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Abstract001

LLMs increasingly engage with psychological002
instruments, yet how they represent constructs003
internally remains poorly understood. We in-004
troduce a novel approach to "fingerprinting"005
LLMs through their factor correlation patterns006
on standardized psychological assessments to007
deepen the understanding of LLMs constructs008
representation. Using the Humor Style Ques-009
tionnaire as a case study, we analyze how six010
LLMs represent and correlate humor-related011
constructs to survey participants. Our results012
show that they exhibit little similarity to human013
response patterns. In contrast, participants’ sub-014
samples demonstrate remarkably high internal015
consistency. Exploratory graph analysis further016
confirms that no LLM successfully recovers017
the four constructs of the Humor Style Ques-018
tionnaire. These findings suggest that despite019
advances in natural language capabilities, cur-020
rent LLMs represent psychological constructs021
in fundamentally different ways than humans,022
questioning the validity of application as hu-023
man simulacra.024

1 Introduction025

As Large Language Models (LLMs) increasingly026

engage with human psychological instruments and027

assessments (Demszky et al., 2023; Hu et al., 2024),028

understanding how these models internally rep-029

resent psychological constructs becomes essen-030

tial for theoretical and practical reasons. While031

LLMs demonstrate remarkable linguistic capabili-032

ties (Alayrac et al., 2022), their representation of033

human psychological constructs remains largely034

unexplored territory. This represents a critical gap035

in our understanding of LLM capabilities and limi-036

tations, particularly as these models are deployed037

in increasingly sensitive contexts involving human038

psychology.039

Traditional approaches to evaluating LLMs of-040

ten focus on output accuracy, faithfulness, or align-041

ment with human preferences (Liu et al., 2023).042

However, these metrics may not capture fundamen- 043

tal differences in how models internally represent 044

and relate psychological constructs compared to 045

humans. This study introduces a novel methodol- 046

ogy for "fingerprinting" LLMs through their factor 047

correlation patterns on standardized psychological 048

assessments. By examining how different mod- 049

els represent relationships between psychological 050

constructs, we can gain insights into their inter- 051

nal representations that may not be evident from 052

surface-level outputs alone. 053

We propose that factor covariance patterns in 054

responses on a population level to psychological 055

instruments may serve as more stable and distinc- 056

tive "fingerprints" than comparing raw results on 057

an individual level (Abdulhai et al., 2024). These 058

patterns reveal how models organize relationships 059

between individual questionnaire items, potentially 060

offering deeper insights into model capabilities and 061

limitations than preceding evaluation approaches. 062

By comparing these patterns across models and 063

against human baselines, we can assess inter-model 064

similarities and human-model divergences in psy- 065

chological construct representation. 066

1.1 Research Questions 067

This study addresses two primary research ques- 068

tions: 069

RQ1 Do LLMs from the same family/company 070

show similar factor covariance patterns? 071

RQ2 How do these LLM patterns compare to 072

human response patterns? 073

By addressing these questions, we aim to con- 074

tribute to the ongoing discussion about the nature 075

of LLM cognition and the alignment between hu- 076

man and artificial representations of psychologi- 077

cal concepts. Our findings imply how researchers 078

can interpret LLM performance on psychological 079

assessments, if practitioners should deploy these 080
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models in psychologically sensitive contexts, and081

