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Abstract

Despite impressive advancements in Visual-Language Models (VLMs) for multi-
modal tasks, their reliance on RGB inputs limits precise spatial understanding.
Existing methods for integrating spatial cues, such as point clouds or depth, ei-
ther require specialized sensors or fail to effectively exploit depth information
for higher-order reasoning. To this end, we propose a novel Spatial Sense and
Reasoning method, dubbed SSR, a novel framework that transforms raw depth data
into structured, interpretable textual rationales. These textual rationales serve as
meaningful intermediate representations to significantly enhance spatial reasoning
capabilities. Additionally, we leverage knowledge distillation to compress the
generated rationales into compact latent embeddings, which facilitate resource-
efficient and plug-and-play integration into existing VLMs without retraining. To
enable comprehensive evaluation, we introduce a new dataset named SSR-COT,
a million-scale visual-language reasoning dataset enriched with intermediate spa-
tial reasoning annotations, and present SSRBENCH, a comprehensive multi-task
benchmark. Extensive experiments on multiple benchmarks demonstrate SSR
substantially improves depth utilization and enhances spatial reasoning, thereby
advancing VLMs toward more human-like multi-modal understanding. Project
page: https://yliu-cs.github.io/SSR.

1 Introduction

VLMs represent a pivotal advancement in bridging the gap between image and natural language,
demonstrating astounding capabilities across myriad multi-modal tasks [1-7]. Nevertheless, relying
solely on RGB is inadequate for accurately capturing spatial information such as relative positions
and distances, which presents inherent limitations in capturing precise spatial relationships, thereby
constraining the capacity of VLMs to comprehend complex scenes. Consequently, enhancing the
ability of VLMs to understand and reason about spatial relationships is essential for critical real-world
applications, particularly in robotics.

Recent advancements in VLMs have catalyzed research on explicitly incorporating spatial information
to enhance model performance. While some methods leverage point cloud data for improved spatial
understanding [8—10], they typically rely on specialized sensors (e.g., LIDAR) that are impractical
in scenarios restricted to monocular RGB images. In this context, monocular depth estimation has
emerged as a compelling alternative, particularly with the proliferation of generative methods [11, 12].
These methods enable the acquisition of high-quality depth images from standard 2D images through
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Figure 1: Unlike conventional VLMs, SSR integrates depth perception to enhance spatial reasoning.
We introduce a curated dataset SSR-COT and benchmark SSRBENCH, demonstrating significant
improvements in spatial reasoning tasks.

various pre-trained models [13—16], eliminating additional hardware requirements. By leveraging
visual encoders pretrained on RGB images, depth features can be efficiently encoded and seamlessly
integrated into VLMs, offering a promising pathway for enhancing spatial awareness.

However, a critical limitation of current methods lies in their superficial utilization of depth informa-
tion [8—10, 17-20]. Unlike humans, who intuitively employ depth as an integral component within
broader reasoning processes, existing methods incorporate depth explicitly without capitalizing on its
inferential value [17]. Consider a query such as Are objects A and B far apart? Human cognition
naturally analyzes the spatial relationship between objects and then leverages this understanding to
inform subsequent reasoning. This implicit reasoning process underscores the necessity for more
sophisticated integration of depth information into VLMs, not merely as supplementary input, but as
a fundamental component that facilitates complex spatial reasoning. Developing methodologies that
emulate this human-like implicit utilization of depth could substantially enhance VLM capabilities.

