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ABSTRACT

Traditional language model-based theorem proving assumes that by training on a sufficient
amount of formal proof data, a model will learn to prove theorems. Our key observation is
that a wealth of informal information that is not present in formal proofs can be useful for
learning to prove theorems. For instance, humans think through steps of a proof, but this
thought process is not visible in the resulting code. We present Lean-STaR, a framework
for training language models to produce informal thoughts prior to each step of a proof,
thereby boosting the model’s theorem-proving capabilities. Lean-STaR uses retrospective
ground-truth tactics to generate synthetic thoughts for training the language model. At
inference time, the trained model directly generates the thoughts prior to the prediction
of the tactics in each proof step. Building on the self-taught reasoner framework, we
then apply expert iteration to further fine-tune the model on the correct proofs it samples
and verifies using the Lean solver. Lean-STaR significantly outperforming base models
(43.4% → 46.3%, Pass@64). We also analyze the impact of the augmented thoughts on
various aspects of the theorem proving process, providing insights into their effectiveness.

1 INTRODUCTION

Theorem proving is a fundamental aspect of mathematics, and mathematical reasoning is an important part of
artificial intelligence (Newell & Simon, 1956; Zhou, 2023). Formalized mathematics in particular provides
a challenging testbed for assessing mathematical reasoning capabilities. Since theorems and proofs in this
setting can be represented in the form of checkable source code, it is easy to evaluate proofs of arbitrary
complexity (De Moura et al., 2015). Automated theorem proving, if successful, can also help discover
unknown errors in previous proofs1, and make it easier to guarantee that new proofs are correct. More broadly,
formal mathematics coupled with powerful automation may unlock new forms of education and collaboration,
mathematical insights, and applications to verifying critical software (Avigad, 2023; First, 2023; Buzzard,
2024; of Sciences, 2023).

Recently, language models have shown promising progress in formal theorem proving (Polu & Sutskever,
2020; Rabe et al., 2020; Wu et al., 2021; Han et al., 2021; Lample et al., 2022; Yang et al., 2023; Li et al.,
2024). Existing approaches typically train a model solely based on the proofs in a formal language (code)
such as Lean (De Moura et al., 2015), Isabelle (Nipkow et al., 2002), or Coq (Coq, 1996). Our key observation
is that such approaches ignore a wealth of informal information that may be useful for learning to prove
theorems (Welleck et al., 2021; 2022). For instance, the underlying thought process prior to each step of a
proof is not present in formal source code. Based on this insight, we propose to train a language model that
can produce a natural language chain-of-thought (“thought”) prior to each step (“tactic”) of a formal proof.

1For example, Terence Tao found a non-trivial error while using Lean to formalize a project (Tao, 2023).
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Figure 1: The illustration of tactic prediction in one proof step with and without thought.

We introduce Lean-STaR, a framework for learning to interleave informal thoughts with steps of formal
proving. Building on the Self-Taught Reasoner (STaR) framework (Zelikman et al., 2022), we enable language
models to interleave step-by-step rationales (i.e., thoughts) (Nye et al., 2021; Wei et al., 2022) with formal
proving in a two-stage process. In an initial phase, we prompt a sufficiently capable language model, such
as GPT-4 (Achiam et al., 2023), and generate retrospective thoughts based on a dataset of human-written
proofs, such as Mathlib, the largest collection of human-written proofs in Lean (mathlib Community, 2020).
Subsequently, we fine-tune a thought-augmented tactic predictor (Bohme & Nipkow, 2010; Blanchette et al.,
2016; Gloeckle et al., 2023; Czajka & Kaliszyk, 2018) that, given a Lean state, can generate a thought and
predict the subsequent tactic. In a second phase, we optimize this thought-augmented tactic predictor with the
expert iteration algorithm (Anthony et al., 2017; Singh et al., 2023), using multi-step success rate in theorem
proving as the reward.

Our work presents a new link between informal and formal mathematics, complementary to prior explorations
that translate standalone mathematical statements (Szegedy, 2020; Wang et al., 2020; Wu et al., 2022) or
translate informal proofs into formal proofs (Agrawal et al., 2022; Jiang et al., 2022; Azerbayev et al., 2023a;
Zhou et al., 2024a; Huang et al., 2024). Lean-STaR generates natural language thoughts specifically for each
proof step, improving formal proving capabilities by interleaving natural and formal languages.

We instantiate Lean-STaR by generating roughly 50,000 thought-augmented examples from Lean’s Math-
lib (mathlib Community, 2020), then synthesize an additional 50k examples through two iterations of expert
iteration. To the best of our knowledge, this yields the first thought-augmented dataset for theorem proving.
After fine-tuning an InternLM2-7b base model (Ying et al., 2024) on our thought-augmented data, our final
Lean-STaR model can solve 34.8% (pass@32) or 36.1% (pass@64) of the problems on miniF2F-test (Zheng
et al., 2021). Using stronger base model InternLM2-7b-plus, Lean-STaR can achieve 45.4% (pass@32),
significantly surpassing the previous results of 43.4% (pass@32). In summary, Lean-STaR offers a frame-
work for teaching language models to interleave informal thoughts with formal verification, advancing the
capabilities of language models in automated theorem proving.

2 RELATED WORK

Automatic Theorem Proving & Autoformalization. Previous work on learning-based theorem proving
typically follows the GPT-f framework (Polu & Sutskever, 2020), which trains a language model on (proof
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state, next-tactic) pairs, then proves theorems by using the model within a best-first tree search. Subsequent
work has explored several directions, including data augmentation (Han et al., 2022), novel proof search
methods (Lample et al., 2022; Wang et al., 2023b), further training through curriculum learning (Polu et al.,
2022), retrieval augmentation (Yang et al., 2023), or practical tools (Welleck & Saha, 2023). Others use
prompted models to generate tactics (Azerbayev et al., 2023b; Thakur et al., 2023), or fine-tune models to
generate a full proof (First et al., 2023). A second auto-formalization (Wu et al., 2022) thread incorporates
informal mathematics into formal theorem proving. Draft-Sketch-Prove (Jiang et al., 2022) shows that
language models have some ability to use informal proofs to improve a model’s formal proving abilities, by
drafting an informal proof, translating into a formal proof sketch, then completing the proof with tools like
Sledgehammer (Bohme & Nipkow, 2010). Draft-Sketch-Prove and related methods (Wang et al., 2023a; Zhao
et al., 2024; Zhou et al., 2024b) are limited to the Isabelle prover, since they use powerful automatic proving
tools like Sledgehammer. Lean lacks these tools, so generating the entire proof at once would be more unlikely
in Lean. We focus on Lean, and train language models to generate a thought and predict the subsequent tactic
in each proof step. To the best of our knowledge, we are the first to introduce thought-augmented reasoning
in automatic theorem proving.

