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Abstract

Psycholinguistic evidence has shown that hu-001
man language comprehension does not always002
proceed in accordance with syntactic rules. In-003
stead, these rules can be overridden by semantic004
plausibility, challenging classic linguistic the-005
ories and models. Here we show that the phe-006
nomenon of plausibility based comprehension007
naturally emerges in the comprehension perfor-008
mance of the Sentence Gestalt model, a neural009
network model trained on mapping sentences to010
event description based on a large scale corpus011
without any explicit syntactic training.012

1 Introduction013

The meaning of a sentence is often assumed to014

be a function of the meaning of its constituent015

words and the thematic-roles assigned by morpho-016

syntactic cues and it is often assumed that sentence017

processing requires distinct processes such as lexi-018

cal activation and syntactic parsing. Most theories019

assume that these processes unfold sequentially,020

that they are accurate, and that their respective out-021

put is detailed and complete. Over the past decades,022

this view has been challenged in psycholiguistics023

both by behavioral and electrophysiological evi-024

dences.025

Ferreira (2003) asked human participants to indi-026

cate the agent or the patient of the event described027

by normal active sentences (e.g., “The dog bit the028

man”), role reversed active sentences (e.g., “The029

man bit the dog”) and their passive versions. Role030

reversed sentences, often called reversal anomalies031

(RA) are sentences that are syntactically correct but032

semantically anomalous because their agent and pa-033

tient fillers are swapped. In these sentences, the034

thematic-role assignment (e.g., “man” as agent and035

“dog” as patient) violates the expectations imposed036

by the event semantics which suggest that humans037

are more likely patients and dogs agents of a “bit-038

ing” event. Ferreira’s results showed that partici-039

pants frequently misinterpret passive RA sentences040

(e.g., “The dog was bitten by the man”). In conse- 041

quence Ferreira (2003) proposed the “good enough” 042

approach to language comprehension, which as- 043

sumes that people might sometimes use processing 044

heuristics based on their expectations about events 045

to figure out who is doing what to whom rather 046

than relying on syntactic rules. Relatedly, stud- 047

ies conducted by Kuperberg et al. (2003) and Kim 048

and Osterhout (2005) show evidence that RA sen- 049

tences, despite their semantic abnormality, elicit 050

only a small increase in N400 amplitude compared 051

to normal control sentences, which is surprising 052

because amplitudes of the N400 brain potential 053

are typically increased in semantically anomalous 054

sentences (see Kutas and Federmeier 2011 for re- 055

view). These observations were explained as the 056

results of semantic illusion according to which the 057

syntax-cued thematic-role assignment is - at least 058

temporarily - overrun by expectations regarding 059

the event semantics (Nieuwland and van Berkum, 060

2005), hence the small N400 amplitude. Both be- 061

havioral and electrophysiological studies therefore 062

point to a (partial) overrule of syntactic informa- 063

tion in favour of event-semantic priors when the 064

thematic-role assignment appears to violate event 065

probabilities. 066

In this paper we investigated whether the Sen- 067

tence Gestalt (SG) model, a connectionist model of 068

language comprehension that we trained on a large 069

scale corpus, can account for the pattern of behav- 070

ior elicited by RA sentences (active and passive), 071

based on stimuli such as those used by Ferreira 072

(2003) and Kuperberg et al. (2003). The SG model 073

is a model of language processing that maps sen- 074

tences to a representation of the described event 075

approximated by a list of role-filler pairs represent- 076

ing the action, the various participants (e.g., agent 077

and patient) as well as information concerning, for 078

instance, the time, location, and the manner of the 079

event described by the sentence itself (McClelland 080

et al., 1989). Central to our simulation, is the fact 081
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Figure 1: The architecture of the SG model, with the
update network on the left hand-side and the query
network on the right hand-side.

