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ABSTRACT

Recent advancements in multimodal large language models (MLLMs) have broad-
ened the scope of vision-language tasks, excelling in applications like image cap-
tioning and interactive question-answering. However, these models struggle with
accurately processing visual data, particularly in tasks requiring precise object
recognition and fine visual details. Stringent token limits often result in the omis-
sion of critical information, hampering performance. To address these limitations,
we introduce Zoomer, a novel visual prompting mechanism designed to enhance
MLLM performance while preserving essential visual details within token limits.
Zoomer features three key innovations: a prompt-aware strategy that dynamically
highlights relevant image regions, a spatial-preserving orchestration schema that
maintains object integrity, and a budget-aware prompting method that balances
global context with crucial visual details. Comprehensive evaluations across mul-
tiple datasets demonstrate that Zoomer consistently outperforms baseline meth-
ods, achieving up to a 26.9% improvement in accuracy while significantly reduc-
ing token consumption.

1 INTRODUCTION

Recent advancements in multimodal large language models (MLLMs), such as GPT-4o, Gemini Pro,
and Claude 3, have significantly expanded the capabilities of vision-language tasks. These models
now excel in applications such as image captioning, object recognition, and interactive question-
answering systems (Li et al., 2024; Gu et al., 2024). These models are able to process and integrate
both text and images, creating opportunities for applications spanning diverse fields from creative
writing to technical problem-solving. Yet, their reliance on textual prompts limits their performance
when tasked with precise object recognition and interpreting intricate visual details (Cui et al., 2024).
This limitation becomes evident when users attempt to guide the model using text prompts alone, as
shown in Figure 1. While these models possess the capability to capture and analyze subtle visual
nuances, current text-based prompting methods often fail to fully unlock this potential. We argue
that more sophisticated approaches, where vision is not only analyzed but also serves as part of
the prompt, are essential for refining the interaction and fully harnessing the power of MLLMs in
high-stakes visual environments.

One of the primary limitations of current MLLMs arises from their unified image processing strat-
egy. In visual tasks, there are often regions of interest (RoI) corresponding to the parts of concern
and auxiliary understanding information, sometimes even including irrelevant and redundant back-
ground. However, most models process images uniformly without selectively filtering these regions.
This lack of targeted processing leads to decreased fidelity in critical areas, severely affecting tasks
that rely on small object detection or fine visual details. Although some recent studies (Jin et al.,
2023) attempt to address this issue by modifying the model architecture, picking the valuable token
and fine-tuning training, such approaches are impractical for black-box MLLMs.

Meanwhile, black-box MLLMs impose strict token limits on both text and visual prompts to ensure
computational efficiency and user fairness (Chen et al., 2024). These constraints further compound
the problem, as downscaling high-resolution images to fit within token budgets leads to the omission
of vital details. As demonstrated in Figure 2, when high-resolution images are resized to meet the
token limits imposed by these models, vital visual information is lost. In critical domains such
as medical imaging or satellite-based analysis, missing such details can result in inaccurate or even
dangerous outcomes (Mahapatra et al., 2022). Moreover, the black-box nature of these models limits
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Raw Prompt

Original Image Prompt: 

Question: How  many cactus in the image？ 
There are two small cacti visible in the image.

Image Resolution: 256x256

MLLM Answer: 

 From the image, there are two small cacti 
placed on the left side of  shelves.

MLLM Answer: 

 The left side shows two small cacti in white pots,
              while the right side shows a single cactus in a white pot. 

Therefore, the total number of cacti in the images is three.

MLLM Answer: 

Original Image Prompt+Text Prompt:
 

You first locate the cactus,
And then answer the Question

Processed Image Prompt: Processed Image Prompt+Text Prompt:

Show you the zoomed-in images of cactis,
And then answer the Question

Figure 1: Illustration of a black-box MLLM’s approach to counting cacti in an image. The model
identifies two small cacti on the left side and overlooks the single cactus on the right side of the
image, arriving at a total of three cacti. The processed prompt highlights specific regions of interest
to facilitate the correct object count.

Uniformed
Scaling

Image Resolution: 4240x2832
1536x1026

Original Image Prompt: 

Text Prompt: What is the title of the red book? 

: Sorry, I cannot read the text clearly. 

Cropping

146x246

Processed 
Image Prompt: 

: Websters II 

MLLM
Answer: 

Information 
Loss

MLLM
Answer: 

Figure 2: Illustration of information loss during image processing in black-box MLLMs. The origi-
nal high-resolution image (4240x2832) is downscaled to meet token limits (1536x1026), leading to
the loss of critical details. Cropping to focus on a region of interest (146x246) allows the model to
correctly identify the book title as “Webster’s II”.

the ability to fine-tune or modify their architectures, making it difficult to address these shortcomings
with conventional methods discussed in §3.1.

