≤ 2
∥∥Φ>t Ev,t

∥∥2

(Φ>t Φt+
1
d Id)−1 +

2

d2
‖ξ(v)‖2(Φ>t Φt+

1
d Id)−1

Lemma C.2 states that ‖ξ(v)‖ ≤
√
d

1−γ . Since the greatest eigenvalue of (Φ>t Φt + 1
dId)

−1 can be
upper bounded by d, we can finally write

sup
v∈V

∥∥∥θ̂t − θM + γ(µ̂t − µM)>v
∥∥∥2

Φ>t Φt
≤ 2 sup

v∈V

∥∥Φ>t Ev,t
∥∥2

(Φ>t Φt+
1
d Id)−1 +

2

(1− γ)2
.

It is immediate to see that the first two conditions in Proposition C.4 are satisfied by taking L =
(1− γ)−1 and the third one (i.e., (ii)) is given by Lemma C.3. Therefore we can apply the proposition
with λt = 1

d and obtain for all t ≥ 1

P
(

sup
V ∈V

∥∥Φ>t Ev,t
∥∥2

(Φ>t Φt+
1
d Id)−1 ≤

1

(1− γ)2

(
2 log

(
1

δt

)
+ d log

(
8e4dt2

)))
≥ 1− δt.

The event in the bound above directly implies C(t) and we can finally conclude that P(C(t)) ≥ 1− δt
for all t ≥ 1.

Remark C.6. As we have mentioned earlier in the proof, we require that M̂t is a valid linear MDP
model, which might not be the case under the plain LSE. Luckily, this is not a big issue and can be
addressed by estimating V̂ ?t and Q̂?t as follows. At time t, we obtain with the LSE the estimates µ̂t and
θ̂t. With these estimates we construct the rewards and transitions as follows: r̂t(s, a) = φ(s, a)>θ̂t,
p̂t(s

′|s, a) = φ(s, a)>µ̂t(s
′), for all s, s′ ∈ S and a ∈ A. However, observe that the estimates

p̂t(·|s, a) are not necessarily transition probabilities. Therefore, there is no guarantee that a solution
to the Bellman equation exist under M̂t. This issue can be solved by using the following truncated
Bellman equation

∀(s, a) ∈ S ×A, Q̂?t,h(s, a) = min

{
φ(s, a)>

(
θ̂t + γµ>t V̂

?
t,h+1

)
,

√
d

1− γ

}

with V̂ ?t,h(s) = maxa∈A Q̂
?
t,h(s, a) and V̂ ?t,H+1 = 0 for some H large enough. Then we use

V̂ ?t , V̂ ?t,1. With this construction, we can guarantee that all V̂ ?t,h belong to a set of value functions
that has a similar structure to V? but with a slightly larger radius. This construction is identical to
that considered by Jin et al. [12] for the episodic setting with the LSE and can be viewed as a natural
extension to the discounted setting. For our purposes and to keep the exposition simpler, we will
simply assume that under the LSE there exists V̂ ?t and Q̂?t satisfying:

∀s, a ∈ S ×A, Q̂?t (s, a) = φ(s, a)>
(
θ̂t + γµ>t V̂

?
t

)
V̂ ?t (s) = max

a∈A
Q̂?t (s, a).

and that V̂ ?t ∈ V?. This only simplifies the analysis and it is without loss of generality.
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D Sample Complexity Analysis

In this appendix, we present the sample complexity analysis of both GSS and GNS.

D.1 A useful perturbation bound

Before, proceeding with the proof of Theorem 5.4 and Theorem 6.7, we present a useful result that
allows us to carefully analyze the quantities U?M,gen and U?M,for, as we vary the modelM. We present
Lemma D.1 below, which is valid for both the generative and forward models. Therefore, in what
follows, we will abuse notations and use U?M to mean both U?M,gen and U?M,for for any linear MDP
M.

Lemma D.1. For any t ≥ 1, we have:

∣∣∣(U?M)−1 − (U?M̂t
)−1
∣∣∣ ≤ 6(1−γ)2

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

(35)
where U?M can be either U?M,gen or U?M,for for any linear MDP modelM.

Before proving Lemma D.1, we present Lemma D.2, used as an intermediate step.