To this end, we propose SSR, a novel paradigm designed to redefine the integration of depth informa-
tion within VLMs. Specifically, SSR translates raw depth data into a structured rationale language,
providing an interpretable intermediate representation that bridges low-level depth perception and
higher-level reasoning. This rationale-based language facilitates VLMs in generating outputs that
are both more accurate and contextually appropriate, while also enabling the previously underuti-
lized inferential capabilities inherent to spatial depth information. By converting modality-specific
depth data into semantically rich and inherently aligned representations, SSR effectively overcomes
the interpretability limitations associated with traditional approaches. Consequently, this method
significantly enhances the utilization of depth information, laying the groundwork for more robust
and human-like spatial reasoning capabilities within contemporary VLMs. To further enhance the
efficiency of rationale-language utilization, we transform depth information into a compact latent
embedding. Specifically, we apply a knowledge-distillation strategy to compress rationale-language
representations into concise latent embeddings [21]. Dissimilar to vanilla Chain-of-Thought (CoT)
methods [22, 21, 23, 24] that rely primarily on textual explanations, our distillation strategy signifi-
cantly reduces computational overhead while preserving the depth and inferential richness inherent to
rationale-based representations [25-27]. Importantly, this module can be seamlessly integrated into
existing VLMs via a training-free mechanism, highlighting the flexibility and broad applicability of
the proposed framework. To achieve SSR, we first curate SSR-COT, a million-level vision-language
spatial reasoning dataset that facilitates depth-aware reasoning and provides a robust foundation for
developing sophisticated spatial reasoning models. To validate our approach, we perform extensive
experiments across multiple benchmarks. Specifically, we also evaluate on our benchmark SSR-
BENCH, which comprises six distinct tasks spanning both general and spatial domains. Extensive



experiments and analysis demonstrate that SSR substantially enhances spatial reasoning capabilities
across diverse tasks, highlighting the effectiveness and broad utility of our proposed method.

Overall, our principal contributions in this paper are illustrated in Figure 1 and summarized as follows:
e We propose an efficient VLM, dubbed SSR, capable of simultaneously performing depth perception
and spatial reasoning, and generating answers based on implicit reasoning rationales.

e We introduce SSR-COT, a million-scale visual-language reasoning dataset enriched with interme-
diate spatial reasoning annotations, and present SSRBENCH, a comprehensive multi-task benchmark.
e Extensive experiments and solid analysis across various benchmarks demonstrate our SSR can
efficiently and dramatically enhance the spatial understanding of existing VLMs.

2 Related Work

2.1 Visual-Language Models

LLMs [24, 28-38] have led to major advancements in Natural Language Processing (NLP) tasks,
and also have incited interest in developing VLMs. Building a unified LLM with visual inputs for
visual language tasks thus remains one of the most important desiderata for VLMs. Over the last few
years, VLMs achieved significant performance improvements in multi-modal tasks by integrating
a pre-trained visual encoder and projecting the feature into semantic space into LLMs as well as
training on large-scale multi-modal question-answering pairs [1, 2, 39—43]. This straightforward
method can work well for general tasks, but expecting the model to deduce answers for more complex
tasks without deep reasoning can be daunting.

2.2 Multi-Modal Reasoning

LLMs display an emergent capability for step-by-step reasoning through in-context learning, a
phenomenon referred to as CoT reasoning. Such reasoning significantly enhances the performance
of LLMs on complex reasoning tasks [22, 44, 45]. Concurrently, notable advancements have also
occurred in multi-modal CoT research, a paradigm appealing due to its similarity to human problem-
solving behaviors [46, 47]. Current research efforts in multi-modal CoT primarily emphasize the
construction of intermediate reasoning rationale datasets to train image-text reasoning models. Many
existing studies adopt rich textual captions and detailed descriptions as intermediate rationales [48—
51]. Beyond text-based rationales, recent approaches have leveraged multi-modal rationales for
more comprehensive reasoning [52-56]. However, existing multi-modal CoT methods primarily
focus on tasks involving code generation, mathematical problem solving, and general question
answering, which require sophisticated reasoning to achieve accurate responses. In contrast, this
paper introduces an efficient CoT method that leverages depth images to enhance the performance of
VLMs, particularly by improving spatial understanding.