how developers might approach future model devel-082

opment to better align with human psychological083

structures.084

The following sections detail our methodology,085

present our findings on similarities and divergences086

between model families and humans, and discuss087

the theoretical and practical implications of these088

results. We conclude with recommendations for fu-089

ture research directions and potential applications090

of our fingerprinting approach to other psychologi-091

cal domains and model evaluation contexts.092

2 Background093

As LLMs become increasingly integrated into094

human-AI interactions, understanding their rep-095

resentation of psychological constructs becomes096

more significant. The gap between linguistic com-097

petence and psychological understanding repre-098

sents a fundamental challenge in AI research (Dun-099

can, 2024). While LLMs demonstrate remarkable100

language capabilities, their internal representation101

of human psychological concepts remains largely102

unexplored.103

2.1 Construct Representation in AI104

Recent advances in LLM capabilities have led to105

increased applications in psychological contexts,106

from therapeutic chatbots (Pham et al., 2022) to107

automated psychological assessments (Hu et al.,108

2024). These applications implicitly assume that109

LLMs can meaningfully engage with psychologi-110

cal constructs in ways that align with human un-111

derstanding (Sparrenberg et al., 2024; Ren et al.,112

2025). However, this assumption requires empir-113

ical testing through methodologies that compare114

human and AI representations of psychological115

concepts. Whether LLMs truly "understand" psy-116

chological constructs in human-like ways extends117

beyond philosophical interest to practical concerns118

about alignment, safety, and deployment. If LLMs119

organize psychological concepts differently than120

humans, this could lead to unexpected failures121

when encountering novel contexts or deployed in122

sensitive settings.123

2.2 The Fingerprinting Approach124

Previous research on LLM evaluation has typically125

focused on output accuracy, faithfulness, or align-126

ment with human preferences (Liu et al., 2023).127

While these metrics provide valuable insights, they128

often fail to capture differences in how models inter- 129

nally represent and relate concepts. Our fingerprint- 130

ing methodology addresses this gap by examining 131

the correlation structure of responses rather than 132

just their surface content (Abdulhai et al., 2024). 133

Similar approaches have proven valuable in other 134

domains, such as neuroscience, where representa- 135

tional similarity analysis has revealed how differ- 136

ent brain regions encode information (Kriegeskorte 137

et al., 2008). By adapting these principles to LLM 138

evaluation, we can begin to characterize how differ- 139

ent models organize psychological constructs and 140

compare these organizations to human patterns. 141

2.3 Cross-Cultural and Cross-Architectural 142

Considerations 143

The diversity of LLM architectures, training 144

methodologies, and cultural origins raises ques- 145

tions about how these factors influence psycholog- 146

ical construct representation (Ryan et al., 2024). 147

Models developed in different cultural contexts 148

may encode different assumptions about psycho- 149

logical phenomena, while architectural differences 150

may lead to systematic variations in the relation 151

of concepts. By examining models from different 152

publishers (Meta AI, Mistral, and Alibaba Cloud) 153

with varying parameter counts, we can disentan- 154

gle the effects of these factors on psychological 155

representation. This comparative approach may 156

reveal whether specific parameter sizes or training 157

methodologies produce more human-like psycho- 158

logical representations than others. 159

2.4 Implications for Alignment and 160

Anthropomorphism 161

The tendency to anthropomorphize AI systems is 162

recognized as both pervasive and potentially mis- 163

leading (Salles et al., 2020). By directly comparing 164

how humans and LLMs organize psychological 165

constructs, our approach provides an empirical ba- 166

sis for assessing claims about LLMs’ "understand- 167

ing" of human psychology. Additionally, the re- 168

sults may have implications for alignment research, 169

which often focuses on aligning model outputs with 170

human preferences. If models fundamentally or- 171

ganize psychological concepts differently than hu- 172

mans, alignment techniques may need to address 173

beyond what models produce and focus on how 174

they represent the underlying concepts. The Humor 175

Style Questionnaire (Martin et al., 2003) is an ideal 176

case study for this investigation, as it measures well- 177

established psychological constructs with clear fac- 178
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tor structures in human populations. By examining179