Lemma D.2. we have

|∆M̂t
−∆M| ≤

2

1− γ
max
s,a

∣∣∣φ(s, a)
(
θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

)∣∣∣ . (36)

Proof of Lemma D.2. For clarity, we denote for both MDPs, for any (s, a) ∈ S×A, ∆s,a = V ?(s)−
Q?(s, a), so that ∆M = mins∈S,a6=π?(s) ∆s,a. Let (s, a) be the pair such that ∆M = ∆M,s,a. If
a 6= π?t (s) then ∆M̂t

≤ ∆M̂t,s,a
and (∆M̂t

− ∆M) ≤ (∆M̂t,s,a
− ∆M,s,a). Else, since both

MDPs have exactly |S| optimal state/action pairs (one for each state), the fact that the pair (s, a) is
optimal for M̂t but not forM means that there exists a pair (s′, a′) optimal forM but not for M̂t,
and we have ∆M̂t

−∆M ≤ ∆s′,a′(M̂t) = ∆s′,a′(M̂t) −∆s′,a′(M). Either way, and doing the
same reasoning to bound ∆M −∆M̂t

, we can find a pair (s, a) such that

|∆M̂t
−∆M| ≤ |∆M̂t,s,a

−∆M,s,a|

= |V̂ ?t (s)− Q̂?t (s, a)− V ?M(s) +Q?M(s, a)|
= |V̂ ?t (s)− V ?M(s) +Q?M(s, a)− Q̂?t (s, a)|
≤ ‖V̂ ?t − V ?M‖∞ + ‖Q̂?t −Q?M‖∞.

The result is then obtained combining the above inequality and Lemma A.4.

Proof of Lemma D.1. Observe that by triangular inequality, we have:∣∣∣(U?M)−1 − (UM̂t
(ωt))

−1
∣∣∣ ≤ ∣∣(U?M)−1 − (UM(ωt))

−1
∣∣+
∣∣∣(UM(ωt))

−1 − (UM̂t
(ωt))

−1
∣∣∣

and the first term can be rewritten

∣∣(U?M)−1 − (UM(ωt))
−1
∣∣ =

(
1− U?M(UM(ωt))

−1
)

(U?M)−1 =

(
1− σ(ω?)

σ(ωt)

)
(U?M)−1.

30



For the second term, setting u(ωt)
−1 = 3(1− γ)4/(10σ(ωt)), we obtain∣∣∣(UM(ωt))

−1 − (UM̂t
(ωt))

−1
∣∣∣ = u(ωt)

−1
∣∣∣(∆M + ε)2 − (∆M̂t

+ ε)2
∣∣∣

= u(ωt)
−1
∣∣∣(∆M̂t

+ ∆M + 2ε
)(

∆M̂t
−∆M

)∣∣∣
= u(ωt)

−1
∣∣∣(∆M̂t

−∆M
)2

+ 2(∆M + ε)
(
∆M̂t

−∆M
)∣∣∣

≤ u(ωt)
−1
(
∆M̂t

−∆M
)2

+ 2

√
1

4
u(ωt)−1(∆M + ε)2

√
4u(ωt)−1

(
∆M̂t

−∆M
)2

≤ u(ωt)
−1
(
∆M̂t

−∆M
)2

+
1

4
(UM(ωt))

−1 + 4u(ωt)
−1
(
∆M̂t

−∆M
)2

≤ 5u(ωt)
−1
(
∆M̂t

−∆M
)2

+
1

4
(U?M)−1

using (UM(ωt))
−1 ≤ (U?M)−1 for the last step. To conclude, it remains to show that

3(1− γ)4

2σ(ωt)

(
∆M̂t

−∆M
)2 ≤ 6

∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

Λ(ωt)
.

From Lemma D.2, we get:∣∣∆M̂t
−∆M

∣∣ ≤ 2

1− γ
max
s,a

∣∣∣φ(s, a)>
(
θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

)∣∣∣ .
The final result is obtained by applying Lemma A.9 with n = 1, φ1 the feature maximizing the term
above and ∆ = 1−γ

2

∣∣∆M̂t
−∆M

∣∣.
D.2 With the generative model - Proof of Theorem 5.4

Proof of Theorem 5.4. Recall the threshold

β(δ, t) =
12

5

(
2 log

(√
eζ(2)t2

δ

)
+ d log

(
8e4dt2

))
and the stopping time

τ = inf {t ≥ 1 : Z(t) > β(δ, t)} ,

where Z(t) = t (UM̂t
(ωt))

−1. In what follows we will use the notation U?M = U?M,gen. In order to
establish the sample complexity upper bound, we are going to find a time T such that for any t ≥ T ,
P(τ > t) = O