2.3 Spatial Intelligence

Spatial reasoning is an essential capability for VLMs and has therefore been included in several
Visual Question Answering (VQA) benchmarks [57-60]. However, the majority of existing VLMs
[7, 61-64] are primarily trained on two-dimensional images paired with textual data, a setting that
inherently lacks comprehensive spatial information. Consequently, these models exhibit limited
performance in spatial reasoning tasks. To overcome this limitation, recent works such as Spatial VLM
[10], SpatialRGPT [65] and RoboRefer [66] have sought to improve the spatial reasoning capacity
of VLMs by compiling specialized spatially-oriented question-answer datasets and fine-tuning
models accordingly. Nevertheless, despite these advancements, prior approaches largely neglect the
integration of language-based reasoning capabilities within the spatial reasoning framework. This
omission hampers the effectiveness of existing VLMs in addressing more complex tasks, particularly
those requiring intricate or multi-step reasoning processes.
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Figure 2: Schematic of SSR framework. (a) Overall pipeline. (b) Full architecture of SSR, comprising
the MIDI module followed by the VLM. (c) Two training stages of the SSR. In the stage 1, the LLM
provides alignment supervision for the MIDI module, whereas the stage 2 is optional.

3 Methodology

3.1 Architecture

The primary goal of our proposed SSR is to effectively leverage the reasoning capability of efficient
language models effectively enhance the depth understanding and spatial reasoning capability for
existing VLMs. The overall framework is illustrated in Figure 2.

3.1.1 Image-Depth Interpreter

To achieve comprehensive spatial understanding via depth interpretation, we propose a simple
yet effective plug-and-play module entitled Mamba-based Image-Depth Interpreter (MIDI). MIDI
generates enriched depth-aware latent token representations, providing essential spatial reasoning
information before feeding these tokens into the VLM.

Given an input image Xy € R7>W>3 and a corresponding textual query X, we first utilize a

pretrained monocular depth estimation model, Depth Pro [15], to produce a depth X p € R#xWx1
in the image. Subsequently, image features Zy and depth features Zp are extracted from Xy
and X p, respectively. Specifically, we employ pre-trained CLIP ViT-L/14 [67, 68] as the visual
encoder &£y, and SigLIP [69] as the depth encoder Ep: H, = E4(X4 ), € {V,D}. Then we
apply Multi-Layer Perceptron (MLP) modules, comprising two fully connected layers with GELU
[70] activation, as projectors ¢y and ¢p, transforming these visual features into the semantic
embedding space compatible with the subsequent efficient language model: Z, = ¢,(H,), o €
{V, D}. To jointly encode visual and depth information conditioned on the textual query, we
introduce an intermediate reasoning module implemented as the Mamba-based language model [71],
denoted as f1,\;. This module produces latent tokens representing intermediate spatial rationales:
Hr = fim(Zv, Zp, XT). Specifically, we uniformly insert several additional special tokens into
the rationales to facilitate the knowledge distillation process and encode textual tokens into latent
representations [21]. Finally, similar to previous steps, we apply an additional latent projection
module ¢ to map these latent rationale tokens into another semantic embedding space, matching the
dimensionality of the word embeddings used in the subsequent VLM: Zg = ¢r(HR).

Hence, our proposed MIDI module generates a sequence of spatial-aware latent tokens Z . These
tokens can easily be plugged into the query sequence for existing VLMs, effectively injecting
depth-based spatial reasoning information and significantly enhancing the spatial understanding
capabilities.



Table 1: The mixture detail of SSR-COT dataset. SSR-COT consist over 1 million image-depth-
question-rationale-answer pairs, where the rationale containing rich spatial-related knowledge the
enhance Visual-Language Models (VLMs).

