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ABSTRACT

Advancements in deep multi-agent reinforcement learning (MARL) have posi-
tioned it as a promising approach for decision-making in cooperative games. How-
ever, it still remains challenging for MARL agents to learn cooperative strate-
gies for some game environments. Recently, large language models (LLMs) have
demonstrated emergent reasoning capabilities, making them promising candidates
for enhancing coordination among the agents. However, due to the model size
of LLMs, it can be expensive to frequently infer LLMs for actions that agents
can take. In this work, we propose You Only LLM Once for MARL (YOLO-
MARL), a novel framework that leverages the high-level task planning capabili-
ties of LLMs to improve the policy learning process of multi-agents in cooperative
games. Notably, for each game environment, YOLO-MARL only requires one
time interaction with LLMs in the proposed strategy generation, state interpreta-
tion and planning function generation modules, before the MARL policy training
process. This avoids the ongoing costs and computational time associated with
frequent LLMs API calls during training. Moreover, the trained decentralized
normal-sized neural network-based policies operate independently of the LLM.
We evaluate our method across three different environments and demonstrate that
YOLO-MARL outperforms traditional MARL algorithms.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) algorithms have proven to be a powerful framework
for addressing complex decision-making problems in multi-agent systems. With the rising appli-
cations of multi-agent systems, such as mobile robots in warehouses and games requiring complex
reasoning and strategy, it is increasingly crucial for individual agents to learn, cooperate, or com-
pete in dynamic environments without a centralized decision-maker (Papoudakis & Schifer, 2021}).
In cooperative Markov games, agents are trained to coordinate their actions to maximize the joint
rewards. However, existing MARL algorithms face challenges in learning distributed policies for
cooperative games. Moreover, they struggle with tasks characterized by sparse rewards, dynamic
environment, and large action spaces, which can hinder efficient learning and agent collaboration.

LLMs have excelled as high-level semantic planners due to its in-context learning abilities and prior
knowledge (Ahn et al|, [2022). |Zhang et al.| (2023)) and [Kannan et al.| (2024) directly use LLMs
as embodied agents, which demonstrate LLMs’ planning ability in multi-robot system. There are
also works concentrating on utilizing the LLMs to guide the reinforcement learning (RL) training
to reach better performances. ELLM (Du et al., 2023) leverage LLMs to suggest a goal to assist
RL training whereas [Kwon et al.| (2023) focusing on the alignment between the action provided by
LLM and the RL policy. While these approaches show exciting potential for integrating LLM within
policy training, they have yet to extend their methods on multi-agent scenarios. More importantly,
utilizing LLMs as agents or integrating them into the RL training loop presents certain challenges.
Repeated interactions with LLMs in long-episode tasks or complex environments—especially when
using advanced LLMs like Claude-3.5 or GPT-0l can be time-consuming and costly; it becomes
intractable for tasks requiring training over tens of millions of steps. Additionally, there is a risk of
intermittent disconnections with the LLM, which could disrupt the training process and affect the
system’s stability.

Built on the identified insights and challenges, we introduce YOLO-MARL, as shown in Fig. [1}
an innovative approach that leverages the planning capabilities of LLMs to enhance MARL pol-

“+ These authors contributed equally to this work.



Under review as a conference paper at ICLR 2025

icy training. In particular, the major strength of our framework is that it requires only a one-time
interaction with the LLM for each game environment. After the strategy generation, state inter-
pretation and planning function generation modules, there is no need for further LLMs interaction
during the MARL training process, which significantly reduces the communication and computa-
tional overhead of LLM inferences. Moreover, YOLO-MARL demonstrates its strong generalization
capabilities and simplicity for application: with the proposed strategy generation and state interpre-
tation modules, our approach is compatible with various MARL algorithms such as|Yu et al.[(2022),
Rashid et al.| (2018)), [Lowe et al.|(2020), and requires only basic background understanding of a new
game environment from the users. We also evaluate our framework in a sparser reward multi-agent
environment: Level-Based Foraging environment (Papoudakis & Schifer,2021)), and a highly strate-
gic task environment: the StarCraft Multi-Agent Challenge environment (Samvelyan et al., |2019),
together with the MPE environment (Lowe et al., [2020)), and show that YOLO-MARL outperforms
several MARL baselines. We also provide several ablation study results to demonstrate the function
of each module in the proposed framework. To the best of our knowledge, YOLO-MARL is among
one of the first trials that incorporates the high-level reasoning and planning abilities of LLMs with
MARL, since very limited literature of LLM for MARL has been introduced so far (Sun et al.|[2024).

In summary, our proposed method YOLO-MARL has the following advantages:

* This framework synergizes the planning capabilities of LLMs with MARL to enhance the
policy learning performance in challenging cooperative game environments. In particu-
lar, our approach exploits the LLM’s wide-ranging reasoning ability to generate high-level
assignment planning functions to facilitate agents in coordination.

* YOLO-MARL requires minimal LLMs involvement, which significantly reduces compu-
tational overhead and mitigates communication connection instability concerns when in-
voking LLMs during the training process.

* Qur approach leverages zero-shot prompting and can be easily adapted to various game
environments, with only basic prior knowledge required from users.

An overview of YOLO-MARL is presented in Figure|l| All prompts, environments, and generated
planning functions can be found in Appendix.

2 RELATED WORK

2.1 MULTI-AGENT REINFORCEMENT LEARNING

MARL has gained increasing attention due to its potential in solving complex, decentralized prob-
lems. Centralized training with decentralized execution has become a popular framework for over-
coming the limitations of independent learning. Methods like QMIX (Rashid et al) [2018) and
MADDPG (Lowe et al., 2020) use centralized critics or value functions during training to coordinate
agents, while allowing them to execute independently during testing. In cooperative environments,
algorithms like COMA (Foerster et al.,[2017)) and VDN (Sunehag et al.,|2017) enable agents to share
rewards and act in a coordinated fashion to maximize joint rewards;Wang et al.| (2024) introduce a
new approach using language constraint prediction to tackle the challenge of safe MARL in the con-
text of natural language. However, the existing MARL algorithms may not perform well in sparse
reward environments and still struggle in learning fully cooperative policy in some environments.
So far, only very limited literature of using LLM for MARL has been proposed (Sun et al., [2024),
and it remains unclear whether and how can LLM be leveraged for MARL-based decision-making.

2.2 LARGE LANGUAGE MODELS FOR SINGLE-AGENT RL AND DECISION-MAKING

Many existing works utilize LLMs as parts of RL training process. Du et al.[(2023) enhance agents’
exploration by computing the similarity between suggested goals from LLMs and agents’ demon-
strated behaviors. (Carta et al.| (2023) leveraging language-based goals from LLMs by generating
actions conditioned on prompts during online RL. Kwon et al.| (2023) provides scalar rewards based
on suggestions from LLMs to guide RL training. However, most of these approaches haven’t ex-
plored their works in the context of Markov games and require extensive interactions with LLMs
during training.
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Figure 1: Depiction of our framework YOLO-MARL. (a). Strategy Generation: We pass basic envi-
ronment and task description into the LLM to get generated strategies for this specific environment.
(b). State Interpretation: We process the global states so that the format of global states will be more
structured and organized for better comprehension by the LLM. (¢). Planning Function Generation:
We chain together the environment and task description, LLM generated strategies and state inter-
pretation function. These prompts are then fed into the LLM to generate a Python planning function
for this environment. (d). MARL Training: The state interpretation function and the generated plan-
ning function are integrated into the MARL training process. The LLM is no longer required for
further interaction after the Planning Function Generation. The more detailed explanation of MARL
Training part can be found in Algorithmm

Gupta et al.|(2022) utilize CLIP’s visual embedding to an agent exploring of environment. [Fan et al.
(2022) studies a multi-task RL problem, where an agent is tasked with completing MINEDOJO
tasks. |Ahn et al.| (2022)) proposes SayCan which grounds LLMs via value functions of pretrained
skills to execute abstract commands on robots. [Liang et al.|(2023)) finds that code-writing LLMs can
be re-purposed to write robot policy code. Huang et al.| (2022)) shows that by leveraging environment
feedback, LLMs are able to form an inner monologue that allows them to more richly process and
plan. Other research such as Ma et al.| (2024) and Xie et al.| (2023) use LLLMs prior knowledge
and code generation capability to generate reward functions, whereas we utilize code generation for
planning functions. [Lin et al.| (2024) highlights the limitations of LLMs in handling complex low-
level tasks. On the other hand, we harness the high-level reasoning capabilities of LLMs to enhance
low-level action performance within RL model training.

2.3 LARGE LANGUAGE MODELS FOR MULTI-AGENT SYSTEMS

LLM-based Multi-Agent (LLM-MA) systems focus on diverse agent profiles, interactions, and col-
lective decision-making. While this allows agents to collaborate on complex tasks, it also increases
computational overhead due to the communication between LLMs (Guo et al., [2024), (Sun et al.,
2024). Camel [Li et al.| (2024) and MetaGPT Hong et al.| (2023) employ multiple LLM agents
to accomplish tasks like brainstorming and software development. [Nascimento et al.| (2023) en-
hance communication and agent autonomy by integrating GPT-based technologies. In multi-robot
contexts, [Chen et al.| (2023) compare task success rates and token efficiencies of four multi-agent
communication frameworks. SMART-LLM (Kannan et al.||2023) decompose multi-robot task plans
into subgoals for LLM to enable efficient execution, while Co-NavGPT (Yu et al., [2023) integrates
LLMs as global planners for cooperative navigation. Focusing on multi-agent pathfinding (MAPF),
Chen et al.| (2024)) studies the performance of solving MAPF with LLMs. Numerous studies have
also focused on leveraging the decision-making capabilities of LLMSs in complex computer game
environments. (Hu et al.|2024)). |Agashe et al.|(2023)) introduced a benchmark for LLM-MA in coor-
dination games. |Gong et al.|(2023)) proposed an interactive framework and a novel environment that
leverage LLMs as dispatchers for multi-agent system gaming. [Wu et al.| (2024) fine-tuned LLMs
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based on gameplay outcomes, enabling them to adapt and improve their decision-making within the
strategic game. |Li et al.| (2023) explore the use of LLMs in cooperative games within a text-based
environment, and Ma et al.| (2023) explores LLMs in the StarCraft II environment. In contrast,
our method leverages the planning abilities of LLM to train better small-size neural network-based
MARL policies instead of using LL.Ms directly as agents.

