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ABSTRACT

Deployed machine learning models often encounter significant challenges in-the-
wild due to distribution shifts, where inputs deviate from the training distribution.
Covariate shifts, a specific type of distribution shift, have traditionally been ad-
dressed with robustness-focused approaches; however, existing models still expe-
rience substantial performance degradation under such conditions. In this work,
we propose reframing covariate shift detection as an out-of-distribution (OOD)
detection problem. We leverage vision-language models (VLMs), in particular
CLIP, for detecting covariate shifts using zero-shot detection techniques that require
no task-specific training. To facilitate this effort, we introduce ImageNet-CS, a
comprehensive benchmark comprising six covariate-shifted datasets derived from
ImageNet. Our results demonstrate that VLMs outperform traditional supervised
methods in detecting covariate shifts, underscoring their promise for improving the
reliability of models deployed in the real world.

1 INTRODUCTION

A significant challenge in deploying machine learning systems in-the-wild is ensuring that models do
not make erroneous predictions on out-of-distribution (OOD) inputs (Nguyen et al., 2015). These
systems operate on the assumption that inputs during inference are consistent with its training
distribution. However, real-world environments are inherently complex and unpredictable, often
deviating from this assumption. As a result, it is imperative to equip machine learning models with
methods to identify and manage OOD inputs.

There are two primary approaches to dealing with OOD inputs: 1) robustness, which seeks to improve
generalization on inputs that are outside the training distribution (Taori et al., 2020), and 2) detection,
which seeks to detect these inputs (Yang et al., 2021). Robustness is the common approach for
covariate shifts, where the label space of inputs are within the model’s predictions. Meanwhile,
detection is adopted for semantic shifts, where the label space of inputs are outside the model’s output
space. This necessitates detection as it is impossible for the model to make a correct prediction.

In this work, we advocate for a different perspective towards covariate shifts. Despite significant
progress in improving model robustness, machine learning systems still suffer notable performance
degradation when exposed to distributions under covariate shifts. Consequently, detecting such inputs
to mitigate erroneous predictions emerges as a logical and natural approach (Guille-Escuret et al.,
2023). To facilitate such efforts, we introduce ImageNet-CS, a new benchmark specifically designed
to capture the most widely recognized covariate shifts in the ImageNet dataset. Our study focuses
on detection methods for covariate shifts, without extending to downstream applications such as
Selective Classification (Geifman & El-Yaniv, 2017), which we leave as future work.

Much progress in OOD detection involve traditional supervised learning paradigms (Hendrycks &
Gimpel, 2016; Lee et al., 2018) or generative modeling techniques (Serrà et al., 2019; Choi et al.,
2018; Liu et al., 2023; Heng et al., 2025). The emergence of foundation models—large, versatile
models capable of performing a wide range of tasks in a zero-shot manner—offers a promising
avenue for OOD detection (Bommasani et al., 2021). We propose to investigate the use of modern
vision-language models, particularly Contrastive Language-Image Pretraining (CLIP) (Radford et al.,
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2021), for zero-shot covariate shift detection. Unlike traditional methods that require task-specific
training or fine-tuning, we aim to utilize CLIP to identify covariate-shifted samples without additional
task-specific adaptation. Our experiments show that CLIP outperforms traditional supervised learning
methods without being trained on in-distribution data.

2 PRELIMINARIES

2.1 DISTRIBUTION SHIFTS

We aim to detect when a sample comes from a distribution different from the original distribution of
interest. Such shifts fall into two main categories: covariate shift and semantic (label) shift (Yang
et al., 2021). Let the input space be denoted as X and label space as C. We consider a joint distribution
over the input-label space p(x, c), where x ∼ X and c ∼ C.

Covariate Shift. Covariate shifts refer to a change in the marginal distribution p(x), affecting the
input space X , while the label space C remains constant. For example, a dataset of cat paintings
represents a covariate shift relative to a dataset of real cat photographs.

