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ABSTRACT

Large pre-trained vision-language models like CLIP have transformed computer
vision by aligning images and text in a shared feature space, enabling robust
zero-shot transfer via prompting. Soft-prompting, such as Context Optimiza-
tion (CoOp), effectively adapts these models for downstream recognition tasks
by learning a set of context vectors. However, CoOp lacks explicit mechanisms
for handling domain shifts across unseen distributions. To address this, we pro-
pose Domain-invariant Context Optimization (DiCoOp), an extension of CoOp
optimized for domain generalization. By employing an adversarial training ap-
proach, DiCoOp forces the model to learn domain-invariant prompts while pre-
serving discriminative power for classification. Experimental results show that
DiCoOp consistently surpasses CoOp in domain generalization tasks across di-
verse visual domains.

1 INTRODUCTION

The emergence of large language models (LLMs) has demonstrated their remarkable capabili-
ties, which are now widely recognized. Building upon this success, vision-language models have
emerged as a powerful alternative for visual representation learning. These models aim to align im-
ages and their corresponding raw text using two distinct encoders: one for text and the other for vi-
sion. For instance, CLIP (Radford et al., 2021), one of the most prominent vision-language models,
uses contrastive learning to pull together images and their textual descriptions while pushing apart
unmatched pairs in the feature space. Unlike traditional vision models, which are pre-trained on
fixed sets of discrete class labels using cross-entropy loss, vision-language models leverage textual
semantics for training, allowing them to better understand textual information (Yang et al., 2024).
By pre-training on large-scale datasets, these models can learn diverse visual concepts and transfer
them effectively to downstream tasks through prompting. For example, in image classification tasks,
task-relevant sentences describing categories can be fed to the text encoder, and the resulting text
features can be compared with image features produced by the image encoder.

Several studies have highlighted the importance and nuances of prompts for achieving optimal per-
formance on downstream datasets. Zhou et al. (2022c) proposed Context Optimization (CoOp), a
novel approach for finding optimized prompts in image classification tasks. In particular, CoOp
transforms prompt engineering from a manual process into an optimization problem by using some
learnable numerical vectors called context vectors. CoOp has been shown to outperform handcrafted
prompts and exhibits stronger robustness than standard zero-shot models with manually designed
prompts.

However, while CoOp demonstrates some resilience to domain shifts, it does not explicitly ad-
dress the challenge of domain invariance in prompt learning to handle distribution shifts or unseen
domains. These challenges are formulated as domain adaptation (DA) and domain generalization
(DG) in the literature. DA focuses on adapting models from source to target domains with access
to target domain data during training. In contrast, DG aims to generalize to unseen domains with-
out such access (Zhou et al., 2022a). DG is particularly relevant in real-world scenarios, where
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models are trained on specific datasets but must perform well on new, previously unseen data distri-
butions (Khoee et al., 2024).

To achieve both high accuracy for the task and robustness to domain shift, we aim to design a
prompt that is highly effective for class discrimination but incapable of identifying the domain of
the input data. This idea aligns with the definition of a good cross-domain representation proposed
by Ben-David et al. (2010), which emphasizes that a model should prevent domain distinction while
maintaining class discrimination. In other words, the model should emphasize task-relevant infor-
mation while promoting domain confusion to achieve effective generalization across domains.

In this work, we propose Domain-invariant Context Optimization (DiCoOp), an extension of CoOp
designed specifically for domain generalization tasks. DiCoOp applies adversarial training princi-
ples to prompt learning, explicitly promoting domain invariance within the learnable context vectors.
We introduce three implementations of DiCoOp to explore different prompt structures: (1) Domain-
First Prompting (DFP), which separates domain and class tokens, placing domain tokens first; (2)
Class-First Prompting (CFP), similar to DFP but with class tokens placed before domain tokens; and
(3) Shared Context Prompting (SCP), which does not explicitly separate domain and class tokens,
instead using a shared context for joint learning.

As a summary, we have contributed the following:

• We introduce DiCoOp, an extension of CoOp that leverages domain adversarial prompt
learning using the Gradient Reversal Layer (GRL) to enhance the robustness of VLMs
against domain shifts effectively.

• We propose three distinct prompting strategies—SCP, DFP, and CFP—to explore how
prompt design affects domain generalization in vision-language models. Notably, DFP and
CFP systematically split and freeze domain- and class-specific tokens, preserving class-
discriminative knowledge while addressing domain invariance.

• DiCoOp outperforms its baseline, which is CoOp, on PACS (using ResNet-50) and Mini-
DomainNet (using ViT-B/16) datasets, demonstrating the robustness of DiCoOp across
domain generalization tasks.