To tackle these challenges, we propose Zoomer, a novel visual prompting mechanism designed to
preserve critical visual details while adhering to the token constraints of black-box MLLMs. Zoomer
introduces three key innovations: (1) a prompt-aware visual emphasizing strategy that dynamically
highlights the most contextually relevant parts of an image based on the input prompt such as shown
in Figure 1 and 2, mitigating the information loss that typically results from resizing; (2) a spatial-
preserving orchestration schema that maintains the structural integrity and relative positioning of
objects within the image, thereby enhancing context-aware visual processing; and (3) a budget-
aware prompting strategy that balances the need to capture global image context while preserving
high-resolution slices, ensuring key visual details are retained without exceeding token budgets.

In a comprehensive evaluation across datasets such as Vstar (Wu & Xie, 2023), CVBench (Tong
et al., 2024a), and RealworldQA (xAI, 2024), Zoomer consistently outperformed baseline methods.
Notably, in the Vstar dataset, Zoomer-Patches achieved a 26.9% accuracy improvement over the
baseline, while in RealWorldQA, Zoomer-Adaptive outperformed the baseline by 12.1%. Alongside
these accuracy gains, Zoomer significantly reduced token usage. For example, on the TerraIncog-
nita dataset, Zoomer achieved 6.4% higher accuracy with a 67% reduction in token consumption
compared to the baseline. These results confirm that Zoomer not only addresses the limitations
of visual processing in black-box MLLMs but also enhances efficiency. Moreover, across APIs like
GPT-4o1, Gemini-1.5Pro2, and Claude-3.5-Sonnet3, Zoomer demonstrated consistent improvements

1https://platform.openai.com/
2https://gemini.google.com/
3https://anthropic.com/
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in both accuracy and token efficiency, solidifying its potential to optimize MLLM performance in
real-world, high-resolution applications.

The contribution of this work can be summarized as follows: (1) We conduct a detailed investigation
of GPT-4o’s image prompting strategy, exposing key limitations in its handling of visual inputs. (2)
We introduce Zoomer, a novel mechanism that addresses the challenge of preserving visual detail
in black-box MLLMs while adhering to token constraints. (3) We present extensive experimental
results across multiple datasets, demonstrating that Zoomer achieves significant improvements in
both accuracy and token efficiency, offering valuable insights into enhancing multimodal processing
in constrained environments.

2 PILOT EXPERIMENTS

Method Accuracy Prompt
Tokens

Unaltered Input 0.57 955

Image Crop 0.58 270

Zoomed Crop 0.64 270

Table 1: Performance of different methods
on Vstar-Bench Image Prompts.

One of the primary challenges faced by black-box
MLLMs is their inability to process visual inputs effi-
ciently, leading to diminished accuracy in fine-grained
visual tasks. Models like GPT-4o often struggle with
recognizing detailed or occluded objects, particularly
when dealing with complex images. These limitations
are compounded by token constraints, which restrict
the amount of image data that can be processed in a
single prompt. Furthermore, according to the Vision
pricing calculator4, GPT handle images by resizing
and splitting them into basic units of 512×512 pixels.
Each of these units corresponds to 170 tokens. This
method of processing not only imposes a strict limit on the image resolution but also increases the
computational overhead due to the additional tokens generated from splitting. As a result, vital
visual details may be lost when images are downsampled or resized to fit within the token limits,
leading to poor performance on tasks that require precise visual grounding.

To evaluate this issue, we conducted a series of pilot experiments using GPT-4o-0513 on the Vstar-
Bench dataset. This dataset challenges MLLMs to accurately identify detailed objects within high-
resolution images, making it an ideal test for the model’s capacity to handle fine-grained visual
information. The experiments compared three different image processing strategies: (1) an unpro-
cessed prompt (Unaltered Input), where the image is fed to the model in its original form; (2) a
prompt where the image is cropped to focus on the target object (Image Crop); and (3) a prompt
where the cropped image is further enlarged to emphasize the most relevant visual features (Zoomed
Crop). Both the Image Crop and Zoomed Crop methods were constrained to fit within GPT-4o’s
patch size limit of 512x512 pixels.

As shown in Table 1, the Zoomed Crop method significantly outperformed the others, achieving
an accuracy of 0.76 with a token usage of 270. In comparison, the Unaltered Input method, de-
spite processing the entire image, only achieved an accuracy of 0.64 while consuming 955 tokens.
Similarly, the Image Crop method, although reducing the token count to 270, did not yield any
improvement in accuracy compared to the unprocessed input.