Semantic Shift. Semantic shifts, in contrast, involve changes in both p(c) and p(x), as a difference
in labels implies the introduction of new categories, which inherently results in a change in the input
space. For instance, a dataset of human faces (e.g., CelebA) is semantically shifted from a dataset of
natural objects and animals (e.g., CIFAR10).

2.2 OUT-OF-DISTRIBUTION DETECTION

Building on these types of distribution shifts, we now define the formal objective of OOD detection.
Let pID denote a distribution of interest. Given pID, the goal of OOD detection is to construct a
scoring function Sθ(x) ∈ R which quantifies how much a given test point x originates from pID. We
adopt the convention that a higher value of Sθ(x) implies a sample is more likely to be from pID.
We define a decision function Gλ(x), parameterized by a threshold λ, as follows:

Gλ(x) =

{
ID if Sθ(x) ≥ λ

OOD if Sθ(x) < λ.
(1)

We evaluate OOD methods by computing metrics that integrate over all possible values of λ. The
most common statistic is the Area Under the Receiver Operating Characteristic Curve (AUROC),
which measures the trade-off between true positive and false positive rates across different thresholds.

3 MOTIVATION

3.1 WHY COVARIATE SHIFT DETECTION?

Under covariate shifts, machine learning models can still make correct predictions as the inputs fall
within the model’s label space. However, models exhibit performance degradation under such shifts,
as these distributions are technically out-of-distribution relative to the model’s training distribution.
Prior research on covariate shifts has predominantly focused on robustness (Taori et al., 2020; Shi
et al., 2023; Zhou et al., 2022), aiming to develop methods that enhance model performance under
such shifts. We argue that this robustness-centered perspective is too narrow and advocate for a
broader approach that also emphasizes the detection of covariate shifts.

3.2 IMAGENET COVARIATE SHIFT (IMAGENET-CS) BENCHMARK

To facilitate studies into covariate shifts, we introduce the ImageNet Covariate Shift (ImageNet-CS)
benchmark, a comprehensive suite of datasets designed to evaluate models under covariate shifts.
The benchmark is based on the ILSVRC 2012 dataset (commonly known as ImageNet1K). Due to its
widespread use, numerous natural and synthetic variations have been developed to study the effects of
covariate shifts. To streamline these efforts, we curated six key datasets into this unified benchmark.
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Figure 1: Overview of ImageNet-CS and the various datasets that are considered out-of-distribution.
The in-distribution dataset is the ImageNet1K validation set.

ImageNet-CS includes six out-of-distribution (OOD) datasets, each capturing distinct types of
covariate shifts: 1) ImageNet-R (Hendrycks et al., 2020), 2) ImageNet-A (Hendrycks et al., 2021), 3)
ObjectNet (Barbu et al., 2019), 4) ImageNetV2 (Recht et al., 2019), 5) ImageNet-Sketch (Wang et al.,
2019) and 6) ImageNet-C (Hendrycks & Dietterich, 2019). Descriptions of each dataset is provided
in appendix Sec. A. ImageNet-R and ImageNet-A contain samples from different 200-class subsets
of ImageNet1K, while ObjectNet contains samples from a 113-class subset. When evaluating against
these datasets, we use the corresponding subset of ImageNet1K and abbreviate them as ImageNet200
and ImageNet113 respectively.

3.3 ROBUSTNESS TOWARDS COVARIATE SHIFTS IS INSUFFICIENT
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Figure 2: Top-1 classification performance of various architectures on ImageNet-CS datasets com-
pared to original ImageNet. ImageNet1K-CS represents the average performance over ImageNetV2,
ImageNet-Sketch and ImageNet-C. The top row consists of supervised models trained on Ima-
geNet1K, while the bottom row are CLIP models of various sizes trained on different datasets:
OpenAI’s proprietary dataset (Radford et al., 2021) and DFN (Fang et al., 2023).
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To justify the necessity for covariate shift detection, we plot the robustness performance of various
classifier architectures on ImageNet-CS in Fig. 2. The architectures examined include supervised
learning and CLIP models. In addition to ResNet50 and ViT-B/16 trained without dedicated robustness
strategies, we also include results from IPMix (Huang et al., 2023) applied to ResNet50, a robust
classifier trained with data augmentation techniques. We average the performance of ImageNetV2,
ImageNet-Sketch and ImageNet-C and abbreviate it as ImageNet1K-CS as they share the same in-
distribution set (ImageNet1K validation set). We evaluate the supervised models only on ImageNet1K-
CS as these models are only trained to make predictions on all 1000 classes. In contrast, CLIP models,
with their flexibility for zero-shot evaluation, are assessed on both ImageNet1K-CS and datasets with
subset classes: ImageNet-R, ImageNet-A, and ObjectNet.