Rationale-augmented Reasoning. Recently, many works demonstrated that letting language models reason
before an answer can improve their performance on tasks including math, science, and code (Nye et al.,
2021; Wei et al., 2022; Chen et al., 2022). Although the corresponding techniques (e.g., Scratchpad and
Chain-of-Thought) have proven to be effective, they require either extensive annotated training examples
or exposure to numerous similar examples during pre-training (Brown et al., 2020). The scarcity of natural
language reasoning in formal theorem proving, coupled with the impracticality of manually annotating
rationales for formal mathematics, thus presents a challenge. We propose a new Lean-STaR framework for
synthesizing training examples by taking advantage of the correctness signal from the formal system.

Bootstrapping Language Model Reasoning. Recently, several works suggest that language models may be
taught to reason via synthetic data that they generate themselves, akin to a reinforcement learning method that
improves a policy through self-play. Polu et al. (2022) showed that a simple RL algorithm, expert iteration,
paired with curriculum learning can improve a formal theorem proving model. Self-Taught Reasoner (STaR)
(Zelikman et al., 2022) showed that we can iteratively fine-tune the language model on the correct (reasoning,
answer) pairs generated by itself to gradually improve performance. Singh et al. (2023) proposed ReST-EM,
which filters data generated by language model with a binary feedback signal rather than using fully manually
annotated data (similar to expert iteration in (Polu et al., 2022)). Our work builds on these ideas, providing
the first study of bootstrapped thought-augmented proving.

3 OUR METHOD: LEAN-STAR

We introduce Lean-STaR, a new method for combining informal thoughts with formal theorem proving. First,
we recap interactive theorem proving (§3.1). Then we present Lean-STaR’s data-generation (§3.2.1, §3.2.2)
and reinforcement learning (§3.2.3) phases. Finally, we present our evaluation protocols (§3.3).

3.1 PRELIMINARIES

Interactive Theorem Provers (ITPs) are typically used for step-by-step automatic theorem proving in formal
mathematics. At each step, we can provide the ITP with a high-level “tactic” to simplify the current goal
state (e.g., the initial goal theorems to be proven) into subgoals. These subgoals will form new states, and
proving all the subgoals results in a complete proof of the given theorem. We use Lean (De Moura et al.,
2015), a popular interactive theorem prover. An example formal proof in Lean and its explanation are shown
in Appendix C.
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Figure 2: An example of Lean proof and thoughts generated by Lean-STaR. Note that there is a calculation
error in the thought (in red), but this does not affect the correctness of the proof because the calculation task
is actually completed by the interactive theorem prover (i.e., Lean’s nlinarith) instead of the language
model. This shows a benefit of combining neural and symbolic systems.

3.2 DATA GENERATION & TRAINING

We describe the data generation and training of the direct tactic prediction model (SFT), the thought-
augmented tactic prediction model trained with synthetic data (Lean-CoT), and the final model trained with
expert iteration (Lean-STaR).

3.2.1 DIRECT TACTIC PREDICTION

We define the theorem-proving problem as a Markov Decision Process (MDP) (S,A, Pa, Ra) where proof
states serve as states in MDP and tactics serve as actions. From this perspective, a proof is a trajectory
(s1, a1, r1), (s2, a2, r2), · · · of states si, tactics ai, and rewards ri ∈ R, and the ITP (e.g., Lean) provides
each new state si+1.

In the typical setting (Polu & Sutskever, 2020), proving a theorem consists of providing a proof state s to
the language model and then generating a tactic from the language model M , i.e., πM (a|s). The language
model can be fine-tuned for this task using a dataset of (proof state, next-tactic) pairs from successful proof
trajectories, i.e. D = {(si, ai) : i = 1, · · · ,M}, where final states have a reward of 1. We refer to a language
model fine-tuned on such a dataset as a supervised fine-tuning (SFT) model.

3.2.2 THOUGHT-AUGMENTED TACTIC PREDICTION

Existing approaches typically train only on formal states and tactics (Polu & Sutskever, 2020). We hypothesize
that incorporating a latent thought can improve a model’s ability to predict the next tactic. Formally,
we introduce a hidden “thought” variable ti prior to each tactic, and then extend the model to the form
πM (ai, ti|si) = πM (ai|ti, si)πM (ti|si). In thought-augmented tactic prediction, the distribution over the
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next tactic can then be expressed as:

πM (ai|si) =
∑
ti

πM (ai|ti, si)πM (ti|si).

The key challenge is obtaining (state, thought, tactic) pairs for training a model. To this end, we introduce
retrospective rationale generation. Our motivating observation is that the distribution of natural language
thoughts in theorem-proving πM (ti|si) is scarce in the pre-training corpus of large language models. In turn,
we find that even the most powerful GPT-4 model does not perform well in generating the correct rationale
through few-shot prompting (Brown et al., 2020). To develop a language model capable of generating thoughts
and tactics ai, ti|si, we need an entirely new dataset DT = {(si, ti, ai) : i = 1, · · · , N}. However, in Lean,
we only have a dataset of DS = {(si, ai) : i = 1, · · · , N} where (si, ai) is one step in some successful proof
trajectories. Given a powerful large language model G, which we refer to as the oracle model2, we give the
oracle model the ground-truth tactic ai and let the oracle model produce the thought ti given the current state
si and ground-truth tactic ai. This helps improve the pass rate and produce thought-augmented data more
efficiently. Our few-shot prompt is provided in Appendix F. The design principle of the prompt is to prevent
the oracle model from generating hindsight-like thoughts.

We randomly select M pairs (si, ai) ∈ DS . Then the oracle model is used to produce a thought ti for each
pair (si, ai) to create a new dataset DT {(si, ti, ai) : i = 1, · · · ,M}. With this retrospectively annotated
dataset by the oracle model DT , we obtained our first thought-augmented tactic prediction model, Lean-CoT,
by fine-tuning from the SFT model.