3 PROBLEM FORMULATION

Markov game (MG) is defined as a multi-agent decision-making problem when the interaction
between multiple agents affect the state dynamics of the entire system and the reward of each
agent under certain conditions (Littman, 1994). In this work, we consider a Markov game, or a
stochastic game |Owen| (1982) defined as a tuple G := (N, S, A, {r* }ZGN,p, 7v), where N is a set
of N agents, S = ST x --- x SV is the joint state space, A = A x --- x AN is the joint ac-
tion space, with (S%, A?) as the state space and action space of agent 1, respectively, v € [0,1)
is the discounting factor (Littman, |1994; Owenl [1982). The state transition p : S x A — A(S)
is controlled by the current state and joint action, where A(S) represents the set of all probability
distributions over the joint state space S. Each agent has a reward function, r* : S x A — R.
At time t, agent i chooses its action a! according to a policy ©* : S — A(A?). For each
agent ¢, it attempts to maximize its expected sum of discounted rewards, i.e. its objective func-
tion J(s,m) = E [>°7°, 7" ri(sy, ar)|s1 = s,a; ~ w(-|s;)]. In the literature, deep MARL algo-
rithms (Lowe et al., [2020; [Yu et al.| 2022} Rashid et al., [2018)) have been designed to train neural
network-based policies 7;(6;). For a cooperative game, one shared reward function for all the agents
is widely used during the training process, which is also considered in this work.

4 METHODOLOGY

In this section, we introduce our method, YOLO-MARL, which leverages LLMs to enhance MARL.
Specifically, during training, we utilize the high-level task planning capabilities of LLMs to guide
the MARL process. Our approach consists of four key components: Strategy Generation, State
Interpretation, Planning Function Generation, and MARL training process with the LLM generated
Planning Function incorporated throughout.

Algorithm 1 YOLO-MARL Training Process

Require: Large Language Model LLM, State Interpretation function Fs, MARL actor A, MARL algorithm
MARLqg, Initial Prompts Pyt

: Hyperparameters: reward signal r’, penalty signal p’

: Pstrategy ~ LLM (P;nst) I/ Strategy Generation

P = Pinit + Psirategy + Fs // Chaining all the prompt for Planning Function Generation

: Fr ~ LLM(P) // Planning Function Generation: Sample functions code from the LLM

: // MARL training with generated planning function

: for each training step do

St + Fs(Sy) // State Interpretation: Get processed global observation Sy from Fs

Ti, T2, ... < Fr(Sr) // Assign tasks 7 to each agent

ai,ag, ... A(SU) /I Output actions from the actor

10: for each agent ¢ do

11: if a; € 7; then

12: Ar; 7'

13: else

14: Ar; < p/

15: end if

16: end for

17: R« r + Y, Ar; // Compute final reward for criticz: More details are in equation EI,

18: m(0) = MARLq4(R) // Use R as the final reward for MARL training

19: end for

20: return Trained MARL policy

4.1 STRATEGY GENERATION

To create a generalizable framework applicable to various environments—especially when users
may have limited prior knowledge—we incorporate a Strategy Generation Module into our method-
ology. This module enables the LLM to autonomously generate strategies for different environments
without requiring extensive human input or expertise.
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As shown inside the blue box of Figure[T|a), the LLM is provided with the basic information about
the environment, including task descriptions, relevant rules, and constraints of how to interact with
the environment. Additionally, we supply a general guideline within the prompt to assist the LLM in
generating effective strategies. Gathering all the information, the LLM will output detailed strategies
to accomplish the tasks or achieve the goal, following the specified format.

By aggregating all this information, the LLM outputs detailed strategies to accomplish the tasks
or achieve the goals, following a specified format. The Strategy Generation is crucial for several
reasons:

* Reducing User Burden: It alleviates the need for users to comprehensively understand new
environments, saving time and effort.

* Enhancing Generalization: It enables the framework to adapt to different environments
with minimal prompt modifications.

* Facilitating Planning Function Generation: The strategies serve as vital components in the
prompts used for the Planning Function Generation Module. The results of using YOLO-
MARL but without Strategy Generation Module are shown in ablation study [6.1].

The LLM-generated strategies are incorporated into the prompt alongside other necessary informa-
tion to facilitate the subsequent planning function generation. Further details about the strategy
prompts and their formats can be found in Appendix[C.1]

4.2 STATE INTERPRETATION

In many simulation environments, observations or states are typically provided as vectors, with each
component constructed using various encoding methods. While the vector form of observation is
easy to handle when training deep reinforcement learning models, it is difficult for LLMs to directly
parse their semantic meaning due to the lack of explicit context for each component.

We propose the State Interpretation Module to assist the LLM in interpreting the environment state.
By providing a semantically meaningful representation of the state, the LLM can successfully gen-
erate executable planning functions for training. Formally, given the current environment state in
vector form S,,, we define an interpretation function Fg such that Fis(S,) — S, where S} provides
more explicit and meaningful information about each state component.

Recent works like Ma et al.[(2024) and Xie et al.|(2023)) have demonstrated the success of enhancing
LLMs performance by providing relevant environment code. In the same manner, we include the
interpretation function F's in the prompting pipeline, formatted as Pythonic environment code as
shown in the purple box in Figure[T[b). The State Interpretation Module significantly reduces the risk
of the LLM generating erroneous functions with outputs incompatible with the training procedures.
An ablation study on the effectiveness of this module can be found in Sec[6.2] while more details
about the interpretation function are provided in Appendix [C.2]

4.3 PLANNING FUNCTION GENERATION

A crucial component of our method is leveraging the LLM to perform high-level planning instead of
handling low-level actions. We combine all the prompts from the previous modules and input them
into the LLM. The LLM then generates a reasonable and executable planning function that can be
directly utilized in the subsequent training process.

To be more concise, given any processed state S;, we define an assignment planning function as
Fr(S;) — T; € T, where T = {T1,..., T} is a set of target assignments that each agent
can take. We define the assignment set 7 over the action space such that an action can be-
long to multiple assignments and vice versa. For example, if the assignment space is defined as
T = {Landmark_0, Landmark_1}, and landmark 0 and landmark 1 are located at the top right
and top left positions relative to the agent respectively, then taking the action “UP” can be associated
with both assignments. Conversely, we can have multiple actions correspond to an assignment. For
instance, moving towards “Landmark 0" may involve actions like "UP” and "RIGHT”.

The planning function generation will only be required once for each new environment you try to
use. After you interact with the LLM to get generated planning function, you can directly use it
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in the later training process with different MARL algorithms. This is referred to the red module in
Fig. [IJc) and more information of generated function refer to Appendix D]

4.4 MARL TRAINING WITH PLANNING FUNCTION INCORPORATION

To incorporate the planning function into MARL training, we add an extra reward term to the original
reward provided by environments. Specifically, we define the final reward R used by the critic as:

R=r+> Ar, (1

Here, r is the original reward from the environment. For each agent ¢, Ar; is an additional reward or
penalty that determined based on whether the action taken by the agent aligns with the task assigned
by the planning function. Specifically:

Ar; = {7” ,if the agent i action aligns with the assigned task, @)

p’, if the agent i action doesn’t align with the assigned task.

Notably, we don’t need to interact with the LLM during the entire training process, nor do we need
to call the planning function after the policy has been trained. The training process M ARLq;q(R)
takes R as the reward function, uses the same state and action space. We follow the standard MARL
algorithms and evaluation metrics within the literature, such as|Yu et al.|(2022), Rashid et al.|(2018]),
and [Cowe et al] (2020). Our method, as shown in the greed box in Figl[I[d), is highly efficient
compared to approaches that interact with LLMs throughout the whole training process or directly
use LLMs as agents. In practice, using the LLM’s API to generate the planning function incurs
minimal cost—less than a dollar per environment—even when using the most advanced LLM APIs.

5 EXPERIMENTS

In this section, we evaluate our method across three different environments: MPE, LBF, and SMAC.
We use claude-3-5-sonnet-20240620 for the experiments[f]

5.1 SETUP

Baselines. In our experiments, we compare the MARL algorithm MADDPG (Lowe et al., [2020),
MAPPO (Yu et al.}2022) and QMIX (Rashid et al.,2018) and set default hyper-parameters accord-
ing to the well-tuned performance of human-written reward, and fix that in all experiments on this
task to do MARL training. Experiment hyper parameters are listed in Appendix.

Metrics. To assess the performance of our method, we use win rate as the evaluation metric on the
SMAC environment, and the mean return in evaluation for all other environments. During evalua-
tion, we rely solely on the default return values provided by the environments for both the baseline
and our method, ensuring a fair comparison.

5.2 RESULTS

Level-Based Foraging. Level-Based Foraging (LBF) (Papoudakis & Schifer,[2021) is a challenging
sparse reward environment designed for MARL training. In this environment, agents must learn to
navigate a path and successfully collect food, with rewards only being given upon task completion.
To evaluate our framework in a cooperative setting, we selected the 2-player, 2-food fully cooper-
ative scenario. In this setting, all agents must work together and coordinate their actions to collect
the food simultaneously. The environment offers an action space consisting of [NONE, NORTH,
SOUTH, WEST, EAST, LOADY], and we define the task set as [NONE, Food i, ..., LOAD]. Using the
relative positions of agents and food items, we map assigned tasks to the corresponding actions in
the action space and calculate the reward based on this alignment. We evaluated our framework over

“We mainly use the Claude 3.5 Sonnet model for the LLM in our work: https://www.anthropic.
com/news/claude-3-5-sonnet
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Table 1: Comparison between YOLO-MARL and MARL in the LBF environment across three
seeds. The highest evaluation return means during training are highlighted in bold. The corre-
sponding results can be found in Figure[2] The M means one million training steps. We run all the
experiments on the same machine.