that the SG model maps from linguistic input to082

event meaning without any inbuilt knowledge of083

syntactic rules.084

2 The Sentence Gestalt model085

The SG model consists of an update and a query net-086

work (Fig. 1). The update network sequentially087

processes each incoming word to update activation088

of the SG layer, which represents the meaning of089

the sentence after the presentation of each word090

as a function of its previous activation and the ac-091

tivation induced by the new incoming word. It is092

composed of an input layer, which generates a vec-093

torial representation w⃗t for each input word it of094

the incoming sentence, and a LSTM recurrent layer095

generating a SG representation s⃗gt as a function096

of w⃗t and previous gestalt s⃗gt−1 (Hochreiter and097

Schmidhuber, 1997). The query network, instead,098

extracts information concerning the event described099

by the sentence from the activation of the SG layer.100

It is composed by an hidden layer h⃗t combining101

the SG vector s⃗gt and a probe vectors p⃗i, and an102

output layer generating a role-filler vector ⃗̂oi from103

the hidden state h⃗t.104

The representation of the event described by a105

sentence consists of a set of role-filler vectors o⃗i,106

each of which consists of the concatenation of the107

feature representation of a word and a one-hot vec-108

tor of the role of that word in the context of the109

event described by the sentence (Fig. 2.a)).110

During training, the model is presented with sen-111

tences, word by word and it is probed concerning112

the complete event, even if the relevant information113

has not yet been presented at the input layer. Cru-114

cially, no explicit information concerning the syn-115

Figure 2: The role-filler vector o⃗i (a), and its corre-
sponding two types of probes p⃗i (b) and (c). The left
hand-side of the vectors correspond to the embedding
representation of the filler concept, whereas the right
hand-side to the one-hot representation of the thematic
role played by the filler.

tactic structure of the sentence is provided, nor any 116

parsing process is explicitly implemented into the 117

model. A probe consists of a vector p⃗i of the same 118

size of a corresponding role-filler vector o⃗i, but 119

with either the thematic role identifier zeroed (Fig. 120

2.b) – if probing for roles –, or filler features zeroed 121

(Fig. 2.c) – if instead probing for fillers. Respond- 122

ing to a probe consists therefore of completing the 123

role-filler vector. Fillers are represented using word 124

embeddings obtained by binarizing Fasttext. The 125

discrepancies between the observed role-filler vec- 126

tor o⃗i and generated output ⃗̂oi is computed using 127

cross-entropy and is back-propagated through the 128

entire network to adjust its parameters in order to 129

minimize the difference between model-generated 130

and correct output. 131

3 Materials and methods 132

3.1 Training corpus and hyper-parameters 133

The SG model was trained on the British National 134

Corpus section of the Rollenwechsel-English (RW- 135

eng) corpus (Sayeed et al., 2018). The RW-eng 136

corpus is annotated with semantic role information 137

based on PropBank roles (Palmer et al., 2005) rep- 138

resenting the event described by the sentence as a 139

predicate and its arguments and modifiers. The SG 140

model is trained on mapping each RW-eng sentence 141

to its PropBank-style event representation. 142

The parameters of the SG model were optimized 143

using Adamax (learning rate 0.0005) and mini- 144

batches of size 32. Training was conducted for 145

a maximum of 100 epochs on 90% of the batches, 146

the remaining 10% was kept for validation (10 ran- 147

domly initialized SG models were trained for the 148

present simulations). 149

The size of the hidden layers (including the SG 150

layer) was 600, whereas the input layer generates 151

per-word embeddings of size 300 for the 10000 152

word forms accepted. The probe and output layers 153
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had size 337 due to the concatenation of the 300-154