3.2.3 BOOTSTRAPPING THOUGHT-AUGMENTED THEOREM PROVING

We propose to apply expert iteration to further improve the performance of Lean-CoT. Specifically, we start
from the initial Lean-CoT model M0 and the initial dataset D = {si : i = 1, · · · ,M}, which consists of
all initial states si of the theorems to be proved. In iteration 1, we use model M to sample K times per
problem. Each time the model will produce a proof trajectory [(s0, t0, a0), (s1, t1, a1), · · · , (sn, tn, an)].
Then we create a new dataset D1 by filtering the generated trajectories to include only the successful ones.
De-duplication is then applied to the collected trajectories. Now, we can further fine-tune the SFT model
M on dataset DT ∪D1 to produce Lean-STaR model M1. Then we can use M1 as initial model to produce
dataset D2 and further fine-tune to obtain model M2 in the next iteration.

This method can be seen as an offline RL method (Singh et al., 2023) in the theorem proving MDP. In
this MDP, the cumulative reward R ((s0, t0, a0), (s1, t1, a1), · · · , (sn, tn, an)) = 1 if and only if the proof
trajectory is successful. The total expected reward is

J(M,D) =
∑
i

E(s0,t0,a0),··· ,(sn,tn,an)∼πM (·|si)R ((s0, t0, a0), · · · , (sn, tn, an)) ,

and Lean-STaR’s expert iteration can be seen as optimizing this reward (Singh et al., 2023).

3.3 EVALUATION

Setup. We evaluate the model on formal theorem proving – given a theorem statement, produce a theorem
that is correct according to the formal system. This requires an algorithm for producing a full proof by
interacting with Lean. As a new form of theorem-proving system, it is unclear what the best strategy is when
we have informal thoughts. Our preliminary experiments indicate that best-first search with beam search
does not work well for the thoughts in the natural language format. Thus we describe the traditional strategy
(best-first search), and our new approach based on sampling.

2For instance, in our experiments we use the best available large language model, GPT-4.
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Figure 3: The diagram of our pipeline. (1) Produce CoT dataset through GPT-4. (2) Fine-tune the SFT
model with the CoT dataset to obtain Lean-CoT. (3) Use expert iteration to generate the STaR dataset through
the model in the last iteration (Lean-CoT in the first iteration) and then fine-tune Lean-CoT on the updated
STaR dataset to obtain the model in the next iteration. We continue performing this step until a stopping
condition is met (e.g., a fixed number of iterations).

Figure 4: The visualization of Best-first Search (K = 1) and Sampling (S = 1). Search method maintains
a search tree and explores S tactics on each expanded node. Sampling method explores K tactic trajectories
from the root and ignores illegal tactics in the trajectories.

Best-First Search. The most popular method to evaluate the theorem proving ability of a language model
M is to use best-first search like GPT-f (Polu & Sutskever, 2020; Yang et al., 2023; Azerbayev et al., 2023b;
Welleck & Saha, 2023). In best-first search, we keep all unexpanded states si. Each time, we expand the “best”
state si and use the language model to sample S next tactics ai,1···S for the current state si. For each legal
tactic ai,j , a new state can be obtained by applying tactic ai,j on state si. Following standard practice (Polu
& Sutskever, 2020; Yang et al., 2023; Welleck & Saha, 2023), we assume the state with maximum negative
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log-probabilities is the “best”s. Specifically, we select state si with maximum
i−1∑
j=0

− log p(aj , sj), where

(s0, a0), · · · , (si−1, ai−1) is the proof trajectory before state si and log p(aj , sj) is the average log probability
of each generated token. We expand up to N states and we get a successful proof search when we reach any
proof state with no goals. Then, we can attempt the search K times to obtain a pass rate pass@K. However,
we found that the best-first search method performed poorly in the Lean-CoT and Lean-STaR models, as
detailed in the Appendix D. We attribute this to using average log probabilities, which may not be a reliable
quality indicator when the thought sequence tj is generated.

Sampling. Motivated by these issues with applying best-first search to thought-augmented proving, we
develop a new method based on sampling trajectories in parallel. Specifically, our method samples K times
in parallel for each problem, each time generating at most N tactics. Also, illegal sampled tactics will be
ignored during sampling. Specifically, in a sample, suppose our current state is si, the proof trajectory before
si is (s0, a0), · · · , (si−1, ai−1) and the sampled tactic is ai. If ai is a legal tactic, (si, ai) will be added to
the proof trajectory and we will reach a new state obtained by applying tactic ai,j on state si. Otherwise, we
ignore this ai and use language model M to sample a new tactic given state si. We limit the number of times
a tactic can be generated by language model M to a total of N per time in K sampling times. The sampling
method is roughly equivalent to the search with S = 1, except that the sampling ignores illegal tactics. We
assume that in the sampling method we have S = 1. In this setting, evaluating our sampling method and
best-first search with equal S ×K took approximately the same amount of GPU time. This sampling method
can easily accommodate hidden variable “thoughts” tj . Figure 4 compares best-first search and our sampling
method.

4 EXPERIMENTS

We instantiate Lean-STaR using the best available open language model pre-trained on the Lean corpus
(InternLM2-Math-base-7b (Ying et al., 2024)), and follow standard practice in using Lean’s Mathlib as the
underlying training set (via the Lean Dojo dataset (Yang et al., 2023)). We generate an initial set of thoughts
for Mathlib using GPT-4, perform two rounds of expert iteration, then evaluate the model on miniF2F (Zheng
et al., 2021) and leandojo (Yang et al., 2023), the de-facto standard benchmark for evaluating language-model
based theorem provers. Our experimental results show that both retrospective rationale generation and expert
iteration significantly improve the theorem-proving capabilities of language models in this setting. We
describe our setup and findings in detail below.

4.1 EXPERIMENTAL SETUP

We use LeanDojo Benchmark 4 v9 as the supervised fine-tuning (SFT) dataset containing 231, 240 data
examples. We fine-tune for 1 epoch to obtain the SFT model. For the learning rate, we use a warmup in the
first 20% steps from 0 to 2× 10−5, followed by a cosine schedule decaying to zero.

We randomly select 17, 256 different successful proof trajectories from LeanDojo Benchmark 4 dataset (Yang
et al., 2023), and use GPT-4-0125 (OpenAI, 2023) to annotate 52, 438 thoughts from those proof trajectories.
We filtered out all proof steps (si, ai) for which ai contains the newline symbol “\n” before annotating. We
perform two iterations of expert iteration, and provide the details in Appendix A.1 due to space.

