
Under review as submission to TMLR

Deep-Graph-Sprints: Accelerated Representation Learning
in Continuous-Time Dynamic Graphs

Anonymous authors
Paper under double-blind review

Abstract

Continuous-time dynamic graphs (CTDGs) are essential for modeling interconnected,
evolving systems. Traditional methods for extracting knowledge from these graphs often
depend on feature engineering or deep learning. Feature engineering is limited by the man-
ual and time-intensive nature of crafting features, while deep learning approaches suffer from
high inference latency, making them impractical for real-time applications. This paper intro-
duces Deep-Graph-Sprints (DGS), a novel deep learning architecture designed for efficient
representation learning on CTDGs with low-latency inference requirements. We benchmark
DGS against state-of-the-art feature engineering and graph neural network methods using
five diverse datasets. The results indicate that DGS achieves competitive performance while
improving inference speed up to 12x compared to other deep learning approaches on our
tested benchmarks. Our method effectively bridges the gap between deep representation
learning and low-latency application requirements for CTDGs.

1 Introduction

Graphs serve as a foundational structure for modeling and analyzing interconnected systems, with appli-
cations spanning in computer science, mathematics, and life sciences. Recent studies have emphasized the
critical role of dynamic graphs, which capture evolving relationships in systems like social networks and
financial markets (Costa et al., 2007; Zhang et al., 2020; Zhou et al., 2020; Majeed & Rauf, 2020; Febrinanto
et al., 2023).

Graph structure representation is crucial for encoding complex graph information into low-dimensional em-
beddings that are usable by machine learning models. This task is particularly challenging for dynamic
graphs. Traditional graph feature engineering methods rely on manually crafted heuristics to capture
graph characteristics, necessitating domain knowledge and considerable time to engineer and test new
features (Bilot et al., 2023). In contrast, graph representation learning, especially through graph neural
networks (GNNs), automates this process by learning compact embeddings of graph structures (Hamilton
et al., 2017b). Despite growing interest in this field, research has predominantly focused on static graphs,
overlooking the dynamic nature of many real-world systems (Perozzi et al., 2014; Grover & Leskovec, 2016;
Hamilton et al., 2017a).

Dynamic graphs are categorized into Discrete Time Dynamic Graphs (DTDGs) and Continuous Time
Dynamic Graphs (CTDGs) (Rossi et al., 2020). DTDGs are viewed as a sequence of snapshots at set
intervals, while CTDGs are seen as a continuous stream of events, such as adding a new edge, which updates
the graph’s structure with each occurrence. This paper aims to advance the state-of-the-art in representation
learning for CTDGs.

Existing methods for handling CTDGs (Dai et al., 2016; Kumar et al., 2019; Xu et al., 2020; Rossi et al.,
2020) often face computational and memory constraints, leading to high-latency inference, thus limiting their
practicality for real-time applications. Approaches such as asynchronous operation and truncated backprop-
agation have been employed to mitigate these issues, but they introduce compromises in representation
accuracy and the learning of long-term dependencies (Rossi et al., 2020; Wang et al., 2021).

1



Under review as submission to TMLR

This paper introduces a novel architecture for the representation learning of CTDGs, designed to overcome
existing limitations and provide low-latency, efficient representation learning. Our approach employs forward-
mode automatic differentiation, specifically real-time recurrent learning (RTRL) (Williams & Zipser, 1989),
within a customized recurrent cell structure. This enables low-latency inference, efficient computation, and
optimized memory usage, while preserving representation accuracy and the ability to capture long-term
dependencies.

The contributions of this work are as follows:

• We identify the limitations in current methodologies for graph representation learning, highlight-
ing their computational inefficiencies and their challenges in capturing long-term dependencies, see
Sections 2,5.

• We introduce Deep-Graph-Sprints (DGS), a method for real-time representation learning of CTDGs,
optimizing latency and enhancing the ability to capture long-term dependencies, see Sections 3.

• We benchmark DGS against state-of-the-art methods, in node classification and link prediction tasks,
demonstrating on par predictive performance and up to 12x faster inference on our benchmarks, see
Sections 4.

2 Background: Overview of Automatic Differentiation Modes

Deep learning depends significantly on credit assignment, a process identifying the impact of past actions on
learning signals (Minsky, 1961; Sutton, 1984). This process is essential for reinforcing successful behaviors
and reducing unsuccessful ones.

The capability of assigning credit in deep learning models depends on the differentiability of learning signals
enabling the use of Jacobians for this purpose (Cooijmans & Martens, 2019). A key technique in this context
is automatic differentiation (AD), a computational mechanism for the derivation of Jacobians through a
predefined set of elementary operations and the application of the chain rule, applicable even in programs
with complex control flows (Baydin et al., 2018). In AD, depending on the direction of applying the chain
rule, three strategies stand out: forward mode, reverse mode (often termed backpropagation), and mixed
mode. Forward mode involves multiplying the Jacobians matrices from input to output. Reverse mode, a
two-phase process, first executes the function to populate intermediate variables and map dependencies, then
calculates Jacobians in reverse order from outputs to inputs (Baydin et al., 2018). Mixed mode combines
these approaches.