how LLMs represent these humor styles compared180

to humans, we can gain insights into their handling181

of psychological constructs more broadly, with po-182

tential implications for how we develop, evaluate,183

and deploy these models in psychologically sensi-184

tive contexts.185

3 Methods186

3.1 Humor Style Questionnaire (HSQ)187

We utilize the 32-item Humor Style Questionnaire188

(HSQ) (Martin et al., 2003) to assess humor styles189

across LLMs. The HSQ measures four distinct190

dimensions of humor: Affiliative humor (using hu-191

mor to enhance social relationships; e.g., "I laugh192

and joke a lot with my closest friends."), Self-193

enhancing humor (using humor to cope with stress;194

e.g., "If I am feeling depressed, I can usually cheer195

myself up with humor."), Aggressive humor (using196

humor to disparage others; e.g., "If someone makes197

a mistake, I will often tease them about it."), and198

Self-defeating humor (using humor at one’s own199

expense; e.g., "I let people laugh at me or make200

fun at my expense more than I should."). The ques-201

tionnaire measures each dimension through 8 items202

rated on a 5-point Likert scale (1 = "Never or very203

rarely true" to 5 = "Very often or always true").204

To maintain the questionnaire’s validated structure,205

we present the items in the original sequence, cy-206

cling through dimensions in the order: affiliative,207

self-enhancing, aggressive, self-defeating. For each208

LLM, we collect 1000 independent response set as209

a synthetic population of participants, resulting in210

a dataset of n = 1000 samples per model, each211

containing i = 32 response items.212

3.2 Language Models Selection213

We utilize a diverse range of open-weight LLMs214

with parameter sizes from 7B to 123B, ensuring ac-215

cessibility for researchers with moderate computa-216

tional resources (approximately 80GB VRAM). We217

restrict our experiments to these open-weight and218

comparatively small models, allowing for easier re-219

producibility. Leaving out models from OpenAI or220

Anthropic is a limitation. However, the goal of this221

study is not to analyze which LLMs are benchmark-222

leading but to analyze the general capabilities of223

LLMs to align to psychological constructs by exam-224

ining their behavior. Thus, we analyse three open-225

weight state-of-the-art models: Llama 3.1 8B/70B226

(Dubey et al., 2024), Mistral 7B/123B (Jiang et al.,227

2023), and Qwen 2.5 7B/72B (Yang et al., 2024). 228

These models represent different geographic ori- 229

gins — Llama (Meta AI) from the United States, 230

Mistral from Europe, and Qwen (Alibaba Cloud) 231

from China. We compare small and large versions 232

of each model family to assess if the number of pa- 233

rameters improves alignment with the correlation 234

observed in the human data. During the experiment, 235

we utilize the default hyperparameter configuration 236

(temperature, repetition penalties) to reflect typical 237

conditions in the näive application. 238

3.3 Prompting Technique 239

We implement a consistent minimal prompting ap- 240

proach designed to elicit direct responses without 241

optimization for specific outcomes. Each model re- 242

ceives the following standardized prompt template: 243

"For each of the statements below, please indicate 244

how true each statement is for you. Response op- 245

tions: Never or very rarely true (1); Rarely true (2); 246

Sometimes true (3); Often true (4); and Very often 247

or always true (5). Respond only with the predicted 248

class [1, 2, 3, 4, 5].". To minimize contextual in- 249

terference and potential order effects, all 32 items 250

are presented individually in separate prompting 251

instances. 252

We deliberately avoid providing explanatory con- 253

text about the HSQ’s purpose or the dimensional 254

structure to prevent priming effects that might arti- 255

ficially align response patterns. However, to simu- 256

late the cognitive continuity typically present when 257

humans complete questionnaires, we implement 258

a five-question sliding window of previous ques- 259

tions and responses as conversational history. This 260

design ensures that models maintain consistency 261

across related items while preserving question in- 262

dependence. For response standardization, we in- 263

corporate structured output formatting techniques 264

(Sui et al., 2024), forcing the model to produce a 265

response between 1 and 5. 266

3.4 Fingerprint Calculation 267

For each LLM and baseline condition, we construct 268

a correlation matrix representing the pairwise rela- 269

tionships between all 32 HSQ items across the col- 270

lected responses. This matrix serves as the model’s 271

distinctive "fingerprint" of psychological construct 272

organization. The matrix X below defines a popu- 273

lation of n observation, where X⃗ denotes a single 274

sample consisting of i independent variables x (i.e., 275

responses to the 32 HSQ items). 276

3



X = [X⃗1, . . . , X⃗n]
⊺, where X⃗n = [x1, . . . , xi]277

We select Pearson’s correlation coefficient (Co-278

hen et al., 2009) as our primary measure of associ-279

ation, adapted to our population matrix definition280

X as follows:281

corr(X, i, j) =

n∑
k=1

(Xi,k − X̄i)(Xj,k − X̄j)√
n∑

k=1

(Xi,k − X̄i)2

√
n∑

k=1

(Xj,k − X̄j)2

282

Based on the correlation coefficient283

corr(X, i, j), we compute the pairwise correlation284

for every independent variable combination i, j285

on our population dataset X resulting in the286

correlation matrix CX. This matrix constitutes287

what we define as the fingerprint of an LLM on the288

HSQ:289

CX =

corr(X, 1, 1) . . . corr(X, 1, j)
...

. . .
...

corr(X, i, 1) . . . corr(X, i, j)

290

3.5 Similarity Measurement291

To compare fingerprints between different LLMs,292

we first convert each correlation matrix CX ∈ Ri×i293

into a vector C⃗X ∈ Rl. Since correlation matrices294

are symmetric with diagonal elements equal to 1,295

we only include the upper triangular elements (ex-296

cluding the diagonal) in our vectorization process.297

This results in a vector of length l = i(i−1)
2 (496298

elements for our 32-item HSQ).299

C⃗X = vec(CX) = [c1,2, c1,3, . . . , c1,i, c2,3, . . . , ci−1,i]
⊺300

Finally, we compute the similarity between two301

correlation matrices/fingerprints CX1 and CX2 in302

their vectorized form vec(CX) based on the cosine303

similarity (Lahitani et al., 2016) to retrieve a score304

normalized in [−1,+1].305

sim(C⃗X1 , C⃗X2) =

l∑
k=1

C⃗X1kC⃗X2k√
l∑

k=1

(C⃗X1k)
2

√
l∑

k=1

(C⃗X2k)
2

306

3.6 Exploratory Graph Analysis 307

To deepen our understanding of each LLM’s la- 308

tent psychological constructs, we perform an ex- 309

ploratory graph analysis (EGA) (Golino and Ep- 310

skamp, 2017) on the correlation matrices. EGA 311

identifies communities in networks of psychome- 312

tric variables, providing an alternative approach 313

to traditional factor analysis for detecting latent 314

constructs. The algorithm involves: 315

1. Estimating a network of partial correlations 316

using the graphical LASSO algorithm with 317

EBIC model selection (Friedman et al., 2008) 318

2. Applying the Walktrap community detection 319

algorithm to identify clusters of items (Pons 320

and Latapy, 2005) 321

3. Determining the number of dimensions (fac- 322

tors) automatically based on the identified 323

communities 324

This approach allows us to compare the factor 325

structures identified in LLM responses with the 326

theoretical four-factor structure of the HSQ, pro- 327

viding insight into how well the models capture 328

human-like psychological constructs. 329

3.7 Baseline and Control Conditions 330

To establish meaningful comparisons, we include 331

three control conditions and two additional valida- 332

tion steps. These baselines allow us to contextu- 333

alize our findings within a spectrum ranging from 334

completely random (lacking any factor structure) 335

to human-typical response patterns. 336

Random We generate 1000 synthetic response 337

sets with randomly assigned values (1-5) to pro- 338

vide a lower bound for structural coherence, repre- 339

senting what would be expected if there were no 340

systematic patterns between individual items. 341

Human Full We incorporate a dataset of 1071 342

human HSQ responses from Martin et al. (2003) 343

as our primary reference point for human response 344

patterns. This dataset exhibits the established four- 345

factor structure validated in prior research, serving 346

as our gold standard for human-like psychological 347

construct organization. 348

Human Items We generate 1,000 synthetic re- 349

sponse sets that preserve item-level distributional 350
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Baselines Llama Mistral Qwen
Random Human Items Human Full 3.1 8B 3.3 70B 7B 123B 2.5 7B

Human Items 0.049

Human Full 0.021 -0.075

Llama 3.1 8B 0.028 -0.026 -0.022
3.3 70B -0.032 -0.089 0.006 -0.028

Mistral 7B -0.030 0.085 0.085 -0.036 -0.047
123B 0.006 -0.022 0.130 -0.047 0.054 0.044

Qwen 2.5 7B 0.031 -0.032 0.164 -0.027 0.085 -0.020 0.070
2.5 72B 0.077 0.001 -0.068 0.082 -0.020 0.040 0.053 0.034

Table 1: Results of the sim(C⃗X1 , C⃗X2) for every combination of the three baseline approaches and the model
selection providing the model a 5 item context window of previous answers. The highest similarity for each column
is marked bold.

