
Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

LET’S HANDLE IT: GENERALIZABLE MANIPULATION
OF ARTICULATED OBJECTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this project we present a framework for building generalizable manipulation
controller policies that map from raw input point clouds and segmentation masks
to joint velocities. We took a traditional robotics approach, using point cloud pro-
cessing, end-effector trajectory calculation, inverse kinematics, closed-loop posi-
tion controllers, and behavior trees. We demonstrate our framework on four ma-
nipulation skills on common household objects that comprise the SAPIEN Man-
iSkill Manipulation challenge.

1 INTRODUCTION

A fundamental capability of household robots is manipulation of furniture such as cabinets, doors,
chairs, and heavy objects. These skills differ from rigid-body manipulation which has been a typical
focus of manipulation research (5; 1; 2). A recent benchmark and corresponding challenge called
the SAPIEN ManiSkill Challenge (4; 3)1 aims to evaluate the quality and generalizability of such
manipulation policies. The challenge involves manipulating a diverse set of articulated 3D objects
that are commonly found in households inside the SAPIEN (6) simulation engine. Specifically, the
four tasks are:

1. Open Cabinet Drawer exemplifies motions constrained by a revolute joint. A designated
drawer needs to be fully open by a single-arm robot.

2. Open Cabinet Door exemplifies motions constrained by a prismatic joint. A designated
door needs to be fully open (90◦ change of joint position) by a single-arm robot.

3. Push Chair exemplifies motions constrained by an object’s contact with the plane. A chair
needs to arrive at the target location in a vertical pose by a dual-arm robot.

4. Move Bucket exemplifies motions with constraints. A bucket, which contains a ball that
moves freely inside, needs to arrive at the target location by a dual-arm robot.

In this project, we developed a framework that uses the traditional robotics approach, including
point cloud processing, end-effector trajectory calculation, inverse kinematics, closed-loop position
controllers, and behavior trees. After describing our method in detail, we will evaluate our method,
analyze the failure cases, and finally discuss the pros and cons of our method and the challenge as a
whole.

2 METHOD

2.1 ENVIRONMENT SETUP

The ManiSkill challenge is a simulated environment in the SAPIEN physics engine. The chal-
lenge uses a fictional mobile-base robot composed of a Sciurus robot body and up to two sideways-
mounted panda arms. The Push chair and Move bucket task require a dual-arm setup, while the
two cabinet tasks require only a single arm. In total, the single-arm setup has 13 degrees of free-
dom while the dual-arm setup has 22. The observation space includes robot joint positions and an

1https://sapien.ucsd.edu/challenges/maniskill2021/
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(a) Open drawer (b) Open door (c) Push chair (d) Move bucket

Figure 1: The four tasks in ManiSkill challenge

Figure 2: Kinova Movo opening a drawer using the drawer opening policy from ManiSkill

RGB point cloud merged from three cameras that resembles an egocentric view of the scene. Addi-
tionally, task-relevant segmentation masks are provided that remove ambiguity about, for example,
which cabinet to open. The action space includes joint velocities, which are clipped and scaled 2.
Rewards are sparse in the environment and are only non-zero after successful completion of a task.
The requirements for successful completion vary depending on the environment, but they all share a
time limit of 200 simulation steps with a control frequency of 100 ( 2 seconds in physical simulator
time).

2.2 OUR MANIPULATION FRAMEWORK

We take a robotics approach to this problem with dedicated perception and control modules as
shown in Figure 3. At its core, our method relies on a behavior tree that is specific to each task.

2let t be the joint limits of joint i, the evaluator script process our actions with actions[i] =
(t.upper-t.lower)/2 * actions[i] + (t.upper+t.lower)/2

Figure 3: Manipulation pipeline. The gym simulated environment takes in actions in the form of q̇
velocities and outputs point clouds and joint states. Our solution is a finite state machine that first
processes the incoming point cloud to extract an important task-specific set of features (e.g. the
bucket rim), then uses these features to compute a set of object specific affordances and the next
state, then computes joint positions q for these affordances, and finally calculates joint velocities q̇
to reach the desired q.
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This behavior tree is checked at each timestep for successful completion of an action and modifies
the state if it determines an action has failed or completed successfully. The first step in our pipeline
processes point clouds to obtain a set of task-relevant features. The resulting features and point
cloud are passed into a state detector that detects if the particular action associated with the current
behavior tree state has succeeded, failed, or is still executing. Our pipeline then performs a lookup
for the desired joint positions in the current behavior tree state. This step uses the processed point
cloud features and an inverse kinematics solver to compute the desired joint positions qd from the
desired end-effector positions. Lastly, our pipeline uses a PID controller to calculate the desired
velocity q̇d from the desired joint positions qd. Below we outline the specifics of each step and how
they are implemented for each of the tasks.