We evaluate our method on the MiniF2F benchmark (Zheng et al., 2021). We use a similar evaluation setting
as previous works (Yang et al., 2023; Welleck & Saha, 2023; Ying et al., 2024), but use our sampling method
instead of best-first search for the evaluation of our thought-augmented theorem proving model as discussed
in (§3.3). We choose these settings to resemble the inference budget used in our baselines, which follow
previous work (Welleck & Saha, 2023; Azerbayev et al., 2023b; Ying et al., 2024). Namely, for best-first

7
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Table 1: Pass rates on the minif2f-test and Leandojo dataset with Lean. This table shows the pass rates
of previous works and our work. S is the number of tactics attempted at each expanded node (assumed to
be 1 in sampling) and K is the total number of search or sampling attempts per problem. In sampling we
use temperature 0.7, and in search we use beam search when generating the next tactic. We use a random
subset of Leandojo4-v9-test (novel premises) with a size of 320 as test set of leandojo. Note that we sample
32 examples twice when K = 64 in sampling.

APPROACH DECODING N K S MINIF2F LEANDOJO

GPT-3.5 ACHIAM ET AL. (2023) (FEW-SHOT) SAMPLING 50 1 1 2.8% -

GPT-4 ACHIAM ET AL. (2023) (FEW-SHOT) SAMPLING 50 1 1 11.9% -

TRANSFORMER POLU ET AL. (2022) (W/O RL) SEARCH 512 1 8 24.6% -

LLEMMA-34B AZERBAYEV ET AL. (2023B) SEARCH 50 1 32 25.8% -

LLEMMA-7B AZERBAYEV ET AL. (2023B) SEARCH 50 1 32 26.2% -

REPROVER YANG ET AL. (2023) SEARCH 50 1 64 26.5% -

TRANSFORMER POLU ET AL. (2022) (W/ RL) SEARCH 512 1 8 29.6% -

INTERNLM2-34B YING ET AL. (2024) SEARCH 50 1 32 29.5% -

COPRA (WITH GPT-4) THAKUR ET AL. (2023) CUSTOMIZED - 60 1 29.9% -

COPRA (WITH GPT-4) THAKUR ET AL. (2023) CUSTOMIZED - 100 1 30.7% -

INTERNLM2-7B YING ET AL. (2024) SAMPLING 50 32 1 28.7% 29.7%

INTERNLM2-7B YING ET AL. (2024) SEARCH 50 1 32 30.3% -

SFT (INTERNLM2-7B) SAMPLING 50 32 1 29.5% 30.6%

SFT (INTERNLM2-7B) SEARCH 50 1 32 30.7% -

LEAN-COT (INTERNLM2-7B) SAMPLING 50 32 1 32.8% 35.6%

LEAN-STAR (ITER-1) (INTERNLM2-7B) SAMPLING 50 32 1 34.0% 38.4%

LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 32 1 34.8% 39.4%

LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 64 1 36.1% -

search baselines we use beam search to generate the next tactic with S = 32,K = 1 (Welleck & Saha, 2023;
Azerbayev et al., 2023b; Ying et al., 2024). We do not compare with methods designed for other formal
languages such as Jiang et al. (2022); Xin et al. (2023) since language differences greatly influence the pass
rate due to the different tactics and automation. We also do not compare with Lample et al. (2022) since they
only report S = 32,K = 64 on best-first search, which is approximately equivalent to S = 1,K = 512 for
the sampling method, which is too computationally expensive for us.

4.2 MAIN RESULTS

Our main results are reported in Table 7. Lean-STaR gives a significant improvement over the base model.
For instance, with a similar inference budget, Lean-STaR achieves 34.8% versus 30.3% in InternLM2 (Ying
et al., 2024) using best-first search and 30.7% in COPRA (Thakur et al., 2023) using GPT-4. With a larger
compute budget, Lean-STaR’s performance improves further to 36.1%.
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Table 2: Pass rates about InternLM2-Plus-7B on the minif2f-test dataset with Lean. This table shows the
pass rates of previous works and our work. The evaluation setting is the same as Table 7.

APPROACH DECODING N K S PASS RATE

INTERNLM2-PLUS-7B (YING ET AL., 2024) (FROM PAPER) SEARCH 1000 1 32 43.4%

INTERNLM2-PLUS-7B (YING ET AL., 2024) (REPRODUCED) SEARCH 1000 1 32 42.6%

INTERNLM2-PLUS-7B (YING ET AL., 2024) SAMPLING 50 32 1 40.9%

SFT (INTERNLM2-PLUS-7B) (YING ET AL., 2024) SAMPLING 50 32 1 41.3%

LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 43.4%

LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 45.4%

INTERNLM2-PLUS-7B (YING ET AL., 2024) SAMPLING 50 64 1 42.2%

SFT (INTERNLM2-PLUS-7B) (YING ET AL., 2024) SAMPLING 50 64 1 43.4%

LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 45.5%

LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 46.3%

Thought augmentation improves theorem proving. The first phase of Lean-STaR trains a model to
interleave thoughts and tactics, by fine-tuning on a synthesized dataset of thought-augmented examples. The
fine-tuned model from this phase, denoted LEAN-COT in Table 7, achieves a pass rate of 32.8%, which
is higher than the model prior to this phase, denoted SFT (29.5%). We conclude that the first phase of
Lean-STaR can improve the theorem proving ability of a language model, even one that is already specialized
for generating tactics in Lean such as the SFT model.

Bootstrapping improves thought-augmented theorem proving. The second phase of Lean-STaR consists
of generating new thoughts and tactics with the current language model, saving those that result in correct
proofs, and training on the union of the initial thought-augmented dataset and the saved examples (i.e., expert
iteration (Polu et al., 2022; Zelikman et al., 2022; Singh et al., 2023)). Refer to Appendix A.1 for details.

We perform two iterations of expert iteration, and present the results in Table 7, denoted LEAN-STAR.
Each iteration improves the model’s theorem proving performance, from 32.8% (the initial model) to 34%
(LEAN-STAR after iteration 1) to 34.8% (LEAN-STAR after iteration 2). Furthermore, we find that the model
is amenable to further improvement via additional sampling, achieving 36.1% by doubling the sampling
budget. We conclude that Lean-STaR’s second phase can further improve a model’s ability to generate
thoughts and tactics that lead to correct proofs. We include three qualitative examples in the Appendix, which
show the model interleaving thoughts and proof steps.