Focusing on ImageNet1K-CS, the most challenging benchmark due to its larger class set, we observe
that all models experience significant performance degradation under covariate shifts. Even the
most robust model, DFN CLIP, suffers a performance drop of over 30%, while the weakest model,
ResNet50, experiences a decline of up to 66%. Although IPMix improves robustness over the
standard ResNet50, it still exhibits a substantial performance drop exceeding 50%.In alignment with
prior findings (Radford et al., 2021), CLIP models demonstrate greater robustness to covariate shifts
than their supervised counterparts despite achieving comparable Top-1 accuracy on ImageNet1K.

Tasks involving covariate-shifted subsets are inherently simpler than ImageNet1K-CS as they require
predictions over a reduced class set. This is evident in the overall higher Top-1 accuracies and smaller
performance decreases. In the best case, DFN CLIP shows only a 3.7% drop from ImageNet200 to
ImageNet-R. However, the overall performance decreases are still notable, averaging around 20%.

These results underscore a key insight: although CLIP models are trained on a vast web-scale corpus
that likely includes diverse and covariate-shifted images (e.g., stylized paintings, low-quality images,
or corrupted samples), they still experience notable performance degradation under covariate shifts.
This underscores the need for better covariate shift detection alongside robustness improvements. As
foundation models like CLIP gain prominence, exploring their potential for OOD detection becomes
increasingly valuable. Here, we investigate VLMs specifically for covariate shift detection.

4 RELATED WORKS

The literature on covariate shifts largely focuses on the robustness of models under such shifts.
Several studies have assessed the robustness of traditional supervised learning models. For example,
Taori et al. (2020) demonstrated that robustness to synthetic distribution shifts does not translate
to natural shifts. Schneider et al. (2020) proposed adjusting batch normalization statistics at test
time, while Zhou et al. (2022) identified self-attention in Vision Transformers (ViTs) as critical for
robustness. Yang et al. (2023) found that popular semantic shift datasets are contaminated with
covariate shifts, showing that modern OOD methods are more sensitive to covariate shifts than
semantic shifts. However, unlike our work, these studies do not address covariate shift detection.

In the context of VLMs, Radford et al. (2021) demonstrated that CLIP exhibits greater robustness to
covariate shifts compared to supervised learning models. However, Shi et al. (2023) found that CLIP’s
robustness diminishes when evaluated across multiple ID test sets. Fang et al. (2022) attributed
robustness gains in VLMs primarily to diverse training distributions. Crabbé et al. identified the
presence of outlier features in CLIP models as an indicator of robustness to ImageNet shifts.

Another relevant line of work is Selective Classification (Geifman & El-Yaniv, 2017), which aims to
improve model reliability by allowing classifiers to abstain from making predictions on uncertain
samples, linking detection with classification. Prior research has primarily explored selective classifi-
cation in the context of supervised learning (Geifman & El-Yaniv, 2017; Liang et al., 2017; Galil
et al., 2023a) and semantic shifts (Galil et al., 2023b). While Liang et al. (2024) examines selective
classification under broad distribution shifts, their focus remains on supervised learning methods
and a limited set of covariate shifts. In contrast, our work takes a first step toward a more in-depth
study of detection under covariate shifts using VLMs. We see extending this approach to selective
classification as a logical and promising future direction.