These results highlight a fundamental problem in current black-box MLLMs: they fail to efficiently
manage the trade-off between image resolution and token constraints. In cases like those presented
by the Vstar-Bench dataset, where fine-grained visual information is critical, processing unaltered
high-resolution images leads to excessive token consumption without improving accuracy. While
the Image Crop method reduces token usage, it fails to improve performance because simply crop-
ping an image without emphasizing key details does not provide sufficient context for the model to
interpret the visual input accurately.

The superior performance of the Zoomed Crop method underscores the importance of vision en-
hancement techniques in black-box MLLMs. By focusing on the most relevant portions of the
image, Zoomed Crop preserves critical details while remaining within token limits, enabling the
model to interpret detailed visual inputs more effectively. This approach resolves a common issue
faced by black-box MLLMs, where downscaling or cropping images to meet token requirements
often leads to a loss of essential information, reducing the overall effectiveness of the model.

4https://openai.com/api/pricing/
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Our experiments reveal that without adaptive techniques like Zoomed Crop, black-box MLLMs
struggle to process high-resolution images efficiently, limiting their performance on tasks that re-
quire precise visual recognition. These findings demonstrate the necessity of vision enhancement
strategies to address the inherent limitations of token-constrained MLLMs.

3 RELATED WORK

3.1 MULTIMODAL LLMS: OPEN-SOURCE AND BLACK-BOX MODELS

The integration of visual and textual modalities in large language models (LLMs) has led to signifi-
cant advancements in multimodal models (MLLMs) like GPT-4o, Gemini Pro and Claude3-Sonnet.
These models rely on effective visual encoding strategies to bridge the gap between language and
vision. Approaches such as CLIP (Yang et al.) align visual and language embeddings through
contrastive learning, while models like Flamingo (Alayrac et al.) and BLIP-2 (Dai et al.) use cross-
attention mechanisms or pretraining modules to link vision encoders with LLMs. However, these
methods often rely on fixed low-resolution inputs (e.g., 224x224), limiting their ability to process
high-resolution images or non-standard aspect ratios (Liu et al., a), which hampers performance on
fine-grained tasks such as OCR and small object detection

In contrast, open-source multimodal models (Li et al., c; Xu et al.; Zhang et al., a; Li et al., a;
Zhao et al.) allow for architectural modifications and fine-tuning to accommodate any-resolution
inputs. However, black-box MLLMs such as GPT-4o and Gemini Pro, which impose strict token
limits for computational efficiency, require alternative solutions. The need to downsample or crop
images to meet these constraints often results in the loss of crucial visual details, particularly in tasks
requiring detailed visual understanding. While position embedding interpolation (Bai et al.; Wang
et al.; Luo et al.; Hong et al.; Chen et al.) and patch-based cropping (Xu et al.; Li et al., a) widely
adpoted in open-soure models offer promising directions for any aspect ratio and any-resolution
image processing, they are not applicable to black-box models, where architectural changes and
extra training/fine-tuning are not permitted.

3.2 OBJECT DETECTION

Traditional object detection models, such as Faster R-CNN (Ren et al.) and YOLO (Redmon et al.),
effectively identify and localize objects within predefined categories. However, they struggle with
open-set scenarios, where novel objects not seen during training need to be detected.

Recent advances address this limitation through open-set detection models that leverage natural
language processing. For instance, OV-DETR (Zang et al.) integrates CLIP with object detection
to generate category-specific bounding boxes from textual prompts, enabling detection in open-
world settings. Similarly, GLIP (Li et al., b) reframes detection as a grounding problem, improving
alignment between visual regions and textual descriptions. DetCLIP (Yao et al.) extends this fur-
ther using pseudo labels from large-scale captioning datasets, enhancing generalization. Grounding
DINO (Liu et al., b), built on the DETR framework (Carion et al.), also advances open-set detection
through natural language integration.

In addition, SAM (Kirillov et al., 2023) and SAM-2 (Ravi et al., 2024) offer zero-prompt or minimal-
prompt segmentation for arbitrary objects but lack robust text-prompt handling. EVF-SAM (Zhang
et al., b) overcomes this by extending SAM’s capabilities to better manage complex text-based object
segmentation.

By incorporating these models, Zoomer enhances its ability to dynamically detect and emphasize
regions of interest (RoIs), enabling black-box MLLMs to focus on the most relevant visual content
without losing critical details, which is essential for maintaining high performance across varied
resolutions.

4 METHOD OVERVIEW

Inspired by the observation derived from our pilot experiments, we propose Zoomer, a comprehen-
sive visual prompting mechanism designed to effectively address the loss of detail in images that
occurs during the naive resizing process in current black box multimodal LLMs, such as GPT-4
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 From the information on that 
advertising board, what is the 
type of this shop?

