

RETHINKING MODEL CALIBRATION THROUGH SPECTRAL ENTROPY REGULARIZATION IN MEDICAL IMAGE SEGMENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep neural networks for medical image segmentation often produce overconfident predictions, posing clinical risks due to miscalibrated uncertainty estimates. In this work, we rethink model calibration from a frequency-domain perspective and identify two critical factors causing miscalibration: spectral bias, where models overemphasize low-frequency components, and confidence saturation, which suppresses overall power spectral density in confidence maps. To address these challenges, we propose a novel frequency-aware calibration framework integrating spectral entropy regularization and power spectral smoothing. The spectral entropy term promotes a balanced frequency spectrum and enhances overall spectral power, enabling better modeling of high-frequency boundary and low-frequency structural uncertainty. The smoothing module stabilizes frequency-wise statistics across training batches, reducing sample-specific fluctuations. Extensive experiments on six public medical imaging datasets and multiple segmentation architectures demonstrate that our approach consistently improves calibration metrics without sacrificing segmentation accuracy.

1 INTRODUCTION

Deep neural networks (DNNs) have become essential in medical image segmentation, enabling tasks such as tumor delineation and organ identification Hatamizadeh et al. (2021); Chen et al. (2021); Isensee et al. (2021). Despite their high accuracy, DNNs often exhibit overconfident predictions—particularly near lesion boundaries, where predicted confidence substantially exceeds actual correctness Yeung et al. (2023); Larrazabal et al. (2023); Murugesan et al. (2025). This overconfidence undermines the reliability of automated systems in clinical settings and leads to misinformed diagnostic decisions Begoli et al. (2019).

To mitigate such risks, confidence calibration aims to align the predicted confidence with the true likelihood of correctness. Existing calibration methods in medical segmentation primarily operate in the spatial domain. Post-hoc techniques such as temperature scaling and Platt scaling apply dataset-level adjustments to logits Guo et al. (2017); Platt et al. (1999), but they often fail to adapt to anatomical and modality variability Tomani et al. (2021). Training-time methods, including label smoothing Müller et al. (2019), Focal Loss Mukhoti et al. (2020), and regional uncertainty regularization Murugesan et al. (2023a; 2024), add explicit or implicit constraints on output confidence Pereyra et al. (2017). While these approaches partially alleviate overconfidence, they predominantly focus on spatial domain characteristics and neglect potential frequency domain information, which can lead to suboptimal calibration performance.

Recent efforts suggest that frequency-domain information can enhance calibration and robustness. For instance, style-invariant Fourier domain adaptation has been used to stabilize model behavior across domains, and hybrid spatial-spectral representations have shown promise in improving generalization and uncertainty estimation Chen et al. (2023b); Li et al. (2024); Tang et al. (2021). However, such works primarily target domain shift or style variation, rather than addressing overconfidence in confidence maps for medical segmentation.

From a spectral perspective, neural networks exhibit an inherent **Spectral Bias** during optimization, preferentially learning low-frequency patterns while inadequately capturing high-frequency details

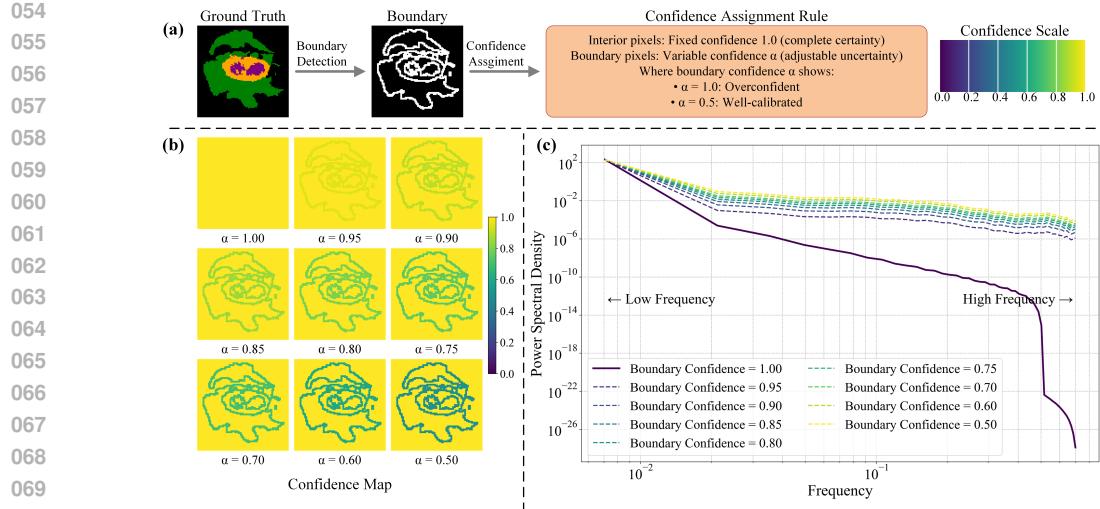


Figure 1: Frequency-domain analysis of overconfidence in medical image segmentation. (a) Synthesized confidence maps for a binary (foreground/background) segmentation example. Boundary pixels are assigned variable foreground confidence levels α , while interior pixels have full confidence (confidence = 1.0). (b) Resulting confidence maps as boundary confidence α varies from overconfident (1.0) to well-calibrated (0.5). In a binary context, $\alpha = 0.5$ represents maximum uncertainty, the ideal state for a boundary pixel, as the model is equally confident in the foreground and background classes. Confidence values $\alpha < 0.5$ are not shown, as they would correspond to an incorrect background prediction, which is outside the scope of calibrating a correct foreground prediction. (c) Power spectral density (PSD) analysis. A Hamming window Hamming & Stearns (1979) is applied before the FFT to reduce spectral leakage caused by edge artifacts, ensuring a more accurate spectrum. As boundary confidence decreases toward the well-calibrated state, the PSD becomes richer across all frequency bands.

Rahaman et al. (2019); Xu et al. (2019), which further exacerbates overconfidence in boundary regions where high-frequency information is crucial for uncertainty estimation. Besides, as illustrated in Fig. 1, we create synthetic confidence maps by assigning different confidence levels to boundary pixels, while keeping interior pixels fixed. The power spectral density (PSD) analysis shows that overconfident maps (with boundary confidence $\alpha = 1.0$) have sparse spectral energy. In contrast, well-calibrated maps (e.g., $\alpha = 0.5$) display richer power across frequency bands. This suggests that overconfidence is linked to both spectral bias and low spectral complexity. Better-calibrated predictions distribute spectral power more evenly, capturing both high-frequency boundary uncertainty and low-frequency structural variations. We term this effect of spectral suppression in confidence maps as **Confidence Ssaturation**.

To address these two issues toward trustworthy medical image segmentation models, this paper introduces a novel adaptive calibration method from a spectral perspective. Our main contributions are as follows:

1. We conduct the first comprehensive spectral analysis of overconfidence in segmentation, revealing a strong link between prediction uncertainty and spectral power distributions.
2. We introduce a **power spectral smoothing** mechanism that stabilizes frequency-wise power statistics by aggregating spectral information across historical training batches, helping maintain segmentation performance while promoting consistent spectral patterns.
3. We design a **spectral entropy regularization** mechanism that enhances overall spectral power and improves frequency balance in confidence maps, leading to significantly improved calibration quality.

108
109

2 RELATED WORK

110
111
112
This section reviews research areas closely related to our approach, including confidence calibration
methods, uncertainty estimation approaches, and frequency domain approaches in medical image
analysis.113
114

2.1 CONFIDENCE CALIBRATION METHODS

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Post-hoc Calibration Methods. These methods improve calibration by adjusting output distributions
after model training without retraining. Temperature Scaling Guo et al. (2017) adjusts softmax outputs by
optimizing a global temperature parameter. Platt Scaling Platt et al. (1999) applies logistic regression to
transform logits, while non-parametric methods such as Histogram Binning Zadrozny & Elkan (2001) and
Isotonic Regression Fawcett & Niculescu-Mizil (2007) map predicted probabilities to empirical accuracies.
However, these approaches lack region-specific calibration capabilities for different anatomical structures
and show limited generalization under domain shifts across modalities Tomani et al. (2021). **In-training Calibration Methods.** These methods modify
training objectives with regularization strategies to optimize calibration during training. Label
Smoothing Müller et al. (2019) softens target labels to reduce overconfidence, while Focal Loss
Mukhoti et al. (2020) reduces the influence of easily segmented samples. Entropy Regularization
Pereyra et al. (2017) encourages higher predictive entropy to suppress overconfident predictions.
Recent methods such as MarginLoss Murugesan et al. (2023a) and CRaC Murugesan et al. (2024)
incorporate regional information and adaptive constraints for spatial-aware calibration. While these
approaches demonstrate advantages in medical image tasks, they primarily rely on spatial domain
features and lack systematic frequency domain analysis for calibration.131
132