size binarized embedding vector, the frame number155

and the argument type.156

3.2 Stimuli157

Stimuli consisted of 360 sentences split in 4158

matched conditions (2 active and 2 passive, with159

90 sentence per condition). Conditions consist of160

control (C) and reversal anomaly (RA), both active161

and passive. RA sentences were generated starting162

from each C sentence. A RA sentence is obtained163

by reversing agent and patient fillers of a C sen-164

tence. So, for instance, C sentence “After decades165

in the jungle the research identified the species” is166

matched by RA “After decades in the jungle the167

species identified the research”.168

4 Role accuracy169

After feeding the SG model with a whole sentence,170

the model is tested whether it correctly recognises171

the semantic role of the sentence’s arguments by172

providing probes containing only the embeddings173

representing the agent or patient filler. No role174

information is provided by such probes. Role pre-175

dictions are considered correct if the output role-176

filler vector contains a representation of agent role177

for agent fillers, or patient role for patient fillers.178

For instance, given the sentence “After decades in179

the jungle the research identified the species”, the180

model estimate is correct if after being probed with181

filler “research” the output indicates agent, and182

when after being probed with filler “species” the183

role-filler output indicates patient.184

Table 1 contains the role accuracy confusion ma-185

trices split in the four tested conditions averaged186

across 10 models. There was a significant main187

effect of condition, with significantly higher accu-188

racies for C as compared to RA sentences (F(1, 32)189

= 3212.0, p < 0.001) and a main effect of voice,190

with significant higher accuracies for active as com-191

pared to passive sentences (F(1, 32) = 113.5, p <192

0.001). There also was a statistically significant193

interaction between condition and voice in the av-194

erage role accuracies of the SG models (F(1, 32) =195

299.7, p < 0.001). In the RA condition, the SG mod-196

els shows strong tendency to misinterpret agents as197

patients 88.27% of times for active and 81.23% of198

the times for passives. The rate of misinterpretation199

of patients as agents is lower, yet still significantly200

higher than in C sentences.201

C active
Ag Pat Prd M*

Ag 91.98 6.91 0.00 1.11
Pat 1.60 91.98 2.59 3.83

RA active
Ag Pat Prd M*

Ag 4.81 88.27 2.59 4.32
Pat 48.27 50.12 0.00 1.60

C passive
Ag Pat Prd M*

Ag 44.57 51.36 0.00 4.07
Pat 1.60 90.62 2.84 4.94

RA passive
Ag Pat Prd M*

Ag 5.93 81.23 2.84 10.00
Pat 37.41 60.62 0.00 1.98

Table 1: Role probing confusion matrix for our four con-
ditions. Rows indicate correct (target) roles, columns
the percentage of correct (in bold) and misclassified
fillers. Ag stands for agent, Pat for patient, Prd for
predicate, and M* for any other PropBank role. We
included patient, predicate, and other roles because the
SG model is free to assign any of the 27 different Prop-
Bank roles to a probed filler.

5 Filler accuracy 202

Fillers are predicted by feeding a whole sentence 203

to the SG model together with the probe contain- 204

ing only the agent or patient role. No filler rep- 205

resentation is provided by the probe. The model 206

is expected to produce a role-filler vector contain- 207

ing the embedding representation of the correct 208

filler for the probed role. Accuracy is computed 209

by comparing the predicted filler embedding for 210

a role to the correct embeddings of the sentence 211

agent and patient fillers. If the predicted filler for 212

the agent role is more similar – as cosine similarity 213

– to the target embedding of the actual sentence 214

agent filler as compared to the sentence patient 215

filler, or vice versa, the prediction is considered 216

correct. For instance, given the sentence “After 217

decades in the jungle the research identified the 218

species”, the model prediction is correct if after 219

being probed with role agent the output role-filler 220

vectors is more similar to the embedding of “re- 221

search” than to the embedding of “species”; and, 222

conversely, when after being probed with role pa- 223

tient the role-filler output vector is more similar to 224

the embedding of “species” than to the embedding 225

of “research” 226
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C RA
active passive active passive

Ag 96.05 75.93 30.25 50.00
Pat 95.80 91.85 45.19 73.83
avg. 95.93 83.89 37.72 61.91

Table 2: Filler probing accuracy scores. Values are
percentages. As in Table 1, Ag stands for agent and
Pat for patient. We only included these two because the
pairwise-similarity metric used to asses filler accuracy
only consider agent and patient potential fillers.