Token
Budget 

Black-box LLMs

Zoomer

The advertisement board in the 
image seems to have text, but the 
details are not clear enough for me 
to read. 

GPT4o:
(cost 955 tokens)

Based on the advertisement board in 
the image, the shop is a yoga studio 
called "CorePower Yoga”.

Zoomer-GPT4o:
(cost 277 tokens)

Text Pre-
process

advertising board; shop

Text Prompt Image Prompt 

Multi-scale Emphasizer

Off-the-shelf object 
detection model

Spatial Preserving 
Orchestration Schema

Budget-aware Image 
Prompt Construction

Emphasized ROIs

Token Efficient Prompt

512x512 512x512
Zoomer

…

Image Prompt: 

Text of Interest

ROIText Prompt: 

Token
Budget 

Text & Processed Image Prompt 

Figure 3: The Zoomer framework. Left: Raw Input image (①) and text prompt are processed by
Zoomer and then fed into a black-box LLM (e.g., GPT-4o) for analysis, resulting in more accurate
and detailed responses compared to standard input methods with even token saving. Right: Zoomer
processes the text to extract key terms and uses a multi-scale emphasizer(§4.1) with an off-the-shelf
object detection model to identify regions of interest (ROIs). The identified ROIs (②) are then
processed through a spatial preserving orchestration schema (§4.2) for a filtered emphasized patch
(④) and a budget-aware image prompt construction module (§4.3) to create a token-efficient prompt
within the specified budget. A scaled global view (③) is also generated for potential prompting.

and Gemini 1.5. As illustrated in Figure 3, our mechanism comprises three key components: (1)
A prompt-aware visual emphasizer that allocates high-fidelity image slices based on prompt texts
to facilitate efficient and focused visual encoding; (2) A spatial-preserving encoding schema that
consolidates the collected image slices while maintaining their relative spatial positions to create
a condensed visual input; (3) A budget-aware prompting strategy that maximizes the accuracy of
results obtained from the black box models while fits the budget requirement from users.

4.1 PROMPT-AWARE VISUAL EMPHASIZER

The prompt-aware visual emphasizer utilizes a multi-scale emphasizing strategy to prioritize image
slices that are most relevant to the input prompts. By analyzing the semantic content of the prompts,
this component dynamically selects and enhances specific regions of the image at varying resolu-
tions. This approach not only enriches the contextual information available to the model but also
mitigates the adverse effects of losing critical details during the resizing process.

Prompt Tokenization Prompt tokenization is a critical first step in which input prompts are parsed
into meaningful tokens. This process segments the prompt into components that can be easily an-
alyzed for semantic relevance. Specifically, the prompt is divided into structural components, and
our focus is on processing the relevant sections that contribute directly to visual emphasis.

To enhance the extraction of semantically relevant tokens, we apply advanced natural language
processing (NLP) techniques. First, we use the NLTK library5 to remove stopwords, reducing noise
and ensuring that the model’s attention remains on the most critical visual elements. By eliminating
these non-essential words, we concentrate on key terms that directly influence the visual emphasis.

In addition to basic stopword removal, we utilize dependency parsing (Sarthi et al., 2024; De Marn-
effe & Manning, 2008) to analyze the syntactic structure of the prompt. This deeper analysis iden-
tifies core entities and relationships, such as subject-object pairs and action verbs, which are crucial
for interpreting the user’s intent. By focusing on these core semantic elements, we ensure that the
visual emphasis aligns precisely with the underlying meaning of the prompt.

5https://www.nltk.org/
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Finally, we strip away any irrelevant formatting or non-content-related details, allowing the visual
emphatizer to focus solely on the essential information. This multi-layered tokenization approach
ensures an optimal match between the tokenized prompt and the image features selected for empha-
sis.

Multi-Scale Emphasizing Algorithm: Given a key object term extracted from the text prompt, the
Multi-Scale Emphasizing Algorithm 1 utilizes a state-of-the-art object detection model to localize
the corresponding object in the image prompt. In our experiments, we primarily employ Ground-
ingDINO (Liu et al., b) as our localization model.

The encoder in such models typically downsamples the input image to a resolution of 224 × 224
or 336 × 336, potentially resulting in information loss when localizing the target object at a coarse
granularity. To address this limitation, we propose a Multi-Scale Emphasizing Algorithm that pro-
cesses the original image at multiple resolutions. The algorithm divides the input image into patches
at various granularities, e.g., 2 × 2, 3 × 3, and beyond. For each generated patch, we apply the
object detection model to localize the target object. The algorithm retains bounding boxes returned
by the model that exceed a predefined confidence threshold. These high-confidence bounding boxes
collectively form the output of our algorithm, providing a comprehensive multi-scale representation
of the target object’s location.