2.2 PROBABILISTIC UNCERTAINTY ESTIMATION METHODS

133
134
135
136
137
138
139
140
141
142
Uncertainty estimation approaches in deep learning are primarily based on probabilistic modeling.
Bayesian neural networks (BNNs) Vadera et al. (2021), exemplified by MC-Dropout Gal &
Ghahramani (2016), approximate Bayesian posteriors by retaining dropout during inference. Deep
ensembles Lakshminarayanan et al. (2017) train multiple models with different initializations and
aggregate predictions, while evidential deep learning Sensoy et al. (2018) directly parameterizes
probability distributions rather than point estimates. These methods have been applied in medical
image analysis, with Nair et al. Nair et al. (2020) evaluating approaches in brain tumor segmentation
and Jungo et al. Jungo et al. (2018) examining the impact of uncertainty estimation on segmentation
accuracy. However, computational complexity and multiple inference requirements limit their
real-time clinical applicability Murugesan et al. (2023b).143
144

2.3 FREQUENCY DOMAIN APPROACHES IN MEDICAL IMAGE ANALYSIS

145
146
147
148
149
150
151
152
153
154
155
Frequency analysis has been widely applied in medical image analysis, from traditional Fourier-
based denoising and enhancement to recent deep learning integration. Recent works have explored
diverse applications including data augmentation impact analysis Yin et al. (2019), enhanced trans-
lation invariance Zhu et al. (2021), skin lesion segmentation optimization Li et al. (2021), MRI organ
segmentation with spectral constraints Chen et al. (2023a), and cross-domain few-shot segmentation
through frequency-aware matching Bo et al. (2025). Notably, Guang et al. Gorade et al. (2024) used
a spectral loss that matches the prediction’s spectrum to the ground truth’s to improve segmenta-
tion accuracy. In contrast, we focus on confidence calibration and directly regularize the intrinsic
spectral properties of the model’s output itself, without relying on a ground truth spectrum. To our
knowledge, this use of frequency analysis for confidence calibration in medical image segmentation
remains underexplored.156
157

3 METHOD

158
159

3.1 SPECTRAL ANALYSIS OF MODEL UNCERTAINTY

160
161
To motivate our frequency-aware calibration framework, we first conduct a comprehensive spec-
tral analysis to investigate how model confidence relates to uncertainty estimation in medical image

162 segmentation. Specifically, we analyze the power spectral density (PSD) of predicted confidence
 163 maps and observe that miscalibrated models often exhibit unbalanced spectral power distributions,
 164 characterized by the dominance of low-frequency components and suppressed high-frequency re-
 165 sponds, as shown in Fig. 1. This **spectral bias** limits the model’s ability to capture detailed
 166 boundary uncertainty and subtle anatomical structures. We observe that uncalibrated models of-
 167 ten produce confidence maps that saturate toward uniformly high values, a behavior we define as
 168 **confidence saturation**. This effect results in reduced overall power spectral density (PSD), dimin-
 169 ishing the frequency richness required to represent model uncertainty, especially in regions with
 170 boundary ambiguity. In contrast, well-calibrated models yield confidence maps with higher overall
 171 PSD, preserving richer spectral characteristics that better reflect structural variability and predictive
 172 uncertainty.

173 These findings reveal a strong connection between model calibration and the spectral characteris-
 174 tics of prediction confidence. The presence of spectral bias and confidence saturation suggests that
 175 current models may fail to adequately represent uncertainty across spatial scales, and particularly at
 176 high-frequency boundaries. This motivates the design of a calibration strategy that explicitly incor-
 177 porates spectral structure, aiming to rebalance frequency distributions and increase overall spectral
 178 power, thereby enhancing model calibration and improving segmentation reliability.

179 3.2 SPECTRAL DECOMPOSITION AND WINDOW SMOOTHING

180 Building on our prior spectral uncertainty analysis, we now introduce a spectral decomposition and
 181 temporal smoothing scheme that extracts reliable frequency-domain confidence profiles, mitigat-
 182 ing per-sample variability and enabling stable, frequency-aware calibration. Given input images
 183 $x \in \mathbb{R}^{B \times C_{\text{in}} \times D \times H \times W}$, where B is the batch size, C_{in} denotes the number of input channels, and
 184 D, H, W denote depth, height, and width respectively, the neural network $f_{\theta}(\cdot)$ outputs prediction
 185 features (logits before softmax) $z = f_{\theta}(x) \in \mathbb{R}^{B \times C \times D \times H \times W}$, where C is the number of classes. A
 186 scalar confidence map is constructed by taking the voxel-wise maximum logit value across the class
 187 dimension. While calibration is ultimately assessed on post-softmax probabilities, we operate on
 188 logits because they represent the network’s raw, unnormalized evidence and offer a more sensitive
 189 signal for spectral analysis. Softmax outputs can saturate near 0 or 1, which can mask underlying
 190 spectral characteristics, whereas logits retain a wider dynamic range. This logit-based map there-
 191 fore directly captures the precursors to overconfidence, where excessively high values are a primary
 192 cause of miscalibration.

$$z_b(d, h, w) = \max_{c=1, \dots, C} z_{b,c}(d, h, w), \quad (1)$$

193 For each sample b , we transform $z_b(d, h, w)$ into the frequency domain via a 3D Fast Fourier Trans-
 194 form (FFT) to analyze its spectral properties:

$$F_b(u, v, w) = \text{SC} (\mathcal{F}_{3D} [z_b(d, h, w)]) \quad (2)$$

$$E_b(u, v, w) = |F_b(u, v, w)|^2, \quad (3)$$

201 where (u, v, w) are frequency domain coordinates, and $E_b(u, v, w)$ represents the power spectral
 202 density at each frequency for sample b . Here, SC denotes Spectrum Centering, i.e., zero-frequency
 203 component shift to center the spectrum.

204 To characterize spectral behavior at different scales, we partition the frequency domain into K con-
 205 centric spherical shells \mathcal{I}_k based on frequency magnitude, following the band decomposition strategy
 206 in Bo et al. (2025):

$$\mathcal{I}_k = \left\{ (u, v, w) \mid r_{k-1} < \sqrt{u^2 + v^2 + w^2} \leq r_k \right\}, \quad k = 1, \dots, K, \quad (4)$$

210 with $r_k = \frac{k \min(D, H, W)}{2}$, which normalizes the frequency bands relative to the spatial dimensions,
 211 allowing scale-invariant spectral partitioning. This decomposition enables frequency-aware charac-
 212 terization of low-frequency structural content and high-frequency boundary information. For each
 213 sample b and frequency band k , we aggregate the spectral power within the corresponding shell:

$$S_b^{(k)} = \sum_{(u, v, w) \in \mathcal{I}_k} E_b(u, v, w). \quad (5)$$

216 To reduce statistical fluctuations and enhance training stability, we apply temporal smoothing over
 217 a sliding window of recent batches:
 218

$$219 \quad \tilde{S}^{(k)} = \frac{1}{W} \sum_{w=1}^W \frac{1}{|\mathcal{B}_w|} \sum_{b \in \mathcal{B}_w} S_{b,w}^{(k)}, \quad (6)$$

$$220$$

$$221$$

222 where W is the window size, $w = W$ corresponds to the current batch, and $w = 1$ corresponds to the
 223 oldest batch within the window. This smoothing aggregates spectral power statistics over multiple
 224 samples and batches to reduce noise and sample-specific variance. Let $\tilde{S} = (\tilde{S}^{(1)}, \dots, \tilde{S}^{(K)})$ denote
 225 the vector of smoothed spectral power across all K frequency bands. During early training, when
 226 historical batches are unavailable, we replicate the current batch statistics to initialize the window
 227 and ensure numerical stability. This temporally smoothed spectral profile provides a consistent and
 228 robust reference for regulating spectral power distributions in frequency bands throughout training,
 229 thereby supporting frequency-aware calibration.
 230

231 3.3 POWER SPECTRAL ENTROPY REGULARIZATION

232 Leveraging the temporally smoothed spectral profile vector \tilde{S} , we introduce a power spectral en-
 233 tropy regularization term, which encourages the model to learn balanced frequency representations
 234 that alleviate spectral bias. It also promotes higher, more informative spectral power to counteract
 235 confidence saturation, thereby facilitating calibrated segmentation.
 236

237 To quantify spectral diversity, we first convert the raw spectral power vectors into probability distri-
 238 butions. For the smoothed spectral profile \tilde{S} and each sample’s profile S_b , we define their normalized
 239 counterparts, \tilde{P} and P_b , as:
 240

$$241 \quad P^{(k)} = \frac{S^{(k)}}{\sum_{j=1}^K S^{(j)} + \varepsilon}, \quad (7)$$

$$242$$

243 where S is either \tilde{S} or S_b , and ε is a small constant (e.g., 10^{-6}) to ensure numerical stability in both
 244 the normalization and entropy calculation steps. The spectral entropy is then computed using the
 245 standard Shannon entropy formula:
 246

$$247 \quad H_{\text{spec}}(P) = - \sum_{k=1}^K P^{(k)} \log(P^{(k)} + \varepsilon). \quad (8)$$

$$248$$

249 Here, P can be \tilde{P} or P_b . We select Shannon entropy as it is a principled measure from information
 250 theory for quantifying the uniformity of a probability distribution. A higher spectral entropy indi-
 251 cates that power is more evenly distributed across all frequency bands rather than being concentrated
 252 in a few. This directly aligns with our goal of encouraging richer, more balanced frequency repre-
 253 sentations for better uncertainty estimation. The entropy $H_{\text{spec}}(P_b)$ is computed independently for
 254 each sample b in a batch. While this compresses the spectrum into a summary statistic, it intention-
 255 ally quantifies the spectral uniformity of each sample to address spectral bias. By penalizing this
 256 per-sample value, our method enhances the frequency representation of each specific prediction,
 257 thereby preserving its unique characteristics rather than obscuring them.
 258