(a) Initial pose (b) Pre-grasp (c) Grasp (d) Open

Figure 4: The policy for opening the drawer

(a) Initial pose (b) Pre-grasp (c) Grasp (d) Open (e) Rotate (f) Pre-push (g) Push

Figure 5: The policy for opening the door with a base push

(a) Initial pose (b) Pre-grasp (c) Grasp (d) Move to drop (e) Drop

Figure 6: The policy for grasping the bucket with two arms

2.3 POINT CLOUD PROCESSING

Calculating grasps on a handle: To calculate grasps on a handle, we use an antipodal grasp esti-
mator. We initially wanted to filter out bad grasps using a learned grasp scoring network, but we
found that horizontal or vertical grasps near the center of the handle worked well enough, and our
failure cases indicated that the performance bottleneck lies elsewhere. Instead, we simply filtered
by horizontal and vertical grasps and sorted by proximity to the handle centroid. We also found it
helpful to merge door handle points from multiple time steps for a better estimate, as some of the
initial observations are too sparse (as shown in Figure 9). For door opening, we made sure that we
have at least 50 points or have observed ten steps, whichever comes first, before we compute the
centroid. We used heuristics to decide the orientation of the grasp (horizontal or vertical) based on
the shape of the handle.
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(a) Initial pose (b) Pre-hug (c) Hug (d) Drop pose (e) Drop

Figure 7: The policy for hugging the bucket with two arms

(a) Initial pose (b) Move to pre-push (c) Push close to target (d) Nudge towards target

Figure 8: The policy for hug-pushing and nudging the chair with two arms

Detecting open cabinet : Our behavior tree for cabinet tasks relies on an evaluation of whether the
door/drawer is open or closed. We do this by calculating the difference in x-position from the initial
x-position of the segmented door/drawer region.

(a) Sparse points in the
first frame

(b) Accumulated points
in the first 10 frames

(c) Sparse points in the
first frame

(d) Accumulated points
in the first 10 frames

Figure 9: Comparing a single point cloud and seven point clouds representation of the door handles.
The rainbow color scheme encodes the sequence with which the points were registered.

Estimating the bucket rim: To estimate the bucket rim, we used a modified RANSAC. We can’t
simply take the highest points as the bucket rim because the handle sometimes goes over the rim. To
avoid this, we find the z-slices that contain at least a threshold of points, and then select the z-slice
with the highest z-value. The rim is then all the points within that z-plane.

Estimating the chair center: Parts of the chair are occluded by itself because the cameras are
mounted on the robot, which stands behind the chair when initialized. Thus it would be inaccurate
to estimate the center of one or multiple point clouds. Instead, we rely on the assumption that the
upper body of each chair (including and above the cushion) has symmetry. We first estimate the
orientation of the back of the chair on the z-plane using Principle Component Analysis (PCA), then
we identify the bounding box of the chair based on that axis. We calculate the center of a chair as
the center of that bounding box (as shown in Figure 10).
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Figure 10: PCA analysis on the chair point cloud. The green line shows the main axis of the back of
the chair, while the blue axis shows the secondary axis. Points are projected onto the lines to find the
bounding points, marked in yellow. The estimated center is marked in black, which is more accurate
(MSE=0.038) than simply taking the mean of all points in the whole chair (MSE=0.11), as marked
in cyan.

2.4 INVERSE KINEMATICS

We experimented with two optimization-based algorithms for inverse kinematics: the built-in Py-
Bullet and Drake IK tools. We decided to use Drake in the final version because PyBullet doesn’t
respect joint limits and cannot handle two desired gripper link poses (Necessary for the prehensile
branch of the bucket move task). Additionally, Drake allowed us to add additional terms to the
optimization that proved invaluable. Namely, we added a ADDPOINTDISTANCECONSTRAINT that
forced the base of the robot to be a threshold distance from the gripper poses. This was necessary be-
cause otherwise, the arm would typically collide with the base, and the only alternative was motion
planning.

2.5 TASK-SPECIFIC BEHAVIOR TREES

Open Cabinet Drawer: The behavior tree for the Cabinet Drawer task (shown in Figure 11) moves
to a pre-grasp pose, moves to a grasp pose, grasps, and then moves the base in the -z direction while
checking the open status of the drawer. An example trajectory can be seen in Figure 4.

Open Cabinet Door: The behavior tree for the Cabinet Door task (shown in Figure 12) moves to
a pre-grasp pose, moves to a grasp pose, grasps, and then moves the base diagonally in the -z, -x
direction for right opening doors and -z, x direction for left opening doors while checking the open
status of the door. After the door is partially open, it moves the base to pry the door open further. An
example trajectory can be seen in Figure 5. We also experimented with using a circular gripper path
to open the door completely. Although this method works well, the time constraints did not allow
us to add enough intermediate gripper poses for a smooth gripper path (Figure 15).