Dataset Source Size Dataset Source Size
ShareGPT4V [72] 31.3k Flickr30k [73] 136k
ChartQA [74] 17.2k GQA [57] 88k
A-OKVQA [75] 16.1k Visual7W [76] 43k

Visual-CoT [52]

AI2D [77] 11.4k Openlmages [78] 43k
GeoQA+ [79] 11.4k Birds-200-2021 [80] 10k
LLaVA-CoT S giionceQA [81] 5.6k VSR [82] 3k
DocVQA [83] 4.0k SCREENED TOTAL 28%
PISC [84] 1.0k GQA [57] 72k
CLEVR [85] 0.5k VoCoT [53] LLaVA-Instruct [86] 6k
CLEVR-Math [87] 0.5k LVIS [88] 2k
TotAL 98k SCREENED ONE-TURN TOTAL 317k
Spatial QA [17] Bunny [89] 695k OXE [90] 7.5k

SCREENED TOTAL 501k

3.1.2 Spatial Sense and Reasoning

Our proposed MIDI module fully leverages spatial information derived from the depth images and
generates a latent representation Zg, which encodes intermediate reasoning rationales essential
for producing the response. Subsequently, we input these latent tokens Z g, alongside the original
image Xy and textual question X, into an existing VLM fy1,m to generate the answer Y4 in an
auto-regressive manner: Y4 = fyom(Xv, Zr, X1).

3.2 Training Paradigm

For training the proposed SSR, we adopt a two-stage procedure, as illustrated on the bottom-right
side of Figure 2. In Stage 1, we train the underlying MIDI module to generate rationale latent tokens
and project them into the language semantic space. In Stage 2, we conduct joint training of the MIDI
module and existing Vision-Language Models (VLMs) to further enhance performance. Notably,
Stage 2 is optional due to the modular and plug-and-play nature of our MIDI module, enabling
straightforward integration into existing VLM frameworks.

3.2.1 Stage 1: Reasoning and Alignment

At the initial stage, we aim to train an efficient language model within the MIDI module, enabling it
to generate and encode coherent thought processes represented by a sequence of features consistently
aligned with the natural language semantic space. To this end, each training sample at this phase
includes a detailed and accurate rationale Y5 as the ground truth. After feeding latent tokens produced
by the MIDI module into the subsequent LLM, we require the LLM to reconstruct the original textual
rationale solely from these latent representations. Training the LLM for precise rationale recovery
depends not only on accurate reasoning capabilities of the MIDI module itself, but also on successfully
projecting latent tokens into a semantic space consistent with the frozen-state LLM.

The learning objective for Stage 1 is defined by the standard causal modeling loss, given by:

L1(0) = —E(xy X1, X1, 28, Yr)~D ﬁ Z‘Zi’i‘ log Py(Yr,i | Xv,Xp, X1, ZRr, YR,<i)| - (1)

Following this training stage, latent tokens Zr generated by the MIDI module can be readily integrated
into existing VLM image-text sequences, thereby enhancing their spatial understanding capabilities.

3.2.2 Stage 2: Co-Training

To further enhance the performance of SSR, we jointly train the MIDI module along with existing
VLMs. Similar to instruction-tuning, we discard intermediate rationales in the second training stage
and allow the VLM to directly generate the final answer. In this setting, accurate answer generation
by the VLM requires not only effective reasoning from the MIDI module but also the capacity of
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Figure 4: Illustrative samples of SSR-COT dataset.

VLM to comprehend and utilize the reasoning information. Specifically, the second-stage learning
objective is formulated as a standard cross-entropy loss for auto-regressive generation of the final
answer Y4:

Lo(0) = —E(xy Xp,X1,Ya)~D [ﬁ 2?21‘ log Py(Ya,j | XV,XD,X%YA,Q)} . 2)

Since the rationale serving as the ground truth for supervised learning is omitted during Stage 2
training, we can incorporate additional VQA pairs to expand the dataset, thereby enhancing the
generalization capability of the model. Furthermore, training during this stage is optional due to the
modular plug-and-play nature of the MIDI module.