Temporal models, such as recurrent neural networks (RNNs) and GNNs for temporal graphs, pose specific
challenges for AD due to their memory-intensive requirements in backpropagation. The memory complexity
for storing intermediate states across timestamps significantly impacts computational efficiency. For instance,
in an RNN with sequence length l and state size d, reverse-mode AD exhibits computational and memory
complexities of O(l × d2), posing scalability issues for long sequences (Baydin et al., 2018). To mitigate
these challenges, truncated backpropagation through time (TBPTT) optimizes resource usage by limiting
the backpropagation horizon, thus reducing both computational and memory demands. However, TBPTT’s
constraint on the temporal horizon restricts its ability to capture long-term dependencies, impacting model
performance over extended sequences (Williams & Peng, 1990).

Forward-mode AD, exemplified in real-rime recurrent learning (RTRL), offers an alternative by facilitating
online updates of the parameters, which is particularly advantageous for models requiring the retention
of information over extended durations (or sequence length). Despite its benefits for capturing long-term
dependencies with reduced memory overhead (O(d2)), RTRL’s computational demand (O(l × d4)) limits its
practicality in large-scale networks (Williams & Zipser, 1989; Cooijmans & Martens, 2019).

In summary, while reverse mode AD is challenged by memory intensity, TBPTT presents a compromise
by reducing memory and computational needs at the expense of long-term dependency capture. Forward
mode AD addresses both long-term retention and memory efficiency but is restricted by its computational
complexity.

2



Under review as submission to TMLR

3 Method

In this section we detail our low latency node representation learning method, namely Deep-Graph-Sprints
(DGS). We start by explaining the main components that form its architecture and then we detail each
one of them. Furthermore, we detail the training paradigm that distinguishes our method, highlighting its
enhanced memory efficiency and ability to capture long-term dependencies compared to existing approaches.
Additionally, we explain our method during inference, demonstrating how it achieves low latencies.

3.1 Architecture

The DGS method is developed to handle a stream of edges. As shown in Figure 1, the system processes each
incoming edge to derive a task-specific score, applicable for any ML task such as classification.

Similar to established approaches in this domain, e.g., (Rossi et al., 2020; Kumar et al., 2019), our DGS
method is divided into two key components:

1. Embedding Recurrent Component (ER): dedicated to representation learning, where each node or
edge in the graph is mapped from high-dimensional, complex graph structures to a lower-dimensional
embedding space.

2. Neural Network (NN): responsible for decision-making processes, such as classification. It uses the
embedding provided by the ER component to generate a task specific output.

The ER component is particularly noteworthy for its role in updating the embeddings of nodes or edges,
thereby enriching them with detailed attributes and relationships context within the network. These em-
beddings are then input into the neural network, which is tailored to specific applications. For instance, in
node classification, the network evaluates each node associated with a new edge, with the score reflecting
the network’s interpretation from the representations provided by the ER component.

Figure 1: Schematic representation of the DGS architecture. The diagram illustrates the workflow from
receiving new edge, through the generation of embeddings for nodes or edges, to the application of a neural
network to generate a task specific score. Furthermore, the diagram elucidates the computation of gradients
through the application of mixed-mode AD. Equation 2, and Figure 2 provide more details about the ER
component.

3.1.1 Embedding Recurrent Component (ER):

This subsection delineates the ER component, the core mechanism within our methodology that processes
dynamic graph data. Building upon Graph-Sprints (Eddin et al., 2023), a low-latency graph feature engi-
neering approach, that is formalized in Equation 1. A node’s embedding is determined by integrating its

3



Under review as submission to TMLR

historical state, the historical state of its immediate neighbor (with which it shares the current edge), and
the attributes of the current edge.

S⃗t = βS⃗t−1 + (1 − β)
(

(1 − α)δ⃗(Ft) + αS⃗∗
t−1

)
(1)

Here, S⃗t denotes the state of a node at time t, evolving from its previous state S⃗t−1 and the state of its
immediate neighbor S⃗∗

t−1, while also incorporating the current edge’s features Ft, encoded in histograms
through the δ⃗ function. The coefficients α and β are scalar forgetting factors that modulate the impact of
neighborhood and past information on the current state.

Although Graph-Sprints demonstrates rapid processing capabilities and performs on par with leading tech-
niques, it faces several limitations in practical applications. These include the complex and time-consuming
tuning processes required for its feature extraction and decision-making components. For instance, to tune
the forgetting coefficients or to define the histogram bin edges of the δ⃗ function for every feature. Moreover,
the model’s expressivity is constrained by the uniform application of scalar forgetting coefficients across all
features, limiting its ability to capture the unique temporal dynamics of each feature. Finally, the use of
large number of histogram bins significantly increases the memory requirements especially in datasets with
many features. In contrast, our proposed methodology, while drawing inspiration from Graph-Sprints, goes
beyond traditional feature engineering by employing a dynamic learning mechanism for embeddings. The
state update equation in our methodology is illustrated in Equation 2:

S⃗t = β⃗ ⊙ S⃗t−1 + (1 − β⃗) ⊙

(
(1 − α⃗) ⊙

(
m∥∥∥

i=1

σ⃗(WiFt)
)

+ α⃗ ⊙ S⃗∗
t−1

)
(2)

In this equation, we introduce vectorized forgetting coefficients, α⃗ and β⃗, each corresponding in dimensional-
ity to the state vector, and modulate the weighting between current and historical information, and between
self and neighborhood information, respectively. Each dimension of α⃗ and β⃗ corresponds to unique forgetting
rates for each embedded feature in the state vector, which itself consists of a vector as we will detail below.
The embedding matrix W is tasked with mapping input features into a vector of the same size as the state
vector.