Mean Return after 0.2M / 0.4M / 1.5M / 2M Steps
QMIX MADDPG MAPPO

MARL 0.00/0.01/0.25/0.38  0.09/0.33/0.26/ 0.32  0.31/0.72/ 0.99/ 0.99
YOLO-MARL 0.01/0.02/0.60/ 0.78  0.13/0.38/0.39/0.44  0.93/0.98/ 0.99/ 0.99

3 different seeds, with the results shown in Figure [2|and Table |1} LLM assist the MARL algorithm
by providing reward signals, our framework significantly outperformed the baseline, achieving a
maximum improvement of 105 % in mean return and a 2x faster convergence rate among all tested
MARL algorithms. According to the results, our framework is effective across all the baseline
algorithms, with particularly large improvements observed in QMIX and MADDPG, and a faster
convergence rate for MAPPO. To assess the variability in the quality of our generated functions, we
present the results of three different generated functions in Figure [§] and Table 3] in Appendix
The results demonstrate that our framework consistently generates high-quality functions, with each
achieving similar improvements across all baseline algorithms.

Eval Mean Return Eval Mean Return Eval Mean Return
DPG with YOLO-MARL " with YOLO-MARL

e oo - T ero ~ oo i
,
.
.
1 2 2

(a) MADDPG (b) MAPPO (c) QMIX

Figure 2: Results for LBF environment across 3 seeds: The solid lines indicate the mean perfor-
mance, and the shaded areas represent the range (minimum to maximum) across 3 different seeds.

Multi-Agent Particle Environment. We evaluate our framework in Multi-Agent Particle Environ-
ment (MPE) (Lowe et al.,|2020) simple spread environment which is a fully cooperative game. This
environment has N agents, N landmarks. At a high level, agents must learn to cover all the land-
marks while avoiding collisions. It’s action space is consist of [no_action, move_left, move_right,
move_down, move_up]. We define the assignment for each agent to take to be [Landmark_i,...,No
action]. During training, based on the global observation, we obtain the relative position of each
agent with respect to the landmarks. Similar to LBF, we map each assignment of agent back to the
corresponding action space and then reward the action of policy in action space level. We evalu-
ate our approach on 3-agent and 4-agent scenarios using QMIX and MADDPG as baselines. As
shown in Figure [3] our framework(colored line) outperform the baseline(black line) algorithm in
mean returns by 7.66% and 8.8% for 3-agent scenario, and 2.4% and 18.09% for 4-agent scenario
with QMIX and MADDPG respectively. These improvements demonstrate the effectiveness of our
framework in enhancing coordination among agents to cover up all the landmarks.

StarCraft Multi-Agent Challenge environment. @ The StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) simulates battle scenarios where a team of controlled agents must
destroy an enemy team using fixed policies within a limited number of steps. We tested our method
on three different maps: 3M, 2s vs 1sc, and 2c vs 64zg. The action space in the environment consists
of [none, stop, move north, move south, move west, move east, attack enemy 1,...attack enemy n],
where n is the total number of enemies on the map. This action space becomes increasingly complex
depending on the number of enemies the agent has to engage, particularly in the 2c vs 64zg map,
which contains 64 enemies and offers 70 possible actions.

In our experiments, we define the assignment space simply as [Move, Attack, Stop, None (for dead
agents)]. We tested the performance of MAPPO, and the results for SMAC are shown in Fi gure@ As
indicated by the figure, even though we provide simple assignments that may be far from optimal
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Figure 3: MPE simple spread scenario 3 agents results. The solid lines indicate the mean perfor-
mance, and the shaded areas represent the range (minimum to maximum) across 3 different gener-
ated planning function.
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Figure 4: MPE simple spread scenario 4 agents results. The solid lines indicate the mean perfor-
mance, and the shaded areas represent the range (minimum to maximum) across 3 different gener-
ated planning function.

instructions, our framework still achieves comparable results on certain maps. This demonstrates
that our framework remains competitive, even in environments requiring strategic movements. We
also explore the sparse reward case for this environment where the win rate of baseline algorithms
is always closed to 0 while we generate a planning reward function pairs that outperform baseline.
We suggest this pair generation as a potential future work and leave this discussion to the Sec[7}

Eval Win Rate

Eval Win Rate
1) = MAPPO — MAPPO (YC

1) = MAPPO — s

Eval Win Rate
ith 1ARL = MAPPO

(a) 3m (b) 2s vs 1sc (c) 2c vs 64zg

Figure 5: Results for 3 maps on SMAC environment: Average win rate comparison with our method
for MAPPO baseline on 3 maps: 3m, 2s vs 1sc and 2c vs 64zg across 3 different seeds and the solid
lines indicate the mean performance.

6 ABLATION STUDY

In this section, we conduct the ablation studies mainly in LBF 2 players 2 food fully cooperative
environment since rewards in LBF are sparser compared to MPE and SMAC (Papoudakis & Schafer,
2021). We refer to[5.2] for more information about the environment. Due to page limitation, we also
leave some discussions and figures in Appendix B}
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6.1 COMPARISON BETWEEN YOLO-MARL WITH AND WITHOUT STRATEGY GENERATION

In this section, we examine the impact of the Strategy Generation Module on the performance of the
YOLO-MARL framework. Specifically, we compare the standard YOLO-MARL with a variant that
excludes the Strategy Generation Module to assess its significance.

According to our tests, the Strategy Generation Module plays an important role in the YOLO-MARL
method. As shown in Figure[§], without the LLM generated strategy, we obtain a worse-performing
planning function. Interestingly, the mean returns of evaluations for the functions without the LLM
generated strategy are not always close to zero, indicating that the generated planning functions
are not entirely incorrect. Based on this, we could confirm that the Strategy Generation Module
would help Planning Function Generation Module provides better solutions to this game. Moreover,
giving the strategy also helps stabilize the quality of the generated code. We observe a higher risk
of obtaining erroneous functions without supplying the strategy.

Eval Mean Return
ith

LO-MARL = MADDPG — MAPPO without LLM 1ARL = MAPPO — QIXwith YOLO-MARL = Q1) — quix

500k M 5M M 500k M 15M 2 500k ™M 15M

(a) MADDPG (b) MAPPO (c) QMIX

Figure 6: Comparison between YOLO-MARL with and without using LLM generated strategies in
LBF

6.2 COMPARISON BETWEEN YOLO-MARL WITH AND WITHOUT STATE INTERPRETATION

To demonstrate how the State Interpretation Module enhances our framework, we present two failure
case snippets:

* Without the Interpretation Function: The interpretation function is omitted entirely from
the prompting pipeline.

* Providing Raw Environment Code Directly: Raw environment source code is fed directly
to the LLM.

As shown in Figure[T0] the LLM is unable to infer the type of state and attempts to fetch environment
information via a non-existent key if no preprocessing code provided. And if environment code
is provided without dimensional context for each component, the LLM is likely to make random
guesses. In both scenarios, the absence of explicit state interpretation hinders the LLM’s ability to
generate accurate and executable planning functions. These failures underscore the importance of
the State Interpretation Module in bridging the gap between vectorized observations and the LLM’s
requirement for semantically meaningful input.

By incorporating the State Interpretation Module, we enable the LLM to understand the environ-
ment’s state representation effectively. This results in the generation of reliable planning functions
that significantly enhance the performance of our YOLO-MARL framework.

6.3 COMPARISON BETWEEN YOLO-MARL AND REWARD GENERATION

In this section, we compare our YOLO-MARL method with approaches that utilize the LLM for
reward generation without reward function template. We explore two scenarios: reward generation
without feedback and reward generation with feedback. For the reward generation without feedback,
the reward function is generated at the same stage as the planning function for fair comparison. This
means that we generate the reward function before all the training process for each new environment.
For the reward generation with feedback, we first generate a reward function just like the reward
generation without feedback. And then, iteratively, we will run a whole training process on this
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environment and pass the feedback of this training performance to the LLM, combined with previous
prompts and ask the LLM to refine the previous generated reward function.

Our experiments show that relying solely on the LLM-generated reward function leads to poor per-
formance. As shown in Figure [7} the mean return for the LLM-generated reward function pair
consistently falls below the performance of all three MARL algorithms. This indicates that agents
are not learning effectively under the LLM-generated reward function. However, we do observe a
slight positive return. This suggest the potential of using this framework for reward shaping tasks,
particularly in situations where standard MARL algorithms struggle to learn in sparse reward scenar-
ios. To investigate whether iterative refinement could improve the LLM generated reward function,

Eval Mean Return Eval Mean Return Eval Mean Return
reration = MADDP eneration — MAPRC ¢

— MADDPG with Reward Generation — /G with YOLO-MARL = MADDPG — MAPPO with Rewar - ith — MappO — QMIXwith Reward Generation = QUIX with YOLO-MARL = Qb

(a) MADDPG (b) MAPPO (c) QMIX

Figure 7: Comparison between YOLO-MARL and reward generation without feedback in LBF

we supply the LLM with the generated reward function from the prior iteration and feedback on its
performance. Despite this iterative process, the LLM still fails to output a suitable reward function
for the LBF environment. The mean return of evaluations remains close to zero, as shown in fi gure@
The generated reward functions for each iteration are provided in Appendix [E]

7 LIMITATION AND FUTURE WORK

We acknowledge that the performance of YOLO-MARL may be highly correlated with the LLM’s
ability and we haven’t tested YOLO-MARL with other LLMs like GPT-o1 due to the tier5 user
requirement, and there might be a gap of YOLO-MARL'’s performance between the Claude-3.5 and
GPT-ol.

For future work, we are enthusiastic about the potential for LLMs to further enhance MARL, partic-
ularly as their planning capabilities improve. Specifically, we envision combining reward generation
with planning functions to boost the performance of existing MARL algorithms in fully sparse envi-
ronments. In this approach, we prompt the LLM to generate both a planning function and a reward
function that replaces the environment-provided reward, following the pipeline described in Sec-
tion[d The function-pair method may require further refinement, and we will explore it as a future
direction. A preliminary test of this framework is provided in Appendix [B-4]

8 CONCLUSION

We propose YOLO-MARL, a novel framework that leverages the high-level planning capabilities
of LLMs to enhance MARL policy training for cooperative games. By requiring only a one-time
interaction with the LLM for each environment, YOLO-MARL significantly reduces computational
overhead and mitigates instability issues associated with frequent LLM interactions during training.
This approach not only outperforms traditional MARL algorithms but also operates independently
of the LLM during execution, demonstrating strong generalization capabilities across various envi-
ronments.