2 PROPOSED METHOD

Let Ds = {Ds
i }ni=1 denote a set of n source domains, each containing input data xi ∈ Xi and

corresponding labels yi ∈ Y . The probability distribution of each source domain, denoted as P (Ds
i ),

differs across domains such that P (Ds
i ) ̸= P (Ds

j ) for all i, j ∈ 1, . . . , n where i ̸= j. In DG, our
goal is to train a model on these source domains that generalizes well to an unseen target domain
Dt, where the target domain distribution P (Dt) is distinct from all source domain distributions,
i.e., P (Dt) ̸= P (Ds

i ) for all i ∈ 1, . . . , n. This setup is commonly referred to as the multi-source
domain generalization problem (Khoee et al., 2024).

Due to page constraints, we refer to the related work and preliminaries in Appendices A.1 and A.2,
respectively, which provide a detailed description of the Vision-Language model CLIP (Radford
et al., 2021) and the learnable soft-prompting method CoOp (Zhou et al., 2022c).

2.1 DOMAIN-INVARIANT CONTEXT OPTIMIZATION

Our objective is to learn domain-invariant prompts that reduce domain bias and enable robust per-
formance on unseen domains. Drawing inspiration from Domain Adversarial Neural Networks
(DANN) (Ganin et al., 2016), we incorporate a Gradient Reversal Layer (GRL) into the prompt
tuning process. Our approach exploits both class names and (source) domain names: we perform
standard prompt tuning for classification while applying adversarial training (via GRL) to encour-
age domain generalization by maximizing domain-specific feature distinguishability. We aim to
optimize the context vectors to maintain strong class discrimination while ensuring invariance to
domain differences. An overview of this architecture is shown in Figure 1.

We optimize learnable context vectors v by minimizing the negative log-likelihood of the ground-
truth label of classes and maximizing the negative log-likelihood of the ground-truth label of do-
mains. We initially assume a shared set of learnable context vectors v that simultaneously undergo
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Figure 1: Overview of Domain-invariant Context Optimization (DiCoOp). Domain First Prompting
(DFP) is illustrated, where the first half of the prompt is dedicated to domain information, and the
remaining half is dedicated to class information. During domain-related optimization, the class
tokens remain frozen, and vice versa.

standard gradients (for class prediction) and reversed gradients (for domain prediction). Alterna-
tively, these learnable vectors can be split into two parts: one dedicated to category classification
information and another for domain-invariant information. As a result, the overall training objective
combines classification (cls) and domain adversarial (dom) losses:

L(v) = Lcls(v)− λLdom(v) = −
∑
i

yci logP (i|x) + λ
∑
j

ydj logP (j|x), (1)

where yc and yd are one-hot encodings of the ground-truth class and domain labels, respectively,
and λ ≥ 0 controls the strength of domain adversarial training. P (i|x) in the classification loss is the
probability that the input image x belongs to the i−th class, while P (j|x) in the domain adversarial
loss is the probability that x comes from the j−th domain.

The GRL is essential for domain-invariant context optimization (DiCoOp). During the forward pass,
GRL acts as an identity function, allowing standard computation of both class and domain predic-
tions. However, during backpropagation, the GRL multiplies the gradient by −λ for the domain-
specific portion of the context. This adversarial approach encourages domain context vectors to
become domain-invariant while preserving class discrimination.

Although we describe the method with a shared context vectors v, referred to as Shared Context
Prompting (SCP), the tokens can be split into domain and class segments:

Domain-First Prompting (DFP): The first half of the prompt is designated for domain-specific
tokens, and the second half for class-specific tokens, i.e.,

v = [vd]1 · · · [vd]M
2

[vc]M
2 +1

· · · [vc]M .

During domain-related optimization, only the domain-specific tokens are updated (class-specific
tokens remain frozen), and vice versa. This explicit separation helps maintain clear boundaries
between domain and class information.

Class-First Prompting (CFP): Similar to DFP, but reversed: class-specific tokens come first, fol-
lowed by domain-specific tokens, i.e.,

v = [vc]1 · · · [vc]M
2

[vd]M
2 +1

· · · [vd]M .

Class-specific tokens are frozen during domain-related optimization, and domain-specific tokens
are frozen during class-related optimization. Like DFP, CFP preserves a strict separation between
domain and class segments.

2.2 TRAINING AND INFERENCE

During training, we learn domain-invariant context vectors by performing two forward passes for
each input image x:
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1. Class pass: We form the prompt for class k by concatenating the learnable context v with the
class token [CLASS]k, i.e.:

tck = concat(v, [CLASS]k). (2)

This prompt is fed into the model for classification, and standard gradients update v to minimize
class prediction loss.