properties (mean and standard deviation) of hu-351

man responses while randomizing inter-item corre-352

lations. This control condition maintains human-353

like response distributions while disrupting the354

underlying factor structure, allowing us to deter-355

mine whether LLMs reproduce only surface-level356

response tendencies or capture deeper construct357

relationships.358

LLM w/o History We conduct an additional ab-359

lation study (Sec. A) using the same experimental360

setup but providing models with no historical con-361

text of previous interactions. This control condition362

serves as an LLM analog to the item-based sam-363

pling baseline, enabling us to quantify the specific364

contribution of conversational continuity to con-365

struct validity and response coherence.366

Cronbach’s Alpha We conduct an additional367

validation study (Sec. B) examining the internal368

consistency of responses using Cronbach’s alpha369

(Cronbach, 1951). This established psychometric370

measure allows us to quantify the reliability of each371

humor style dimension across all experimental con-372

ditions, providing complementary evidence to our373

correlation-based fingerprinting approach.374

3.8 Technical Implementation375

We perform the experiment using a custom Python376

framework (Python 3.10.12) utilizing Ollama, run-377

ning all models locally. Response processing and378

correlation analysis are conducted using NumPy379

(2.2.3) (Harris et al., 2020) and Pandas (2.0.0)380

(McKinney et al., 2011). EGA is performed in381

R using the EGAnet package (Golino and Ep-382

skamp, 2017). The corresponding GitHub reposi-383

tory is available here https://anonymous.4open.384

science/r/LLM-Questionnaires/ and contains 385

the complete code, the raw and aggregated data. 386

4 Results 387

We present our findings on the similarity patterns 388

between different LLMs and baseline conditions 389

based on their HSQ response fingerprints. The re- 390

sults reveal complex patterns of similarity within 391

model families and across parameter sizes, high- 392

lighting substantial differences between LLM and 393

human response patterns. 394

4.1 Similarity Patterns 395

Table 1 presents the cosine similarity scores be- 396

tween the correlation matrices of all LLMs and 397

baseline conditions. These scores quantify the de- 398

gree to which different models exhibit similar pat- 399

terns in their item correlations, with values closer 400

to 1 indicating higher similarity. 401

Model Family Similarities We observe moder- 402

ate similarity scores between models from the same 403

family, notably Mistral 7B/123B (0.044) and Qwen 404

2.5 7B/72B (0.034), suggesting that architectural 405

lineage and training methodology may influence 406

response patterns. However, cross-family similari- 407

ties such as those between Qwen 2.5 7B and Llama 408

3.3 70B (0.085), Qwen 2.5 72B and Llama 3.1 8B 409

(0.082), and Qwen 2.5 7B and Mistral 123B (0.070) 410

exceed within-family similarities. This unexpected 411

finding suggests that factors beyond architectural 412

lineage may strongly influence how LLMs repre- 413

sent psychological constructs. 414

The similarity between Llama and Mistral fam- 415

ilies is notably lower (averaging -0.019), indicat- 416

ing potential fundamental differences in how these 417
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01 02 03 04 05 06 07 08 09

02 0.828
03 0.832 0.886
04 0.853 0.885 0.891
05 0.791 0.836 0.831 0.844
06 0.780 0.833 0.803 0.812 0.820
07 0.776 0.822 0.805 0.798 0.787 0.775
08 0.813 0.853 0.868 0.854 0.823 0.821 0.821
09 0.857 0.851 0.840 0.855 0.788 0.787 0.812 0.808
10 0.831 0.826 0.815 0.824 0.793 0.794 0.824 0.802 0.815

Table 2: Results of the sim(C⃗X1 , C⃗X2) for every combination of 10 distinct samples n = 100 from the original
survey.

model families organize humor-related concepts de-418

spite being developed in Western contexts. These419

differences may stem from variations in training420

data composition, optimization techniques, or ar-421

chitectural design choices that influence concept422

representation.423

Size-Based Similarities Comparing similarity424

patterns across model sizes reveals that the sim-425

ilarity between smaller models (7/8B parameters)426

is significantly lower (averaging -0.027) than the427

similarity between larger models (70/123B param-428

eters, averaging 0.029). This pattern suggests that429

increased parameter count may lead to more consis-430

tent psychological construct representation across431

different model families. Larger models may con-432

verge toward similar representational patterns due433

to their enhanced capacity to capture complex sta-434

tistical relationships in training data, even when435

developed by different organizations with different436

training methodologies.437

Human vs. LLM Patterns To contextualize438

the similarities observed between LLMs, we an-439

alyzed the internal consistency of human responses440

by comparing 10 different random samples drawn441

from the same human dataset. Table 2 shows signif-442

icantly higher similarity scores between different443

human samples, ranging from 0.776 to 0.891 (av-444

eraging 0.823). This strong consistency across hu-445

man samples reflects the robust and stable psycho-446

logical constructs underlying human humor pref-447

erences. When compared to the similarity scores448

between LLMs and humans (averaging only 0.026),449

the human inter-sample similarities reveal a sub-450

stantial representation gap. This gap suggests that451

current LLMs, regardless of architecture or param-452

eter count, fail to replicate the consistency and co-453

herence of human psychological constructs as mea-454

sured by the HSQ. The near-orthogonal relation-455

ship between human and LLM correlation patterns 456

implies fundamentally different organizational prin- 457

ciples for humor-related concepts. 458

Baseline Comparisons Examining the similarity 459

scores between LLMs and our control conditions 460

provides additional insights. LLM fingerprints 461

show minimal similarity to the random baseline 462

(averaging 0.018) and Human Items baseline (aver- 463

aging -0.022), indicating that LLMs are not simply 464

reproducing random patterns or surface-level re- 465

sponse distributions. The slightly higher similarity 466

to the Human Full baseline (averaging 0.049) sug- 467

gests that LLMs capture some aspects of human 468

response patterns. However, the magnitude of sim- 469

ilarity remains far below what would be expected 470

if LLMs were organizing psychological constructs 471

in human-like ways. 472

4.2 Exploratory Graph Analysis Findings 473

Our EGA analyses (Fig. 1) reveals distinct commu- 474

nity structures in the response networks of different 475

LLMs and the human baseline data. The human 476

baseline data successfully recovers the expected 477

four-factor structure of the HSQ. In contrast, LLM 478

responses generally fail to replicate this structure, 479

instead producing between 2 and 8 communities 480

that did not clearly align with the theoretical dimen- 481

sions. LLM response networks featured numerous 482

unexpected connections between items from dif- 483

ferent theoretical dimensions, suggesting that the 484

models do not maintain the same conceptual bound- 485

aries between humor styles that are observed in 486

human responses. 487

5 Discussion 488

Our findings reveal significant divergence between 489

how LLMs and humans represent psychological 490

constructs as measured through the HSQ. These re- 491
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(c) Mistral 123B
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(d) Qwen 7B
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Figure 1: EGA for all models prompted with a 5 item context window, except Llama 7B/70B as both models include
items that observe no standard deviation which is required by the EGAnet R package for every item.