We evaluate YOLO-MARL across three different environments: the MPE environment, the LBF
environment, and the SMAC environment. Our experiments showed that YOLO-MARL outper-
forms or achieve competitive results compared to baseline MARL methods. The integration of
LLM-generated high-level assignment planning functions facilitated improved policy learning in
challenging cooperative tasks, even in environments characterized by sparser rewards and large ac-
tion spaces. Finally, we mention a possible way to incorporate reward generation to our framework
and we will step further.

10
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APPENDIX

A  HYPERPARAMETER DETAILS

The detail hyper-parameter for the baseline algorithm can be found in [Yu et al.| (2022) and |Pa-
poudakis & Schifer (2021). We provide the full hyper-parameters for the reward and penalty value
given to the RL training throughout the experiments in[2]

Table 2: Hyperparameter

LBF
QMIX MADDPG MAPPO

r  0.02+0.01 0.002+0.001 0.005=+0.004
p’ 0.02+0.01 0.002+£0.001 0.005+ 0.004

MPE(3agents/4agents) SMAC (3m/2s_vs_lsc/2c_vs_64zg)
MADDPG QMIX MAPPO

r 0.2/03+£0.1 0.2%£0.1/0.2+£0.1 r  0.001 ~0.01/0.02/0.003 4 0.002

p 0.1/02+0.1 02=+0.1/02+0.1 p’ 0.001 ~0.01/0.02/0.003 £ 0.002

B ADDITIONAL RESULT

Given the page constraints, we present some additional experiments and ablation study results and
figures in this section.

B.1 COMPARISON FOR DIFFERENT GENERATED FUNCIONS

Considering the variation on the output of LLMs, we evaluate the quality of generated functions
and compare the results on 3 baseline methods and those using our framework. We conduct the
experiments in LBF environment introduce in Sec[5.2]

Eval Mean Return
DPG with YOLO-MARL

— MADDPG with YOLO. -

Eval Mean Return
ith YOLO-W

500k M 15M 500k M 15M

(a) MADDPG (b) MAPPO (c) QMIX

Figure 8: Results for LBF environment across 3 seeds: The solid lines indicate the mean perfor-
mance, and the shaded areas represent the range (minimum to maximum) across 3 different seeds.

B.2 ADDITIONAL RESULTS FOR REWARD FEEDBACK

(a) Iteration one (b) Iteration two (c) Iteration three (d) Iteration four

Figure 9: Results of only reward generation with feedback in the LBF environment. The total
number of iteration is 4 and the MARL algorithm we used here is MAPPO.

14
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Table 3: Comparison between YOLO-MARL and MARL in the LBF environment across three
different generated planning functions. The highest evaluation return means during training are
highlighted in bold. The corresponding results can be found in figure[8] The M means one million
training steps. We use two different machines to generate planning functions and run MARL and
YOLO-MARL on the same machines where the planning functions are generated.

Mean Return after 0.2M / 0.4M / 1.5M / 2M Steps
QMIX MADDPG MAPPO

MARL 0.00/ 0.01/0.25/0.36  0.08/0.28/0.24/ 0.29  0.38/0.74/0.99/ 0.99
YOLO-MARL  0.00/0.03/ 0.69/ 0.95 0.18/0.40/ 0.42/ 0.47  0.94/0.97/ 0.99/ 0.99

B.3 ADDITIONAL RESULTS FOR STATE INTERPRETATION ABLATION STUDY

1 def planning_function(state):
2 AN
3 for agent_id, agent_info in own_info.items():
4 if agent_info['health'] <= 0:
5 1lm_tasks[agent_id] = 'None'
6 continue
7 closest_enemy = min(enemy_info.values(), key=lambda x: ((x['x'] - agent_info['x'])**2 + ...
8 “
9 return llm_tasks
(a) Failure Case: Without providing interpretation code
1 def planning_function(state):
2
3 # Extract relevant information
4 move_feats = agent_state[:8] # Assuming 8 movement features
5 enemy_feats = agent_state[8:8+5*n_enemies].reshape(n_enemies, 5)
6 ally_feats = agent_state[8+5*n_enemies:8+5*n_enemies+5].reshape(1, 5)
7 own_feats = agent_state[-5:]
8 e
9 return llm_tasks

(b) Failure Case: Feeding environment code directly

Figure 10: Failure cases for YOLO-MARL without State Interpretation Module

B.4 ADDITIONAL RESULT ON FUTURE WORK

We tested this new approach that utilizing YOLO-MARL to generate planning and reward function
pair in the SMAC environment with a fully sparse reward setting. The baselines tested on the
three SMAC maps performed poorly, with evaluation win rates consistently near zero. However, as
demonstrated in Figure [TT] incorporating the planning function into reward generation significantly
improved performance.

Eval Win Rate Eval Win Rate Eval Win Rate
ith ! ith " ith "

- — 1appO — ap — 1appO

~ 1appo = ap

200k 400k 600k 800k 200k 400k 600k 800k 500k ™ 15M

(a) results of 3m map (b) results of 2s vs 1sc map (c) results of 2¢ vs 64zg map

Figure 11: YOLO-MARL reward generation paired with planning function in SMAC under sparse
reward setting
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C PROMPT DETAIL

In this section, we provide a comprehensive overview of the prompts used throughout the re-
search/application to facilitate various tasks. The prompts play a critical role in guiding the behavior
of language models or agents by providing them with specific instructions and constraints. This
section details the exact wording, format, and context of the prompts that were used to achieve the
results described in the main body of the paper.

C.1 STRATEGY

The prompt for the strategy generation is consisted of Environment Description, Assignment
Class and Instruction. Environment Description is about the environment information, we only
provide some necessary description on what is this environment look like, what’s the goal for the
tasks. We also add the rules for some additional information or constraint for the game that should
be followed and they can be found on the official website. Assignment Class can be viewed as
splitting up the action space or sub goals that LLM could assigned to agent during the task, the
formal definition can be found on The Instruction is basically to tell what llm should
output for the strategy. Below we provide the sample prompt for the most simple scenario in each
environment, but prompt for rest of all scenarios is in the similar format following the these prompts.

Level-Based Foraging

Environment Description:

This Level-Based Foraging (LBF) multi-agent reinforcement learning environment has 2
agents and 2 food items. Your goal is to make the agents collaborate and pick up all the
food present in the environment.

Game Rules:

1. The Pickup action is successful if all the agents pick up the same target together.

2. The Pickup action is only successful if the sum of the levels of the agents is equal to
or higher than the level of the food.

3. The Pickup action is only allowed if the agents are within a distance of 1 relative to
the food.

4. Success Condition: All food must be picked up before {time_steps} steps.
Tasks Assignment: Available tasks for each agent:

1. Target food O
2. Target food 1
3. Pickup

Instruction Format: Here is a general guideline for generating strategies:

1. Goal or Purpose: Clearly state the overall objective of the task.

2. Problem or Need: Consider different scenarios and identify the key problem or need
that the task plan addresses.

3. Approach / Methodology: Describe the overall approach or methodology step-by-
step that will be followed.

4. Scenario Analysis: Consider different scenarios that agents could encounter during
task execution and how they will coordinate to adapt.

5. Task Breakdown: Break down tasks, detailing the roles and responsibilities of each
agent and how they will coordinate to achieve the overall objective.

Multi-Agent Particle Environment
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Environment Description:

This Multi-Agent Particle Environment (MPE) multi-agent reinforcement learning environ-
ment has 3 agents and 3 landmarks. Your goal is to make agents collaborate and cover all the
landmarks. Game Rules:

1. Agents must cover all landmarks by minimizing the distances between each landmark,
with each agent going to a unique landmark.

2. Agents cannot collide with another agent. The collision threshold is 0.3.
Tasks Assignment: Available tasks for each agent:

1. Landmark 0O
2. Landmark 1
3. Landmark 2
4. No op

Instruction Format: Here is a general guideline for generating strategies:

1. Goal or Purpose: Clearly state the overall objective of the task.

2. Problem or Need: Consider different scenarios and identify the key problem or need
that the task plan addresses.

3. Approach / Methodology: Describe the overall approach or methodology step-by-
step that will be followed.

4. Scenario Analysis: Consider different scenarios that agents could encounter during
task execution and how they will coordinate to adapt.

5. Task Breakdown: Break down tasks, detailing the roles and responsibilities of each
agent and how they will coordinate to achieve the overall objective.

StarCraft Multi-Agent Challenge Environment

Environment Description:

This SMAC 3m map has 3 Terran Marines agents and 3 Terran Marines enemies. The Agent
unit is Marines, and its feature is that Marines are ranged units that can attack ground and air
units. They are the basic combat unit for Terran and are versatile in combat. Your task is to
utilize the unit information to win the battle scenario within 60 steps.

Game Rules:
1. Shooting range is 6 and sight range is 9 for both agent and enemy.

2. Success condition: Eliminate all enemy units before the episode ends.

3. Failure condition: If agents aren’t aggressive enough to kill all the enemies to win
within 60 steps, or if all agents die.

Tasks Assignment: Available tasks for each agent:

1. Move

2. Attack

3. Stop

4. None (only for dead agents)

Instruction Format: Here is a general guideline for generating strategies:

1. Goal or Purpose: Clearly state the overall objective of the task.

17
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2. Problem or Need: Consider different scenarios and identify the key problem or need
that the task plan addresses.

3. Approach / Methodology: Describe the overall approach or methodology step-by-
step that will be followed.

4. Scenario Analysis: Consider different scenarios that agents could encounter during
task execution and how they will coordinate to adapt.

5. Task Breakdown: Break down tasks, detailing the roles and responsibilities of each
agent and how they will coordinate to achieve the overall objective.

C.2 INTERPRETATION FUNCTION

Here we list the Interpretation Function for each scenerios that process the raw vector observation.