4.3 EXPERIMENTS WITH STRONGER BASE MODEL AND MORE DATA

We instantiate Lean-STaR using a stronger language model (InternLM2-Math-plus-7b (Ying et al., 2024)),
which was released after the experiment above. We follow a similar setup to the previous experiment.

In this experiment, we used 140, 000 thoughts annotated by GPT-4o (OpenAI, 2023) to fine-tune a model
(“Lean-CoT”). Then we performed only one iteration of expert iteration and collected about 60, 000 (proof

9
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Table 3: Results for the InternLM2-plus-7b and our Lean-CoT, Lean-STaR, and expert iteration without CoT.
We use sampling with N = 50,K = 32,& T = 0.7.

APPROACH Pass@32 OF INTERNLM-BASE Pass@32 OF INTERNLM-PLUS

FEW-SHOT 28.7% 40.9%

SFT 29.5%(+0.8%) 41.3%(+0.4%)

LEAN-COT 32.8%(+3.3%) 43.4%(+2.1%)

LEAN-STAR 34.0%(+1.2%) 45.5%(+2.1%)

EXPERT ITERATION (SFT) 30.7%(+1.2%) 43.0%(+1.7%)

state, thoughts, next-tactic) pairs in data, named “STaR dataset” D1. We further fine-tuned the Lean-CoT
model on dataset D1 to get the Lean-STaR model.

Our new results are reported in Table 2. We can see that Lean-STaR still gives a significant improvement over
the baseline. For instance, Lean-STaR achieves 45.4% versus 39.8% in InternLM-plus using sampling with
a similar inference budget and 43.4% using best-first search with more inference budget reported in (Ying
et al., 2024). This results show that both retrospective rationale generation and expert iteration can improve
the theorem-proving capabilities on a stronger base model.

4.4 EXPERIMENTS ON EXPERT ITERATION WITHOUT COT

Table 3 shows the result of expert iteration without CoT (i.e., using (state, tactic) pairs only) as well as the
result of Lean-CoT and Lean-STaR. Expert iteration alone achieves 43.0%, which is less than Lean-STaR
(45.4%) in InternLM-plus and achieves 30.7% verus 39.8% in InternLM-base. This shows that Lean-STaR’s
performance gains do not only come from the use of expert iteration.

5 CONCLUSION & LIMITATIONS

In this paper, we presented Lean-STaR, a novel approach that significantly enhances the theorem-proving
capabilities of language models in formal mathematics by integrating Chain-of-Thought (CoT) rationales
into each proof step. Our method begins with generating synthetic rationales using ground-truth tactics
retrospectively, followed by fine-tuning the language model to generate these rationales and predict subsequent
tactics, resulting in the Lean-CoT model. We further improved this model using expert iteration, fine-tuning it
on correct proofs it samples and verifies using the Lean solver. Our contributions include the introduction of
the first thought-augmented theorem proving dataset, demonstrating that expert iteration can further improve
performance, and achieving new results on the miniF2F-test benchmark, increasing the pass rate from 30.3%
to 36.1%. These advancements are not only about improving the accuracy of automated theorem proving,
but also offer a scalable and efficient framework for advancing human understanding of mathematics, which
may lead to significant impacts in education, scientific discovery, and program verification (Carter & Monks,
2013; Kang et al., 2020; Szegedy, 2020; Avigad, 2023; First, 2023; of Sciences, 2023).

The primary limitation of our method is that its performance may be constrained by issues of computational
scalability. Both Lean-CoT and Lean-STaR have been fine-tuned on a dataset that is not very large. Addition-
ally, the use of GPT-4 to generate synthetic data may incur a significant cost and possibly introduce biases.
Also, expert iteration could face a bottleneck due to CPU and IO limitations, which might slow down the
process due to a sluggish speed of Lean ITP.

10
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A ADDITIONAL EXPERIMENT SETUP

A.1 LEAN-STAR EXPERT ITERATION

The second phase of Lean-STaR consists of generating new thoughts and tactics with the current language
model, saving those that result in correct proofs, and training on the union of the initial thought-augmented
dataset and the saved examples (i.e., expert iteration (Polu et al., 2022; Zelikman et al., 2022; Singh et al.,
2023)). We perform two iterations of expert iteration, and provide details on our specific experimental setup
below.

In each iteration we use sampling on the LeanDojo Benchmark 4 dataset, and save the (state, thought, tactic)
examples that are part of successful proofs. For each problem, we sample K = 32 times in parallel with
temperature T = 1.0, and limit the number of times a tactic can be generated to a total of N = 5 per problem.
Also, sampling is limited to 1 minute per problem. In this setup, each problem needs on average about 0.5
A100 minutes. We collect successfully sampled trajectories to produce a “STaR dataset” D1, and up to 3 proof
trajectories were collected for each problem. We collected 32, 231 different (proof state, thoughts, next-tactic)
pairs in successful proof trajectories during expert iteration, which takes about 4 days with 8×A100 GPUs.
Then, we further fine-tune SFT model for 1 epoch on the combination of GPT-4 annotated reasoning data
and expert iteration data DT ∪D1 to get the Lean-STaR model. We use the same learning rate setup that
was used for the SFT model. In the second iteration, we generate a dataset D2 in a similar fashion. Then, we
chose to further fine-tune model from iteration 1, M1, on the generated dataset D2 (roughly 19k pairs).

The setup of experiment about InternLM2-plus is slightly different. The details are shown in Section 4.3 and
Appendix E.

B STATISTICS FOR OUR METHODS AS WELL AS THE BASELINES

Table 4: Statistics for the baselines and our Lean-CoT, Lean-STaR on MiniF2F dataset. We use sampling
method with hyperparameters N = 50 &K = 32 & T = 0.7.