Inspired by the Graph-Sprints histogram-based feature representations, we utilize the softmax function (σ⃗)
to achieve analogous representations.Moreover, we employ softmax temperature scaling (Guo et al., 2017)
where higher temperatures result in softer distributions. DGS enhances model expressiveness and optimizes
memory usage by incorporating multiple softmax functions, each applied to a segment of the product between
the embedding matrix W and the feature vector Ft. The notation

∥∥m

i=1 denotes the concatenation of the
results obtained by applying the m softmax functions. Each function is applied to the product of the i-th
portion of the embedding matrix, Wi, and the features values Ft, as illustrated in Figure 2. This strategy
not only aids in reducing computational and memory demands by lowering the Jacobian’s dimensionality
but also introduces a modular structure akin to multi-head attention mechanisms in transformers (Vaswani
et al., 2017), this technique has the potential to learn different information per softmax (further details in
Section 3.2).

3.1.2 Neural Network (NN)

The NN component is a feedforward neural network, that encompasses multiple layers. The configuration
of this component is subject to optimization depending on the task at hand. This optimization includes
decisions such as the number of layers, the size of each layer, and the incorporation of normalization layers.

3.2 Training Process

The design of DGS methodically incorporates forward-mode AD for learning the ER component, whereas,
the subsequent NN component, processing the embeddings generated by the ER component, utilizes reverse-
mode AD. This hybrid approach effectively leverages the strengths of both paradigms, namely, learning

4



Under review as submission to TMLR

Figure 2: Schematic illustration of state calculation based on Equation 2. This example demonstrates the
computation of node state at time t with a state size of s = 6, three softmaxes (m = 3), and thus two rows
per softmax from the embedding matrix W (h = s/m = 2). The number of input features is f = 4.

long-term dependencies (as detailed in Section 2), and ensuring efficient learning while accommodating the
memory constraints and structural complexities of graph data.

In typical ML scenarios, the complexity of forward-mode AD limits its applicability. Nonetheless, forward-
mode AD is applicable in situations requiring a manageable number of Jacobian computations, offering
efficient Jacobian propagation through computational graphs. In the DGS method, the feasibility of forward-
mode AD is supported by two main factors. First, DGS is dominated by elementwise multiplications, where
different elements of a state vector are not mixed together. Second, the implementation of multiple softmax
functions limits the dependency of each state element to a segment of the embedding matrix W , thus reducing
the computational and memory requirements.

The element-wise multiplication between the state vectors S⃗ and the parameter vectors α⃗ and β⃗ optimizes
the calculation of Jacobians ∂S⃗

∂α⃗ and ∂S⃗

∂β⃗
, achieving a computational and memory complexity of O(s), where

s represents the size of the state vector. In contrast, performing these operations via matrix multiplication,
implying α and β are (s × s) matrices, would increase the complexity to O(s3). Regarding the embedding
matrix W , with dimensions s × f (embedding size by the number of features), the application of a single
softmax function over the entire embedded vector would result in Jacobians ∂S⃗

∂W with dimensions f × s2,
leading to computational and memory complexities of O(f × s2). However, DGS mitigates this through
the deployment of multiple softmax functions, each managing a segment of the state. With m softmax
functions, each addressing a subset of h = s/m rows, the computational and memory requirements are
effectively reduced to O(f × h × s), demonstrating the method’s efficiency in optimizing both computational
and memory resources. Furthermore, one can easily fix h to a predetermined value and optimize the state size
s to be multiples of this parameter. Therefore, assuming a fixed h, the total computational complexity scales
linearly with respect to the state size s. This property demonstrates a better scaling than backpropagation,
which scales with s2. These factors collectively justify the selection of forward-mode AD for the differentiation
process in the ER component of our architecture. The Jacobians updates were implemented manually using
PyTorch (Fey & Lenssen, 2019).

5



Under review as submission to TMLR

In the NN component, number of learnable parameters varies based on model architecture, primarily involv-
ing the network’s weights. The parameters of the NN component are optimized using backpropagation, and
to implement that we also leverage the functionalities of PyTorch.

As a result, the architecture of the DGS method employs a mixed-mode AD approach, as illustrated in
Figure 3.

Figure 3: Recurrent Training Process: This figure illustrates the steps involved over three successive
timesteps, focusing on the derivative calculation for a single learnable parameter α⃗ using a mixed-mode
approach. It combines forward mode differentiation for the ER component with backpropagation for the
neural network classifier. This methodology extends to update other parameters (i.e., β⃗, W ). This hybrid
approach enables an efficient solution that effectively captures long-term dependencies.

Mini-Batch Training

To expedite the training process, we employ mini-batch training, wherein the input comprises a batch of
edges. In cases where a singular node appears multiple times within a single batch, each occurrence is
associated with the same prior node state, which represents the most recent state prior to the batch’s
execution. This methodology implies that nodes contained within the same batch do not utilize the most
current information due to the prohibition of intra-batch informational exchange. One can also implement a
batch strategy similar to the one implemented by the Jodie method (Kumar et al., 2019), where batch size
is dynamic and nodes only appear once in the same batch.