sults have substantial implications for understand-492

ing LLM capabilities, limitations, and their appli-493

cation in psychology-related contexts.494

5.1 Implications for Alignment Research495

The substantial difference between LLM and hu-496

man factor correlation patterns has direct implica-497

tions for alignment research. Current alignment498

techniques often focus on aligning model outputs499

with human preferences, but our findings suggest500

that even when outputs appear aligned, the under-501

lying representational structures may remain fun-502

damentally different. This representational mis-503

alignment could lead to unexpected failures when504

models encounter novel scenarios that require a505

human-like understanding of psychological con-506

structs. Our methodology offers a new lens for507

evaluating alignment beyond surface-level behav-508

ior, focusing instead on the structural coherence of509

internal representations. By examining how factor510

correlations in LLM responses compare to human511

patterns, researchers can develop more nuanced512

metrics for alignment that capture deeper aspects513

of psychological construct representation.514

5.2 Anthropomorphism and Model515

Capabilities516

The failure of all tested LLMs to recover the es-517

tablished four-factor structure of the HSQ warns518

against anthropomorphic interpretations of model519

capabilities. Despite their impressive performance520

on various natural language tasks, LLMs appear521

to organize psychological constructs in fundamen- 522

tally different ways than humans do. The EGA 523

results, showing 2 and 8 communities in LLM re- 524

sponses compared to the clear four-factor structure 525

in human data, highlight this organizational dif- 526

ference. This finding suggests that while LLMs 527

may generate convincing responses to psycholog- 528

ical assessments, they do not necessarily operate 529

on the same underlying psychological constructs 530

as humans. The cross-dimension connections ob- 531

served in LLM response networks indicate that 532

models blur boundaries between theoretical dimen- 533

sions that remain distinct in human cognition. This 534

blurring may reflect the statistical nature of lan- 535

guage model training, which captures correlations 536

between language patterns without necessarily de- 537

veloping the conceptual boundaries that emerge 538

from human psychological experience. 539

5.3 Model Development and Evaluation 540

Our approach provides a novel method for evalu- 541

ating and comparing different LLMs beyond tradi- 542

tional benchmarks. By examining factor correla- 543

tion patterns as fingerprints, researchers and devel- 544

opers can identify systematic biases or unwanted 545

patterns in how models represent psychological 546

constructs. This evaluation technique could be par- 547

ticularly valuable for detecting subtle differences 548

between model versions or identifying cases where 549

models might be misrepresenting psychological 550

constructs in potentially harmful ways. The con- 551

sistently low similarity to human response patterns 552
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across all tested models suggests that current train-553