2. Domain pass: We form the prompt for domain p by concatenating the same context v with the
domain token [DOMAIN ]p, i.e.:

tdp = concat(v, [DOMAIN ]p). (3)

This prompt is fed into the model for domain prediction through the GRL, so the gradients are
reversed to maximize domain prediction loss, encouraging v to become domain-invariant.

By alternating between class and domain passes, we learn context vectors v that balance accurate
class discrimination with minimal domain bias.

At inference time, we no longer have access to domain labels. We only perform the class pass,
utilizing the learned domain-invariant context v to predict class labels for incoming images, ensuring
robust classification across unseen domains.

3 EXPERIMENTAL RESULTS

(a) Photo (b) Sketch

(c) Cartoon (d) Art Painting

Figure 2: Results of few-shot learning on the PACS dataset using the leave-one-domain-out tech-
nique. Each plot is defined by the domain name that is left out during prompt learning, and testing
is performed on that same domain.

We evaluate our model on two publicly available datasets. i) PACS (Li et al., 2017): This dataset
spans four contrasting domains (Photo, Art Painting, Cartoon, and Sketch) and includes seven object
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categories. ii) Mini-DomainNet (Yue et al., 2024; Tang et al., 2024): This dataset consists of four
different domains (Clipart, Painting, Sketch, and Real), each containing images from 126 categories.

To assess domain generalization performance, we use a leave-one-domain-out strategy: one domain
is held out as the target (test) domain, while the remaining domains serve as source domains for
training. In all experiments, we set the prompt context length (M ) to 16, following Zhou et al.
(2022c).

We compare DiCoOp—with all three variants (SCP, DFP, CFP)—to CoOp as the baseline. For the
PACS dataset, we use ResNet-50 (He et al., 2016) as the backbone image encoder (fv) and test 1-
shot, 2-shot, 4-shot, 8-shot, and 16-shot settings. In these n-shot experiments, each source domain
contributes n labeled examples per class. To ensure a fair comparison, we evaluate the baseline
under the same conditions.

Results on PACS are illustrated in Figure 2, showing the classification accuracy for each target
domain versus the number of labeled training examples per class per domain. Overall, DiCoOp
demonstrates greater robustness and better generalization than CoOp. Among DiCoOp variants,
CFP and DFP outperform SCP, suggesting explicit separation of domain/class segments improves
handling of domain variation. CFP demonstrates the strongest cross-domain consistency, consis-
tently achieving high (and often top) accuracy. Meanwhile, SCP shows less reliable performance,
often yielding results comparable to or occasionally lower than the baseline CoOp, indicating that
shared context vectors struggle to effectively disentangle domain and class information.

For Mini-DomainNet, we switch to a ViT-B/16 (Dosovitskiy, 2020) backbone while using the 16-
shot setting. Table 1 reports the accuracy on each target domain. DiCoOp outperforms CoOp on all
target domains, underscoring the robustness of domain-invariant prompt tuning. Notably, DiCoOp
(CFP) and DiCoOp (DFP) achieve the same average accuracy, improving the results by 2.23% over
CoOp, while DiCoOp (SCP) shows a 1.23% improvement. These results affirm that the separation
of domain and class tokens (DFP or CFP) enhances generalization compared to fully shared prompts
(SCP).

Table 1: Accuracy (%) on Mini-DomainNet for domain generalization using a leave-one-domain-
out approach. Each column shows results on the domain that has been left out, comparing domain
generalization performance to the baseline. Bold numbers indicate the best accuracy in each column.

Methods Backbone Clipart Painting Sketch Real Avg.

CoOp ViT-B/16 83.5 80.3 76.6 88.7 82.27
DiCoOp (SCP) ViT-B/16 83.8 81.9 78.6 89.7 83.5
DiCoOp (DFP) ViT-B/16 83.9 83.2 79.8 91.1 84.5
DiCoOp (CFP) ViT-B/16 84.1 82.7 80.0 91.2 84.5

4 CONCLUSION

Vision-language models have shown significant promise across various tasks. However, for specific
downstream classification tasks, effectively generalizing these pre-trained models to unseen domains
remains an open challenge. To bridge this gap, we introduced DiCoOP, a novel framework to im-
prove domain generalization in vision–language models. Built upon CLIP, DiCoOP learns domain-
invariant prompt tokens by incorporating a domain adversarial loss into prompt tuning. Specifically,
we employ a Gradient Reversal Layer (GRL) to penalize domain classification, thereby mitigat-
ing domain bias using prompts and encouraging domain invariance. This study serves as an ini-
tial exploration of incorporating adversarial training into prompt learning to learn domain-invariant
prompts and enable robust performance on unseen domains. Our experiments on two benchmark
datasets demonstrate that DiCoOP outperforms its baseline (CoOp), highlighting the effectiveness
of adversarial prompt tuning. In future work, we plan to extend DiCoOP to more challenging do-
main generalization applications such as person re-identification and medical imaging to investigate
its effectiveness and guide further advancements in domain generalization for emerging foundation
models.
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A APPENDIX