259 To address spectral bias and the resulting confidence saturation, we introduce a hinge-like spectral
 260 regularization loss. It encourages each sample’s spectral entropy $H_{\text{spec}}(P_b)$ to approach or exceed
 261 the dynamically updated target entropy $H_{\text{spec}}(\tilde{P})$:
 262

$$263 \quad \mathcal{L}_{\text{Spectral}} = \frac{1}{B} \sum_{b \in B} \left[\max(0, H_{\text{spec}}(\tilde{P}) - H_{\text{spec}}(P_b)) \right]^2. \quad (9)$$

$$264$$

265 The mechanism of this loss directly counteracts spectral bias. The hinge formulation creates a
 266 targeted learning signal: a penalty is incurred only when a sample’s spectral entropy is deficient
 267 compared to the dynamic target. Minimizing this penalty formally encourages a more uniform
 268 spectral distribution by pushing power from dominant low-frequency bands into underrepresented
 269 high-frequency bands. While entropy itself is scale-invariant, this re-balancing forces the model to
 increase the total spectral energy of the logit map to avoid compromising the task loss. This prevents

270 the generation of overly smooth, low-energy confidence maps, directly mitigating the effects of
271 confidence saturation.

272 The $\max(\cdot, 0)$ operation ensures that only samples with spectral entropy below the adaptive target
273 incur penalties. This selective penalization encourages the model to enhance frequency-domain
274 diversity while maintaining calibration performance for already well-calibrated samples.

276 3.4 OVERALL TRAINING OBJECTIVE

278 We integrate our spectral regularization with the conventional segmentation objective through a
279 weighted combination:

$$280 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}} + \lambda \mathcal{L}_{\text{Spectral}}, \quad (10)$$

281 where \mathcal{L}_{CE} is the cross-entropy loss for pixel-wise accuracy, and $\lambda > 0$ balances the trade-off be-
282 tween segmentation performance and uncertainty calibration. The hyperparameter λ allows users to
283 balance segmentation accuracy and calibration strength. This flexibility is important because differ-
284 ent organs or lesions exhibit varying levels of uncertainty, requiring tailored calibration strategies to
285 reflect the underlying uncertainty characteristics in each case optimally.

286 4 EXPERIMENTS

289 4.1 DATASETS AND IMPLEMENTATION DETAILS

291 We conducted experiments on six public medical imaging datasets, covering diverse anatomical
292 structures and imaging modalities, to comprehensively evaluate our method. These datasets are
293 Brain Tumor Segmentation (BraTS) 2020 Menze et al. (2014), Automated Cardiac Diagnosis Chal-
294 lenge (ACDC) Bernard et al. (2018), Fast and Low GPU memory Abdominal oRgan sEgmentation
295 (FLARE) 2021 Ma et al. (2022), MICCAI Grand Challenge on 6-month Infant Brain MRI Segmen-
296 tation (iSeg) 2017 Sun et al. (2021), A Tumour and Liver Automatic Segmentation (ATLAS) 2023
297 Quinton et al. (2023), and Prostate MR Image Segmentation (PROMISE) 2012 Litjens et al. (2014).
298 All datasets were split into training, validation, and test sets with a ratio of 4:1:1.

299 Experiments were conducted on Ubuntu 22.04 with an NVIDIA RTX 4090 GPU, utilizing the U-
300 Net architecture Ronneberger et al. (2015). We adopted consistent training settings across all exper-
301 iments, including a batch size of 2, input patch size of $96 \times 96 \times 96$, and the SGD optimizer (initial
302 learning rate 0.01). Input data were normalized to $[0, 1]$.

303 4.2 EVALUATION METRICS AND COMPARISON METHODS

305 Segmentation performance was evaluated using Dice Similarity Coefficient (DSC), 95% Hausdorff
306 Distance (HD95), and Average Surface Distance (ASD), which collectively assess overlap accu-
307 racy, boundary error, and surface deviation, respectively. To evaluate calibration, we used Expected
308 Calibration Error (ECE) as the primary metric, following the protocol in Nixon et al. (2019), and
309 included Static Calibration Error (SCE) and Thresholded Adaptive Calibration Error (TACE). SCE
310 generalizes ECE to multi-class settings via class-wise binning, while TACE improves robustness
311 through equal-sized binning and probability thresholding. Both ECE and SCE were computed using
312 $B = 15$ bins, and TACE employed a threshold $\epsilon = 0.001$ as in Murugesan et al. (2024).

313 All comparison methods are in-training calibration strategies built upon the cross-entropy loss, con-
314 sistent with our approach. We implement these baselines using the optimal hyperparameter config-
315 urations reported in their respective original publications, a standard practice for fair benchmarking.
316 These include Focal Loss (FL, $\gamma = 3$) Lin et al. (2017), Label Smoothing (LS, $\alpha = 0.1$) Szegedy
317 et al. (2016), Margin-based Label Smoothing (MbLS, $\lambda = 0.1, m = 5$) Murugesan et al. (2023b),
318 Spatially Variant Label Smoothing (SVLS, $\sigma = 2$) Islam & Glocker (2021), and Class and Region-
319 Adaptive Constraints (CRaC, $\gamma = 1.2, \mu = 0.9, R = 2, \text{margin} = 5$) Murugesan et al. (2024).

320 5 RESULTS AND DISCUSSION

321 **Quantitative Evaluation in Calibration and Segmentation.** Table 1 shows that our method
322 achieves the best and second-best segmentation performance across all metrics, outperforming the

324

325
326
327
Table 1: Quantitative comparison of segmentation performance across multiple datasets (DSC \uparrow ,
HD95 \downarrow , ASD \downarrow). \uparrow indicates higher is better, \downarrow indicates lower is better. **Bold** denotes the best result,
and *italics* indicate the second-best.

Dataset	Method & Publication																				
	DSC \uparrow (%)								HD95 \downarrow												
	CE	FL	LS	MbLS	SVLS	CRaC	Ours	CE	FL	LS	MbLS	SVLS	CRaC	Ours	CE	FL	LS	MbLS	SVLS	CRaC	Ours
BraTS2020	-	ICCV	CVPR	Media	IPMI	MICCAI	-	-	ICCV	CVPR	Media	IPMI	MICCAI	-	-	ICCV	CVPR	Media	IPMI	MICCAI	-
iSeg2017	86.9	84.6	86.7	85.9	85.9	87.2	2.27	2.80	2.52	2.91	2.46	2.58	2.23	0.40	0.44	0.37	0.41	0.47	0.39	0.37	
FLARE2021	94.2	94.0	94.1	94.1	94.2	94.2	<i>1.01</i>	1.46	1.13	1.15	1.17	<i>0.85</i>	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05	
ACDC	91.5	87.7	91.3	91.5	91.2	91.4	92.5	8.29	6.17	8.37	7.38	8.40	7.48	4.55	2.64	2.22	2.49	2.09	2.22	2.10	1.34
ATLAS2023	91.1	89.4	91.0	90.7	91.1	91.0	91.3	0.75	0.90	0.88	0.83	0.80	0.81	<i>0.74</i>	0.10	0.12	0.11	<i>0.10</i>	0.11	0.11	0.10
PROMISE2012	68.7	65.9	69.1	70.5	68.3	69.8	71.8	22.20	20.19	19.76	18.84	20.18	20.31	17.82	4.99	4.53	4.46	3.54	5.21	3.87	3.57
	80.2	78.9	79.6	79.1	79.5	80.1	81.2	19.80	18.79	19.93	22.05	20.33	18.95	18.24	7.36	8.51	5.22	8.99	8.86	4.32	4.18

334

335
336
Table 2: Quantitative comparison of calibration performance across multiple datasets (ECE \downarrow , SCE \downarrow ,
TACE \downarrow).