Algorithm 1 Multi-Scale Emphasizing Algorithm
Require: I: input image, k: key object term, M : object detection model, T : confidence threshold
Ensure: B: set of bounding boxes

1: B ← ∅
2: S ← {2, 3, . . . , Smax} ▷ Set of scaling factors
3: for each s ∈ S do
4: Ps ← DivideIntoPatches(I, s× s)
5: for each patch p ∈ Ps do
6: b, c←M(p, k) ▷ Get bounding box and confidence
7: if c ≥ T then
8: B ← B ∪ {b}
9: end if

10: end for
11: end for
12: return B

4.2 SPATIAL-PRESERVING ORCHESTRATION SCHEMA

Building upon the Multi-Scale Emphasizing Algorithm, we introduce a Spatial-preserving Orches-
tration Schema to maintain the structural integrity of the image during the encoding process. This
schema filters the bounding boxes obtained from the Multi-Scale Emphasizing Algorithm and en-
sures that the relative positions of the selected image slices are preserved, facilitating a more faithful
representation of the original image layout and enabling coherent reconstruction when processed by
the multimodal LLM. To refine the selection of bounding boxes, we implement a Non-Maximum
Suppression (NMS) based slice filtering method. NMS is employed to eliminate redundant and
overlapping slices, retaining only the most salient features that align with the prompt. The process
works as described in Algorithm 2.

By setting an appropriate threshold T for the Intersection of Union (IoU) of bounding boxes around
the selected regions, we ensure that only the highest-quality slices are retained for the encoding
process. This filtering step enhances computational efficiency by reducing the number of slices to
be processed and improves the clarity and relevance of the visual information provided to subsequent
stages of the model.

The resulting set of filtered slices are then orchestrated to preserve their original relative positions
within the image. This orchestration process involves the following steps: Slice Extraction: For
each bounding box bi in the filtered set F , we extract the corresponding image slice from the orig-
inal image. Blank Image Creation: We create a new blank image with the same dimensions as
the original image. Slice Placement: We place each extracted slice onto the blank image at its
original position, leaving the rest of the image blank. Image Shrinking: The resulting image, con-

6
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taining only the selected slices in their original positions with the rest left blank, is then shrunk to a
predetermined size while maintaining its aspect ratio.

4.3 BUDGET-AWARE PROMPTING STRATEGY:

Our approach incorporates a sophisticated budget-aware prompting strategy that optimizes the allo-
cation of token budget for image processing. This strategy begins with a user-specified total token
budget Btotal, allowing for customization based on specific task requirements or computational con-
straints. We propose four varieties of Zoomer to accommodate different budget scenarios and task
requirements:

• Zoomer-Local(④): This variant utilizes only the spatial-preserving schema to consolidate all fo-
cused image slices into a single image patch(④ in Figure 3). It is optimal for scenarios with very
limited token budgets, prioritizing the most relevant visual information.
• Zoomer-Adaptive (④ + ♢ ③ ): This approach dynamically includes a global view of the original
image if the cropped portion falls below a certain threshold TA. This allows the MLLM to better
understand the overall scene context when the budget permits, while still focusing on key areas of
interest.
• Zoomer-Global (④ + ③): This variant assigns a global view to all images, regardless of the
specific regions of interest. It is suitable for tasks that require consistent overall context and when
the token budget is sufficient to include both global and local information.
• Zoomer-Patches(② + ③): This is the most token-intensive approach, assigning each image slice
its own patch without spatial preservation, along with a global view. It provides the most detailed
information but requires the largest token budget.

The selection among these varieties depends on the user-specified budget and the nature of the
task. For each variant, the number of high-resolution slices or patches N is calculated based on the
available budget and the token cost per slice or patch. These slices are selected from the output of
our Multi-Scale Emphasizing Algorithm, prioritizing based on their relevance to the key term of text
prompts. To present the methods more clearly and vividly, we refer to Figure 4, which outlines the
methodology, and Figure 5, which showcases a specific case study.

5 EXPERIMENTS

In this section, we evaluate the performance of Zoomer through a series of experiments designed
to test its ability to improve token efficiency and preserve visual fidelity across different black-box
MLLM. Specifically, we aim to answer the following questions: (i) Accuuracy: Does Zoomer
improve accuracy across different black-box MLLMs on image-related tasks? (ii) Efficiency: How
does Zoomer perform compared to baseline methods in terms of both accuracy and token efficiency?
(iii) Component Contribution: What is the impact of key components in Zoomer, such as multi-
scale vision emphasize and the budget-aware prompt strategy?