ing approaches may not adequately capture the psy-554

chological structures underlying human responses555

to standardized assessments. This indicates a need556

for new training methodologies or architectural557

innovations specifically designed to better align558

with human psychological construct representa-559

tions, particularly if models are intended for ap-560

plications in psychological assessment or therapy561

assistance.562

6 Conclusion563

Our study set out to investigate two primary re-564

search questions: (RQ1) whether LLMs from the565

same family/company show similar factor covari-566

ance patterns, and (RQ2) how these LLM pat-567

terns compare to human response patterns. Our568

findings provide clear answers to both questions569

while contributing to the broader understanding570

of how LLMs internally represent psychological571

constructs.572

RQ1 Our analysis of the factor correlation matri-573

ces or "fingerprints" revealed complex similarity574

patterns within and across model families. While575

we observed some within-family similarities, we576

unexpectedly found higher cross-family similar-577

ities, such as between Qwen 2.5 7B and Llama578

3.3 70B, and Qwen 2.5 72B and Llama 3.1 8B. It579

suggests that factors beyond architectural lineage580

significantly influence how LLMs represent psy-581

chological constructs. The substantially lower simi-582

larity between Llama and Mistral families indicates583

fundamental differences in how these Western-584

developed model families organize humor-related585

concepts.586

RQ2 When comparing LLM fingerprints to hu-587

man response patterns, we found consistently low588

similarity scores across all tested models. Even589

the model with the highest similarity to human590

patterns showed a relatively low score, indicating591

a substantial divergence between how LLMs and592

humans organize psychological constructs. This593

divergence was further highlighted by our EGA,594

which revealed that while human responses recov-595

ered the theoretically expected four-factor structure596

of the HSQ, LLM responses produced between597

2-8 communities that did not align with these the-598

oretical dimensions. The gap between human-to-599

human similarity and human-to-LLM similarity600

underscores that current LLMs, regardless of ar-601

chitecture or size, fall far short of replicating the 602

consistency and coherence of human psychological 603

constructs. It suggests that despite their impressive 604

linguistic capabilities, LLMs represent psychologi- 605

cal concepts in fundamentally different ways than 606

humans. 607

6.1 Theoretical and Practical Implications 608

These findings contribute to the ongoing discus- 609

sion about the nature of LLM cognition and raise 610

questions about the alignment between human and 611

artificial representations of psychological concepts. 612

The divergence in factor structures suggests that 613

despite training on human-generated text, LLMs 614

develop internal representations that organize psy- 615

chological concepts differently than humans. This 616

fundamental difference likely stems from distinct 617

learning mechanisms—humans develop psycho- 618

logical constructs through lived experience, social 619

interaction, and cultural context, while LLMs learn 620

purely through statistical patterns in text. 621

6.2 General Contributions & Future Work 622

Beyond our discussed findings on humor styles, 623

this study introduced a generalizable methodology 624

for "fingerprinting" LLMs based on their factor cor- 625

relation patterns. This approach provides several 626

advantages, including a population-based assess- 627

ment rather than an individual level, interpretability 628

supported by established psychometric techniques 629

(EGA & Cronbach’s Alpha), and efficient dimen- 630

sionality reduction to singular value instead of a 631

graphical representation (EGA) or a construct level 632

assessment (Cronbach’s Alpha). 633

Future research should extend this fingerprint- 634

ing methodology to other psychological instru- 635

ments to determine whether the observed diver- 636

gence between human and LLM factor structures 637

generalizes across different psychological domains. 638

Investigating how different prompt engineering 639

techniques affect factor correlation patterns could 640

reveal whether specific approaches yield more 641

human-like construct representations. Additionally, 642

longitudinal studies tracking how these patterns 643

evolve across model generations could provide in- 644

sights into whether newer architectures are converg- 645

ing toward or diverging from human psychological 646

structures. 647
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Limitations648

We acknowledge several limitations in our method-649

ology and analysis that should be considered when650

interpreting our findings. First, the models may651

have been exposed to the HSQ during training, and652

thus, their responses might reflect patterns in their653

training data rather than intrinsic model proper-654

ties. This potential contamination could artificially655

inflate or alter the observed factor structures. Fu-656

ture work could address this by developing novel657

psychological instruments specifically designed to658

probe construct representations without training659

data contamination.660

Second, different API implementations, prompt-661

ing strategies, and generation parameter configura-662

tions might introduce systematic biases in model663

responses. While we standardized our approach664

across models, subtle differences in how different665

architectures handle identical prompts could af-666

fect response patterns. To mitigate these concerns,667

we made our code, prompts, and analysis scripts668

publicly available to facilitate reproducibility and669

critical assessment.670

Third, our analysis is based on a single psycho-671

logical instrument—the HSQ. Different psycholog-672

ical constructs and assessment tools might yield673

different patterns of similarity and divergence be-674

tween human and LLM responses. The specific675

nature of humor as a psychological construct may676

present unique challenges for LLMs that might not677

generalize to other domains such as personality,678

attitudes, or cognitive styles.679

Finally, we acknowledge that our sliding window680

approach to maintaining conversation history rep-681

resents only one possible implementation of con-682

textual continuity. Different approaches to main-683

taining context across items might yield different684

response patterns and potentially alter the resulting685

factor structures. Future research could systemati-686

cally vary context management strategies to assess687

their impact on psychological construct representa-688

tion. Despite these limitations, our findings provide689

valuable initial insights into how LLMs represent690

psychological constructs compared to humans, of-691

fering methodological contributions and substan-692

tive findings that can inform future research and693

applications in this domain.694

Ethical Considerations 695

Our study raises several ethical considerations re- 696

garding the evaluation and deployment of LLMs 697

as human simulacra in social science and psycho- 698

logical contexts. First, our findings of substantial 699

divergence between LLM and human factor cor- 700

relation patterns underscore potential risks in de- 701

ploying these models as replacements for human 702

participants in social science experiments and psy- 703

chological assessments. The misalignment in psy- 704

chological construct representation could lead to 705

inaccurate assessments or inappropriate interven- 706

tions if models are naively applied. 707

Second, we acknowledge the dual-use potential 708

of our fingerprinting methodology. While designed 709

as an analytical tool to enhance the understanding 710

of model limitations, similar techniques could po- 711

tentially help to identify models or detect manufac- 712

tured responses in online surveys. We have openly 713

published our methodology to encourage trans- 714

parency and further research into these issues while 715

emphasizing that practical applications should be 716

approached with appropriate caution and ethical 717

oversight. 718

Third, our study deliberately focused on humor 719

styles as a relatively low-risk psychological con- 720

struct. We caution that applying similar methods 721

to more sensitive psychological domains (e.g., psy- 722

chopathology, trauma, or suicidality) would require 723

additional ethical safeguards and expert consulta- 724

tion. The significant divergence between human 725

and LLM representations suggests greater caution 726

is warranted for more sensitive applications. 727

Finally, we recognize the risk of anthropomor- 728

phizing LLMs based on their performance on 729

psychological assessments. Our findings caution 730

against interpreting LLM responses to psychologi- 731

cal inventories as meaningful reflections of internal 732

"psychological states" comparable to humans. We 733

emphasize that even when LLMs produce plausible- 734

seeming responses to psychological measures, they 735

organize the underlying constructs in fundamen- 736

tally different ways that do not align with human 737

psychological structures. It has significant impli- 738

cations for how researchers communicate about 739

LLM capabilities to the public and how practition- 740

ers might deploy these technologies. 741
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A Ablation Study: LLMs without context871