APPROACH # (CONTINUAL) TRAINING DATA Pass@32

INTERNLM2-MATH-7B (FEW-SHOT) - 28.7% -

SFT 231, 240 29.5% +0.8%

LEAN-COT 52, 438 32.8% +3.3%

LEAN-STAR (ITER-1) 32, 231 34.0% +1.2%

LEAN-STAR (ITER-2) 19, 324 34.8% +0.8%
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C AN EXAMPLE AND EXPLANATION OF A FORMAL PROOF IN LEAN

An example of a formal proof in Lean with its visualization is shown in Figure 5, taken from (Lample et al.,
2022). In the proof, the tactic induction k is is applied to the initial state (n ≤ m ⇒ n+ k ≤ m+ k)
and the ITP converts the current state to subgoals case 0 ∧ case ih: n ≤ m ∧ n + k ≤ m + k ⇒
n + (k + 1) ≤ m + (k + 1). The case 0: n ≤ m is our hypothesis h0 so it can be proven by case
0:exact h0 tactic. Then, we rewrite the case ih through the nat.succ_le_succ_iff which is a
theorem in Lean library means n ≤ m ⇔ n + 1 ≤ m + 1. After tactics case 0:exact h0 and case
ih:rw nat.succ_le_succ_iff, the goal state is converted to n+ k ≤ m+ k which is the hypothesis
introduced by induction. Therefore, we can complete this proof using tactic exact k_ih.

theorem add_le_add_right (m n k : N) (h0 : n ≤ m)
: n + k ≤ m + k :=
induction k with
| zero =>

exact h0

| succ k ih =>
rw Nat.succ_le_succ_iff
exact ih

Figure 5: A example proof and its visualization of n ≤ m ⇒ n + k ≤ m + k in Lean, taken from
(Lample et al., 2022). The induction tactic reduces the initial statement to two subgoals. Then tactics
case 0:exact h0 and case ih:rw nat.succ_le_succ_iff, case ih:exact k_ih can
be applied in turn to complete the proof.

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

Table 5: Counts of problems successfully proved in minif2f-test benchmark, split by type and difficulty. The
methods use sampling with N = 50,K = 32. Thought-augmented methods improve performance on all
categories, while Lean-STaR significantly improves Number Theory performance.

TOTAL TEST SET
SIZE

INTERNLM2-7B SFT LEAN-COT LEAN-STAR
(ITER-2)

IMO 20 0 0 0 0
AIME 15 2 1 2 3
AMC 45 3 3 7 5

MATH

ALGEBRA

LEVEL 5 14 1 2 3 3
LEVEL 4 14 7 7 7 7
LEVEL 3 14 9 9 11 11
LEVEL 2 14 10 10 9 11
LEVEL 1 14 9 10 10 10

NUMBER THEORY

LEVEL 5 16 6 6 6 7
LEVEL 4 11 5 5 4 5
LEVEL 3 11 4 5 5 6
LEVEL 2 11 6 5 5 6
LEVEL 1 11 8 8 9 9

CUSTOM
ALGEBRA 18 0 1 1 1

NUMBER THEORY 8 0 0 0 0
INDUCTION 8 0 0 1 1

sectionPerformance Analysis by Types and Difficulties Tasks in minif2f-test are manually formalized from
Olympiad type problems, drawn from multiple sources including AIME, AMC, IMO problems, and problems
from the MATH dataset (Hendrycks et al., 2021). These problems can have different levels of difficulty and
types. Table 5 reports the number of problems successfully proved, partitioned by type and difficulty. We
see that Lean-CoT improves performance in solving difficult problems on all categories, especially those
from mathematics competitions. On top of these improvements, Lean-STaR’s improvements come mainly in
Number Theory.

C.1 PERFORMANCE ANALYSIS BY TYPES AND DIFFICULTIES USING INTERNLM2-PLUS-7B

Table 6 reports the number of problems successfully proved, partitioned by type and difficulty using
InternLM2-plus. We see that Lean-CoT improves performance mainly in Number Theory and Lean-STaR
improves performance in solving difficult problems on all categories, which is the opposite of the performance
of the InternLM2-base.

D COMPARISON BETWEEN SEARCH METHOD AND SAMPLING METHOD
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Table 6: Counts of problems successfully proved in minif2f-test benchmark using InternLM2-plus-7b, split by
type and difficulty. The methods use sampling with N = 50,K = 32.

TOTAL TEST SET
SIZE

INTERNLM2-PLUS-7B LEAN-COT LEAN-STAR
(ITER-1)

IMO 20 0 0 0
AIME 15 3 3 4
AMC 45 9 9 10

MATH

ALGEBRA

LEVEL 5 14 6 6 6
LEVEL 4 14 9 9 9
LEVEL 3 14 11 13 13
LEVEL 2 14 11 11 11
LEVEL 1 14 10 10 10

NUMBER THEORY

LEVEL 5 16 7 7 7
LEVEL 4 11 6 8 8
LEVEL 3 11 6 7 9
LEVEL 2 11 7 9 9
LEVEL 1 11 10 10 10

CUSTOM
ALGEBRA 18 4 3 4

NUMBER THEORY 8 0 0 0
INDUCTION 8 1 1 1

Table 7: Comparison between search method and sampling method. We use sampling method with
hyperparameters N = 50 & S = 1 & K = 32 and BFS method with N = 50 & S = 32 & K = 1. All
sampling decoding in the paper uses a temperature of 0.7. We use BFS to denotes Best-First Search.

APPROACH BFS (SAMPLING) BFS (BEAM SEARCH) SAMPLING

TACTIC PREDICTION IN PROVING BFS BFS SAMPLING

TOKEN DECODING IN TACTICS SAMPLING BEAM-SEARCH SAMPLING

INTERNLM2-7B (FEW-SHOT) 29.1% 30.3% 28.7%

SFT 29.9% 30.7% 29.5%

LEAN-COT 27.0% 25.4% 32.8%

LEAN-STAR (ITER-1) 29.1% 26.2% 34.0%

LEAN-STAR (ITER-2) 29.5% 26.2% 34.8%

E PERFORMANCE DIFFERENCE OF JOINT TRAINING AND CONTINUE TRAINING

As shown in Table 8, the joint training method performs better using InternLM2-base but training method
performs much better using InternLM2-plus. It seems that there are no difference between these two methods.
Therefore, this performance can be depend on the quantity of data or the model. (We use much more data
when using InternLM2-plus and the quantity of "STaR data" is relatively small.)
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Table 8: Performance difference of joint training and continue training on Lean-STaR. We use sampling
method with hyperparameters N = 50 & K = 32 & T = 0.7. In continue training, we further fine-tune the
Lean-CoT model on "STaR data" to get Lean-STaR model and in joint training we fine-tune the SFT model
on combination of GPT-4 annotated reasoning data and "STaR data".