LBF 2 player 2 food scenerio

I def process_state (observations, p=2, £f=2):

N rrr

: Param:

4 observation:

5 array of array (p, n): dict(’agent_0’, ’'agent_1’,
., "agent_p’)

6 List:

7 Agent : (n, ) list of observation components

8 p: int, number of agents

9 f: int, number of foods in the environment

10 Return:

11 obs: tuples (food_info, agents_info):

12 food_info: dictionary that contains information about food in

the environment

13 key: food_id (’'food_0’, ’'food_1', ...)

14 value: tuples (food_pos, food_level) or None if
the food is already been picked up

15 agents_info: dictionary that contains information about
agents in the environment

6 key: agent_id (’agent_0’, ’"agent_1’, ...)

7 value: tuples (agent_pos, agent_level)

rrr

9 food_info = {}

20 agents_info = {}

21 obs = observations[0]

22 offset = 0

23 for food_idx in range (f):

2 food_obs = obs[offset:offset+3]
25 offset += 3

26 curr_food_pos = food_obs[:2]

27 curr_food_level = food_obs[2]
28 food_id = f’food_{food_idx}’

29 # If food level is 0, then the food is already been pickup and
not present in the environment

30 if curr_food_level == 0 and curr_food_pos[0] < O:

31 food_info[food_id] = None

32 # The food is present in the environment

: else:

34 food_info[food_id] = (curr_food_pos, curr_food_level)

36 for agent_idx in range (p) :
37 agent_obs = obs[offset:offset+3]

38 offset += 3

39 curr_agent_pos = agent_obs[:2]
40 curr_agent_level = agent_obs[2]
41 agent_id = f’agent_{agent_idx}’

18
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agen

return f

ts_infolagent_id] = (curr_agent_pos,

ood_info, agents_info

MPE 3 agents scenerio

def process_

rrr

Param:
obse

Return:
obs:

(2,)

rrr

obs = {}

state (observations, N=3):

rvations:

List of NumPy arrays, one per agent.
Each array represents the observation for an agent:

[self_vel (2,), self_pos (2,), landmark_rel positions (Nx2,),
other_agent_rel_positions ((N-1)%2,), communication]

Dictionary with agent IDs as keys

Each value is a list containing:
- Landmark relative positions:

("agent_0'",

curr_agent_level)

"agent_1', ...)

N arrays of shape (2,)

— Other agents’ relative positions: (N-1)

num_agents = len (observations)

for idx,

obs [

agent_obs in enumerate (observations) :
agent_id = f’agent_{idx}’

agent_id] = []

# Extract landmark relative positions

for

# Extract other agents’

for

i in range (N) :

start = 4 + 2 % i

end = start + 2

land_2_a = agent_obs[start:end]
obsl[agent_id] .append(land_2_a)

i in range (num_agents - 1):
start = 4 + 2 * N + 2 * i
end = start + 2

relative positions

other_agent_2_a = agent_obs[start:end]
obs[agent_id] .append (other_agent_2_a)

return obs

MPE 4 agents scenerio

def process_state (observations, N=4):

rrr

Param:

observations:
List of NumPy arrays, one per agent.
Each array represents the observation for an agent:

[self_vel (2,), self_pos (2,), landmark_rel positions (Nx2,),
other_agent_rel positions ((N-1)%2,), communication]

Return:
obs:

Dictionary with agent IDs as keys

Each value is a list containing:

19
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— Landmark relative positions: N arrays of shape (2,)

— Other agents’ relative positions: (N-1) arrays of shape

(2,)
obs = {}
num_agents = len (observations)

for idx, agent_obs in enumerate (observations) :
agent_id = f’agent_{idx}’
obs[agent_id] = []

# Extract landmark relative positions
for i in range(N):
start = 4 + 2 * i
end = start + 2
land_2_a = agent_obs[start:end]
obsl[agent_id] .append(land_2_a)

# Extract other agents’ relative positions
for i in range (num_agents - 1):
start = 4 + 2 * N + 2 x 1
end = start + 2
other_agent_2_a = agent_obs[start:end]
obs[agent_id] .append (other_agent_2_a)

return obs

SMAC 3m map

def process_global_state(global_state, n=3, m=3):

rrr

Param:
observation:
Dict of list of (n, ): dict(’agent_0’, "agent_1',
., 'agent_N’)
List:
Agent : (m, ) list of observation components

n: int, number of agents
m: int, number of enemies
Return:
obs (tuples of dict): Tuples of dict of (n, ): Tuple of each
observation components processed from each agent’s perspective by
function "process_observation":
available_move_actions (dict of list): Dict of list of (4,
dict ("agent_0’, ’agent_1’, ..., ’'agent_N’) List of available moves
for each agent. This might be empty if the agent is dead or no
available move direction.
—->available_move_actions[agent_id]: the available

list looks like list of string ["North", "South", "East", and "West"]

directions

enemy_info (dict of dict of tuple): Dict of dict of tuple of
(n, ): dict (’agent_0’, "agent_1’, ..., ’"agent_N’) Tuple of m enemies

information (enemy_0 to enemy_m) for each agent.

—>enemy_info[agent_id] [enemy_id]: each tuple contains

information of (is current enemy available to attack, distant to
current enemy, x direction position to current enemy, y direction
position to current enemy, is current enemy visible, enemy health,
enemy’s x pos to center, enemy’s y pos to center)
ally_info (dict of dict of tuple): Dict of dict of tuple of
n, ): dict(’agent_0’, 'agent_1’, ..., "agent_N’) Tuple of n-1 ally
information (exclude self) for each agent.
—>ally_infolagent_id] [al_id]: each tuple contains
information of (is current ally visible, distant to current ally,
direction position to current ally, y direction position to current
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ally, ally’s attack cooldown condition, ally’s health, ally’s x pos
to center, ally’s y pos to center)

18 own_info (dict of tuple): Dict of tuple of (n, ): dict (’
agent_0’, ’'agent_1’, ..., '"agent_N’) Tuple of own information for
each agent.

19 —>own_info[agent_id]: each tuple contains information

of (your health, your x position to center, your y position to

center, last action you take, whether you are alived)
20 ree

21 available_move_actions = {}

22 enemy_info = {}

23 ally_info = {}

24 own_info = {}

25 action_num = 6+m

26 for id, obs in enumerate(global_state):

27 agent_id = f"agent_{id}"

28 offset = 0

29 al_ids = [f"agent_{al_id}" for al_id in range(n) if f"agent_{
al_id}" != agent_id]

30 ally_infolagent_id] = {}

31 for al_id in al_ids:

32 ally_infolagent_id] [al_id] = []

33 # whether the ally is visible or in the sight range of the
agent

34 is_current_ally_visible = obs[offset: offset + 1]

35 ally_infolagent_id] [al_id].append(is_current_ally_visible)

36 offset += 1

37 # distance to the ally

38 dist_to_ally = obs[offset: offset + 1]

39 ally_infolagent_id] [al_id] .append(dist_to_ally)

40 offset += 1

41 # ally’s position relative to the agent

12 pos_x_to_ally = obs[offset: offset + 1]

43 ally_infolagent_id] [al_id] .append(pos_x_to_ally)

44 pos_y_to_ally = obs[offset + 1: offset + 2]

45 ally_infolagent_id] [al_id].append(pos_y_to_ally)

46 offset += 2

47 # the time left for the ally to use the weapon

48 weapon_cooldown = obs[offset: offset + 1]

49 ally_infolagent_id] [al_id] .append (weapon_cooldown)

50 offset += 1

51 # health of the ally(0 to 1)

52 ally_health = obs[offset: offset + 1]

53 ally_infol[agent_id] [al_id].append(ally_health)

54 offset += 1

55 # ally’s position relative to the center of the map

56 pos_x_to_center = obs[offset: offset + 1]

57 ally_infolagent_id] [al_id].append (pos_x_to_center)

58 offset += 1

59 pos_y_to_center = obs[offset: offset + 1]

60 ally_infolagent_id] [al_id] .append (pos_y_to_center)

61 offset += 1

62 # the last action of the ally(str)

63 last_action = process_actions (obs[offset: offset + action_num
1)

64 ally_info[agent_id] [al_id].append(last_action)

65 offset += action_num

66 # whether the ally is alived

67 ally_alived = True

68 if last_action == "no operation":

69 ally_alived = False

70 ally_info[agent_id] [al_id] .append(ally_alived)

71 ally_infolagent_id] [al_id] = tuple(ally_infolagent_id] [al_id
1)

72 e_ids = [f"enemy_{e_id}" for e_id in range (m) ]
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enemy_infolagent_id] = {}
for e_id in e_ids:

# whether the enemy is available to attack

is_current_enemy_available_to_attack = obs[offset: offset +

1]
offset += 1
# distance to the enemy
dist_to_enemy = obs[offset: offset + 1]
offset += 1
# enemy’s position relative to the agent
pos_x_to_enemy = obs[offset: offset + 1]
pos_y_to_enemy = obs[offset + 1: offset + 2]
offset += 2
# whether the enemy is visible or in the sight range of the
agent

is_current_enemy_visible = obs[offset: offset + 1]

offset += 1

# health of the enemy (0 to 1)
enemy_health = obs[offset: offset + 1]
offset += 1

# enemy’s position relative to the center

of the map

enemy_pos_x_to_center = obs[offset: offset + 1]

offset += 1

enemy_pos_y_to_center = obs[offset: offset + 1]

offset += 1
enemy_info[agent_id] [e_id] = (
is_current_enemy_available_to_attack,

pos_x_to_enemy, pos_y_to_enemy,
is_current_enemy_visible, enemy_health,
enemy_pos_x_to_center, enemy_pos_y_to_center)

move_feat = obs[: 4]

available_moves= []

if move_feat[0] == 1:
available_moves.append ("North")

if move_feat[l] == 1:

available_moves.append ("South")
if move_feat[2] ==

available_moves.append ("East")
if move_feat[3] == 1:

available_moves.append ("West")

dist_to_enemy,

available_move_actions[agent_id] = available_moves

offset += 4

offset += 4

own_info[agent_id] = []

own_health = obs[offset: offset + 1]
own_info[agent_id] .append (own_health)

offset += 1

own_pos_x_to_center = obs[offset: offset + 1]
own_info[agent_id] .append (own_pos_x_to_center)
offset += 1