Dataset	Method & Publication																							
	ECE \downarrow ($\times 10^{-3}$)								SCE \downarrow ($\times 10^{-3}$)								TACE \downarrow ($\times 10^{-3}$)							
	CE	FL	LS	MbLS	SVLS	CRaC	Ours	CE	FL	LS	MbLS	SVLS	CRaC	Ours	CE	FL	LS	MbLS	SVLS	CRaC	Ours			
BraTS2020	-	ICCV	CVPR	Media	IPMI	MICCAI	-	-	ICCV	CVPR	Media	IPMI	MICCAI	-	-	ICCV	CVPR	Media	IPMI	MICCAI	-			
iSeg2017	9.1	5.5	25.2	1.9	2.1	2.2	1.5	10.7	6.4	13.8	4.0	5.0	5.1	0.8	42.7	37.7	61.4	<i>31.5</i>	32.8	39.4	20.2			
FLARE2021	4.5	6.5	17.7	<i>2.1</i>	2.6	2.6	<i>2.0</i>	11.9	4.0	8.5	2.3	2.9	2.9	2.0	15.6	17.6	33.8	<i>11.8</i>	13.5	13.4	6.4			
ACDC	25.5	19.4	6.5	2.2	2.5	2.4	0.8	18.1	17.3	13.0	11.5	9.1	9.4	0.6	37.8	52.7	80.0	30.4	24.2	28.5	3.1			
ATLAS2023	32.5	32.3	71.9	23.2	27.9	28.1	<i>2.1</i>	16.6	16.7	38.1	10.6	13.3	<i>1.1</i>	<i>1.1</i>	32.0	38.0	48.1	26.7	33.9	<i>5.3</i>	<i>18.5</i>			
PROMISE2012	24.9	9.4	50.4	7.2	6.8	7.0	5.5	15.2	22.9	44.3	9.6	22.7	5.5	4.2	<i>18.1</i>	40.7	89.9	20.8	37.8	37.0	15.9			
	11.7	12.6	20.2	12.8	20.7	20.8	10.8	25.7	34.2	52.8	18.0	54.7	52.6	14.8	48.1	45.6	55.0	<i>41.7</i>	64.1	41.2	55.7			

344

345
346
347
348
349
350
351
352
353
354
355
356
357
CE baseline and leading segmentation methods. As shown in Table 1, our method demonstrates
consistently strong and robust performance across Dice, HD95, and ASD metrics, validating its
effectiveness across diverse segmentation tasks. As shown in Table 2, our method demonstrates
state-of-the-art calibration, achieving the lowest ECE and SCE scores across all datasets. These
results highlight the reliability and robustness of our approach in producing well-calibrated confidence
estimates across the full probability spectrum. CRaC’s superior TACE performance on ACDC and
PROMISE2012 stems from its task-specific calibration tailored for fine-grained confidence adjustments in small, well-defined anatomical structures such as heart chambers and the prostate. By
leveraging spatial consistency and localized uncertainty modeling, CRaC effectively reduces subtle
miscalibrations in high-certainty regions emphasized by TACE. However, this focused calibration
strategy can sometimes compromise segmentation accuracy. In contrast, our method achieves a
more balanced calibration reflected in ECE and SCE metrics, alongside consistently superior segmentation
performance across diverse datasets.358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
399
Qualitative Analysis in Calibration and Spectral Analysis. Fig. 2 illustrates how our method
enhances uncertainty calibration and segmentation performance on BraTS2020. The CE baseline
yields disconnected boundaries in the confidence map (Fig. 2(a)), resulting in overconfident behavior in the high-confidence region of the reliability diagram (Fig. 2(b)). Other methods, particularly FL and LS, generate low-confidence boundaries but apply overly aggressive confidence suppression, resulting in diffuse and spatially imprecise uncertainty regions on the confidence map, which manifest as systematically underconfident predictions in the lower-confidence region of the reliability diagram. Our spectral regularization and smoothing promote a balanced frequency representation, enabling sharper and more precise boundary localization in the confidence maps. Fig. 2 illustrates how our method enhances uncertainty calibration and segmentation performance on BraTS2020. The CE baseline yields disconnected boundaries in the confidence map (Fig. 2(a)), resulting in systematic overconfidence (under the ideal curve) in the high-confidence region of the reliability diagram (Fig. 2(b)). On the other hand, FL applies overly aggressive suppression to generate low-confidence boundaries, leading to diffuse and spatially imprecise uncertainty regions in the confidence map, which manifest as consistent underconfidence (above the ideal curve) in the high-confidence region of the reliability diagram. The rest of the methods are experiencing underconfidence in their lower-confident predictions to some extent, resulting in significantly higher ECE than our method.399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509
Fig. 3 provides a spectral perspective on calibration by linking the power spectral density (PSD) distribution to miscalibration patterns observed in the reliability diagram (Fig. 2(b)). The CE baseline exhibits the lowest overall spectral power, reflecting strong confidence saturation and a steep PSD slope that indicates significant spectral imbalance. This spectral bias corresponds to its overcon-

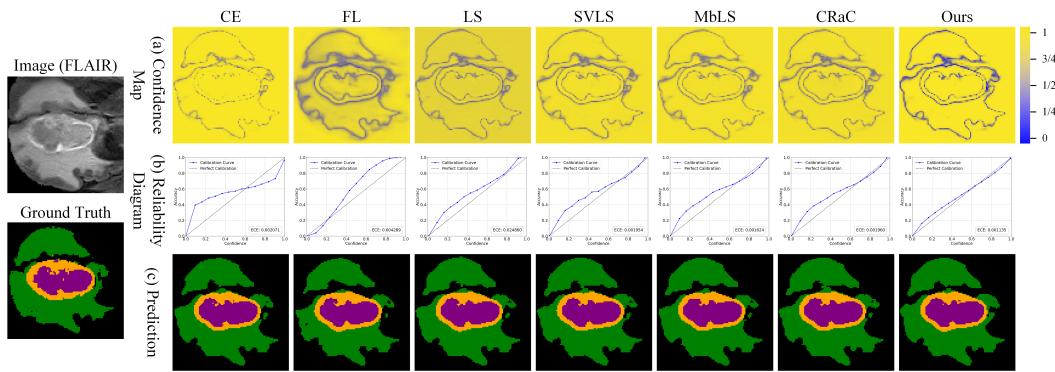


Figure 2: BraTS2020 brain tumor segmentation: (a) confidence maps with blue (low confidence) and orange (high confidence), (b) reliability diagrams showing calibration quality against the ideal diagonal baseline, and (c) segmentation results comparison with black (background), green (edema), purple (non-enhancing necrosis), and orange (enhancing tumor).

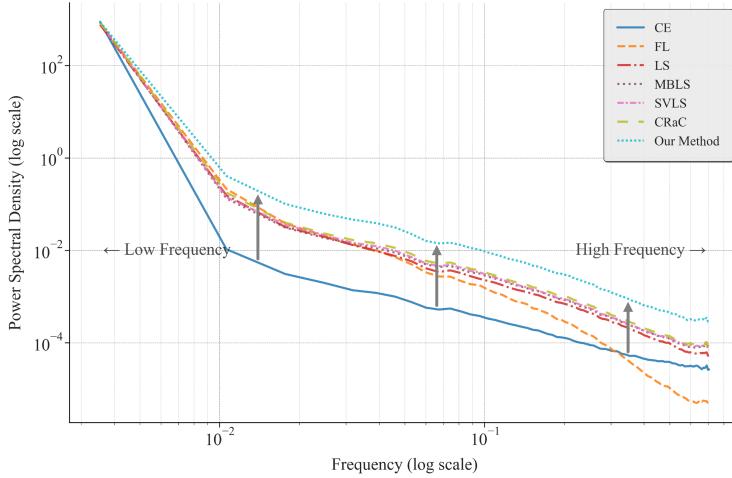


Figure 3: Comparison of power spectral density of confidence maps on the BraTS2020 dataset across different approaches.

fident predictions in high-confidence regions and underconfident predictions in low-confidence regions in the reliability diagram. Focal Loss reinforces low-frequency dominance, which moderately enhances the PSD in low-frequency regions but sharply suppresses high-frequency components—its high-frequency PSD is even lower than CE. This imbalance hinders its ability to represent boundary-level uncertainty, resulting in underconfident predictions in high-confidence regions. Other methods show comparable overall spectral power and insufficient high-frequency representation, which aligns with their mild underconfidence in the reliability diagram. In contrast, our method achieves the highest overall spectral power and the most balanced frequency distribution, particularly in the high-frequency regions critical for boundary uncertainty. This enables accurate modeling of detailed confidence variations and contributes to the best overall calibration performance on multiple datasets.

To validate the generality of our approach, we applied it across a diverse set of widely adopted segmentation architectures (Fig. 4), including nnUNet Isensee et al. (2021), SwinUNETR Hatamizadeh et al. (2021), UNet++ Zhou et al. (2019), AttentionUNet Oktay et al. (2018), and TransUNet Chen et al. (2021). Using a fixed set of hyperparameters for all experiments, our method consistently improved both segmentation accuracy and calibration. This result demonstrates the robustness and plug-and-play applicability of our approach.

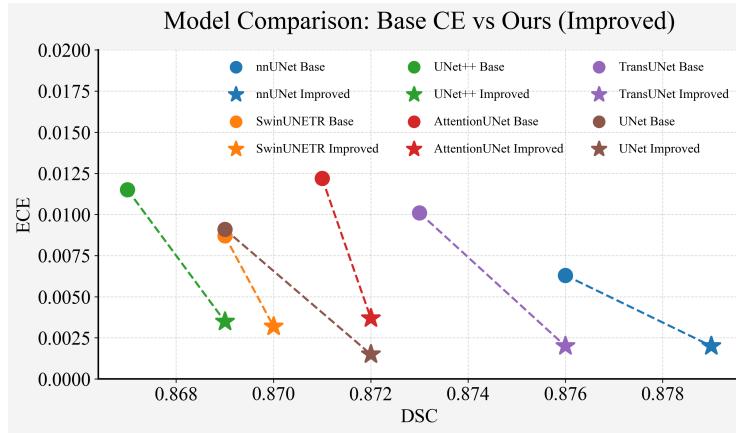


Figure 4: Generalizability of the method across segmentation architectures: improvements in segmentation (DSC) and calibration (ECE) performance compared to the CE baseline.