3.3 Inference Process

The inference phase is characterized by the absence of gradient computation, which simplifies the overall
procedure. In the streaming context, as elaborated in Section 3.1, the occurrence of an edge triggers an update
in the states of the nodes interconnected by this edge, employing Equation 2 for the update mechanism.
Subsequently, these updated states are ingested by the NN component. The nature of the input to the NN
component is task-dependent: it may constitute a singular node state for node classification tasks, or the
concatenation of two node states for tasks such as link prediction.

Mini-Batch Inference

To accelerate inference in scenarios suitable for batch processing, we employ a mini-batch inference strategy.
This approach updates the states of nodes or edges within each batch simultaneously. When a node appears

6



Under review as submission to TMLR

multiple times within the same batch, as in the training phase, each instance is linked to the same prior
node state, which is the most recent state before the batch’s execution. Consequently, there is no exchange
of states within the batch. Note that this is optional and similarly to mini-batch procedure in training we
can leverage a different strategy.

Following the parallel updates, the aggregated states are inputted into the neural network (NN) component.
This step generates a batched output tailored to the task, whether it involves node classification, link
prediction, or any other relevant activity.

4 Experiments and Results

4.1 Experimental Setup

The efficacy of our methodology was evaluated through the node classification and link prediction tasks
across five different datasets. This include three open-source external datasets and two proprietary datasets
from the anti-money laundering (AML) domain.

Baselines

We compare the performance of our method against several baselines. The first simple baseline, called Raw,
trains a machine learning model using only raw edge features. Another baseline is Graph-Sprints (Eddin
et al., 2023) a graph feature engineering method, which we refer to by GS. The GS baseline uses the same ML
classifier used by the Raw baseline but diverges in the features used for training— GS employs Graph-Sprints
histograms, whereas Raw employs the raw edge features.

An additional baseline set comprises state-of-the-art GNN methods, specifically TGN (Rossi et al., 2020).
Our TGN implementation, based on the default PyTorch Geometric implementation, differs from the original
paper by restricting within-batch neighbor sampling, for a more realistic scenario.

For the node classification tasks, our TGN implementation diverges slightly from the default PyTorch Geo-
metric implementation, which was originally implemented for link prediction, by updating the state of target
nodes with current edge features before classification. In contrast, for link prediction, this update occurs after
the classification decision, aligning with the PyTorch Geometric implementation. These settings are typical
for node classification and link prediction, respectively, and both GS and DGS follow the same setup1.

Several TGN variants were used: TGN-attn, aligning with the original paper’s best variant, TGN-ID, a
simplified version focusing solely on memory module embeddings, and Jodie, which utilizes a time projection
embedding with gated recurrent units. TGN-ID and Jodie baselines, which do not necessitate neighbor
sampling, were chosen for their lower-latency attributes compared to TGN-attn. All GNN baselines (TGN-
ID, TGN-attn, and Jodie) used a node embedding size of 100.

Optimization

The hyperparameter optimization process utilizes Optuna (Akiba et al., 2019) for training 100 models. Initial
70 trials are conducted through random sampling, followed by the application of the TPE sampler. Each
model incorporated an early stopping mechanism, triggered after 10 epochs without improvement. Table 5
enumerates the hyperparameters and their respective ranges employed in the tuning process of DGS and the
baselines.

Importantly, the state size for DGS is fixed to 100 in the node classification task, achieved by setting the
product of the number of softmax functions and the number of rows per softmax to 100 (m × h = 100).
This aligns with the configurations of other GNN baseline models (TGN-ID, TGN-attn, and Jodie) to
ensure comparability. In the link prediction task, we set the DGS state size to 250 because a state size of

1In the original GS paper, link prediction for the GS was performed using the same setup as node classification, i.e. updating
the state before classification. We believe it is more fair to use the link prediction setup as all other models, hence our GS results
on link prediction tasks are not directly comparable to the original paper. Similarly, the TGN baselines in node classification
tasks used the link prediction setup in the original paper, hence those results are also not directly comparable here.

7



Under review as submission to TMLR

100 was insufficient for achieving comparable performance. Despite this larger state size compared to the
GNN baselines, the DGS method has, on average, 2.5 times fewer learnable parameters than the TGN-attn
baseline. Additionally, only 35% of the learnable parameters in DGS on average are attributed to the ER
component, with the remaining 65% belonging to the classification head (further detail in Table 6).

Datasets

We leverage five different datasets, all CTDGs and labeled. Each dataset is split into train, validation, and
test sets respecting time (i.e., all events in the train are older than the events in validation, and all events
in validation are older than the events in the test set). Three of these datasets are publicly available (Ku-
mar et al., 2019) from the social and education domains. In these three datasets, we adopt the identical
data partitioning strategy employed by the baseline methods we compare against, which also utilized these
datasets.

The other two datasets are real-world banking datasets from the AML domain. Due to privacy concerns, we
can not disclose the identity of the FIs nor provide exact details regarding the node features. We refer to
the datasets as FI-A and FI-B. The graphs in this use case are constructed by considering the accounts as
nodes and the money transfers between accounts as edges. Table 1 shows the details of all the used datasets.