To isolate the impact of conversational history on872

LLMs’ representation of psychological constructs,873

we conduct an ablation study where models re-874

ceived HSQ items without any context of previ-875

ous interactions. This design allows us to evaluate876

whether the five-question sliding window imple-877

mented in our main experiment contributes signif-878

icantly to the coherence and validity of response879

patterns.880

A.1 Inter-Model Similarity Patterns881

Table 3 presents the similarity scores between the882

correlation matrices of all LLMs and baseline con-883

ditions when tested without conversational context.884

The results reveal similar patterns to the context ex-885

periment and show decreasing alignment between886

models and humans.887

Model Family Similarities In contrast to our888

main results, we observe higher similarity scores889

between models from the same family, like890

Llama3.1 8B and Llama3.3 70B show a strong891

similarity (0.093). Similarly, Qwen2.5 7B and892

Qwen2.5 72B (0.050) demonstrate within-family893

similarity. This suggests that architectural charac-894

teristics within a model family increase during the895

absence of conversational context.896

Comparison to Context-Based Results When897

comparing these context-free similarity scores to898

those obtained with the sliding window approach899

(Table 1), we observe an overall reduction in simi-900

larity values across most model pairs. For instance,901

the similarity between Qwen2.5 7B and Human 902

Full drops from 0.164 with context to merely 0.004 903

without context. This systematic reduction sug- 904

gests that conversational context provides a struc- 905

tural framework that helps models maintain more 906

consistent response patterns across related items, 907

particularly for capturing human-like psychologi- 908

cal constructs. 909

Human vs. LLM Patterns The context-free con- 910

dition further widens the gap between LLM and 911

human response patterns. Llama3.1 8B shows the 912

highest similarity to Human Full at only 0.011, 913

significantly lower than the 0.164 observed for 914

Qwen2.5 7B with conversational context. This sug- 915

gests that conversational continuity plays a crucial 916

role in enabling LLMs to produce more human-like 917

response patterns on psychological assessments. 918

A.2 Exploratory Graph Analysis Findings 919

The EGA results for context-free responses (Fig. 2) 920

reveal a similiar divergence from the human four- 921

factor structure compared to the context-based 922

approach. While human responses consistently 923

demonstrate four distinct communities correspond- 924

ing to the theoretical humor styles, LLMs without 925

context produce more fragmented and theoretically 926

inconsistent structures. Most notably, Mistral 7B, 927

Mistral 123B, Llama 8B, and Qwen 7B all exhibit 928

between 4-7 communities that fail to align with the 929

theoretical dimensions of the HSQ. The commu- 930

nity structures appear more arbitrary, with items 931

from different theoretical dimensions frequently 932

clustered together. 933

A.3 Implications for LLM Assessment 934

This ablation study highlights the critical role of 935

conversational continuity in enabling LLMs to pro- 936

duce more coherent and structurally valid response 937

patterns on psychological assessments. Without ac- 938

cess to recent interaction history, models generate 939

responses that exhibit weaker internal consistency 940

and greater divergence from human psychological 941

constructs. The improvement in construct validity 942

with context, while still falling short of human- 943

level coherence, suggests that current LLMs bene- 944

fit from local contextual cues but may lack deeper 945

conceptual frameworks that would allow them to 946

maintain consistent psychological constructs across 947

independent interactions. This aligns with our main 948

findings and reinforces the conclusion that despite 949

superficial behavioral competence, LLMs represent 950
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Baselines Llama Mistral Qwen
Random Human Items Human Full 3.1 8B 3.3 70B 7B 123B 2.5 7B

Human Items 0.033

Human Full -0.045 -0.002

Llama 3.1 8B 0.029 -0.016 0.011
3.3 70B 0.002 -0.004 -0.008 0.093

Mistral 7B -0.021 0.070 -0.014 -0.040 0.014
123B 0.039 -0.001 -0.050 0.038 0.053 -0.044

Qwen 2.5 7B 0.055 -0.032 0.004 -0.054 0.018 0.045 -0.014
2.5 72B 0.042 0.080 -0.068 -0.034 0.035 0.051 -0.069 0.050

Table 3: Results of the sim(C⃗X1 , C⃗X2) for every combination of the three baseline approaches and the model
selection without providing the model a context window of previous answers. The highest similarity for each
column is marked bold.
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Figure 2: EGA for all models prompted without a context window, except Llama 70B and Qwen 72B as both models
include items that observe no standard deviation which is required by the EGAnet R package for every item.

psychological constructs in fundamentally different951

ways than humans do.952

B Cronbach’s Alpha (Cronbach, 1951)953

As a complementary validation measure to our fin-954

gerprinting methodology described in Section 3,955

we calculated Cronbach’s alpha (Cronbach, 1951)956

for each humor style dimension. While our pro-957

posed fingerprinting approach examines the cor-958

relation structure between items to identify rep-959

resentational patterns, Cronbach’s alpha provides960

an established measure of internal consistency that961

helps validate our findings from a psychometric per-962

spective. Cronbach’s alpha measures how closely963

related a set of items are as a group, providing964

insight into whether the items consistently mea-965

sure the same underlying construct. Following es-966

tablished standards in psychological research, we 967

adopted the threshold of α ≥ 0.8 for applied re- 968

search contexts (Nunnally, 1994). Table 4 presents 969

the Cronbach’s alpha values for all experimental 970

conditions. The results reveal several findings re- 971

garding the reliability of responses that align with 972

the evaluation of our metric: 973

Human Baseline vs. LLM Responses Human 974

responses demonstrated strong internal consistency 975

across all four humor styles (Affiliative: α = 976

0.841, Self-enhancing: α = 0.820, Aggressive: 977

α = 0.790, Self-defeating: α = 0.815). In 978

contrast, all LLM conditions showed substantially 979

lower reliability values, indicating that LLMs fail 980

to produce response patterns with the same level of 981

internal consistency as humans. 982
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baseline conditions

random 0.089 0.134 0.083 0.065
human_items 0.118 0.105 0.084 0.103
human_full 0.841 0.820 0.790 0.815

LLMs without context

Llama3.1 8B 0.118 0.081 0.104 0.110
Llama3.3 70B 0.034 0.070 0.024 0.013
Mistral 7B 0.121 0.130 0.089 0.122
Mistral 123B 0.184 0.189 0.177 0.206
Qwen2.5 7b 0.095 0.061 0.116 0.096
Qwen2.5 72b 0.008 0.073 0.103 0.041

LLMs with 5-item context window

Llama3.1 8B 0.138 0.091 0.087 0.149
Llama3.3 70B 0.063 0.144 0.087 0.076
Mistral 7B 0.460 0.513 0.514 0.617
Mistral 123B 0.220 0.242 0.157 0.232
Qwen2.5 7B 0.492 0.535 0.551 0.298
Qwen2.5 72B 0.094 0.138 0.084 0.113

Table 4: Cronbach’s Alpha reliability scores (Cronbach,
1951) for four humor styles across different experi-
mental conditions. The table compares the baseline
conditions with both LLM experiments. Values above
0.8 indicate acceptable reliability for applied research
(Nunnally, 1994). The highest score within each group-
column combination is highlighted in bold.