Table 2 shows the filler accuracies across condi-227

tion and voices averaged across 10 models. There228

was a significant main effect of condition, with sig-229

nificantly higher accuracies for C as compared to230

RA sentences (F(1, 32) = 815.60, p < 0.001) and231

a main effect of voice, with significantly higher232

accuracies for active as compared to passive sen-233

tences (F(1, 32) = 18.75, p < 0.001)). There also234

was a statistically significant interaction between235

condition and voice in the average filler accuracies236

of the SG models (F(1, 32) = 166.54, p < 0.001).237

6 Conclusions238

It has been reported that humans often misinter-239

pret the agent and patient of reversal anomaly sen-240

tences such as e.g., “The dog was bitten by the241

man”. This observation has offered the ground242

to the “good enough” theory of language compre-243

hension, which assumes that role-filler assignment244

might sometimes rely on heuristics based on ex-245

pectations about events, and is not always in line246

with the syntactic structure of the sentence (Ferreira247

et al., 2002; Ferreira, 2003).248

In this paper, we show that the SG model, a249

simple connectionist model of sentence compre-250

hension that is trained on mapping sequences of251

words to event representations based on a large252

scale corpus, displays similar biases as humans253

when it comes to comprehend control and reversal254

anomaly sentences. Despite the simple architec-255

ture and the lack of explicit syntactic training, it256

performs well in identifying roles and fillers for257

canonical active sentences. Its performance de-258

grades somewhat for sentences in the passive voice259

and strongly degrades for RA sentences, syntacti-260

cally correct but semantically anomalous sentences261

whose agent and patient fillers are swapped.262

The model thus provides a computationally ex-263

plicit account of plausibility based comprehension,264

which has posed a challenge to classic linguistic265

theories and models. 266

Acknowledgements 267

The research presented in this paper was sup- 268

ported by the German collaborative research cen- 269

tre SFB1294 “Data Assimilation” and the Emmy 270

Noether grant RA 2715/2-1. We thank removed 271

for anonymity who helped with the creation of the 272

stimuli and with the analyses. 273

References 274

Fernanda Ferreira. 2003. The misinterpretation of 275
noncanonical sentences. Cognitive Psychology, 276
47(2):164–203. 277

Fernanda Ferreira, Karl Bailey, and Vittoria Ferraro. 278
2002. Good-enough representations in language com- 279
prehension. Current Directions in Psychological Sci- 280
ence, 11(1):11–15. 281

Sepp Hochreiter and Jürgen Schmidhuber. 1997. 282
Long short-term memory. Neural Computation, 283
9(8):1735–1780. 284

Albert E. Kim and Lee Osterhout. 2005. The indepen- 285
dence of combinatory semantic processing: Evidence 286
from event-related potentials. Journal of Memory 287
and Language, 52:205–225. 288

Gina R. Kuperberg, Tatiana Sitnikova, David N. Caplan, 289
and Phillip J. Holcomb. 2003. Electrophysiological 290
distinctions in processing conceptual relationships 291
within simple sentences. Brain research. Cognitive 292
brain research, 17 1:117–29. 293

Marta Kutas and Kara D. Federmeier. 2011. Thirty 294
years and counting: finding meaning in the n400 295
component of the event-related brain potential (erp). 296
Annual review of psychology, 62:621–47. 297

James L. McClelland, Mark F. St. John, and Roman 298
Taraban. 1989. Sentence comprehension: A paral- 299
lel distributed processing approach. Language and 300
Cognitive Processes, 4:287–335. 301

Mante S. Nieuwland and Jos J. A. van Berkum. 2005. 302
Testing the limits of the semantic illusion phe- 303
nomenon: Erps reveal temporary semantic change 304
deafness in discourse comprehension. Brain re- 305
search. Cognitive brain research, 24 3:691–701. 306

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 307
2005. The Proposition Bank: An annotated corpus of 308
semantic roles. Computational Linguistics, 31(1):71– 309
106. 310

Asad Sayeed, Pavel Shkadzko, and Vera Demberg. 2018. 311
Rollenwechsel-English: a large-scale semantic role 312
corpus. In Proceedings of the 11th International 313
Conference on Language Resources and Evaluation 314
(LREC 2018). 315

4


	Introduction
	The Sentence Gestalt model
	Materials and methods
	Training corpus and hyper-parameters
	Stimuli

	Role accuracy
	Filler accuracy
	Conclusions