(
1
t2

)
, so that we can bound E[τ ] by T plus a constant. Thanks to Lemma D.1, we have

{τ > t} ⊂
{
t (UM̂t

(ωt))
−1 ≤ β(δ, t)

}
⊂
{
t (U?M)−1 ≤ β(δ, t) + tB(t)

}
, where we set

B(t) = 6(1− γ)2
∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

Now, recall that when proving Proposition 5.2, we have shown that, for any δ′ > 0 and for any t ≥ 1,
we have:

P
(∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

tΛ(ωt)
≤ 5

6(1− γ)2
β(δ′, t)

)
≥ 1− δ′

ζ(2)t2
.

Moreover, Lemma B.1 states that if t ≥ 28d
3 log

( 2ζ(2)dt2

δ′

)
, then with probability at least 1− δ′

ζ(2)t2 ,
we have σ(ωt) ≤ 2σ(ω?). Choosing δ′ = 1 and plugging both bounds in the definition of B(t), we
have with an union bound that, for all t ≥ T1,

P
(
tB(t) ≤ 5β(1, t) +

3t

4
(U?M)−1

)
≥ 1− 2

ζ(2)t2
,

where we define

T1 =
56d

3
log(2ζ(2)d) +

112d

3
log

(
112d

3

)
=

56d

3
log

(
6272ζ(2)d3

3

)
,
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so that according to Lemma D.9, t ≥ T1 implies t ≥ 28d
3 log(2ζ(2)dt2). Now to conclude, we

only need to show that this event implies
{
t (U?M)−1 > β(δ, t) + tB(t)

}
when t is large enough.

Assume that tB(t) ≤ 5β(1, t) + 3t
4 (U?M)−1. Since δ < 1 we have β(1, t) < β(δ, t) and β(δ, t) +

tB(t) ≤ 6β(δ, t) + 3t
4 (U?M)−1. To show that this is bounded by t (U?M)−1 is equivalent to show

that 24β(δ, t) ≤ t (U?M)−1. Again, we can show that this last bound is true when t ≥ T2 thanks to
Lemma D.9, where we define

T2 = U?M
576

5

(
2 log

(√
eζ(2)

δ

)
+ d log(8e4d)

)
+ U?M

576(d+ 2)

5
log

(
576(d+ 2)

5

)
.

We have shown that, when t ≥ max(T1, T2),

P(τ > t) ≤ P
(
t (U?M)−1 ≤ β(δ, t) + tB(t)

)
≤ P

(
tB(t) > 5β(1, t) +

3t

4
(UM̂t

(ωt))
−1

)
≤ 2

ζ(2)t2
.

Therefore, with T = max(T1, T2),

E[τ ] =
∑
t≥0

P(τ > t) =

T−1∑
t=0

P(τ > t) +

+∞∑
t=T

P(τ > t) ≤ T +

+∞∑
t=T

2

ζ(2)t2
≤ T + 2.

D.3 With the forward model - Proof of Theorem 6.7

The proof of Theorem 6.7 is more complex than that of Theorem 5.4 because of the navigation
constraints. Indeed, the analysis of the sample complexity of GNS requires a careful definition of
certain good events under which the stopping rule can be controlled.

D.3.1 Continuity properties of the optimal solution

Lemma D.3. Let us denote σ? :M 7→ infω∈Ωη(M) max(s,a)∈S×A ‖φ(s, a)‖Λ(ω)−1 and the set of
optimal allocations C?η :M 7→ arg minω∈Ω(M) max(s,a)∈S×A ‖φ‖Λ(ω)−1 .

(i) σ is continuous and convex on Ωη(M), and attains its maximum on this set.

(ii) σ? is continuous in µM.

(iii) C?η (M) ⊆ Ωη(M) and is non-empty, compact and convex.

Proof of Lemma D.3. Proof of (i). This result follows from the fact that ω 7→
tr
(
Λ−1(ω)φ(s, a)φ(s, a)>

)
is a continuous and convex map on Ωη(M) for all (s, a) ∈ S × A.

Thus, taking the maximum of convex and continuous functions results in a continuous and convex
function.

Proof of (ii) and (iii). This an immediate consequence of Berge’s maximum theorem. Indeed, observe
that Ω(M) is a set of linear constraints that are parametrized continuously by µM. Then, note that
by assumption, it must hold that the optimums C?(M) ⊆ Ωη(M), and we know from (i) that σ
is continuous on Ωη(M). Therefore, Berge’s maximum theorem applies and we obtain the desired
result.