Table 1: Information and data partitioning strategy for public (Kumar et al., 2019), and proprietary datasets.
In the public datasets, we adopt the identical data partitioning strategy employed by the baseline methods
we compare against, which also utilized these datasets. In the proprietary datasets(FI-A, FI-B) due to
privacy concerns we provide approximated details

Wikipedia Mooc Reddit FI-A FI-B
#Nodes 9,227 7,047 10,984 ≈400,000 ≈10,000
#Edges 157,474 411,749 672,447 ≈500,000 ≈2,000,000

Label type editing ban student drop-out posting ban AML SAR AML escalation
Positive labels 0.14% 0.98% 0.05% 2-5% 20-40%

Duration 30 days 29 days 30 days ≈300 days ≈600 days
Used split (%) 75-15-15 60-20-20 75-15-15 60-10-30 60-10-30

4.2 Node classification

The results for node classification are detailed in Table 2, displaying the average test AUC ± std for the
external datasets and the ∆ AUC for the AML datasets. To obtain these figures, we retrained the best
model identified through hyperparameter optimization across 10 different random seeds.

It is important to note that the GNNs and GS baselines leverage the latest edge information, similar to the
DGS method. This means they update the node state with the most recent information before classifying
the node.

We have highlighted the best and second-best performing models for each dataset. To provide an overview,
we include a column showing the average rank, representing the mean ranking computed from all datasets.
DGS achieves either the highest or the second-highest scores in four out of the five datasets. The exception
is the Mooc dataset, where GNN baselines surpass our method. We did note that there is some overfitting
of the GNN baselines. This is due to the extreme scarcity in positive labels, which resulted in the validation
metrics being badly correlated with the test metrics for these baselines.

Counter-intuitively, although not reported here2, we observed that the performance of the GNN baselines im-
proved when evaluated without leveraging the latest edge features, which could indicate a reduced overfitting
to the validation dataset.

2We believe it is more fair to compare the performance using the same setup. For the interested reader, the results when
updating the state after the classification are reported in the GS paper Eddin et al. (2023).

8



Under review as submission to TMLR

Table 2: Node classification results using public and internal datasets.

Method AUC ± std ∆AUC ± std Average
rankWikipedia Mooc Reddit FI-A FI-B

Raw 58.5 ± 2.2 62.8 ± 0.9 55.3 ± 0.8 0 0 6
TGN-ID 69.3± 0.5 86.3± 0.8 56.2 ± 3.7 +1.2 ± 0.1 +24.3 ± 1.8 3.4

Jodie 68.8 ± 1.3 86.1 ± 0.4 56.2 ± 2.1 +1.4 ± 0.1 +25.0 ± 0.6 3.2
TGN-attn 70.5 ± 4.1 86.0 ± 0.9 55.6 ± 6.1 +0.9 ± 0.2 +22.5 ± 2.5 4.2

GS 90.7 ± 0.3 75.0 ± 0.2 68.5 ± 1.0 +1.8 ± 0.5 +27.8 ± 0.4 2
DGS 89.2 ± 2.2 78.7 ± 0.6 68.0 ± 1.9 +3.6 ± 0.2 +26.9 ± 0.3 2.2

4.3 Link Prediction

For the link prediction task, the evaluation process generates n − 1 negative edges for each positive edge,
where n denotes the number of nodes (possible destinations) in the graph. We then measure the mean
reciprocal rank (MRR), which indicates the average rank of the positive edge. An MRR of 50% implies
that the correct edge was ranked second, while an MRR of 25% implies it was ranked third. Additionally,
we measure Recall@10, which represents the percentage of actual positive edges ranked in the top 10 scores
for every edge.

We retrain the hyperparameter-optimized model using 10 random seeds and report the average test MRR
± standard deviation and Recall@10 ± standard deviation in Table 3. Evaluations were conducted in both
transductive (T) and inductive (I) settings. The transductive setting involves predicting future links of
nodes that could be observed during training, while the inductive setting involves predictions for nodes not
encountered during training.

We identified the best and second-best models. DGS demonstrated competitive performance in link pre-
diction. It outperformed the GNN models by approximately 10% in MRR on the Mooc dataset and showed
improved performance on the Reddit dataset. However, it underperformed compared to the baselines on the
Wikipedia dataset. To provide a comprehensive overview, we included a column in Table 3 that displays the
average rank, representing the mean ranking derived from all datasets, calculated using MRR. Notably, our
DGS model achieved the highest average performance in both transductive and inductive settings.

Table 3: DGS: Link prediction results using public datasets.

Method Wikipedia Mooc Reddit Average
rankMRR Recall@10 MRR Recall@10 MRR Recall@10

T

TGN-ID 46.6 ± 2.4 67.3 ± 2.1 15.3 ± 6.6 36.9 ± 18.0 41.3 ± 4.2 57.4 ± 3.5 4.3
Jodie 65.3 ± 1.3 78.4 ± 0.2 15.3 ± 3.9 38.1 ± 11.8 42.4 ± 4.3 59.9 ± 2.9 2.7
TGN-attn 66.7 ± 1.3 78.3 ± 0.6 16.9 ± 3.6 42.1 ± 11.2 40.0 ± 9.2 56.8 ± 8.9 2.7
GS 54.7 ± 1.1 64.4 ± 0.9 4.0 ± 0.4 5.1 ± 0.5 55.5 ± 1.2 65.2 ± 11 2.7
DGS 53.9 ± 1.3 63.9 ± 0.6 25.6 ± 4.0 49.0 ± 5.3 51.0 ± 0.9 64.8 ± 0.3 2.3