To our knowledge, only two prior works directly explore covariate shift detection. Hsu et al. (2020)
extended ODIN (Liang et al., 2017) and evaluated on the covariate shift dataset DomainNet (Peng
et al., 2019). However, DomainNet is less comprehensive than ImageNet-CS proposed in our
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work, and their method is tailored to supervised learning models. The most relevant prior work is
BROAD (Guille-Escuret et al., 2023), which expands OOD detection to include covariate shifts.
BROAD introduces a benchmark that combines semantic and covariate shifts. While BROAD
evaluates existing OOD methods for supervised learning, our work diverges by focusing on covariate
shifts and detection with VLMs. Moreover, our choice of covariate shift datasets is larger and more
widely used than BROAD’s counterparts, ensuring broader applicability and relevance.

5 METHODOLOGY

The primary objective of this study is to evaluate the performance of vision-language models (VLMs)
in detecting covariate shifts. To accomplish this, we benchmark multiple CLIP models on ImageNet-
CS, employing general post-hoc OOD detection techniques that are applicable to the VLM framework.
We compare the results against supervised learning baselines, so as to analyze the potential advantages
of VLMs over traditional supervised approaches. In this section, we provide an overview of the
models and detection methods evaluated in our study.

5.1 MODELS

Supervised Learning Models (SLMs). We investigate two architectures: ResNet50 (He et al.,
2016) and vision transformer ViT-B/16 (Dosovitskiy, 2020), both trained on ImageNet1K. The former
has 25.6 million parameters and is trained using the default strategy specified in PyTorch1, while the
latter contains 86 million parameters and is trained using a modified version DeIT’s (Touvron et al.,
2021) training recipe.

Vision-Language Models (VLMs). We investigate three CLIP variants: OpenAI ViT-L/14 (Radford
et al., 2021), DataComp ViT-L/14 (Gadre et al., 2024) and DFN ViT-H/14 (Fang et al., 2023). The
ViT-L/14 models contain approximately 430 million parameters in total including the tokenizer and
vision and text encoders, while the ViT-H/14 model contains approximately 1 billion parameters.
OpenAI ViT-L/14 is trained using OpenAI’s proprietary dataset comprising 400 million image-
text. DataComp ViT-L/14 uses the open-source DataComp-1B dataset (Gadre et al., 2024), which
comprises 1.4 billion image-text pairs, while DFN ViT-H/14 is trained on the DFN-5B dataset, which
comprises 5 billion images filtered from a pool of 43 billion uncurated image-text pairs using Data
Filtering Networks (DFNs) (Fang et al., 2023).

5.2 OOD DETECTION METHODS

To ensure our study is broadly applicable and generalizes to future models and data distributions, we
consider post-hoc OOD detection methods that are agnostic to model architecture, does not require
OOD-specific training and does not require knowledge of OOD data. We consider methods that
are the most well-studied baselines under two broad categories: logit-based and distance-based.
Under logit-based methods, we study Maximum Softmax Probability (MSP) (Hendrycks & Gimpel,
2016), Maximum Concept Matching (Ming et al., 2022) and Energy (EBO) (Liu et al., 2020), while
under distance-based methods we study Mahalanobis Distance (MDS) (Lee et al., 2018) and Relative
Mahalanobis Distance (RMDS) (Ren et al., 2021). Please see appendix Sec. B for details on the
methods and OOD scoring functions. We leave investigation of other methods to future work.

6 EXPERIMENTS

Table 1 compares VLMs and SLMs on ImageNet1K-CS. Since the SLMs are trained on all ImageNet
classes, they can be directly evaluated on ImageNet1K-CS. We observe that for SLMs, logit-based
methods (MSP/EBO) outperform distance-based methods (MDS/RMDS), whereas the opposite
trend holds for VLMs. This finding is consistent with Table 2, where we present results on the full
ImageNet-CS dataset. The key difference is that SLM logits are learned from ID data, while VLM
logits are crafted at test time using user-defined textual concepts. Notably, in contrast to semantic shift

1https://github.com/pytorch/vision/tree/main/references/classification#resnet
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Table 1: Average AUROC (↑) on ImageNet1K-
CS. Column with MSP/MCM refers to MSP for
supervised learning models and MCM for vision-
language models.