The following remark is an immediate consequence of Lemma D.3 and the continuity of the mapping
that associates to each allocation its oracle policy.

Remark D.4. There exists ξ > 0, where for all M̂t such that maxs∈S ‖µ̂t(s)− µM(s)‖ ≤ ξ, then
for any allocation ω̂t ∈ arg min

ω∈Ωη(M̂)
σ(ω), it must hold that underM, the oracle policy πo(ω̂t)

induces ωt ∈ Ωη/2(M), and we have

min
ω∈Ωη(M)

σ(ω) ≤ σ(ωt) ≤ 2 min
ω∈Ωη(M)

σ(ω).
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D.3.2 The good events under the sampling rule of GNS

LSE consistency. In view of Remark D.4, whenever maxs∈S ‖µ̂t(s)−µM(s)‖ ≤ ξ, it is guaranteed
that the allocation ωt ∈ arg min

ω∈Ωη(M̂)
σ(ω) satisifies σ(ωt) ≤ 2 minω∈Ω(M) σ(ω). We will

define the following set

E1,T =

T⋂
t=d√Te

{
max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ξ

}
(37)

Now we show that the event E1,T holds with high probability. To this objective, we first establish
Lemma D.5.

Lemma D.5. Under assumption 6.2, under GNS with forced exploration (11), we have: for all ε > 0,
δ ∈ (0, 1),

∀t ≥ t1(δ), P
(

max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ε

)
≥ 1− δ,

with

t1(δ) =
C1

λ2
max

(
m2,

1

ε4

)(
d log(d) + log(S) + log

(e
δ

))2

where C1 is some positive universal constant.

Lemma D.5 follows from our forced exploration scheme under the minimal learnability Assumption
6.2. We present the proof at the end of this subsection. Now, combining Lemma D.5 together with a
union bound over d

√
T e ≤ t ≤ T , we immediately get:

Lemma D.6. Under Assumption 6.2, under GNS with forced exploration (11), we have: for all ε > 0,
for all T ≥ 1,

P
(
Ec1,T

)
≤ δ1(T ) = T exp

(
−λT

1/4

C1
min

(
1

m
, ξ2

)
+ d log(d) + log(S) + 1

)
(38)

where we recall that (m,λ) are the paramaters of the covering policy πe used by the sampling rule
of GNS (11), and C1 is a positive universal constant.

Sampling optimally. Under the event E1,T , eventhough it is guaranteed that σ(ωt) ≤
2 minω∈Ω(M) σ(ω), the sampling rule under GNS still uses a forced exploration and whenever
it does not, it samples according to πo(ωt). Therefore, we still have to guarantee, that eventually we
will be sampling optimally. Define the event

E2,T =

{
T max

(s,a)∈S×A
‖φ(s, a)‖(∑T

t=1 φ(st,at)φ(st,at)>)
−1 ≤ 8σ?(M)

(1− ε)

}
.

We establish Lemma D.7 below, which guarantees that indeed we will eventually sample according
to an approximately optimal allocation. Lemma D.7 relies on the concentration result for random
matrices with Markovian data established in appendix B (see Proposition 6.6).

Lemma D.7. Under Assumption 6.4 and Assumption 6.5, under GNS, we have for all ε > 0, for all
T ≥ 1,

P(Ec2,T |E1,T ) ≤ δ2(T ) =
log(T )

log(2)
exp

(
−
√
T

C ′
min

(( ε

16κ

)2

,
3ε

16κ

)
+ d+ 1

)
.

Proof of Lemma D.7. First, we analyze the deviations of the random matrix∑T
t=1 φ(st, at)φ(st, at)

> in high probability. Let L,K ≥ 0 be such that

tK < T ≤ tK+1 and tL−1 <
⌈√

T
⌉
≤ tL. (39)
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We may write

T∑
t=1

φ(st, at)φ(st, at)
> �

tL∑
t=1

φ(st, at)φ(st, at)
> +

K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>

�
K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>,

where we used the fact that ‖φ(s, a)‖ ≤ 1 and tL ≤ 2
√
T (by definition of the set T ). Now, by

Proposition 6.6, we have for all L ≤ k ≤ K + 1

P

(
tk+1∑

t=tk+1

φ(st, at)φ(st, at)
> � (tk+1 − tk)(1− ε)Λ(ωk)