own_pos_y_to_center = obs[offset: offset + 1]
own_info[agent_id] .append (own_pos_y_to_center)
offset += 1

own_last_action = process_actions (obs[offset:

own_info[agent_id] .append (own_last_action)

offset += action_num

own_alived = True

if own_last_action == "no operation":
own_alived = False

own_infol[agent_id] .append (own_alived)

own_info[agent_id] = tuple (own_info[agent_id])
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processed_global_state = (available_move_actions, enemy_info,
ally_info, own_info)

return processed_global_state

SMAC 2s vs 1sc map

def process_global_state (observations, n=2, m=1):

rrr

Param:
observation:
Dict of list of (n, ): dict(’agent_0’, "agent_1',
., "agent_N')
List:
Agent : (m, ) list of observation components

n: int, number of agents
m: int, number of enemies
Return:
obs (tuples of dict): Tuples of dict of (n, ): Tuple of each
observation components processed from each agent’s perspective by
function "process_observation":
move_feats (dict of list): Dict of list of (n, ): dict (’
agent_0’, ’'agent_1’, ..., '"agent_N’) List of available moves for each
agent.
enemy_info (dict of dict of tuple): Dict of dict of tuple of
(n, ): dict(’agent_0’, "agent_1’, ..., ’"agent_N’) Tuple of m enemies
information (enemy_0 to enemy_m) for each agent.
ally_info (dict of dict of tuple): Dict of dict of tuple of (
n, ): dict(’agent_0’, "agent_1’, ..., "agent_N’) Tuple of n-1 ally
information (exclude self) for each agent.
own_info (dict of tuple): Dict of tuple of (n, ): dict(’
agent_0’, ’'agent_1’, ..., '"agent_N’) Tuple of own information for
each agent.
rrrs
move_feats =
enemy_info
ally_info = {
own_info = {}
action_num = 6+m
for id, obs in enumerate (observations) :
agent_id = f"agent_{id}"
offset = 0
al_ids = [f"agent_{al_id}" for al_id in range(n) if f"agent_({
al_id}" != agent_id]
ally_infol[agent_id] = {}
for al_id in al_ids:
# whether the ally is visible or in the sight range of the

I
= = ==

agent
is_current_ally _visible = obs[offset: offset + 1]
offset += 1
# distance to the ally
dist_to_ally = obs[offset: offset + 1]
offset += 1
# ally’s position relative to the agent
pos_x_to_ally = obs[offset: offset + 1]
pos_y_to_ally = obs[offset + 1: offset + 2]
offset += 2
# the time left for the ally to use the weapon
weapon_cooldown = obs[offset: offset + 1]
offset += 1
# health of the ally(0 to 1)
ally_health = obs[offset: offset + 1]
offset += 1
# shield of the ally(0 to 1)
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ally shield, pos_x_to_center,

ally_shield = obs[offset: offset + 1]

offset += 1

# ally’s position relative to the center of the map
pos_x_to_center = obs[offset: offset + 1]

offset += 1

pos_y_to_center = obs[offset: offset + 1]

offset += 1
# the last action of the ally(str)

last_action = process_actions (obs[offset: offset + action_num

offset += action_num

# whether the ally is alived

ally_alived = True

if last_action == "no operation":
ally_alived = False

ally_infolagent_id] [al_id] = (is_current_ally_visible,
dist_to_ally, pos_x_to_ally, pos_y_to_ally,
weapon_cooldown, ally_ health,

pos_y_to_center,

last_action, ally_alived)
e_ids = [f"enemy_{e_id}" for e_id in range (m) ]

enemy_info[agent_id] = {}
for e_id in e_ids:

# whether the enemy is available to attack

is_current_enemy_available_to_attack

= obs[offset: offset +

1]
offset += 1
# distance to the enemy
dist_to_enemy = obs[offset: offset + 1]
offset += 1
# enemy’s position relative to the agent
pos_x_to_enemy = obs[offset: offset + 1]
pos_y_to_enemy = obs[offset + 1: offset + 2]
offset += 2
# whether the enemy is visible or in the sight range of the
agent

enemy_pos_x_to_center,

is_current_enemy_visible = obs[offset: offset + 1]

offset += 1
# health of the enemy (0 to 1)

enemy_health = obs[offset: offset + 1]

offset += 1

# enemy’s position relative to the center of the map

enemy_pos_x_to_center = obs[offset:
offset += 1

enemy_pos_y_to_center = obs[offset:
offset += 1
enemy_info[agent_id] [e_id] = (

offset + 1]

offset + 1]

is_current_enemy_available_to_attack, dist_to_enemny,
pos_x_to_enemy, pos_y_to_enemy,
is_current_enemy_visible, enemy_health,

move_feat = obs[: 4]

available_moves= []

if move_feat[0] == 1:
available_moves.append ("North")

if move_feat[l] ==
available_moves.append ("South")

if move_feat[2] == 1:
available_moves.append ("East")

if move_feat[3] == 1:
available_moves.append ("West")

move_feats[agent_id] = available_moves

offset += 4
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offset += 4

own_health = obs[offset: offset + 1]

offset += 1

own_shield = obs[offset: offset + 1]

offset += 1

own_pos_x_to_center = obs[offset: offset + 1]
offset += 1

own_pos_y_to_center = obs[offset: offset + 1]
offset += 1

own_last_action = process_actions (obs[offset: offset + action_num

offset += action_num

own_alived = True
if own_last_action == "no operation":
own_alived = False
own_infolagent_id] = (own_health, own_shield, own_pos_x_to_center

, own_pos_y_to_center,
own_last_action, own_alived)
obs = (move_feats, enemy_info, ally_info, own_info)
return obs

SMAC 2c vs 64zg map

def process_global_state (observations, n=2, m=64):
rrr

Param:
observation:
Dict of list of (n, ): dict(’agent_0’, "agent_1’,
., '"agent_N')
List:
Agent : (m, ) list of observation components

n: int, number of agents

m: int, number of enemies
Return:

obs (tuples of dict): Tuples of dict of (n, ): Tuple of each
observation components processed from each agent’s perspective by
function "process_observation":

move_feats (dict of list): Dict of list of (n, ): dict ('
agent_0’, ’'agent_1’, ..., "agent_N’) List of available moves for each
agent.

enemy_info (dict of dict of tuple): Dict of dict of tuple of
(n, ): dict(’agent_0’, "agent_1’, ..., ’"agent_N’) Tuple of m enemies

information (enemy_0 to enemy_m) for each agent.
ally_info (dict of dict of tuple): Dict of dict of tuple of
n, ): dict(’agent_0’, 'agent_1’, ..., "agent_N’) Tuple of n-1 ally
information (exclude self) for each agent.
own_info (dict of tuple): Dict of tuple of (n, ): dict (’
agent_0’, ’'agent_1’, ..., '"agent_N’) Tuple of own information for
each agent.
move_feats = {}
enemy_info =
ally_info =
own_info = {
action_num = 6+m
for id, obs in enumerate (observations) :
agent_id = f"agent_{id}"

|
==
-

offset = 0

al_ids = [f"agent_{al_id}" for al_id in range(n) if f"agent_{
al_id}" != agent_id]

ally_infol[agent_id] = {}

for al_id in al_ids:
# whether the ally is visible or in the sight range of the
agent
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29 is_current_ally visible = obs[offset: offset + 1]
30 offset += 1
31 # distance to the ally

32 dist_to_ally = obs[offset: offset + 1]
33 offset += 1

34 # ally’s position relative to the agent
35 pos_x_to_ally = obs[offset: offset + 1]

36 pos_y_to_ally = obs[offset + 1: offset + 2]
37 offset += 2

38 # the time left for the ally to use the weapon

39 weapon_cooldown = obs[offset: offset + 1]

40 offset += 1

41 # health of the ally (0 to 1)

42 ally_health = obs[offset: offset + 1]

43 offset += 1

44 # shield of the ally (0 to 1)

45 ally_shield = obs[offset: offset + 1]

46 offset += 1

47 # ally’s position relative to the center of the map

48 pos_x_to_center = obs[offset: offset + 1]

49 offset += 1

50 pos_y_to_center = obs[offset: offset + 1]

51 offset += 1

52 # the last action of the ally(str)

53 last_action = process_actions (obs[offset: offset + action_num
1)

54 offset += action_num

55 # whether the ally is alived

56 ally_alived = True

57 if last_action == "no operation":

58 ally_alived = False

59 ally_infolagent_id] [al_id] = (is_current_ally_visible,

dist_to_ally, pos_x_to_ally, pos_y_to_ally,

60 weapon_cooldown, ally_ health,
ally_shield, pos_x_to_center, pos_y_to_center,

61 last_action, ally_alived)

62 e_ids = [f"enemy_{e_id}" for e_id in range (m) ]

63 enemy_infolagent_id] = {}

64 for e_id in e_ids:

65 # whether the enemy is available to attack

66 is_current_enemy_available_to_attack = obs[offset: offset +
1]

67 offset += 1

68 # distance to the enemy

69 dist_to_enemy = obs[offset: offset + 1]

70 offset += 1

71 # enemy’s position relative to the agent

72 pos_x_to_enemy = obs[offset: offset + 1]

73 pos_y_to_enemy = obs[offset + 1: offset + 2]

74 offset += 2

75 # whether the enemy is visible or in the sight range of the
agent

76 is_current_enemy_visible = obs[offset: offset + 1]

77 offset += 1

78 # health of the enemy (0 to 1)

79 enemy_health = obs[offset: offset + 1]

80 offset += 1

81 # enemy’s position relative to the center of the map

82 enemy_pos_x_to_center = obs[offset: offset + 1]

83 offset += 1

84 enemy_pos_y_to_center = obs[offset: offset + 1]

85 offset += 1

86 enemy_info[agent_id] [e_id] = (

87 is_current_enemy_available_to_attack, dist_to_enemny,

pos_x_to_enemy, pos_y_to_enemy,

26



Under review as a conference paper at ICLR 2025

88 is_current_enemy_visible, enemy_health,
enemy_pos_x_to_center, enemy_pos_y_to_center)

90 move_feat = obs[: 4]

91 available_moves= []

92 if move_feat[0] == 1:

93 available_moves.append ("North")
94 if move_feat[l] ==

95 available_moves.append ("South")
9% if move_feat[2] == 1:

97 available_moves.append ("East")
98 if move_feat[3] == 1:

99 available_moves.append ("West")
100 move_feats[agent_id] = available_moves

101 offset += 4

102

103 offset += 4

104 own_health = obs[offset: offset + 1]

105 offset += 1

106 own_shield = obs[offset: offset + 1]

107 offset += 1

108 own_pos_x_to_center = obs[offset: offset + 1]
109 offset += 1

110 own_pos_y_to_center = obs[offset: offset + 1]
11 offset += 1

112 own_last_action = process_actions (obs[offset: offset + action_num

113 offset += action_num
114 own_alived = True

115 if own_last_action == "no operation":

116 own_alived = False

117 own_infolagent_id] = (own_health, own_shield, own_pos_x_to_center
, own_pos_y_to_center,

118 own_last_action, own_alived)

119 obs = (move_feats, enemy_info, ally_info, own_info)

120 return obs

Sample output
We provide some sample strategy generated by LLM for the simple scenerios.