5.1 SETUP

Assessment and Datasets We evaluated our system on a series of challenging multimodal tasks,
using commercial black-box MLLMs for applications ranging from visual-language reasoning to
image understanding and question answering. The experiments were conducted on a variety of
different public datasets, including:

1) Vstar (Wu & Xie, 2023): A benchmark dataset focused on image classification, used to evaluate
fine-grained visual recognition capabilities in object detection and classification tasks.

2) CVBench (Tong et al., 2024a): Contains 2 sub-category, CV Bench2D and CV Bench3D, respec-
tively, representing two-dimensional and three-dimensional visual image, respectively, to evaluate
the performance of the model when processing images of different dimensions, especially the un-
derstanding ability in complex scenes.

3) RealworldQA (xAI, 2024): Used to test the multimodal question answering performance of the
model in real-world scenarios, involving cross-language and cross-image information processing.

7
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4) MMVP (Tong et al., 2024b): A validation set for multimodal visual processing, designed to
evaluate the comprehensive understanding of models for complex visual scenes.

5) ScienceQA (Lu et al., 2022): A multimodal scientific question-answering dataset featuring
multiple-choice questions across a diverse range of science topics.

Models We employed three black-box MLLMs—GPT-4o-0513, Claude-v3-Sonnet, and Gemini-
Pro—accessed via their respective APIs (OpenAI, Claude, Google). Across all experiments, we set
the temperature to 0 and used greedy decoding for consistency, optimizing the stability of outputs.
NMS was applied with a confidence score threshold of 0.8 to filter irrelevant regions from high-
resolution images.

Metrics We used classification accuracy across all examples as the primary evaluation metric. Addi-
tionally, we compared token usage for each model configuration to evaluate the efficiency improve-
ments offered by Zoomer.

Baselines We compare Zoomer against the following baseline methods:

1) Raw: This baseline feeds MLLM the unmodified prompt, with no adjustments made to the image.

2) Resize: Here, images larger than 512x512 pixels are resized to fit within the GPT-4o’s patch limit,
while smaller images remain unchanged.

5.2 MAIN RESULTS

Table 2 compares the performance of Zoomer against baseline methods across various datasets using
GPT-4o. The results show that Zoomer, particularly in its Patches and Adaptive versions, consis-
tently outperformed baseline approaches in terms of accuracy while maintaining lower token usage
than the Raw method. Zoomer consistently outperformed baseline methods, showing accuracy im-
provements up to 26% across multiple tasks. For example, in the Vstar dataset, Zoomer-Patches
achieved an accuracy of 0.717, compared to 0.565 using the Raw baseline, marking a 26.9% im-
provement. In RealworldQA, which demands complex multimodal reasoning, Zoomer-Adaptive
achieved 0.758 accuracy, outperforming the 0.676 accuracy of the Raw method by 12.1%. These
results highlight that Zoomer effectively preserves fine-grained visual details, enabling improved
object recognition and image understanding across real-world tasks, where precise detail retention
is crucial.

We further evaluated Zoomer on Claude-3.5-Sonnet and Gemini-1.5Pro to assess its generalizability
across different black-box MLLMs. Table 3 shows that Zoomer demonstrated robust performance
across different black-box MLLMs, for example, Zoomer achieved an accuracy of 0.704 on Vstar,
compared to 0.531 with the Raw baseline, marking a 32.6% improvement. Similarly, in Claude-
3.5-Sonnet, Zoomer outperformed the baseline by 34.5% on RealworldQA, improving from 0.610
to 0.741. These results suggest that Zoomer can consistently enhance performance across different
architectures, making it a versatile tool for various MLLM-based applications.

A key contribution of Zoomer is its ability to reduce token consumption while maintaining or im-
proving accuracy. As shown in Table 4, Zoomer consistently delivers both token efficiency and
performance improvements across various benchmark datasets. For instance, on the TerraIncognita
dataset, guided by ManyICL (Jiang et al., 2024), Zoomer achieves 0.83 accuracy using 315 tokens,
compared to the Raw baseline’s 0.78 accuracy with 963 tokens—a 67% reduction in token usage
while improving performance by 6.4%. Additionally, Zoomer reduces latency, making it practical
for real-time applications. In the TerraIncognita zero-shot setting, Zoomer lowered latency from
4.8s to 3.1s, a 35.4% reduction without sacrificing accuracy. This makes Zoomer highly suitable
for tasks like autonomous driving, and real-time visual analytics, where both token efficiency and
reduced latency are critical.