I

TGN-ID 62.3 ± 1.2 75.1 ± 0.5 13.8 ± 5.9 31.1 ± 15.8 41.6 ± 2.5 59.6 ± 1.9 2.7
Jodie 57.9 ± 0.7 73.1 ± 0.6 16.7 ± 2.6 41.2 ± 6.4 37.9 ± 4.2 57.0 ± 3.1 4.0
TGN-attn 65.6 ± 2.4 75.8 ± 0.7 17.7 ± 2.0 42.1 ± 5.2 48.1 ± 2.2 64.7 ± 0.9 2.0
GS 55.0 ± 2.1 62.8 ± 1.2 2.8 ± 0.2 3.6 ± 0.3 49.4 ± 1.1 59.5 ± 1.3 4.0
DGS 59.3 ± 2.5 68.5 ± 2.4 26.0 ± 3.9 48.2 ± 3.3 56.9 ± 30.9 68.5 ± 22.5 1.7

4.4 Inference Runtime

DGS has a primary goal of achieving reduced inference times. Comparative latency assessments were con-
ducted amongst DGS, Graph-Sprints, and baseline GNN models. These assessments involved processing
200 batches, each containing 200 events, across distinct datasets (Wikipedia, Mooc, and Reddit) for node

9



Under review as submission to TMLR

classification task. The average times were computed over 10 iterations. Tests were performed on a Linux
PC equipped with 24 Intel Xeon CPU cores (3.70GHz) and an NVIDIA GeForce RTX 2080 Ti GPU (11GB).

As depicted in Figure 4, DGS exhibited significant speed advantages. On the Reddit dataset, it was more
than ten times faster than the TGN-attn GNN baseline. For the smaller datasets, this speed enhancement
ranged approximately between 5 and 6 times, while maintaining a competitive speed with the low latency
GS baseline. Notably, the runtime of DGS remained stable and was not influenced by the number of edges
in the graph, as demonstrated in Figure 4. In the Wikipedia and Reddit datasets, DGS consistently took
0.24 seconds. In contrast, TGN-attn exhibited a runtime increase from 1.2 seconds in the Wikipedia dataset
to approximately 3 seconds in the Reddit dataset. This stability suggests that we may obtain higher speed
gains in larger graphs, especially considering that inference times in the TGN-attn baseline are impacted by
the number of graph edges. Moreover, When benchmarked against other GNNs baselines (TGN-ID, Jodie),
DGS consistently demonstrated significantly lower inference latency.

In comparison to the GS framework, known for its low latency, DGS generally exhibited marginally superior
speed, especially noticeable in the Wikipedia and Reddit datasets, with latencies of 0.24 versus 0.29 seconds.
This performance gain can be attributed to the higher feature count in these datasets (172 features), which
potentially increases the processing time for GS due to the elevated feature volume. In contrast, for the
Mooc dataset, which has only 7 edge features, GS showed a slight gain in speed (0.24 versus 0.28 seconds).

Figure 4: Trade-off between AUC and runtime.

4.5 Ablation Study

In this section we conduct a comparative analysis of three distinct variants of the DGS methodology, differ-
entiated primarily by their parameterization complexity.

The initial variant, designated as DGS-s, represents the most basic approach wherein scalar parameters α
and β are learned. Moreover, instead of employing a learnable embedding matrix, DGS-s adopts the static
embedding function utilized by Graph-Sprints. The subsequent variant, DGS-v, retains the fixed embedding
function but transitions to vectorized parameters, α⃗ and β⃗. This modification is intended to explore the
effects of increasing these parameters’ complexity on the performance of the model. The final variant, the
principal model described herein as DGS, not only incorporates vectorized parameters α⃗ and β⃗ but also
integrates a learnable embedding matrix. This approach aims to assess the impact of learnable feature
embedding matrix.

Table 4 presents the results of the three variants for node classification across five different datasets. It
displays the average test AUC ± standard deviation for the external datasets and the ∆ AUC for the AML
datasets. The DGS variant showes to be on average the best variant.

10



Under review as submission to TMLR

Table 4: DGS: Ablation study, Node classification results

Method AUC ± std ∆AUC ± std Average
rankWikipedia Mooc Reddit FI-A FI-B

DGS-s 88.2 ± 0.6 73.8 ± 0.5 65.8 ± 0.8 +1.8 ± 0.3 25.8 ± 0.7 3
DGS-v 91.0 ± 0.3 75.2 ± 0.3 67.2 ± 0.4 +3.2 ± 0.1 +26.7 ± 0.2 1.8
DGS 89.2 ± 2.2 78.7 ± 0.6 68.0 ± 1.9 +3.6 ± 0.2 +26.9 ± 0.3 1.2

5 Related Work

Graph representation learning is essential for converting complex graph structures into embeddings usable
by machine learning models. This section provides an overview of the existing algorithms. Additionally,
given the focus of this paper, we explore approaches aimed at achieving low latency in graph representation
learning.

5.1 Graph Representation Learning

Most existing graph representation learning methods focus on static graphs, thereby neglecting temporal
dynamics (Perozzi et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016; Hamilton et al., 2017a; Ying
et al., 2018). Dynamic graphs, which evolve over time, introduce additional complexities. A common
approach is to use DTDGs by considering the dynamic graph a series of discrete snapshots and apply static
methods (Sajjad et al., 2019), but this approach fails to capture the full spectrum of temporal dynamics.