Table 3: Ablation study results of our method on the BraTS2020 and FLARE2021 datasets. We evaluate the contribution of each key component across segmentation metrics (DSC, HD95, ASD) and calibration metrics (ECE, SCE, TACE). The configurations are: Baseline (\mathcal{L}_{CE}), adding spectral entropy regularization without temporal smoothing (\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$ w/o W), and our full method with smoothing (\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$).

Configuration	BraTS2020						FLARE2021					
	DSC↑	HD95↓	ASD↓	ECE↓	SCE↓	TACE↓	DSC↑	HD95↓	ASD↓	ECE↓	SCE↓	TACE↓
Baseline (\mathcal{L}_{CE})	0.869	2.27	0.40	0.0091	0.0107	0.0427	0.915	8.29	2.64	0.0255	0.0181	0.0378
\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$ w/o W	0.870	2.25	0.39	0.0065	0.0078	0.0315	0.921	6.15	1.98	0.0170	0.0123	0.0210
\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$	0.872	2.23	0.37	0.0015	0.0008	0.0202	0.925	4.55	1.34	0.0008	0.0006	0.0031

Ablation Studies. Our ablation studies (Table 3) evaluate the contribution of each component. Introducing unsmoothed spectral regularization (\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$ w/o W) improves both segmentation and calibration metrics over the baseline, confirming the benefit of frequency/domain analysis. However, the gains in boundary/sensitive metrics (HD95, ASD) are modest, suggesting that instantaneous spectral feedback is noisy. Our full method, which adds temporal smoothing of the power spectrum (\mathcal{L}_{CE} w/ $\mathcal{L}_{Spectral}$), yields substantial improvements across all metrics. This demonstrates that stabilizing the spectral target is crucial for achieving superior segmentation accuracy and robust calibration.

6 CONCLUSION

In this work, we introduced a frequency-aware calibration framework to address the persistent challenge of confidence miscalibration in medical image segmentation. By analyzing model uncertainty through the lens of frequency domain behavior, we identified spectral bias and confidence saturation as two fundamental causes of miscalibration. Our method combines spectral entropy regularization, which promotes a balanced frequency spectrum and increases overall spectral power, with a temporal spectral smoothing module that stabilizes frequency-wise statistics across training batches. This joint design enables the model to more accurately calibrate the predictions of both high-frequency boundary and low-frequency structure. Experiments across six public datasets and multiple segmentation architectures confirm that our approach consistently improves calibration quality without degrading segmentation performance. These results demonstrate the potential of frequency domain calibration as a robust foundation for developing more reliable and trustworthy medical image segmentation systems.

486 REFERENCES
487

488 Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. The need for uncertainty quantifi-
489 cation in machine-assisted medical decision making. *Nature Machine Intelligence*, 1(1):20–23,
490 2019.

491 Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang, Pheng-Ann Heng,
492 Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez Ballester, et al. Deep learning
493 techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem
494 solved? *IEEE transactions on medical imaging*, 37(11):2514–2525, 2018.

495 Yuntian Bo, Yazhou Zhu, Lunbo Li, and Haofeng Zhang. Famnet: Frequency-aware matching
496 network for cross-domain few-shot medical image segmentation. In *Proceedings of the AAAI
497 Conference on Artificial Intelligence*, pp. 1889–1897, 2025.

498 Chaoyu Chen, Xin Yang, Rusi Chen, Junxuan Yu, Liwei Du, Jian Wang, Xindi Hu, Yan Cao, Yingy-
499 ing Liu, and Dong Ni. Ffpn: Fourier feature pyramid network for ultrasound image segmentation.
500 In *International Workshop on Machine Learning in Medical Imaging*, pp. 166–175. Springer,
501 2023a.

502 Fang Chen, Jian Wang, Han Liu, Wentao Kong, Zhe Zhao, Longfei Ma, Hongen Liao, and Daoqiang
503 Zhang. Frequency constraint-based adversarial attack on deep neural networks for medical image
504 classification. *Computers in biology and medicine*, 164:107248, 2023b.

505 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
506 and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
507 *arXiv preprint arXiv:2102.04306*, 2021.

508 Tom Fawcett and Alexandru Niculescu-Mizil. Pav and the roc convex hull. *Machine Learning*, 68:
509 97–106, 2007.

510 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
511 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
512 PMLR, 2016.

513 Vandan Gorade, Sparsh Mittal, Debdesh Jha, Rekha Singhal, and Ulas Bagci. Harmonized spatial
514 and spectral learning for generalized medical image segmentation. In *International Conference
515 on Pattern Recognition*, pp. 178–193. Springer, 2024.

516 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
517 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

518 Richard W Hamming and Samuel D Stearns. Digital filters. *IEEE Transactions on Systems, Man,
519 and Cybernetics*, 9(1):67–67, 1979.

520 Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu.
521 Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
522 *International MICCAI brainlesion workshop*, pp. 272–284. Springer, 2021.

523 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnun-
524 et: a self-configuring method for deep learning-based biomedical image segmentation. *Nature
525 methods*, 18(2):203–211, 2021.

526 Mobarakol Islam and Ben Glocker. Spatially varying label smoothing: Capturing uncertainty from
527 expert annotations. In *Information Processing in Medical Imaging: 27th International Confer-
528 ence, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings* 27, pp. 677–688. Springer,
529 2021.

530 Alain Jungo, Raphael Meier, Ekin Ermis, Marcela Blatti-Moreno, Evelyn Herrmann, Roland Wiest,
531 and Mauricio Reyes. On the effect of inter-observer variability for a reliable estimation of un-
532 certainty of medical image segmentation. In *Medical Image Computing and Computer Assisted
533 Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16–20,
534 2018, Proceedings, Part I*, pp. 682–690. Springer, 2018.

540 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 541 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 542 30, 2017.

543 Agostina J Larrazabal, César Martínez, Jose Dolz, and Enzo Ferrante. Maximum entropy on er-
 544 roneous predictions: Improving model calibration for medical image segmentation. In *Inter-
 545 national conference on medical image computing and computer-assisted intervention*, pp. 273–283.
 546 Springer, 2023.

547 Jiaming Li, Hongtao Xie, Jiahong Li, Zhongyuan Wang, and Yongdong Zhang. Frequency-aware
 548 discriminative feature learning supervised by single-center loss for face forgery detection. In
 549 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6458–
 550 6467, 2021.

551 Li Li, Qiyuan Liu, Xinyi Shi, Yujia Wei, Huanqi Li, and Hanguang Xiao. Ucfiltransnet: Cross-
 552 filtering transformer-based network for ct image segmentation. *Expert Systems with Applications*,
 553 238:121717, 2024.

554 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 555 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 556 2980–2988, 2017.

557 Geert Litjens, Robert Toth, Wendy Van De Ven, Caroline Hoeks, Sjoerd Kerkstra, Bram Van Gin-
 558 enken, Graham Vincent, Gwenael Guillard, Neil Birbeck, Jindang Zhang, et al. Evaluation of
 559 prostate segmentation algorithms for mri: the promise12 challenge. *Medical image analysis*, 18
 560 (2):359–373, 2014.

561 Jun Ma, Yao Zhang, Song Gu, Xingle An, Zhihe Wang, Cheng Ge, Congcong Wang, Fan Zhang,
 562 Yu Wang, Yinan Xu, et al. Fast and low-gpu-memory abdomen ct organ segmentation: the flare
 563 challenge. *Medical Image Analysis*, 82:102616, 2022.

564 Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin
 565 Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al. The multimodal
 566 brain tumor image segmentation benchmark (brats). *IEEE transactions on medical imaging*, 34
 567 (10):1993–2024, 2014.

568 Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dok-
 569 nia. Calibrating deep neural networks using focal loss. *Advances in neural information processing
 570 systems*, 33:15288–15299, 2020.

571 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? *Ad-
 572 vances in neural information processing systems*, 32, 2019.

573 Balamurali Murugesan, Sukesh Adiga Vasudeva, Bingyuan Liu, Herve Lombaert, Ismail Ben Ayed,
 574 and Jose Dolz. Trust your neighbours: Penalty-based constraints for model calibration. In *Inter-
 575 national conference on medical image computing and computer-assisted intervention*, pp. 572–581.
 576 Springer, 2023a.

577 Balamurali Murugesan, Bingyuan Liu, Adrian Galdran, Ismail Ben Ayed, and Jose Dolz. Calibrating
 578 segmentation networks with margin-based label smoothing. *Medical Image Analysis*, 87:102826,
 579 2023b.

580 Balamurali Murugesan, Julio Silva-Rodriguez, Ismail Ben Ayed, and Jose Dolz. Class and region-
 581 adaptive constraints for network calibration. In *International Conference on Medical Image Com-
 582 puting and Computer-Assisted Intervention*, pp. 57–67. Springer, 2024.

583 Balamurali Murugesan, Sukesh Adiga Vasudeva, Bingyuan Liu, Hervé Lombaert, Ismail Ben Ayed,
 584 and Jose Dolz. Neighbor-aware calibration of segmentation networks with penalty-based con-
 585 straints. *Medical Image Analysis*, pp. 103501, 2025.

586 Tanya Nair, Doina Precup, Douglas L Arnold, and Tal Arbel. Exploring uncertainty measures in
 587 deep networks for multiple sclerosis lesion detection and segmentation. *Medical image analysis*,
 588 59:101557, 2020.