5.3 FINDINGS

Here we analyze why the Zoomer-Patches version underperforms compared to Zoomer-Global and
even the Local version on certain datasets. For example, on the CV Bench3D dataset, the accu-
racy of the Patches version is 0.025 lower than the Global version and 0.04 lower than the Local
version. Similarly, on the MMVP dataset, the Patches version falls short by 0.005 compared to
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Method

Acc./Tokens Bench
Vstar CVBench-2D CVBench-3D RealworldQA SQA-I MMVP

Raw 0.565/955 0.685/428 0.782/895 0.676/998 0.873/353 0.833 /270
Resize 0.419/270 0.663/270 0.752/270 0.611/270 0.868/270 0.833/270

Zoomer-Local 0.671/270 0.724/270 0.862/270 0.724/270 0.883/270 0.871/270
Zoomer-Adaptive 0.675/419 0.729/374 0.879/408 0.747/362 0.911/308 0.887/351
Zoomer-Global 0.676/540 0.731/540 0.883/540 0.753/540 0.923/540 0.889/540
Zoomer-Patches 0.717/1029 0.746/709 0.858/1113 0.758/997 0.928/727 0.884/726

Table 2: Performance of GPT-4o-0513 across different datasets using various image prompt pro-
cessing methods, focusing on accuracy and token consumption. Among these approaches: Local:
Only the extracted RoIs are used. Adaptive: Selectively provides the MLLM with a global view
of the image based on the prompt strategy. Global: Every request includes the global view of the
image. Patches: Does not use the Spatial-Preserving Orchestration Schema; instead, each possible
RoI is independently provided to the MLLM, including the global view.

API Method Vstar CVBench-2D RealworldQA MMVP

GPT-4o Raw 0.565 0.685 0.676 0.833
Zoomer 0.717 0.746 0.758 0.889

Gemini-1.5Pro Raw 0.531 0.654 0.640 0.798
Zoomer 0.704 0.732 0.739 0.878

Claude-3.5-Sonnet Raw 0.518 0.667 0.610 0.802
Zoomer 0.697 0.728 0.741 0.872

Table 3: Accuracy of Different Black-box MLLM APIs. For Vstar, CVBench-2D, and RealworldQA,
we used the Patches version of SysName. For MMVP, inspired by Table 2, we employed the Global
version.

the Global version and by 0.003 compared to the Adaptive version. Given that these results are
averaged over multiple measurements, and accounting for model fluctuations, we hypothesize that
this performance drop occurs because the Patches version treats each RoI as an independent image
and provides them separately to the MLLM. When there are too many RoIs, the model may fail to
capture or integrate some of them, leading to a drop in accuracy.

Method Accuracy Tokens Latency Money Cost($10-e3)
Zero-Shot 15-Shot Zero-Shot 15-Shot Zero-Shot 15-Shot Zero-Shot 15-Shot

Raw 0.78 0.84 963 13488 4.8s 18.7s 4.815 67.44
Resize 0.61 0.74 255 4080 2.9s 7.5s 1.275 20.4

Low-Detail 0.6 0.7 85 1360 2.1s 6.5s 0.425 6.8
Zoomer-Adaptive 0.83 0.88 315 5112 3.1s 9.8s 1.575 25.56

Table 4: Performance in terms of accuracy, latency, and image token cost on TerraIncognita under
ICL conditions—specifically with 15 examples per question—and under zero-shot conditions.

5.4 ABLATION STUDY

To further understand the impact of the individual components within Zoomer, we conducted an
ablation study focusing on two key variants: 1) Zoomer with multi-scale emphasize: Compared
with the commonly used multi-resolution and directly use, multi-scale visual emphasis is used to
identify and emphasize RoI in the image. 2) Zoomer with different models.

To further investigate the contributions of Zoomer’s components, we conducted an ablation study
(Table 5). The results demonstrate that the combination of multi-scale visual emphasis and Patches
prompt strategies delivers the best performance across all most datasets. Comparing different vi-
sion emphasis models, such as EVF-SAM and Ground Dino, further highlights the effectiveness
of Zoomer. Despite differences in model capabilities, both show accuracy improvements across
datasets. Additionally, when comparing different emphasis methods—Default, Multi-Resolution,
and Multi-Scale—the Multi-Scale method consistently outperformed Multi-Resolution. We hypoth-
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Emphasize Method Model Prompt Strategy VSTAR CVBench-2D CVBench-3D RealworldQA SQA I MMVP

Default

EVF-SAM

Local 0.571 0.676 0.799 0.685 0.878 0.840
Adaptive 0.575 0.713 0.825 0.721 0.883 0.853
Global 0.578 0.721 0.830 0.724 0.888 0.873
Patches 0.571 0.727 0.838 0.721 0.868 0.847