A.1 RELATED WORKS

Vision-language models (VLMs), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and
VisualBERT (Li et al., 2019), integrate visual and textual data to enhance multimodal understand-
ing, achieving state-of-the-art performance across diverse computer vision tasks. A key advance-
ment in leveraging these models is prompt learning, which adapts pre-trained VLMs to downstream
tasks by optimizing task-specific text prompts. In this regard, CoOp (Zhou et al., 2022c) developed
prompt tuning for few-shot image classification by learning continuous prompt vectors, establish-
ing a foundation for subsequent methods. Building on this, CoCoOp (Zhou et al., 2022b) intro-
duced conditional prompts that dynamically adjust to input images, enhancing the generalization
for image classification. ProGrad (Zhu et al., 2023) refined this further by selectively updating the
prompt whose gradient is aligned (or non-conflicting) to the general knowledge to prevent prompt
tuning from forgetting the general knowledge learned from VLMs. Taking a different approach,
CLIP-Adapter (Gao et al., 2024) focused on fine-tuning feature adapters in both visual and language
branches to improve CLIP’s classification capabilities.

For DA challenges, several approaches have emerged. DAPL (Ge et al., 2023) introduced domain-
specific prompt tuning, though its requirement for explicit domain information limits practical ap-
plications. AD-CLIP (Singha et al., 2023) aimed to create domain-agnostic prompts through prompt
learning; however, its reliance on distribution alignment poses challenges with limited target domain
samples. Recent work has explored DG using CLIP by incorporating domain-specific learnable
residuals in text embeddings alongside domain-shared residuals (Feng et al., 2024). The latter is
then used at inference to capture common knowledge across domains. However, the effectiveness of
these simple domain priors depends heavily on how precisely the domain can be described in natural
language, given that prompts are handcrafted.

One notable approach to address domain shifts is the Domain-Adversarial Neural Networks (DANN)
proposed by Ganin et al. (2016), which trains neural networks to be both discriminative (for the
classification task) and domain-invariant. DANN minimizes the loss of the main label classifier
while maximizing the loss of the domain classifier using Gradient Reversal Layers (GRL). GRL
adversarially trains the network to confuse the domain classifier, encouraging the emergence of
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domain-invariant features during training. Inspired by DANN, our work integrates a GRL into
prompt learning to address the challenges of handling domain shifts in prompt learning.

A.2 PRELIMINARIES

We use CLIP as our backbone architecture, which consists of an image encoder fv(·) (either
ResNet (He et al., 2016) or ViT (Dosovitskiy, 2020)) and a text encoder ft(·) (BERT (Devlin,
2018)). These encoders project their respective inputs from high-dimensional spaces into a shared
low-dimensional feature space.

CLIP is trained on image-text pairs using contrastive learning, where associated image-text pairs
serve as positive samples and non-associated pairs as negative samples. The contrastive objective
maximizes the similarity between positive pairs while minimizing the similarity between negative
pairs, effectively aligning image and text representations in the same feature space.

For zero-shot classification, given an input image x and a set of K textual category descriptions, the
probability that x belongs to i−th category is computed as:

P (i|x) = exp(< ft(ti), fv(x) > /τ)∑K
k=1 exp(< ft(tk), fv(x) > /τ)

, (4)

where τ is the temperature hyperparameter and < ·, · > denotes cosine similarity. The predicted
class ŷ is then determined by:

ŷ = argmax
k

P (k|x). (5)

Traditionally, the input text consists of manually designed prompts composed of discrete tokens.
These prompts are transformed into fixed vectors in the word embedding space. However, these
fixed embeddings may be sub-optimal for category representation (Ge et al., 2023). To address this,
we can optimize continuous embeddings of the prompt tokens, allowing for more precise semantic
feature descriptions (Lester et al., 2021). This is achieved through learnable context vectors v, where
the prompt for class k is represented as:

v = [v]1[v]2 · · · [v]M ,

tk = concat(v, [CLASS]k),
(6)

where each [v]m (m ∈ 1, 2, . . . ,M ) is a vector with the same dimension as the word embedding,
and M is the number of context tokens in the prompt. CoOp (Zhou et al., 2022c) optimizes these
learnable context vectors by minimizing the negative log-likelihood of the ground-truth label:

Lce(v) = −
∑
i

yi logP (i|x), (7)

where y represents the one-hot encoded ground-truth labels.

One key design consideration for this approach is determining the semantic meaning that each con-
text vector [v]m should capture, and defining an effective training strategy to optimize these context
vectors accordingly.
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