594 Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measur-
 595 ing calibration in deep learning. In *CVPR workshops*, 2019.
 596

597 Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
 598 Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
 599 Learning where to look for the pancreas. *arXiv preprint arXiv:1804.03999*, 2018.

600 Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
 601 neural networks by penalizing confident output distributions. *arXiv preprint arXiv:1701.06548*,
 602 2017.

603 John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
 604 likelihood methods. *Advances in large margin classifiers*, 10(3):61–74, 1999.

605 Félix Quinton, Romain Popoff, Benoît Presles, Sarah Leclerc, Fabrice Meriaudeau, Guillaume
 606 Nodari, Olivier Lopez, Julie Pellegrinelli, Olivier Chevallier, Dominique Ginhac, et al. A tu-
 607 mour and liver automatic segmentation (atlas) dataset on contrast-enhanced magnetic resonance
 608 imaging for hepatocellular carcinoma. *Data*, 8(5):79, 2023.

609

610 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 611 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference
 612 on machine learning*, pp. 5301–5310. PMLR, 2019.

613

614 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 615 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

616

617 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
 618 tion uncertainty. *Advances in neural information processing systems*, 31, 2018.

619

620 Yue Sun, Kun Gao, Zhengwang Wu, Guannan Li, Xiaopeng Zong, Zhihao Lei, Ying Wei, Jun Ma,
 621 Xiaoping Yang, Xue Feng, et al. Multi-site infant brain segmentation algorithms: the iseg-2019
 622 challenge. *IEEE Transactions on Medical Imaging*, 40(5):1363–1376, 2021.

623

624 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 625 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on
 626 computer vision and pattern recognition*, pp. 2818–2826, 2016.

627

628 Xianlun Tang, Jiangping Peng, Bing Zhong, Jie Li, and Zhenfu Yan. Introducing frequency represen-
 629 tation into convolution neural networks for medical image segmentation via twin-kernel fourier
 630 convolution. *Computer Methods and Programs in Biomedicine*, 205:106110, 2021.

631

632 Christian Tomani, Sebastian Gruber, Muhammed Ebrar Erdem, Daniel Cremers, and Florian Buet-
 633 tner. Post-hoc uncertainty calibration for domain drift scenarios. In *Proceedings of the IEEE/CVF
 634 Conference on Computer Vision and Pattern Recognition*, pp. 10124–10132, 2021.

635

636 Meet P Vadera, Soumya Ghosh, Kenney Ng, and Benjamin M Marlin. Post-hoc loss-calibration for
 637 bayesian neural networks. In *Uncertainty in Artificial Intelligence*, pp. 1403–1412. PMLR, 2021.

638

639 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
 640 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.

641

642 Michael Yeung, Leonardo Rundo, Yang Nan, Evis Sala, Carola-Bibiane Schönlieb, and Guang Yang.
 643 Calibrating the dice loss to handle neural network overconfidence for biomedical image segmen-
 644 tation. *Journal of Digital Imaging*, 36(2):739–752, 2023.

645

646 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
 647 perspective on model robustness in computer vision. *Advances in Neural Information Processing
 648 Systems*, 32, 2019.

649

650 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 651 and naive bayesian classifiers. In *Icml*, 2001.

648 Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
 649 Redesigning skip connections to exploit multiscale features in image segmentation. *IEEE trans-*
 650 *actions on medical imaging*, 39(6):1856–1867, 2019.

651 Yiqin Zhu, Jianyong Chen, Lingyu Liang, Zhanghui Kuang, Lianwen Jin, and Wayne Zhang. Fourier
 652 contour embedding for arbitrary-shaped text detection. In *Proceedings of the IEEE/CVF confer-*
 653 *ence on computer vision and pattern recognition*, pp. 3123–3131, 2021.

655 A APPENDIX

656 This appendix provides supplementary materials to support the main manuscript. We offer a more
 657 detailed interpretation of the multi-dimensional performance comparison and a comprehensive sen-
 658 sitivity analysis of our method’s key hyperparameters. A statement regarding the use of Large
 659 Language Models (LLMs) in preparing this manuscript is provided in Section A.1.

660 A.1 STATEMENT ON LLM USAGE

661 In accordance with conference guidelines, we disclose the use of a Large Language Model (LLM)
 662 during the preparation of this manuscript. The LLM was employed exclusively for copyediting to
 663 improve the clarity, conciseness, and grammatical correctness of the text. All scientific contribu-
 664 tions—including research ideation, methodological design, experimental setup, data analysis, and
 665 interpretation of results—were conducted entirely by the authors. The LLM did not generate sci-
 666 entific content or insights. The authors have reviewed, edited, and assume full responsibility for the
 667 final content of this paper.

668 A.2 DATA PREPROCESSING

669 A standard preprocessing pipeline was applied to all medical image data to ensure consistency across
 670 datasets and stable model training. This pipeline was uniformly applied to all methods under com-
 671 parison to ensure a fair evaluation.

672 **Image Resampling and Spacing Normalization:** All images were resampled to a unified isotropic
 673 voxel spacing, defined as the median voxel spacing of the dataset. Trilinear interpolation was used
 674 for intensity images, whereas nearest-neighbor interpolation was applied to segmentation masks to
 675 preserve discrete label integrity.

676 **Intensity Normalization:** For CT images, Hounsfield Unit (HU) values were clipped to a clinically
 677 relevant range of [-1000, 400] HU, followed by Z-score normalization (i.e., subtracting the mean and
 678 dividing by the standard deviation). For MRI data, Z-score normalization was applied exclusively to
 679 foreground voxels (i.e., non-zero values) to prevent background regions from skewing the statistics.

680 **Data Augmentation:** During training, a suite of data augmentation techniques was employed to
 681 enhance model robustness and generalization, including gamma transformation, additive Gaussian
 682 noise, Gaussian blurring, and brightness adjustment.

683 A.3 THEORETICAL MOTIVATION

684 **From Confidence Maps to 3D Signals.** Our framework formulates the model’s confidence map
 685 as a 3D signal. Given a 3D medical image, a segmentation model f_θ produces logits $z(\mathbf{x})$ at each
 686 spatial location $\mathbf{x} \in \mathbb{R}^3$. A scalar confidence map, $c(\mathbf{x})$, is derived from these logits (e.g., via
 687 the maximum logit value) to represent the model’s spatial confidence distribution. The 3D Fourier
 688 Transform decomposes this signal into its constituent frequency components:

$$689 \hat{c}(\mathbf{k}) = \mathcal{F}\{c(\mathbf{x})\} = \iiint_{\mathbb{R}^3} c(\mathbf{x}) e^{-i2\pi\mathbf{k}\cdot\mathbf{x}} d\mathbf{x} \quad (11)$$

690 where \mathbf{k} is the 3D frequency vector.

691 **Spectral Signatures of Segmentation Quality.** The Power Spectral Density (PSD), $E(\mathbf{k}) =$
 692 $|\hat{c}(\mathbf{k})|^2$, quantifies the distribution of the signal’s energy across frequencies. By Parseval’s the-
 693 oreom, the total energy is conserved between the spatial and frequency domains. Low-frequency

702 components correspond to large, smooth structures in $c(\mathbf{x})$, whereas high-frequency components
 703 capture sharp transitions and fine details. An effective model should produce confidence maps that
 704 are smooth within homogeneous regions (low frequencies) but sharp at anatomical boundaries (high
 705 frequencies). A common failure mode, particularly for over-confident models, is the suppression of
 706 high-frequency detail, yielding overly smooth or "blob-like" predictions. This manifests as a PSD
 707 pathologically concentrated in the low-frequency bands.

708 **Spectral Entropy as an Information-Theoretic Regularizer.** We employ spectral entropy to quanti-
 709 fy the structural complexity of the confidence map. The frequency space is partitioned into K dis-
 710 joint bands $\{\mathcal{I}_k\}_{k=1}^K$, and the power in each band is defined as $S^{(k)} = \int_{\mathbf{k} \in \mathcal{I}_k} E(\mathbf{k}) d\mathbf{k}$. Normalizing
 711 these values yields a probability distribution $P = \{P^{(k)}\}_{k=1}^K$, where $P^{(k)} = S^{(k)} / \sum_j S^{(j)}$. The
 712 spectral entropy is the Shannon entropy of this distribution:

$$714 \quad H(P) = - \sum_{k=1}^K P^{(k)} \log(P^{(k)} + \varepsilon) \quad (12)$$

717 This metric aligns with the **Principle of Maximum Entropy**, where a higher-entropy distribution is
 718 more uniform and embodies fewer structural assumptions. Low spectral entropy indicates a degen-
 719 erate, low-information output (e.g., over-smoothed) characterized by an overly simplistic confidence
 720 structure.

721 **Objective as a Corrective Regularizer.** Our objective does not maximize entropy directly but
 722 instead acts as a corrective measure against spectral collapse. The loss, $\mathcal{L}_{\text{Spectral}} \propto \max(0, H_{\text{target}} -$
 723 $H_{\text{sample}})^2$, penalizes a sample only if its spectral entropy H_{sample} falls below a dynamic target H_{target} .
 724 This design is theoretically motivated to enforce a minimum level of structural complexity, thereby
 725 preventing the aforementioned failure mode without discouraging valid, spectrally rich predictions.
 726 It steers the model away from degenerate solutions characterized by overconfidence and excessive
 727 structural simplicity.