)
≥ 1− δ

provided that

tk = tk+1 − tk ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Thus, by a union bound, we have:

P

(
K−1∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
> �

K−1∑
k=L

(tk+1 − tk)(1− ε)Λ(ωk)

)
≥ 1− (K − L)δ

provided that

tL ≥
√
T ≥ C max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Now, note that under the event E1,T , we have:(
K∑
k=L

tk+1∑
t=tk+1

φ(st, at)φ(st, at)
>

)−1

� 1

tK − tL

(
K∑
k=L

(tk+1 − tk)

tK − tL
(1− ε)Λ(ωk)

)−1

� 1

(1− ε)(tK − tL)

K∑
k=L

tk+1 − tk
tK − tL

Λ(ωk)−1.

This leads, under the event E1,T , to

max
(s,a)∈S×A

‖φ(s, a)‖2
(
∑T
t=1 φ(st,at)φ(st,at)>)

−1

≤ 1

(1− ε)(tK − tL)

K−1∑
k=L

tk+1 − tk
tK − tL

max
(s,a)∈S×A

‖φ(s, a)‖Λ(ωk)−1

≤
maxL≤k<K max(s,a)∈S×A ‖φ(s, a)‖Λ(ωk)−1

(1− ε)(tK − tL)

≤ 2σ?(M)

(1− ε)(tK − tL)

≤ 8σ?(M)

(1− ε)T

where the last inequality comes from tK − tL ≥ T/2− 2
√
T ≥ T/4 and holds whenever T ≥ 64.

Thus,

P
(

max
(s,a)∈S×A

‖φ(s, a)‖2
(
∑T
t=1 φ(st,at)φ(st,at)>)

−1 ≤
8σ?(M)

(1− ε)T

∣∣∣∣E1,T) ≥ 1− log(T )δ

log(2)
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as long as

√
T ≥ C ′max

((
16κ

ε

)2

,
16κ

3ε

)(
log
(e
δ

)
+ d
)
.

Choosing δ = δ2(T ) to be the parameter satisfying equality in the above inequality concludes the
proof.

Proof of Lemma D.5. Let s ∈ S, we have:

‖µ̂(s)− µM(s)‖2 ≤
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

λmin(tΛ(ωt) + γId)

Now, we know by Lemma 6.3, that

∀t ≥
(

8m

λ
log

(
2d

δ

))2

, P
(
λmin(tΛ(ωt) + γId) ≥

t1/2λ

2
+ γ

)
≥ 1− δ.

Next, as an immediate consequence of the self-normalized inequality in Proposition D.8, we have

P
(
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 2

(
2 log

(
(γ−1t+ 1)d

δ

)
+
√
γ‖µM(s)‖2

))
≥ 1− δ

using the fact that ‖µ(s)‖ ≤
√
d and γ = 1/d. This gives, for all t ≥ 1

P
(
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 4 log

(
e(2dt)d

δ

))
≥ 1− δ.

Using a union bound, we obtain that:

P
(

max
s∈S
‖µ̂t(s)− µM(s)‖2tΛ(ωt)+γId

≤ 4 log

(
e(2dt)dS

δ

))
≥ 1− δ.

Thus, by a union bound again:

∀t ≥
(

8m

λ
log

(
2d

δ

))2

, P
(

max
s∈S
‖µ̂t(s)− µM(s)‖2 ≤ 8√

tλ
log

(
2e(2dt)dS

δ

))
≥ 1− δ

(40)

which leads to

∀t ≥ max

((
8m

λ
log

(
2d

δ

))2

,

(
8

ε2λ
log

(
2e(2dt)dS

δ

))2
)
,

P
(

max
s∈S
‖µ̂t(s)− µM(s)‖ ≤ ε

)
≥ 1− δ.

After further simplifications, using Lemma D.9, we obtain the desired result.