MSP/MCM EBO MDS RMDS

Supervised Learning Models

ResNet50 0.830 0.866 0.713 0.825
ViT-B/16 0.799 0.770 0.824 0.827

Vision-Language Models

OpenAI 0.730 0.289 0.849 0.819
DataComp 0.738 0.250 0.807 0.806

DFN 0.725 0.323 0.878 0.834

Table 2: Average AUROC (↑) on ImageNet-CS.
MCM EBO MDS RMDS

Vision-Language Models

OpenAI 0.709 0.336 0.852 0.825
DataComp 0.731 0.300 0.802 0.815

DFN 0.730 0.358 0.895 0.845

Table 3: AUROC scores of MCM (logit-based) and MDS (distance-based) with CLIP on datasets in
ImageNet-CS.

ImageNet-R ImageNet-A ObjectNet ImageNetV2 ImageNet-Sketch ImageNet-C (Avg)

MCM MDS MCM MDS MCM MDS MCM MDS MCM MDS MCM MDS

OpenAI 0.647 0.924 0.733 0.843 0.621 0.810 0.550 0.584 0.601 0.895 0.808 0.903
DataComp 0.698 0.931 0.809 0.809 0.647 0.634 0.547 0.584 0.616 0.947 0.816 0.828

DFN 0.703 0.960 0.804 0.903 0.712 0.923 0.539 0.655 0.565 0.976 0.812 0.910

detection (Ming et al., 2022), leveraging the language modality appears less beneficial for detecting
covariate shifts.

We hypothesize that the challenge lies in describing the in-distribution exhaustively with a finite
set of prompts. Even if one carefully crafts an ID prompt such as “a real, high-quality, clear, and
clean photo of a ID class”, this may fail to capture subtle shifts. Indeed, Table 3 shows that for OOD
samples with large perceptual deviations—like those in ImageNet-C—MCM remains reasonably
effective, as severe corruptions are relatively easy to detect. However, MCM underperforms on more
nuanced shifts like ImageNet-R, which contains diverse renditions (e.g., paintings and sculptures)
that still match the nominal ID concepts in certain respects.

An additional observation is the effect of scaling. Among VLMs, DFN (with the largest parameter
count) achieves the strongest MDS and RMDS results and also outperforms MSP/EBO in supervised
models. Meanwhile, although DataComp and OpenAI VLMs share the same model size, DataComp
slightly underperforms OpenAI on MDS/RMDS despite boasting higher ImageNet Top-1 accuracy
(79.2% vs. 75.6%). In the supervised setting, ResNet50 surpasses ViT-B/16 under MSP and EBO,
despite having fewer parameters and lower Top-1 accuracy. These trends may seem counterintuitive
and warrant further investigation.

Finally, note that DFN’s EBO scores outperform ResNet50’s MCM by about 6% on ImageNet1K-CS
(Table 1), although DFN has roughly 25 times more parameters. While this scaling might appear
unfavorable, DFN CLIP was not trained on ID data and thus is adaptable to new inlier distributions.
Consequently, VLM-based methods become especially attractive when amortized over many OOD
detection tasks or when ID training data are scarce or ill-suited for standard supervised approaches.

7 DISCUSSION

In this work, we reframed covariate shift as an out-of-distribution detection problem and introduced
a new benchmark, ImageNet-CS, to evaluate performance under widely studied covariate shifts
derived from ImageNet. These shifts have traditionally been analyzed in the context of robustness.
Our findings reveal that many models exhibit significant performance degradation under such shifts,
underscoring the need for effective detection mechanisms. We benchmark supervised learning and
foundation models on covariate shift detection and find that foundation models outperform traditional
approaches despite never being trained on in-distribution data.

6



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Future work should explore more post-hoc OOD detection methods, as well as larger families of
supervised learning and vision-language models. A deeper analysis into the ineffectiveness of
language for covariate shift detection, such as at the representation level, could provide valuable
insights. Lastly, combining detection with downstream tasks, particularly in the context of selective
classification under covariate shifts, presents a promising direction for future research.
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Supplementary Material for “Detecting Covariate Shifts with
Vision-Language Foundation Models”

A IMAGENET-CS DATASETS

Here we provide descriptions of the six OOD datasets that comprise ImageNet-CS.