Ground Dino

Local 0.581 0.706 0.825 0.715 0.853 0.843
Adaptive 0.583 0.715 0.839 0.731 0.901 0.856
Global 0.583 0.718 0.848 0.734 0.903 0.878
Patches 0.588 0.706 0.831 0.726 0.909 0.877

Multi-Resolution

EVF-SAM

Local 0.584 0.692 0.840 0.725 0.883 0.847
Adaptive 0.585 0.713 0.853 0.731 0.911 0.868
Global 0.584 0.721 0.858 0.734 0.918 0.878
Patches 0.602 0.713 0.857 0.731 0.913 0.868

Ground Dino

Local 0.636 0.718 0.826 0.702 0.888 0.851
Adaptive 0.644 0.718 0.843 0.706 0.903 0.865
Global 0.664 0.722 0.847 0.714 0.918 0.869
Patches 0.662 0.726 0.836 0.702 0.921 0.869

Multi-Scale

EVF-SAM

Local 0.637 0.721 0.852 0.704 0.853 0.857
Adaptive 0.643 0.724 0.861 0.706 0.901 0.876
Global 0.643 0.728 0.879 0.717 0.903 0.888
Patches 0.672 0.737 0.871 0.730 0.909 0.880

Ground Dino

Local 0.671 0.724 0.862 0.724 0.883 0.871
Adaptive 0.675 0.729 0.879 0.747 0.911 0.887
Global 0.676 0.731 0.883 0.753 0.923 0.889
Patches 0.717 0.746 0.858 0.758 0.928 0.884

Table 5: Performance of Zoomer Across Datasets for Different Emphasis Methods, Models, and
Prompt Strategies.

esize that, while Multi-Scale crops images and may split objects, its pyramid-shaped multi-recall
strategy compensates for this by enhancing recall. In contrast, although Multi-Resolution maintains
object integrity, adjusting resolution disrupts the model’s performance, likely because most models
are trained on fixed-size inputs, and changing the resolution weakens their inherent capabilities.

6 CONCLUSION

In this paper, we introduced Zoomer, a novel visual prompting mechanism designed to overcome
the limitations of black-box MLLMs in processing images while adhering to token constraints. Our
approach effectively balances the need to capture essential visual details without exceeding token
budgets, a challenge commonly encountered in existing models like GPT-4o and Gemini Pro.

Through a comprehensive evaluation across datasets such as Vstar and RealWorldQA, Zoomer
demonstrated significant improvements, particularly in fine-grained visual tasks. Our results show
that Zoomer-Patches achieved a 26.9% accuracy gain over baseline methods in Vstar, and Zoomer-
Adaptive provided a 12.1% improvement in RealWorldQA. These gains were achieved while dras-
tically reducing token usage, with Zoomer delivering 6.4% higher accuracy in the TerraIncognita
dataset using 67% fewer tokens.

Although this work primarily focuses on improving the efficiency of visual processing in black-box
MLLMs, another potential issue that arises in real-world applications is communication cost. For
example, transferring large images from edge devices (e.g., wearable cameras or glasses) to cloud
servers can be expensive in terms of bandwidth, latency, and energy consumption. While Zoomer is
designed to reduce token usage, its application in minimizing data transmission costs is an area that
could be explored in future work.

As part of future research, we plan to investigate how Zoomer could be adapted for edge ML ap-
plications, enabling local processing on devices such as wearable cameras. This would allow for
more efficient handling of visual inputs at the edge, reducing the need for extensive data transfers
to the cloud. We aim to measure latency, power consumption, and the overall impact on system
performance to assess the feasibility of applying Zoomer in these scenarios.

In summary, Zoomer offers a practical solution for enhancing visual processing in constrained
MLLMs and opens up new directions for future exploration.
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Question: How  many cactus in the image？ 
Text of Interest: cactus image 

Raw Image
Zoomer

Region of Interest

Figure 4: The example of applying Zoomer

A APPENDIX

A.1 DETAILS OF THE METHOD

Figure 4 is an example of the Zoomer, and Figure 5 is the output of various versions of the Zoomer.

A.2 ALGORITHM OF THE NMS

Algorithm 2 NMS-based Slice Filtering
Require: B: set of bounding boxes, T : IoU threshold
Ensure: F : set of filtered bounding boxes

1: F ← ∅
2: Sort B in descending order of confidence scores
3: while B ̸= ∅ do
4: bmax ← argmaxb∈B score(b)
5: F ← F ∪ bmax

6: B ← B \ bmax

7: for each b ∈ B do
8: if IoU(bmax, b) ≥ T then
9: B ← B \ b

10: end if
11: end for
12: end while
13: return F
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Zoomer
- Adaptive

Zoomer
- Local

Zoomer
- Global

Zoomer
- Patches

Figure 5: The example of different settings of Zoomer
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