729 A.4 ALGORITHM PSEUDOCODE

731 Algorithm 1 details the proposed training procedure. Each training batch undergoes three main
 732 steps:

- 734 **1. Per-Sample Spectral Analysis:** Following a standard forward pass and cross-entropy loss
 735 computation, a scalar confidence map is generated from the maximum logits for each sam-
 736 ple. This map is transformed into the frequency domain, and its PSD is aggregated into K
 737 frequency bands to produce a spectral power vector.
- 738 **2. Dynamic Target Generation:** Spectral power vectors from the current batch are averaged
 739 and appended to a historical buffer of size W . Averaging this buffer yields a temporally
 740 smoothed spectral profile, providing a stable estimate of the desired spectral characteristics.
 741 The Shannon entropy of this profile defines the dynamic target entropy for the current
 742 iteration.
- 743 **3. Regularization and Optimization:** The spectral entropy of each sample is compared
 744 against the dynamic target. A hinge-like loss penalizes samples with entropy below this
 745 target, thereby promoting a more informative spectral distribution. The final objective is a
 746 weighted sum of the cross-entropy loss and this spectral regularization loss.

747 A.5 COMPREHENSIVE PERFORMANCE COMPARISON

749 Fig. 5 presents a holistic performance evaluation, visualizing the trade-off between segmentation
 750 accuracy and uncertainty calibration. In this visualization, superior methods enclose a larger, more
 751 regular polygon. The ideal method would maximize this area, indicating superior performance
 752 across all metrics. Our proposed method exhibits a notably balanced and expansive shape, demon-
 753 strating consistently high segmentation scores (high DSC, low HD95/ASD) and strong calibration
 754 performance (low ECE/SCE/TACE). In contrast, competing methods often display "spiky" profiles;
 755 for instance, some achieve a high DSC at the cost of significantly worse calibration metrics (e.g.,
 ECE, TACE), indicating poor uncertainty estimation. This visual analysis underscores the primary

Algorithm 1 Frequency-Aware Calibration Training Procedure

Require: Model f_θ , training data loader \mathcal{D} , loss weight λ , window size W , number of frequency bands K .

Ensure: Trained model parameters θ .

- 1: Initialize model parameters θ .
- 2: Initialize historical spectral power buffer $\mathcal{S}_{\text{hist}} \leftarrow []$.
- 3: **for** each batch $\{x, y\}$ in \mathcal{D} **do**
- 4: **// Forward Pass and Standard Segmentation Loss**
- 5: $z \leftarrow f_\theta(x)$ ▷ Get logits, shape: (B, C, D, H, W)
- 6: $\mathcal{L}_{\text{CE}} \leftarrow \text{CrossEntropyLoss}(z, y)$
- 7: **// Per-Sample Spectral Analysis**
- 8: Initialize batch spectral loss $\mathcal{L}_{\text{Spectral}} \leftarrow 0$.
- 9: Let S_{batch} be an empty list to store spectral vectors for the current batch.
- 10: **for** $b = 1, \dots, B$ **do** ▷ Iterate over each sample in the batch
- 11: $z_b \leftarrow \max_c z_{b,c}$ ▷ Generate scalar confidence map from logits
- 12: $F_b \leftarrow \text{Shift}(\text{FFT3D}(z_b))$ ▷ Transform to frequency domain
- 13: $E_b \leftarrow |F_b|^2$ ▷ Compute Power Spectral Density (PSD)
- 14: Let $S_b = (S_b^{(1)}, \dots, S_b^{(K)})$ be the spectral power vector for sample b .
- 15: **for** $k = 1, \dots, K$ **do** ▷ Aggregate power in frequency band k
- 16: $S_b^{(k)} \leftarrow \sum_{(u,v,w) \in \mathcal{I}_k} E_b(u, v, w)$
- 17: **end for**
- 18: Append S_b to S_{batch} .
- 19: **end for**
- 20: **// Update Smoothed Spectral Profile and Target Entropy**
- 21: $\bar{S}_{\text{batch}} \leftarrow \frac{1}{B} \sum_{b=1}^B S_{\text{batch}}[b]$ ▷ Average spectral power for the current batch
- 22: Append \bar{S}_{batch} to $\mathcal{S}_{\text{hist}}$.
- 23: **if** $|\mathcal{S}_{\text{hist}}| > W$ **then**
- 24: Remove oldest entry from $\mathcal{S}_{\text{hist}}$.
- 25: **end if**
- 26: $\tilde{S} \leftarrow \frac{1}{|\mathcal{S}_{\text{hist}}|} \sum_{S' \in \mathcal{S}_{\text{hist}}} S'$ ▷ Compute smoothed spectral profile
- 27: $\tilde{P} \leftarrow \text{Normalize}(\tilde{S})$ ▷ Convert to probability distribution
- 28: $H_{\text{target}} \leftarrow \text{ShannonEntropy}(\tilde{P})$ ▷ Compute target entropy
- 29: **// Compute Spectral Regularization Loss for the Batch**
- 30: **for** $b = 1, \dots, B$ **do**
- 31: $S_b \leftarrow S_{\text{batch}}[b]$
- 32: $P_b \leftarrow \text{Normalize}(S_b)$
- 33: $H_{\text{sample}} \leftarrow \text{ShannonEntropy}(P_b)$
- 34: $\text{loss}_b \leftarrow \max(0, H_{\text{target}} - H_{\text{sample}})^2$
- 35: $\mathcal{L}_{\text{Spectral}} \leftarrow \mathcal{L}_{\text{Spectral}} + \text{loss}_b$
- 36: **end for**
- 37: $\mathcal{L}_{\text{Spectral}} \leftarrow \frac{1}{B} \mathcal{L}_{\text{Spectral}}$
- 38: **// Update Model Parameters**
- 39: $\mathcal{L}_{\text{total}} \leftarrow \mathcal{L}_{\text{CE}} + \lambda \mathcal{L}_{\text{Spectral}}$
- 40: Update θ using gradients from $\mathcal{L}_{\text{total}}$.
- 41: **end for**

strength of our approach: achieving a robust balance between segmentation accuracy and uncertainty calibration, a critical requirement for clinical applications where both prediction correctness and confidence reliability are paramount.

A.6 HYPERPARAMETER SENSITIVITY ANALYSIS

Table 4 presents a sensitivity analysis of the key hyperparameters, revealing consistent trends across the BraTS2020 and FLARE2021 datasets. The regularization weight λ exhibits a clear trade-off: small values provide insufficient regularization (high ECE), whereas excessively large values degrade segmentation performance (low DSC). Optimal values (e.g., $\lambda = 0.01$ for BraTS2020,

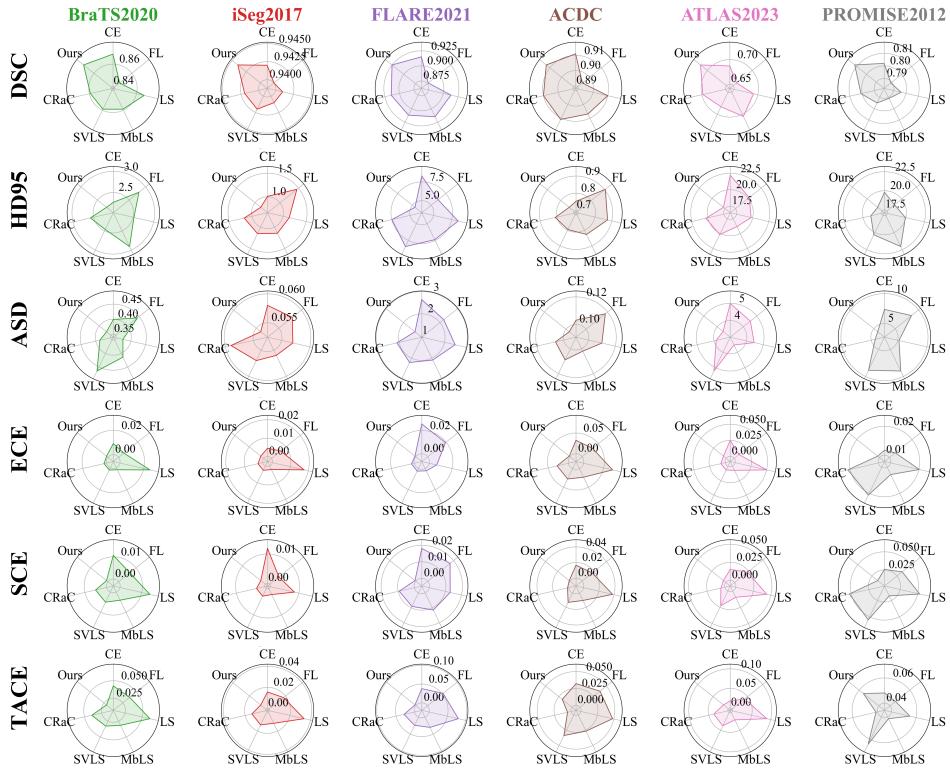


Figure 5: Multi-dimensional radar chart comparing eight methods across segmentation (DSC, HD95, ASD) and calibration (ECE, SCE, TACE) metrics. A larger, more regular area indicates better overall performance.

Table 4: Sensitivity analysis of the key hyperparameters (λ, W, K) on the BraTS2020 and FLARE2021 datasets.