1. ImageNet-R (Hendrycks et al., 2020): features artistic renditions (e.g., paintings, sketches,
and cartoons) of a 200-class subset of ImageNet1K. To ensure consistency, we evaluate
on a corresponding 200-class subset of the ImageNet1K validation set, referred to as
ImageNet200.

2. ImageNet-A (Hendrycks et al., 2021): contains naturally adversarial examples—images that
are frequently misclassified by ResNet50 models, despite not being generated through tradi-
tional adversarial attacks. Like ImageNet-R, it includes a 200-class subset of ImageNet1K,
though the classes differ from those in ImageNet-R. The validation counterpart, also termed
ImageNet200, is determined contextually to match the relevant subset.

3. ObjectNet (Barbu et al., 2019): a dataset characterized by randomized object orientations,
backgrounds, and viewpoints. It covers a 113-class subset of ImageNet1K. For evaluation,
we utilize a corresponding subset of the ImageNet1K validation set, termed ImageNet113.

4. ImageNetV2 (Recht et al., 2019): introduces three new test sets, sampled independently
from ImageNet1K’s original data. These sets cover all 1000 classes, with collection methods
designed to mirror the original dataset’s distribution. In this work, we use the “matched-
frequency” subset.

5. ImageNet-Sketch (Wang et al., 2019): contains black-and-white sketch representations for
all 1000 ImageNet1K classes.

6. ImageNet-C (Hendrycks & Dietterich, 2019): introduces systematic corruptions across
four categories: blur, digital artifacts, noise, and weather effects. Each category comprises
several corruption types (e.g., Gaussian noise, motion blur), with five levels of severity. We
evaluate on the most challenging corruption level (severity 5) to simulate extreme robustness
scenarios. Analysis of lower severity levels is left for future work.

B OOD DETECTION METHODS

Here we provide details of the OOD detection methods that are studied in our work.

Logit-based: MSP, MCM, EBO The scoring function in MSP (Hendrycks & Gimpel, 2016) is
Sθ(x) = maxc p(c|x), where p(c|x) is the softmax probability for class c given input x. MSP
reflects the model’s confidence in its most probable prediction, and is tailored to supervised learning
models with defined logits. MCM (Ming et al., 2022) adapts MSP to VLMs by forming “virtual logits”
over a predefined set of ID concepts given by sim(Ev(x), Ew(c)), where sim(·, ·) refers to the cosine
similarity and Ev and Ew refer to the image and text encoders respectively. The scoring function
of MCM is given by Sθ(c) = maxc softmax (sim(Ev(x), Ew(c))/T ), where T is temperature.
Energy (Liu et al., 2020) (EBO) defines the score function as Sθ(x) = T log

∑
i e

fi(x)/T , where the
sum is over all logits fi(x).

Unlike in semantic shift detection, we cannot form virtual logits using ID concepts based on class
information alone (i.e., “a photo of a {ID class}") as OOD samples share the same classes as ID
samples. Thus, as ImageNet contains real photographs that are of high-quality, we define the in-
distribution concepts as “a real, high-quality, clear, and clean photo of a {ID class}”, and investigate
if these concepts can distinguish OOD samples that are not real images (e.g., ImageNet-R, ImageNet-
Sketch) or are of low-quality (e.g., ImageNet-C).

Distance-based: MDS, RMDS MDS (Lee et al., 2018) computes the Mahalanobis distance
Sθ(x) = maxc −(f(x)−µc)

⊤Σ−1(f(x)−µc), where f(x) is the feature representation of input x
from the model’s penultimate layer, µc is the the class-conditional mean of in-distribution features for
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class c and Σ is the shared covariance matrix across all classes. These quantities are calculated from
the in-distribution training set. RMDS (Ren et al., 2021) improves MDS by subtracting a correction
term representing the Mahalanobis distance to the full training distribution without considering class
information.
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