Effect of Context Window The introduction of983

the 5-item context window substantially improved984

reliability scores across most models compared985

to the no-context condition. This improvement986

was most pronounced in medium-sized models like987

Mistral 7B and Qwen 2.5 7B, which showed the988

greatest gains in reliability when provided with989

conversational history. For instance, Mistral 7B’s990

α values increased from a range of 0.089-0.130991

without context to 0.460-0.617 with context.992

Model Size and Reliability In line with our main993

results, larger models do not consistently demon-994

strate higher reliability than their smaller counter-995

parts within the same family. This finding chal-996

lenges the assumption that increasing parameter997

count improves psychological construct represen-998

tation. For example, Qwen 2.5 7B with context999

achieved higher reliability scores (α = 0.4921000

for Affiliative, α = 0.535 for Self-enhancing,1001

α = 0.551 for Aggressive) than its larger 72B1002

counterpart (α = 0.094, α = 0.138, α = 0.0841003

respectively).1004

Overall, these reliability findings complement our 1005

fingerprinting approach and correlation matrix anal- 1006

ysis by demonstrating that even when LLMs show 1007

some improvement in their response patterns with 1008

additional context, they still fail to achieve the inter- 1009

nal consistency characteristic of human responses 1010

to psychological assessments. 1011

The consistent alignment between our finger- 1012

printing results and Cronbach’s alpha values pro- 1013

vides methodological triangulation, strengthening 1014

our conclusion that LLMs, despite their linguistic 1015

capabilities, do not organize psychological con- 1016

structs similar to humans. The validation supports 1017

the effectiveness of our proposed metric for evalu- 1018

ating how psychological constructs are represented 1019

across different types of systems. 1020

While Cronbach’s alpha offers valuable insights 1021

into internal consistency within each humor style 1022

dimension independently, our fingerprinting ap- 1023

proach uniquely captures the holistic correlation 1024

structure across all dimensions simultaneously, pro- 1025

viding a more comprehensive measure of how psy- 1026

chological constructs are organized relative to one 1027

another — a critical consideration for understand- 1028

ing representational differences between human 1029

and artificial systems. 1030

C HSQ (Martin et al., 2003) 1031

Question: For each of the statements below, please indicate 1032
how true each statement is for you. Response options: Never 1033
or very rarely true (1); Rarely true (2); Sometimes true (3); 1034
Often true (4); and Very often or always true (5). 1035

1. I usually don’t laugh or joke around much with other 1036
people. 1037

2. If I am feeling depressed, I can usually cheer myself up 1038
with humor. 1039

3. If someone makes a mistake, I will often tease them 1040
about it. 1041

4. I let people laugh at me or make fun at my expense more 1042
than I should. 1043

5. I don’t have to work very hard at making other people 1044
laugh—I seem to be a naturally humorous person. 1045

6. Even when I’m by myself, I’m often amused by the 1046
absurdities of life. 1047

7. People are never offended or hurt by my sense of humor. 1048

8. I will often get carried away in putting myself down if 1049
it makes my family or friends laugh. 1050

9. I rarely make other people laugh by telling funny stories 1051
about myself. 1052

10. If I am feeling upset or unhappy I usually try to think 1053
of something funny about the situation to make myself 1054
feel better. 1055

11. When telling jokes or saying funny things, I am usually 1056
not very concerned about how other people are taking 1057
it. 1058
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12. I often try to make people like or accept me more by say-1059
ing something funny about my own weaknesses, blun-1060
ders, or faults.1061

13. I laugh and joke a lot with my closest friends.1062

14. My humorous outlook on life keeps me from getting1063
overly upset or depressed about things.1064

15. I do not like it when people use humor as a way of1065
criticizing or putting someone down.1066

16. I don’t often say funny things to put myself down.1067

17. I usually don’t like to tell jokes or amuse people.1068

18. If I’m by myself and I’m feeling unhappy, I make an1069
effort to think of something funny to cheer myself up.1070

19. Sometimes I think of something that is so funny that I1071
can’t stop myself from saying it, even if it is not appro-1072
priate for the situation.1073

20. I often go overboard in putting myself down when I am1074
making jokes or trying to be funny.1075

21. I enjoy making people laugh.1076

22. If I am feeling sad or upset, I usually lose my sense of1077
humor.1078

23. I never participate in laughing at others even if all my1079
friends are doing it.1080

24. When I am with friends or family, I often seem to be the1081
one that other people make fun of or joke about.1082

25. I don’t often joke around with my friends.1083

26. It is my experience that thinking about some amusing1084
aspect of a situation is often a very effective way of1085
coping with problems.1086

27. If I don’t like someone, I often use humor or teasing to1087
put them down.1088

28. If I am having problems or feeling unhappy, I often1089
cover it up by joking around, so that even my closest1090
friends don’t know how I really feel.1091

29. I usually can’t think of witty things to say when I’m1092
with other people.1093

30. I don’t need to be with other people to feel amused - I1094
can usually find things to laugh about even when I’m by1095
myself.1096

31. Even if something is really funny to me, I will not laugh1097
or joke about it if someone will be offended.1098

32. Letting others laugh at me is my way of keeping my1099
friends and family in good spirits.1100

Scoring: Average each of the following items to get four1101
scores corresponding with the four humor styles.1102

Affiliative: 1, 5, 9, 13, 17, 21, 25, 29
Self-enhancing: 2, 6, 10, 14, 18, 22, 26, 30
Aggressive: 3, 7, 11, 15, 19, 23, 27, 31
Self-defeating: 4, 8, 12, 16, 20, 24, 28, 32

1103
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