APPROACH INTERNLM2-BASE-7B INTERNLM2-PLUS-7B

LEAN-COT 32.8% 43.4%

LEAN-STAR (ITER-1)
(JOINT TRAINING) 34.0% 43.9%

LEAN-STAR (ITER-1)
(CONTINUE TRAINING) 33.2% 45.5%

Table 9: Performence of SFT-Direct and our Lean-STaR at different search size or sampling times S ×K.
We fix N = 50. We use beam search in search and temperature T = 0.7 in sampling when generating the
next tactic. We have K = 1 in search and S = 1 in sampling. Note that we sample 32 examples twice when
K = 64 in sampling.

SFT-DIRECT (SEARCH) SFT-DIRECT (SAMPLING) LEAN-STAR (ITER-2) (SAMPLING)

S ×K = 1 13.5% 20.9% 21.7%

S ×K = 2 18.0% (+4.5%) 22.5% (+1.6%) 24.6%(+2.9%)

S ×K = 4 23.3% (+5.3%) 25.0% (+2.5%) 27.5%(+2.9%)

S ×K = 8 27.5% (+4.2%) 27.0% (+2.0%) 30.7% (+3.2%)

S ×K = 16 29.9% (+2.4%) 28.3% (+1.3%) 33.6% (+2.9%)

S ×K = 32 30.7% (+0.8%) 29.5% (+1.2%) 34.8% (+1.2%)

S ×K = 64 30.7% (+0.0%) 30.3% (+0.8%) 36.1% (+1.3%)

E.1 SEARCH AND SAMPLING BUDGET

Table 9 reports the trends of the pass rate against the search size or sampling budget S ×K. We find that
Lean-STaR benefits more as K increases, especially when K is relatively large. The result suggests that
additional sampling with thoughts improves performance, while additional sampling without thoughts may
saturate. We believe this is because thoughts increase the diversity of outputs and contribute to exploration in
the theorem proving space. Therefore, Lean-STaR is more scalable (in terms of inference-time compute), and
may be amenable to further improvements with additional iterations of expert iteration.

F RETROSPECTIVE RATIONALE GENERATION PROMPT OF GPT-4

Please act as a professional mathematician.
Your goal is to accurately prove a math theorem in Lean4.
You are given the first tactic that should be taken to prove the Given Theorem.
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### State
a b n : N
⊢ ¬(n ̸= 0 ∧ a ̸= 0) ↔ n = 0 ∨ a = 0
### Tactic
```lean4

simp only [not_and_or, ne_eq, not_not]
```

### Reasoning
To prove the equivalence between the negation of a conjunction and a disjunction, we utilize logical equivalences,

specifically the negation of a conjunction ¬(`(P ∧ Q)`) being equivalent to the disjunction of the negations (`P =
0 ∨ Q = 0`) and simplifications related to negation and inequality.

Figure 6: Examples of (input, output) pairs of retrospective rationale generation with GPT-4. The full prompt
is given in Appendix F. See §3.2.2 for the detailed explanation.

# Example:

Given Theorem:
```lean4
X : Type u_1
Y : Type u_2
inst✝1 : TopologicalSpace X
inst✝ : TopologicalSpace Y
f : X →. Y
h : PContinuous f
⊢IsOpen (PFun.preimage f Set.univ)
```
Given Tactic:
```lean4
exact h _ isOpen_univ
```
Assistant Output:
### PLANNING OF REASONING
Given the above goal and the given the target tactic `exact h _ isOpen_univ`, I

should produce a reasoning that only based on the goal, and conclude to
the `exact h _ isOpen_univ`, but not in the hindsight format.

### REASONING

By directly using the hypothesis `h : PContinuous f`, we state that for any
open set, its preimage via `f` is also open, and this applies to `Set.univ`
as well.

### TACTIC

```lean4
exact h _ isOpen_univ
```

To achieve the goal, you have three jobs.
# Write down the planning of reasoning.
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# Write down the reasoning that can result in the selection of the Given Tactic.

# Write down the Given Tactic.
You have four principles to do this.
# Craft reasoning that is comprehensive yet concise, contained ideally within

two sentences.
# Begin reasoning with the objective of the Given Theorem, ensuring logical

progression, rather than constructing it retrospectively from the Given
Tactic.

# Avoid mentioning the Given Tactic and specific statement names from the Given
Tactic throughout your reasoning.

# Position the conclusion of the tactic after presenting all reasons, ensuring
that details regarding the Given Tactic are not introduced at the start of
your reasoning.

Your output should be strictly in the following format and should not contain
extra content:

### PLANNING OF REASONING

Given the above goal and the given the target tactic <Given Tactic>, I should
produce a reasoning that only based on the goal, and conclude to the exact <
Given Tactic>, but not in the hindsight format.

### REASONING

<your reasoning to the Given Tactic>

### TACTIC

<Given Tactic>

# Given Theorem:
```lean4
{theorem["state_before"]}
```

# Given Tactic:
```lean4
{theorem["tactic"]}
```
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G EXAMPLES OF GENERATED LEAN PROOFS WITH THOUGHTS

theorem aime_1990_p4 (x : R) (h0 : 0 < x) (h1 : x ^ 2 - 10 * x - 29 ̸= 0)
(h2 : x ^ 2 - 10 * x - 45 ̸= 0) (h3 : x ^ 2 - 10 * x - 69 ̸= 0)
(h4 : 1 / (x ^ 2 - 10 * x - 29) + 1 / (x ^ 2 - 10 * x - 45) - 2 / (x ^ 2 -
10 * x - 69) = 0)
: x = 13 :=
norm_num at h1 h2 h3 -- Reasoning: To prove `x = 13`, we examine the
conditions under which the given equation holds, specifically focusing on
the non-equality of the expressions involving `x ^ 2 - 10 * x - 29`, `x ^ 2
- 10 * x - 45`, and `x ^ 2 - 10 * x - 69`. Simplifying these expressions
using properties of real numbers and algebra allows us to directly compare
them with their respective values, ultimately identifying `x = 13` as the
unique solution that satisfies all constraints.
field_simp at * -- Reasoning: To prove \(x = 13\), we leverage the given
equalities involving rational fractions of \(x^2 - 10x - c\) for various
constants \(c\), where \(0 < x\) and each \(x^2 - 10x - c\) is non-zero.
By algebraically manipulating these expressions, we aim to derive a
relationship among \(x\) and these constants, specifically focusing on
\(13\), under the given non-zero conditions for the quadratic expressions.
ring_nf at h4 ⊢ -- Reasoning: To establish the equality `x = 13` under the
given conditions, we need to manipulate the algebraic expression given by
`h4` to reveal its dependence on `x`, recognizing that the presence of `x`
in the expressions may affect the equation's truth value. The application
of algebraic transformations on both sides of the equation will facilitate
the identification of `x`'s value, taking into consideration the inequality
conditions provided (`h1`, `h2`, `h3`).
nlinarith -- Reasoning: To prove \(x = 13\), we must manipulate the
equation given by \(h4\) to isolate \(x\), using the algebraic properties
of equality and the assumption \(h0\) which states \(0 < x\). This requires
careful rearrangement and application of algebraic identities to simplify
and rearrange terms, facilitating the direct application of the properties
of real numbers to reach the desired conclusion.