Based on the environment description and game rules, I’ll provide a strategy focused on an
aggressive approach to eliminate all enemy units within the 60-step limit. Here’s a concise,
clear, and actionable set of instructions:

1. Goal: Eliminate all 3 enemy Marine units within 60 steps.

2. Problem: We need to overcome the symmetrical nature of the battle (3v3 Marines) and
exploit any positional advantages to win quickly.

3. Approach: Adopt an aggressive strategy with coordinated attacks to focus fire and over-
whelm enemies one by one.

4. Observations and Task Breakdown:

a) Initial Positioning (Steps 1-5): - All agents: Move to form a tight triangle formation, re-
ducing exposure and enabling focused fire. - Agent 1: Move forward slightly to act as bait. -
Agents 2 and 3: Position slightly behind Agent 1 on either side.

b) Engagement (Steps 6-20): - Agent 1: Move forward to draw enemy fire. - Agents 2 and
3: Attack the nearest enemy unit, focusing fire on the same target. - If Agent 1 takes heavy
damage, it should retreat behind Agents 2 and 3.
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c¢) Focus Fire (Steps 21-40): - All agents: Continuously attack the same enemy unit until it’s
eliminated. - Prioritize the enemy unit with the lowest health. - If an enemy unit tries to retreat,
pursue it while maintaining formation.

d) Adapt and Eliminate (Steps 41-60): - After eliminating the first enemy, quickly shift focus
to the next nearest enemy. - If any agent’s health drops below 30 percent, it should retreat and
use the other agents as cover. - Maintain aggressive pursuit of enemy units, don’t allow them
to regroup or heal.

Throughout the engagement: - Utilize the maximum shooting range of 6 to attack enemies
while minimizing damage taken. - Use the sight range of 9 to spot enemies early and plan
movements accordingly. - Constantly reassess the battlefield and adjust tactics if the initial
approach isn’t working. - If victory isn’t achieved by step 50, take calculated risks to ensure
all enemies are eliminated before the 60-step limit.

This strategy emphasizes aggressive play, coordinated attacks, and adaptability to overcome
the symmetrical nature of the battle and achieve victory within the time limit.

C.3 MORE PROMPTS FOR PLANNING FUNCTION GENERATION

To ensure that the function generation integrates effectively with the reinforcement learning (RL)
training, we provide a detailed prompt that contains the goals and expected formats of the func-
tions. This prompt is designed to guide the creation of the functions, ensuring they enhance agent

cooperation and coordination. The prompt is as follows:

Your task is to create a planning function and a reward function that work together to improve
agent cooperation. The planning function should help each agent reach its goal, and the reward
function should encourage smooth collaboration. Both functions should follow the guide from
tips and focus on ensuring that the agents coordinate their movements to reach their goals
simultaneously.

The environment code information is provided as follows:

def process_global _state(global_state, n=3, m=3):

return processed_global_state
The format for function generation is as follows:
The planning function should look like:

def planning_function(processed_global_state, available_actions):

Determines optimal tasks for each agent based on the current battle state.

Args:

processed_global state: A tuple containing (available_move_actions, enemy_info, ally_info,
own_info)

available_actions: A dict of available action indices for each agent

Returns:
IIm_tasks: Dict containing optimal tasks for each agent (Assignment Class)

999999
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return 1lm_tasks

The returned ‘Il tasks‘ should be in the jtasks assignment class; as specified. Use ‘pro-
cessed_global_state* to inform decision-making.

The reward function should look like:

def compute_reward(processed_global_state, llm_tasks, tasks):

993993

Calculate rewards based on the tasks assigned and their outcomes.

Args:

processed_global state: Returned from the function process_global state(global_state, n, m)
IIm_tasks (dict): Dictionary containing tasks assigned to each agent.

tasks (dict): Dictionary of tasks actually performed by each agent, e.g., agent_0’: ...

Returns:
reward: Dict containing rewards for each agent. For example: ’agent_0’: rewardl, ’agent_1’:
reward2, ...

999999

return reward

You should adjust the reward value for each component based on the importance as
suggested in the tips.

You may use or import any necessary APIs for code generation, but do not write into a class
object.

The generated functions should only include ‘planning_function® and ‘compute_reward‘. Do
not create new variables or subfunctions.

Strictly follow the size, shape, and format of the action space and ‘processed_global _state‘.
Think step-by-step before generating the two functions based on the information provided.
First, consider the information available in ‘processed_global state‘ and how to use it in
the functions. Second, analyze the environment description and determine the appropriate
strategies and task assignments for each agent in this scenario.

Ensure the functions not only work correctly but also maximize agent coordination based on
the instructions.

By supplying this prompt, we aim to generate functions that not only operate correctly within the
RL framework but also maximize agent coordination based on the provided instructions. This ap-
proach ensures that the agents learn to work together effectively, ultimately enhancing the overall
performance of the multi-agent system.

D EXAMPLES OF GENERATED PLANNING FUNCTIONS

I import numpy as np

)

3 def planning_function (processed_state) :

nmnn
Determines optimal tasks for each agent based on the current state.
Args:

processed_state: A tuple containing food location and level,

agent position and level.

Returns:
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11 dict: Optimal tasks for each agent (’No op’,’Target food 0’,’
Target food 1’,’Pickup’)

wnw

W

food_info, agents_info = processed_state
11lm_tasks = {}

=

# Find available food items
7 available_food = [f for f, info in food_info.items() if info is not
None]

19 if not available_ food:
20 return {agent: ’"No op’ for agent in agents_info}

2 # Calculate distances to food items

23 distances = {}

24 for food in available_food:

25 food_pos = food_info[food] [0]

26 food_level = food_info[food] [1]

27 for agent, (agent_pos, agent_level) in agents_info.items():

28 dist = np.linalg.norm(np.array(food_pos) - np.array (agent_pos

29 if food not in distances or dist < distances[food][1]:

30 distances[food] = (agent, dist)
3
32 # Sort food by distance
33 sorted_food = sorted(distances.items (), key=lambda x: x[1][1])
34
35 # Assign tasks
36 target_food = sorted_food[0] [0]
37 food_pos = food_info[target_food] [0]
38 food_level = food_info[target_food] [1]
39
10 total_agent_level = sum(level for _, level in agents_info.values())
41
42 for agent in agents_info:
43 agent_pos, _ = agents_infol[agent]
44 if np.linalg.norm(np.array (food_pos) - np.array(agent_pos)) <= 1
and total_agent_level >= food_level:
45 1lm_tasks[agent] = ’Pickup’
46 else:
47 1lm_tasks[agent] = f’Target {target_food}’
48
49 return 1lm_tasks
E REWARD GENERATION WITH FEEDBACK
The functions provided here are the generated reward function including: iteration 1, iteration 2,
iteration 3, iteration 4.
Iteration 1:
I def compute_reward (processed_state, actions):
" wnnn
3 Calculate rewards based on the tasks assigned and their outcomes.
4
5 Args:
6 processed_state: returned from function process_state(state, p, £
)
7 actions (dict): dictionary of a integer action that actually
perform by each agent. E.g. {"agent_O0": 2, "agent_1": 4, ...}
8
9 Returns:
10 reward: Dict containing rewards for each agent. For example: {’
agent_0’: rewardl, ’agent_1’, reward2, ...}

30



o =

) @

=

19
20

21

46

48
49
50

Under review as a conference paper at ICLR 2025

wnw

food_info, agents_info = processed_state
reward = {agent_id: 0 for agent_id in agents_info.keys ()}

# Reward for picking up food

pickup_agents = [agent_id for agent_id, action in actions.items () if
action == 5]
if pickup_agents:

food_positions = [food[0] for food in food_info.values() if food

is not None]
for agent_id in pickup_agents:

agent_pos = agents_infol[agent_id] [0]
if any(abs(agent_pos[0] - food_pos[0]) + abs(agent_pos[1l]
food_pos[l]) <= 1 for food_pos in food_positions):

reward[agent_id] += 10 # Reward for attempting pickup

near food

# Reward for moving towards food
for agent_id, action in actions.items() :
if action in [1, 2, 3, 4]: # Moving actions
agent_pos = agents_info[agent_id] [0]

closest_food = min((food for food in food_info.values() if
food is not None),
key=lambda f: abs(agent_pos[0] - £[0][0])
+ abs (agent_pos[1l] - f£[0][1]),
default=None)
if closest_food:
old_distance = abs(agent_pos[0] - closest_food[0][0]) +
abs (agent_pos[l] - closest_food[0][1])
new_pos = list (agent_pos)
if action == 1: new_pos[0] —=1
elif action == 2: new_pos[0] += 1
elif action == 3: new_pos[l] —-= 1
elif action == 4: new_pos[l] += 1
new_distance = abs(new_pos[0] - closest_food[0][0]) + abs