D.3.3 Proof of Theorem 6.7

The proofs follows from the same arguments as those used in the proof of Theorem 5.4, with the only
exception that now we have to analyze {τ > t} under the events E1,t ∩ E2,t

Proof of Theorem 6.7. The proof follows the same strategy as in the proof of Theorem 5.4, except
that we will use different events to control {τ > t}. More precisely, we will use the events E1,t and
E2,t. In what follow, we will use U?M to denote U?M,for and recall the notation ωt,s,a = Ns,a(t)/t

where Ns,a(t) is the number of times the state-action pair (s, a) has been visited up to time t. For the
sake of clarity, let us also introduce the event

E3,t =

{∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

tΛ(ωt)
≤ 5

6(1− γ)2
β(1, t)

}
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and observe that by Proposition 5.2, we have P(E3,t) ≥ 1− delta3(t) with δ3(t) = 1/(ξ(2)t2). We
will analyze the event {τ > t} under the event E1,t ∩ E2,t ∩ E3,t. First, observe that by definition of
the stopping rule τ , and by Lemma D.1, we have

{τ > t} ⊆
{
t(U?M)−1 ≤ β(δ, t) + tB(t)

}
,

where we defined

B(t) = 6(1− γ)2
∥∥∥θ̂t − θM + γ(µ̂t − µM)>V̂ ?t

∥∥∥2

Λ(ωt)
+

(
5

4
− σ(ω?)

σ(ωt)

)
(U?M)−1.

Next under the event E1,t ∩ E2,t ∩ E3,t, we have

tB(t) ≤ 5β(1, δ) +
3t

4
(U?M)−1

which leads to

{τ > t} ∩ E1,t ∩ E2,t ∩ E3,t ⊆
{
t

4
(U?M)−1 ≤ β(δ, t) + 5β(1, t)

}
.

Following similar computations as in the proof of Theorem 5.4, the event{
t
4 (U?M)−1 ≤ β(δ, t) + 5β(1, t)

}
= ∅ whenever t ≥ t(δ), where

t(δ) = U?M
576

5

(
2 log

(√
eζ(2)

δ

)
+ d log(8e4d)

)
+ U?M

576(d+ 2)

5
log

(
576(d+ 2)

5

)
.

We have just shown that for all t ≥ t(δ), we have

{τ > t} ⊆ Ec1,t ∪ Ec2,t ∪ Ec3,t = (Ec1,t ∩ E2,t) ∪ Ec2,t ∪ Ec3,t.

Hence, we obtain

E[τ ] =

∞∑
t=1

P(τ > t)

≤
t(δ)∑
t=1

P(τ > t) +

∞∑
t=t(δ)

P((Ec1,t ∩ E2,t) ∪ Ec2,t ∪ Ec3,t)

≤ t(δ) +

∞∑
t=t(δ)

P(Ec1,t ∩ E2,t) + P(Ec2,t) + P(Ec3,t)

≤ t(δ) +

∞∑
t=t(δ)

P(Ec1,t|E2,t) + P(Ec2,t) + P(Ec3,t)

≤ t(δ) +

∞∑
t=t(δ)

δ1(t) + δ2(t) + δ3(t).

Now, note that
∑∞
t=t(δ) δ1(t) + δ2(t) + δ3(t) <∞. Therefore, we conclude by writing

lim sup
δ→0

E[τ ]

log(1/δ)
≤ lim sup

δ→0

t(δ)

log(1/δ)
+ lim sup

δ→0

∑∞
t=t(δ) δ1(t) + δ2(t) + δ3(t)

log(1/δ)
. U?M,for.

D.4 Miscelleneous results and concentration tools

Proposition D.8 is an immediate consequence of the self-normalized concentration result established
in [1] (see Lemma 9 in [1]) together with a net argument. Therefore, we simply present the result
below without a proof.
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Proposition D.8. Let (Ft)t≥1 be a filtration. Let (ηt)t≥1 be a stochastic process adapted to (Ft)t≥1

and taking values in Rp. Let (φt)t≥1 be a predictable stochastic process with respect to (Ft)t≥1,
taking values in Rd. Furthermore, assume that ηt+1, conditionally on Ft, is a zero-mean, σ2-sub-
gaussian 7. Then, for all δ ∈ (0, 1), the following event∥∥∥∥∥∥

(
t∑
`=1

φ`φ
>
` + λId

)−1/2( t∑
`=1

φ`η
>
`

)∥∥∥∥∥∥
2

≤ 4σ2 log

(
5p det((λ−1(

∑t
`=1 φ`φ

>
` ) + Id))

δ

)

holds with probability at least 1− δ.
Lemma D.9. Let a, b > 0. A sufficient condition for t > a log(t) + b to hold is that t ≥ 2a log(2a) +
2b.

Proof of Lemma D.9. Let t ≥ 2a log(2a) + 2b. Then

t ≥ a t

2a
+
t

2
> a log

(
t

2a

)
+ a log(2a) + b ≥ a log(t) + b.