theorem amc12a_2002_p6 (n : N) (h0 : 0 < n)
: ∃ m, m > n ∧ ∃ p, m * p ≤ m + p :=
use n + 1, by linarith only [h0] -- Reasoning: To demonstrate the
existence of such an `m` and `p` that satisfy the given inequalities, we
leverage the property of natural numbers that ensures an increase in `n`
from `0` leads to the possibility of finding such `m` and `p`. This
approach is supported by the fundamental property of natural numbers and
their arithmetic operations, suggesting that for a given `n` greater than
`0`, there exists a successor `m` and a number `p` that satisfy the
conditions outlined.
exact 〈0, by simp 〉 -- Reasoning: To demonstrate that there exists an \(n
\in N\) such that \((n + 1) * p \leq n + 1 + p\) holds for some \(p \in N
\), we recognize that setting \(p = 0\) satisfies the inequality by the
properties of zero in arithmetic. This is because \(n + 1 > 0\) by
assumption, ensuring the left-hand side is non-negative and the right-hand
side simplifies to \(n + 1\), making the inequality trivially true.
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theorem aime_1983_p2 (x p : R) (f : R → R) (h0 : 0 < p ∧ p < 15) (h1 : p ≤ x ∧
x ≤ 15)
(h2 : f x = abs (x - p) + abs (x - 15) + abs (x - p - 15))
: 15 ≤ f x :=
cases' h1 with h1 h2 -- Reasoning: Given a function \(f\) defined over the
real numbers, where \(f(x)\) equals the sum of the absolute values of the
differences \(x - p\), \(x - 15\), and \(x - p - 15\), along with
conditions on \(p\) and \(x\) that ensure \(x\) lies between \(p\) and
\(15\) and \(p\) is positive, we aim to show that \(f(x) \geq 15\). To
demonstrate this, we consider all possible cases for the position of \(x\)
relative to \(p\) and \(15\), specifically at \(p\) itself, between \(p\)
and \(15\), and at \(15\). By evaluating \(f(x)\) for each case, we can
establish a lower bound of \(f(x)\) that is greater than or equal to
\(15\).
simp [h0, abs_of_nonneg (sub_nonneg.2 h1), abs_of_nonneg (sub_nonneg.2 h2),
*] -- Reasoning: The objective is to show that \(f(x)\) is at least 15 for
\(x\) within the bounds \(p \le x \le 15\), where \(p\) is positive but
less than 15. The provided expression for \(f(x)\) suggests using
properties of absolute values and inequalities to simplify and analyze
\(f(x)\). By applying simplification rules for absolute values and
inequalities, along with the given bounds, we aim to demonstrate the
desired inequality \(f(x) \ge 15\).
simp only [abs_of_nonneg] at * -- Reasoning: The objective is to establish
an inequality involving an expression with absolute values and a sum,
where all terms are functions of \(x\). By recognizing that the absolute
value functions are always non-negative, we can simplify the given
expression by removing the absolute value symbols, thus focusing on the
arithmetic manipulation of the terms to demonstrate the inequality.
simp only [abs_of_nonneg, sub_add_eq_add_sub] at * -- Reasoning: The
objective is to demonstrate that the expression `15 ≤ x - p + |x - 15| +
|x - p - 15|` holds given the conditions on `p`, `x`, and the function `f`.
Since the expression in question involves absolute values which inherently
involve non-negativity, manipulating these expressions to highlight their
non-negativity or equality is a logical initial step. This involves
recognizing that the absolute value of a difference can be rewritten as
the difference of absolute values, which simplifies the manipulation of
the expression to prove the inequality.
congr 1 -- Reasoning: To establish the inequality `15 ≤ x + |x - 15| + |x
- p - 15| - p`, we recognize that the left-hand side of the inequality
involves a mix of additions and subtractions of real numbers. By
introducing a congruence transformation that simplifies operations
involving absolute values, we aim to align both sides of the inequality in
a form that directly reflects the properties of real numbers under these
operations.
simp only [abs_of_nonpos (sub_nonpos_of_le h2), abs_of_nonneg
(sub_nonneg_of_le h1)] -- Reasoning: The objective is to prove an
inequality involving absolute values and subtractions that aligns the
given conditions and constraints. Simplification using the properties of
absolute values and the provided bounds can directly lead to the desired
conclusion by expressing the absolute values in terms of their underlying
expressions and applying the given constraints.
simp [abs_of_pos, *] -- Reasoning: To prove the given inequality involving
absolute values, simplification using algebraic properties and given
hypotheses will directly lead us to the desired inequality by recognizing
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the algebraic manipulation and application of the known bounds `h1` and
`h2`, as well as the non-negativity of `p`.
rw [abs_of_nonpos] -- Reasoning: The objective is to demonstrate that `15 ≤
15 + |x - p - 15| - p` under the given constraints on `p` and `x`. Given

`p < 15` and `p ≤ x ≤ 15`, it's apparent that `p - 15` is non-positive.
This observation allows us to apply the property that the absolute value
of a non-positive number is equal to its negative value, thereby
simplifying the expression on the right-hand side of the inequality.
all_goals linarith -- Reasoning: The goal involves demonstrating a
relationship between expressions involving inequalities and subtraction.
The simplification of these expressions into a form that directly compares
their numerical values can lead to a straightforward application of known
inequalities and algebraic properties, demonstrating the inequality's
validity under the given conditions.
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