Varying Hyperparameter	Value	BraTS2020		FLARE2021	
		DSC↑	ECE↓	DSC↑	ECE↓
λ (Fixed $W = 50, K = 5$)	0.001	0.870	0.0045	0.922	0.0028
	0.005	0.871	0.0020	0.924	0.0015
	0.010	0.872	0.0015	0.925	0.0008
	0.050	0.871	0.0013	0.925	0.0007
	0.100	0.865	0.0012	0.920	0.0008
W (Fixed $\lambda = 0.01, K = 5$)	10	0.870	0.0025	0.922	0.0014
	25	0.871	0.0018	0.924	0.0010
	50	0.872	0.0015	0.925	0.0008
	75	0.872	0.0016	0.925	0.0009
	100	0.871	0.0022	0.923	0.0013
K (Fixed $\lambda = 0.01, W = 50$)	2	0.870	0.0028	0.923	0.0016
	3	0.871	0.0019	0.925	0.0008
	5	0.872	0.0015	0.925	0.0009
	7	0.871	0.0017	0.924	0.0011
	10	0.870	0.0023	0.922	0.0015

$\lambda = 0.05$ for FLARE2021) balance both objectives effectively. Similarly, the temporal smoothing window W is crucial for a stable entropy target. A small window ($W = 10$) creates a noisy target, whereas a large one ($W = 100$) adapts slowly to distributional shifts; a moderate size ($W \in [10, 75]$) achieves the best results. Finally, the number of frequency bands K determines the granularity of spectral analysis. Too few bands ($K = 2$) oversimplify the spectrum, while too many ($K = 10$) are sensitive to noise. A value between 3 and 7 provides a robust balance, consistent with related

work Bo et al. (2025). These results confirm that the parameter response is stable and predictable, providing clear guidance for application to new datasets.

A.7 DISTRIBUTION ANALYSIS

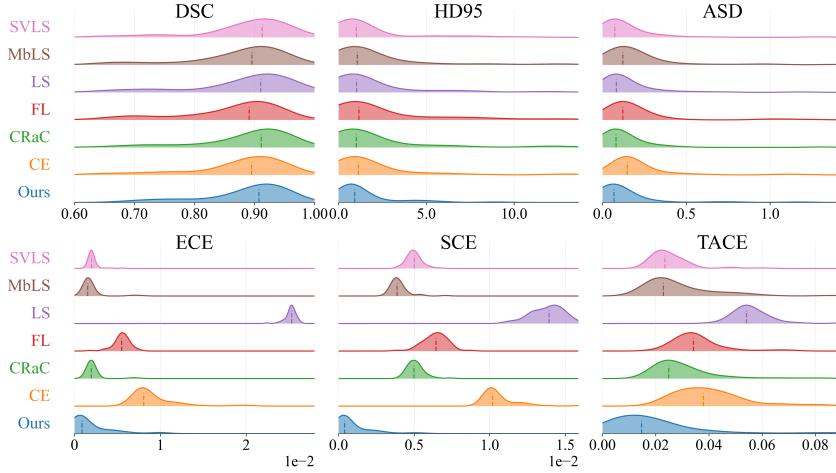


Figure 6: Distribution analysis of segmentation (DSC) and calibration (ECE) metrics on the BraTS2020 dataset. Our method demonstrates improved mean performance and reduced variance compared to the baseline.

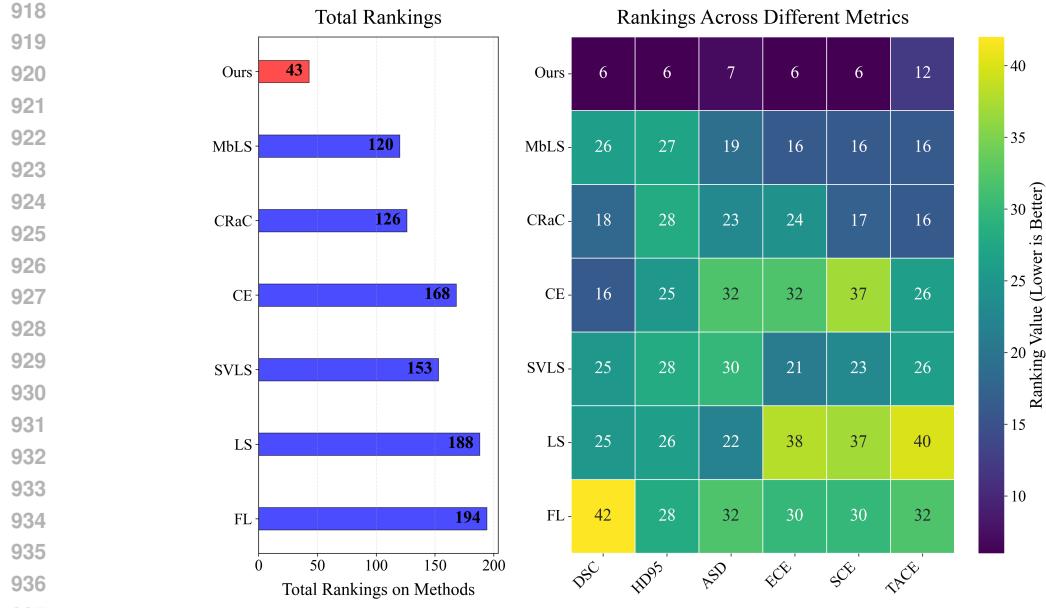
Fig. 6 illustrates the performance distributions for the Dice Score (DSC) and Expected Calibration Error (ECE). Our method’s distributions exhibit two key characteristics: (1) a rightward shift in the mean for DSC and a leftward shift for ECE, indicating superior average performance, and (2) reduced variance (a narrower, taller peak). The latter is particularly important, as it demonstrates improved model robustness and reliability. The smaller spread signifies a reduction in outlier predictions and catastrophic failures, where a baseline model might perform poorly on challenging cases. This enhanced consistency is a direct result of our spectral regularization, which prevents the model from adopting overly simplistic, spectrally biased solutions and ensures more reliable performance across the test population.

A.8 COMPREHENSIVE PERFORMANCE RANKING

This analysis evaluates the generalization capabilities of our method across multiple datasets and metrics. As shown in Fig. 7, we aggregate performance ranks to provide a holistic comparison. For aggregation, ranks are assigned to each method on every dataset-metric pair (rank 1 is best) and then summed to yield an overall score (lower is better). The left panel confirms our method’s superior aggregate rank. The heatmap on the right is more revealing: competing methods often exhibit specialized performance, excelling on certain metrics or datasets while faltering on others, suggesting potential overfitting to specific data characteristics. In contrast, our method achieves consistently strong performance across the board. This demonstrates that by operating in the frequency domain, our regularizer targets a fundamental aspect of the model’s confidence representation rather than dataset-specific spatial statistics, leading to a more robust and holistically effective model.

A.9 VISUALIZING THE MITIGATION OF SPECTRAL BIAS

This analysis provides a direct visual link between the theoretical motivation of spectral bias and our method’s corrective effect. We isolate the high-frequency components from a baseline model’s logit output for a challenging sample. Applying an inverse Fourier transform to these components reveals their spatial manifestation: misplaced, high-confidence hotspots, demonstrating how unchecked high-frequency power can lead to erroneous predictions at complex boundaries (Fig. 8a-b). The confidence difference map (Baseline – Ours) in Fig. 8c highlights regions where our



938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 7: Cross-dataset performance ranking. Left: Aggregate ranking scores (lower is better). Right: Heatmap of individual metric ranks (darker is better). Our method achieves a consistently high rank across diverse metrics and datasets.

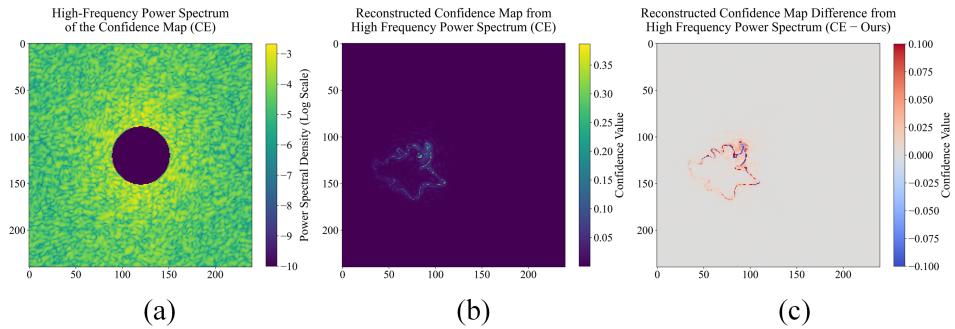


Figure 8: Analysis of high-frequency components on a BraTS2020 sample. (a) High-frequency power from the baseline model’s logits. (b) Confidence map reconstructed from (a), showing misplaced high-confidence “hotspots.” (c) Confidence difference map (Baseline – Ours), where red indicates overconfidence corrected by our approach, correlating strongly with the hotspots in (b).

method reduces overconfidence. The strong spatial correlation between these regions and the baseline’s hotspots serves as direct evidence that our spectral regularization is working as intended. It successfully suppresses problematic high-frequency power, leading to better-calibrated and more structurally coherent confidence maps, particularly in anatomically complex regions.