7We say that a random variable is σ2-sub-gaussian, if for all λ ∈ R, E[exp(λX)] ≤ exp
(
λ2σ2/2

)
.
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E Numerical Experiments

We assess the performance of GSS on toy examples.

Linear MDPs. We consider the following linear MDPs with dimension d = S2, where S denotes
the number of states. the state space is S = {1, . . . , S}, and the actions are A = {(as, i), s ∈ S, i =
1, . . . , A0}. Denote by es,s′ the unit vector in Rd in the direction (s, s′). The feature vectors are
defined as follows:

φ(s, (as′ , i)) =
A0 + 1− i
A0 + 1

es,s′ +
i

A0 + 1
es,s′+1.

The expected rewards are defined by the vector θ ∈ Rd with for all (s, s′) ∈ S , θ(s,s′) = rs, i.e., the
reward does not depend on the selected action. Rewards are Bernoulli with means θ. The transition
probabilities are defined through µ by: for all s, s′, s” ∈ S,

µ(s′′)(s,s′) = (1− ρ)1s′=s′′ +
ρ

S
.

Choosing for example S = 4 and A0 = 3, when in state s the player will observe an expected reward
of rs regardless of the action, and the available transition distributions will be

(1− ρ)



0.75 0.25 0 0
0.5 0.5 0 0
0.25 0.75 0 0

0 0.75 0.25 0
0 0.5 0.5 0
0 0.25 0.75 0
0 0 0.75 0.25
0 0 0.5 0.5
0 0 0.25 0.75


+ ρ



0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


where each row represents an action. Assume that the states are ordered by increasing expected
reward. Then the optimal policy is the one choosing the last action from all states. Moreover, the gap
can be shown to be equal to

∆ = γ(1− ρ)
rS − rS−1

(A0 + 1)
.

Parameters. We are going to plot the sample complexity of the GSS algorithm as a function of d and
∆, which are respectively controlled by S and ρ. The values used for the non varying parameters are
the following : S = 4, A0 = 3, ρ = 0.2, γ = 0.9, δ = 0.05 and ε = 0. Choosing ε = 0 allows us to
highlight the capability of our algorithm to produce an instance-specific sample complexity for optimal
policy identification. Finally, we choose the expected rewards to be (rs)s∈S =

(
1

2S ,
3

2S , . . . ,
2S−1

2S

)
.

Stopping rules. We will compare the performance of GSS with that of an algorithm sharing
the same sampling rule as GSS but with an optimal stopping rule. The latter stops whenever the
algorithm has identified the best policy. For GSS, we use the a stopping threshold scaling as
our theoretical threshold but with different constants. Specifically, the threshold is βmod(δ, t) =
12
5

(
2c1 log

(
1
δ

)
+ c2d log

(
8e4dt2

))
with c1 = 10−4 and c2 = 1.25 × 10−6. We run the GSS

algorithm with this adjusted threshold and also replace (1− γ)−4 with (1− γ)−1 when computing
UM̂t

(ωt) as the dependency in γ is known to be sub-optimal.

In order to fasten the computation, M̂t is computed and the stopping rule tested only every power
of 1.2. Moreover, the transition matrix of the estimate M̂t is projected onto the simplex before
computing ∆(M̂t) by value iteration.

Results. Every point plotted corresponds to values averaged over N = 500 runs. The sample
complexity and the performance of the optimal policy estimated at various steps are presented in
Figure 1.
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Figure 1: Sample complexity vs. d. Figure 2: Sample complexity vs. ∆.

Figure 3: Sub-optimality of the optimal estimated
policy after t steps.

The stopping rule of GSS leads to a sample complexity of the same order of magnitude as that of
GSS with the oracle stopping rule. But GSS stops later, as expected. the sample complexity increases
with both with the dimension d and the inverse of the gap ∆. For reference, the first curve is expected
to show a growth of d3 because the gap is proportional to 1/S so d2/∆2 grows as S6 = d3. The
second curve is expected to grow as 1/∆2. Note that we selected δ = 0.05. In all experiments, the
proportion of runs where the algorithm did not identify the best policy was under this threshold.
Finally, for Figure 1(c), we plot the sub-optimality error of the optimal policy estimated at various
steps. This error for the estimated policy π̂ is defined as ‖V ?˘V π̂‖∞.
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