To address this limitation, more advanced techniques have been developed to better handle CTDGs. These
methods include incorporating time-aware features or inductive biases into the architecture(e.g., (Nguyen
et al., 2018; Jin et al., 2019; Lee et al., 2020; Rossi et al., 2020)).

For instance, methods like DeepCoevolve(Dai et al., 2016) and Jodie(Kumar et al., 2019) train two recurrent
neural networks (RNNs) for bipartite graphs, one for each node type. In these models, the previous hidden
state of one RNN is also used as an input to the other RNN, allowing interaction between the two and
effectively performing single-hop graph aggregations.

TGAT (Xu et al., 2020) introduces temporal information through time encodings, enhancing the model’s
ability to capture dynamic changes. TGN (Rossi et al., 2020) extends this approach by incorporating a
memory module in the form of an RNN, providing a more robust framework for handling temporal data.
Further refinement is seen in Jin et al. (2020), where the discrete-time recurrent network of TGN is replaced
with a NeuralODE, modeling the continuous dynamics of node embeddings for more accurate representations.

The methods described above either leverage random-walks or graph neural networks (GNNs) to extract
neighborhood information and understand graph structure.

Random-walk-based methods are often hindered by high computational and memory costs, as noted by Xia
et al. (2019). Solutions to mitigate these challenges include techniques such as B_LIN (Tong et al., 2006),
METIS(Karypis & Kumar, 1997), and RWDISK (Sarkar & Moore, 2010), which offer approximations of
random walks.

GNNs are powerful for analyzing large-scale time series data, but adapting them to extensive datasets is
problematic due to memory limitations. While various sampling strategies have been proposed, integrating
these with temporal data is complex. Enhancing the scalability of GNNs for real-time applications remains
a critical area of ongoing research (Jin et al., 2023).

5.2 Low-latency Graph Representation Learning

This section reviews methods for low-latency graph representation learning. For example, APAN (Wang
et al., 2021) aims to reduce inference latency by decoupling expensive graph operations from the infer-
ence module, executing the costly k-hop message passing asynchronously. While APAN enhances inference
efficiency, it may use outdated information due to its asynchronous updates, which could impact overall

11



Under review as submission to TMLR

performance. In contrast, our method, Deep-Graph-Sprints, addresses latency without compromising the
freshness of the information used.

Furthermore, Liu et al. (2019) present a real-time algorithm for graph streams that updates node represen-
tations based on the embeddings of 1-hop neighbors of a node of interest, and ignoring its attributes.

Chu & Lin (2024) propose ETSMLP, a model that leverages an exponential smoothing technique to model
long-term dependencies in sequence learning. The model employs two learnable damped factors, to modify
the influence of a smoothing factor and the current input, respectively. These factors enable the model to
adjust the impact of past and current data adaptively. It treats the learnable and smoothing factors as
complex numbers for a richer representation.

Graph-Sprints (Eddin et al., 2023) offers a feature engineering approach that approximates random walks for
low-latency graph feature extraction. Unlike our approach, Graph-Sprints requires extensive hand-crafting
of features.

In addition to inference optimization, several methods address the reduction of computational costs in GNNs.
HashGNN (Wu et al., 2021) employs MinHash to generate node embeddings suitable for link prediction tasks,
grouping similar nodes based on their hashed embeddings. Another approach, SGSketch(Yang et al., 2022),
introduces a streaming node embedding framework that gradually forgets outdated edges, leading to speed
improvements. Unlike our approach, SGSketch primarily updates the adjacency matrix and focuses on the
graph structure rather than incorporating additional node or edge attributes.

6 Conclusions

CTDGs are essential for representing connected and evolving systems. While methods to learn these graphs
show significant potential for diverse applications, the computational and memory demands of existing
approaches limit their feasibility in low-latency scenarios.

In this paper, we introduce the real-time graph representation learning method for CTDGs, named DGS.
This novel approach addresses the latency challenges associated with current deep learning methods. It also
obviates the need for manual tuning and domain-specific expertise, which are prerequisites for traditional
feature extraction methods. The architecture design makes the use of real-time recurrent learning (RTRL)
feasible, which in turn can help to learn long-term dependencies and to use online learning. To validate the
effectiveness and applicability of DGS, we conducted a thorough evaluation using two internal AML datasets
and additional datasets from various fields, thereby demonstrating its versatility.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18:1–43, 2018.

Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, and Anis Zouaoui. Graph neural networks for intrusion
detection: A survey. IEEE Access, 2023.

Jiqun Chu and Zuoquan Lin. Incorporating exponential smoothing into mlp: A simple but effective sequence
model. arXiv preprint arXiv:2403.17445, 2024.

Tim Cooijmans and James Martens. On the variance of unbiased online recurrent optimization. arXiv
preprint arXiv:1902.02405, 2019.

L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Villas Boas. Characterization
of complex networks: A survey of measurements. Advances in physics, 56(1):167–242, 2007.

12



Under review as submission to TMLR

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network: Embedding user
and item features for recommendation. arXiv preprint arXiv:1609.03675, 2016.