(new_pos[1l] - closest_food[0][1])
if new_distance < old_distance:

reward[agent_id] += 1 # Reward for moving closer to

food

# Reward for agent proximity (encouraging potential collaboration)

agent_positions = [info[0] for info in agents_info.values() ]
if len(agent_positions) > 1:
distance = abs(agent_positions[0][0] - agent_positions[1][0]) +
abs (agent_positions[0] [1] - agent_positions[1][1])
proximity_reward = max (0, (5 - distance) / 2) # Max reward when
adjacent, decreasing with distance
for agent_id in reward:
reward[agent_id] += proximity_reward
return reward
Iteration 2:
def compute_reward(processed_state, actions):
nmnon
Calculate rewards based on the tasks assigned and their outcomes.
Args:
processed_state: returned from function process_state(state, p,
)
actions (dict): dictionary of a integer action that actually
perform by each agent. E.g. {"agent_O0": 2, "agent_1": 4, ...}
Returns:
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10 reward: Dict containing rewards for each agent. For example: {’

agent_0’: rewardl, ’"agent_1’, reward2, ...}
nnn

-

food_info, agents_info = processed_state
reward = {agent_id: 0 for agent_id in agents_info.keys ()}

9

# Reward for picking up food

=

6 pickup_agents = [agent_id for agent_id, action in actions.items () if
action == 5]

17 if len(pickup_agents) == len(agents_info): # All agents attempting
pickup

18 food_positions = [food[0] for food in food_info.values() if food
is not None]

19 if all (any (abs (agents_info[agent_id] [0] [0] - food_pos[0]) + abs(
agents_infolagent_id] [0] [1] - food_pos[l]) <= 1 for food_pos in
food_positions) for agent_id in pickup_agents) :

20 for agent_id in pickup_agents:

21 reward[agent_id] += 50 # Higher reward for coordinated
pickup

23 # Reward for moving towards food and staying close to other agents

24 for agent_id, action in actions.items() :

25 if action in [1, 2, 3, 4]: # Moving actions

26 agent_pos = agents_infolagent_id] [0]

27 closest_food = min((food for food in food_info.values () if
food is not None),

28 key=lambda f: abs(agent_pos[0] - £[0][0])
+ abs (agent_pos[1l] - f£[0][1]),

29 default=None)

30 if closest_food:

31 old_distance = abs(agent_pos[0] - closest_food[0][0]) +
abs (agent_pos[1l] - closest_food[0][1])

32 new_pos = list (agent_pos)

33 if action == 1: new_pos[0] -=1

34 elif action == 2: new_pos[0] += 1

35 elif action == 3: new_pos[l] —-= 1

36 elif action == 4: new_pos[l] += 1

37 new_distance = abs(new_pos[0] - closest_food[0][0]) + abs
(new_pos[1l] - closest_food[0][1])

38 if new_distance < old_distance:

39 reward[agent_id] += 2 # Increased reward for moving
closer to food

41 # Reward for staying close to other agents

42 other_agents = [a for a in agents_info.keys () if a !=
agent_id]

43 for other_agent in other_agents:

44 other_pos = agents_info[other_agent] [0]

45 old_agent_distance = abs(agent_pos[0] - other_pos[0]) +
abs (agent_pos[l] - other_pos[1l])

46 new_agent_distance = abs(new_pos[0] - other_pos[0]) + abs
(new_pos[1l] — other_pos[1l])

47 if new_agent_distance <= old_agent_distance:

48 reward[agent_id] += 1 # Reward for maintaining or

decreasing distance to other agents
49

50 # Penalty for no-op when food is available

51 for agent_id, action in actions.items/() :

52 if action == 0 and any (food is not None for food in food_info.
values ()) :

53 reward[agent_id] -= 1 # Small penalty for no-op when food is

available
54
55 return reward
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Iteration 3:

I def compute_reward (processed_state, actions):

W -

=

W

19

20

2
23

24

25
26
.
28
29

30

46
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Calculate rewards based on the tasks assigned and their outcomes.

Args:
processed_state: returned from function process_state(state, p, £

)

actions (dict): dictionary of a integer action that actually
perform by each agent. E.g. {"agent_O0": 2, "agent_1": 4, ...}
Returns:

reward: Dict containing rewards for each agent. For example: {’
agent_0’: rewardl, ’agent_1’, reward2, ...}

food_info, agents_info = processed_state
reward = {agent_id: 0 for agent_id in agents_info.keys ()}

# Reward for picking up food

pickup_agents = [agent_id for agent_id, action in actions.items () if
action == 5]
if len(pickup_agents) == len(agents_info): # All agents attempting
pickup

food_positions = [food[0] for food in food_info.values() if food

is not None]
if food_positions and all (any(abs (agents_info[agent_id] [0] [0] -

food_pos[0]) + abs(agents_infolagent_id] [0][1] - food_pos[l]) <= 1
for food_pos in food_ positions) for agent_id in pickup_agents) :
total_agent_level = sum(agents_infolagent_id] [1] for agent_id
in pickup_agents)
food_level = max(food[l] for food in food_info.values() if

food is not None)
if total_agent_level >= food_level:
for agent_id in pickup_agents:
reward[agent_id] += 100 # Higher reward for
successful coordinated pickup

# Reward for moving towards food and staying close to other agents
for agent_id, action in actions.items() :

if action in [1, 2, 3, 4]: # Moving actions
agent_pos = agents_infol[agent_id] [0]
closest_food = min((food for food in food_ info.values() if
food is not None),
key=lambda f: abs(agent_pos[0] - £[0][0])
+ abs (agent_pos[1l] - f£[0][1]),

default=None)
if closest_food:

old_distance = abs(agent_pos[0] - closest_food[0][0]) +
abs (agent_pos[l] - closest_food[0][1])

new_pos = list (agent_pos)

if action == 1: new_pos[0] —-=1

elif action == 2: new_pos([0] += 1

elif action == 3: new_pos[l] -= 1

elif action == 4: new_pos[l] += 1

new_distance = abs(new_pos[0] - closest_food[0][0]) + abs

(new_pos[l] - closest_food[0][1])
if new_distance < old_distance:
reward[agent_id] += 5 # Increased reward for moving
closer to food

# Reward for staying close to other agents

other_agents = [a for a in agents_info.keys () if a !=
agent_id]

for other_agent in other_agents:

33



48

49

50

51

55

56

57

19

20

el

Under review as a conference paper at ICLR 2025

other_pos = agents_info[other_agent] [0]

0ld_agent_distance = abs(agent_pos[0] - other_pos[0]) +
abs (agent_pos[l] - other_pos[1l])

new_agent_distance = abs(new_pos[0] - other_pos[0]) + abs
(new_pos[1l] — other_pos[1l])

if new_agent_distance < old_agent_distance:
reward[agent_id] += 3 # Increased reward for
decreasing distance to other agents

# Penalty for no-op when food is available
for agent_id, action in actions.items/() :
if action == 0 and any(food is not None for food in food_info.
values () ) :
reward[agent_id] -= 5 # Increased penalty for no-op when
food is available

return reward

Iteration 4:

def compute_reward (processed_state, actions):

Calculate rewards based on the tasks assigned and their outcomes.

Args:
processed_state: returned from function process_state(state, p, £

)

actions (dict): dictionary of a integer action that actually
perform by each agent. E.g. {"agent_O0": 2, "agent_1": 4, ...}
Returns:

reward: Dict containing rewards for each agent. For example: {’
agent_0’: rewardl, ’"agent_1’, reward2, ...}
nmmwn
food_info, agents_info = processed_state
reward = {agent_id: 0 for agent_id in agents_info.keys() }

# Reward for picking up food

pickup_agents = [agent_id for agent_id, action in actions.items () if
action == 5]
if len(pickup_agents) == len(agents_info): # All agents attempting
pickup

food_positions = [food[0] for food in food_info.values() if food

is not None]
if food_positions and all (any(abs (agents_info[agent_id] [0] [0] -

food_pos[0]) + abs(agents_infolagent_id] [0][1] - food_pos[l]) <= 1
for food_pos in food_positions) for agent_id in pickup_agents) :
total_agent_level = sum(agents_infol[agent_id] [1] for agent_id
in pickup_agents)
food_level = max(food[l] for food in food_info.values () if

food is not None)
if total_agent_level >= food_level:
for agent_id in pickup_agents:
reward[agent_id] += 200 # Higher reward for
successful coordinated pickup

# Reward for moving towards food and staying close to other agents
for agent_id, action in actions.items/() :

if action in [1, 2, 3, 4]: # Moving actions
agent_pos = agents_infolagent_id] [0]
closest_food = min((food for food in food_info.values() if
food is not None),
key=lambda f: abs(agent_pos[0] - £[0][0])
+ abs (agent_pos[1l] - £[0][1]),

default=None)
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33 if closest_food:

34 old_distance = abs(agent_pos[0] - closest_food[0][0]) +
abs (agent_pos[l] - closest_food[0][1])

35 new_pos = list (agent_pos)

36 if action == 1: new_pos[0] —= 1

37 elif action == 2: new_pos[0] += 1

38 elif action == 3: new_pos[l] —-= 1

39 elif action == 4: new_pos[l] += 1

40 new_distance = abs(new_pos[0] - closest_food[0][0]) + abs
(new_pos[1l] - closest_food[0][1])

41 if new_distance < old_distance:

42 reward[agent_id] += 10 # Increased reward for moving
closer to food

43

44 # Reward for staying close to other agents

45 other_agents = [a for a in agents_info.keys() if a !=
agent_id]

46 for other_agent in other_agents:

47 other_pos = agents_info[other_agent] [0]

48 old_agent_distance = abs(agent_pos[0] - other_pos[0]) +
abs (agent_pos[l] - other_pos[1l])

49 new_agent_distance = abs(new_pos[0] - other_pos[0]) + abs
(new_pos[1l] - other_pos[1l])

50 if new_agent_distance < old_agent_distance:

51 reward[agent_id] += 5 # Increased reward for
decreasing distance to other agents

52

s3 # Penalty for no-op when food is available

54 for agent_id, action in actions.items () :

55 if action == 0 and any (food is not None for food in food_info.
values()) :

56 reward[agent_id] -= 10 # Increased penalty for no-op when
food is available

57

58 # Completion bonus

59 if all(food is None for food in food_info.values()):

60 for agent_id in agents_info:
61 reward[agent_id] += 500 # Large bonus for completing the
task

62

63 return reward
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