Move Bucket: The behavior tree for the Move Bucket task (shown in Figure 13) first tests the
thickness of the bucket rim. If it is too thick to grasp, it follows the “hugging” branch. The hugging
branch simply moves the base to in front of the bucket, “hug” by closing both arms around the
bucket, lifting the bucket, moving to the target platform, and opening its arms “unhugs” the bucket.
An example trajectory from the hugging branch is in Figure 7. Otherwise, if the bucket rim is
sufficiently thin, the behavior tree follows the prehensile branch. This branch moves the base to
in front of the bucket, grasps the bucket with both grippers, lifts the bucket by increasing the base
height, moves to the target region, and drops the bucket. An example trajectory from the prehensile
branch is in Figure 6.

Push Chair: The behavior tree for the Push Chair task (shown in Figure 14) moves the base to be
in front of the chair, “hugs” the chair using the same hugging policy from bucket picking, and then
moves the base such that the hair center is at the world center. It then enters a “nudging” phase

5



Under review at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

in which it continually estimates the chair center and slightly adjusts its position accordingly. An
example trajectory can be found in Figure 8.

Figure 11: Behavior Decision Diagram for the Open Cabinet Drawer task

Figure 12: Behavior Decision Diagram for the Open Cabinet Door task

Figure 13: Behavior Decision Diagram for the Push Chair task

2.6 PID CONTROLLER

We used a custom PID controller using the equations from class. We additionally added a low-pass
filter (fs = 100Hz, fc = 40Hz) to the output to avoid large jumps in output velocity. We found that
the PID parameters needed to be different for different components of the robot due to the different
scales of position differences and the strict time limit. For base translation and height control we
used kp = 20, ki = 0.5, kd = 0.0. For arm position control we used kp = 10, ki = 2.0, kd = 0.0.
Lastly for base rotation control we used kp = 0.5, ki = 0.2, kd = 0.0. For some reason, we believe
because of the low control frequency kd > 0.0 led to significant instability in the form of jittering.
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Figure 14: Behavior Decision Diagram for the Move Bucket task

Figure 15: Trajectories for opening a door consists of a pre-grasp pose and ten key poses in the
circular motion

3 RESULTS

3.1 EVALUATION OF TASK SUCCESS

Approaches BC BCQ (Offline RL) TD3+BC Ours

Tasks \ Split Train Test Train Test Train Test Train Test

OpenCabinetDrawer 0.37 0.12 0.22 0.11 0.18 0.10 0.972 0.988
OpenCabinetDoor 0.30 0.11 0.16 0.04 0.13 0.04 0.472 0.28
PushChair 0.18 0.08 0.11 0.12 0.12 0.08 0.732 0.728
MoveBucket 0.15 0.08 0.08 0.12 0.05 0.03 0.772 0.572

Table 1: Training and testing scores for each of our solutions according to official evaluation, com-
pared with the ManiSkill benchmark.

We compare our task success with an Behavior Cloning (BC) baseline provided by the ManiSkill
challenge. Their architecture uses PointNet and Transformer networks, trained on 100 trajectories
for each training environment with 150k gradient steps3. We retrieved the evaluation results of our
solutions from the ManiSkill official website. See 1 for results.

3They provided four baselines, we took the ones with the best performance from https://github.
com/haosulab/ManiSkill-Learn
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3.2 DEMONSTRATION ON REAL ROBOT

We applied the control framework to get a dual-arm Kinova Movo robot to open a cabinet drawer.
We used red color tape to coat the designated handle and used Drake for IK (Figure 2 ). See a video
demo at https://streamable.com/rntmv2

4 DISCUSSION

Our results show that our approach is well-suited for designing generalizable manipulation skills.
While it’s not the only way to construct manipulation skills, we feel this approach lends itself to
high generalizability and interpretability. We can look at the failure cases and adjust our policy to
address those failures. This challenge was primarily built for machine learning solutions, evidenced
by the low-frequency joint observations, limited time-horizon, and narrow initial state distributions.
Despite this, we were pleased to find that standard techniques in robotic manipulation, in most cases,
outperformed the machine learning solutions. Our solution is also directly transferable to the real
world. It runs no risk of overfitting to the simulator and automatically generalizes to arbitrary scenes
that might contain these articulated objects without domain randomization or dataset augmentation.
The policies we developed for this challenge significantly improve with more simulator time as
they can enter the policy’s replanning branch on subgoal failure. Additionally, a higher frequency
controller akin to those on real robotic systems would enable us to implement circular and linear
gripper trajectories without moving the base and include motion planning for added robustness in
real-world applications.
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