Ahmad Naser Eddin, Jacopo Bono, David Aparício, Hugo Ferreira, João Tiago Ascensão, Pedro Ribeiro,
and Pedro Bizarro. From random-walks to graph-sprints: a low-latency node embedding framework on
continuous-time dynamic graphs. In Proceedings of the Fourth ACM International Conference on AI in
Finance, pp. 176–184, 2023.

Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Aggarwal. Graph lifelong
learning: A survey. IEEE Computational Intelligence Magazine, 18(1):32–51, 2023.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017b.

Di Jin, Mark Heimann, Ryan A Rossi, and Danai Koutra. node2bits: Compact time-and attribute-aware
node representations for user stitching. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 483–506. Springer, 2019.

Di Jin, Sungchul Kim, Ryan A Rossi, and Danai Koutra. From static to dynamic node embeddings. arXiv
preprint arXiv:2009.10017, 2020.

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin King, and
Shirui Pan. A survey on graph neural networks for time series: Forecasting, classification, imputation,
and anomaly detection. arXiv preprint arXiv:2307.03759, 2023.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2019.

John Boaz Lee, Giang Nguyen, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim. Dy-
namic node embeddings from edge streams. IEEE Transactions on Emerging Topics in Computational
Intelligence, 5(6):931–946, 2020.

Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao Wen. Real-time streaming graph
embedding through local actions. In Companion proceedings of the 2019 world wide web conference, pp.
285–293, 2019.

Abdul Majeed and Ibtisam Rauf. Graph theory: A comprehensive survey about graph theory applications
in computer science and social networks. Inventions, 5(1):10, 2020.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim.
Continuous-time dynamic network embeddings. In Companion proceedings of the the web conference 2018,
pp. 969–976, 2018.

13



Under review as submission to TMLR

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 701–710, 2014.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein.
Temporal graph networks for deep learning on dynamic graphs. In ICML 2020 Workshop on Graph
Representation Learning, 2020.

Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. Efficient representation learning using
random walks for dynamic graphs. arXiv preprint arXiv:1901.01346, 2019.

Purnamrita Sarkar and Andrew W Moore. Fast nearest-neighbor search in disk-resident graphs. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
513–522, 2010.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of Massachusetts
Amherst, 1984.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp. 1067–1077,
2015.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its applications.
In Sixth international conference on data mining (ICDM’06), pp. 613–622. IEEE, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui, Yupu
Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time temporal graph
embedding. In Proceedings of the 2021 international conference on management of data, pp. 2628–2638,
2021.

Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural computation, 2(4):490–501, 1990.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

Wei Wu, Bin Li, Chuan Luo, and Wolfgang Nejdl. Hashing-accelerated graph neural networks for link
prediction. In Proceedings of the Web Conference 2021, pp. 2910–2920, 2021.

Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. Random walks: A
review of algorithms and applications. IEEE Transactions on Emerging Topics in Computational Intelli-
gence, 4(2):95–107, 2019.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Dingqi Yang, Bingqing Qu, Jie Yang, Liang Wang, and Philippe Cudre-Mauroux. Streaming graph embed-
dings via incremental neighborhood sketching. IEEE Transactions on Knowledge and Data Engineering,
35(5):5296–5310, 2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983, 2018.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 34(1):249–270, 2020.

14



Under review as submission to TMLR

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

A Appendix

Table 5 enumerates the hyperparameters and their respective ranges employed in the tuning process of DGS
and the baselines. All represents the hyperparameters that are common to all the used methods (i.e., DGS,
GS, and GNN)

Table 5: Hyperparameters ranges for DGS and baseline methods.
Method Hyperparameter min max

DGS DGS learning rate (η) 10−4 103

DGS Number of softmaxes (m) 10 50
DGS Softmax temperature (T ) 1 10
GS α 0.1 1
GS β 0.1 1

GNN Memory size 32 256
GNN Neighbors per node 5 10
GNN Num GNN layers 1 3
GNN Size GNN layer 32 256
ALL Learning rate 10−4 10−2

ALL Dropout perc 0.1 0.3
ALL Weight decay 10−9 10−3

ALL Num of dense layers 1 3
ALL Size of dense layer 32 256

Table 6 provide a detailed comparison of the number of learnable parameters between DGS and TGN-attn
in the link prediction task.

Table 6: Comparison of the number of learnable parameters between DGS and TGN-attn in the link pre-
diction task, evaluated in both inductive (I) and transductive (T) settings. The ratio indicates the relative
proportion of parameters in TGN-attn compared to DGS.

Mooc Wiki Reddit
I T I T I T

DGS-NN component 80,145 80,145 57,665 23,537 84,945 80,145
DGS-ER component 2,250 2,250 43,500 43,500 43,500 43,500
DGS (total) 82,395 82,395 101,165 67,037 128,445 123,645
TGN-attn 154,221 308,785 362,422 197,572 100,426 282,340
Ratio 1.9 3.7 3.6 2.9 0.8 2.3

15


	Introduction
	Background: Overview of Automatic Differentiation Modes
	Method
	Architecture
	Embedding Recurrent Component (ER):
	Neural Network (NN)

	Training Process
	Inference Process

	Experiments and Results
	Experimental Setup
	Node classification
	Link Prediction
	Inference Runtime
	Ablation Study

	Related Work
	Graph Representation Learning
	Low-latency Graph Representation Learning

	Conclusions
	Appendix