4 Experimentation

4.1 SSR-COT Collection

There is a scarcity of visual-language CoT datasets with detailed reasoning processes annotations
to train the SSR model for depth perception and spatial understanding. Therefore, we curate
a new dataset from existing VQA datasets, resulting in over a total of 1 million image-depth-
question-rationale-answer pairs. There are four dataset sources we integrated: (1) LLaVA-CoT [51]:
Systematic and structured reasoning visual-language CoT dataset, including general and science-
targeted VQA data source. (2) Visual-CoT [52]: Multimodal CoT dataset that takes the bounding
box as an intermediate thinking step, including general, relation reasoning and fine-grained science-
targeted VQA data source. (3) VoCoT [53]: Fine-grained image-text CoT dataset that rationale
provides detailed relationships between various objects with bounding box, including general and
relation reasoning VQA data source. (4) SpatialQA [17]: Spatial QA dataset for sufficient utilization,
including depth-related and robotic-related VQA data sources.

To generate visual-language reasoning data enriched with spatial information, we follow a multi-step
process, as shown in Figure 3. First, we extract depth estimations from raw images using Depth Pro
[15]. For the LLaVA-CoT [51] source, this is the only preprocessing step performed. Second, for
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Figure 5: Examples for each task within the benchmark SSRBENCH.

datasets such as VoCoT [53] and SpatialQA [17], we refine long-form conversations by extracting
concise, one-turn question-answer pairs. Third, we leverage SpatialRGPT [65] to comprehensively
mine precise spatial attributes within images, such as object size, distance, and relative positioning,
based on intermediate reasoning steps, including bounding box annotations from Visual-CoT [52]
and VoCoT [53]. Finally, we employ GPT-40 [92] to integrate all extracted information, generating
detailed reasoning processes that enhance spatial understanding. Notably, we also incorporate cache
pools and perform sampling quality checks within iterative loops to ensure the high quality of the
generated data. Specifically, similar to the quality-assessment protocol shown in Table 1, we randomly
draw 10% of the cached samples and evaluate VQA accuracy both with and without their generated
rationales. Rationales that improve accuracy are retained and incorporated into the final SSR-CoOT
dataset; those that degrade performance are discarded, and the all samples in cache are re-submitted
for re-annotation. Overall, we compile approximately 1.2 million preprocessed data samples into
SSR-COT dataset. Figure 4 illustrates several data samples from the SSR-COT dataset. Each data
instance within SSR-COT comprises the original image, an associated question-answer pair, the
corresponding estimated depth information, and a rationale. The rationale incorporates fundamental
reasoning steps used in question-answering tasks and provides detailed spatial reasoning to support
accurate answer generation.

To evaluate the quality of SSR-COT, we conducted an assessment based on the performance of the
Qwen2.5-VL-7B-Instruct [91] on the VQA task. This evaluation was carried out on a randomly
selected subset comprising approximately 1% of the full dataset, corresponding roughly to 10k
samples. Performance metrics include accuracy as well as a quantitative score ranging from 0 to
5, both are produced using the LLM-Assistant powered by the Qwen2.5-14B-Instruct-1M [38, 93].
Further methodological details regarding the evaluation process are described in Appendix D. As
presented in Table 2, responses generated with intermediate rationales demonstrate an accuracy
improvement of more than 10% compared to direct question-answering. This finding indicates that
the intermediate reasoning rationales annotated in our dataset are of high quality and effectively
enhance the question-answering performance of VLMs.

4.2 SSRBENCH Construction

Currently, there are no established benchmarks specifically designed for evaluating spatial under-
standing and reasoning capabilities on image-text pairs. To address this gap, we propose SSRBENCH,
a novel evaluation benchmark created from the SSR-COT dataset. Importantly, the data incorporated
into SSRBENCH will be fully removed from SSR-COT to prevent overlap. SSRBENCH consists
of two primary categories, general understanding and spatial understanding, allowing simultaneous
evaluation of VLM performance in both general question answering and spatial reasoning tasks. Each
category contains three distinct evaluation tasks, with detailed sample sizes provided in Appendix E.



Table 3: Performance comparison on SpatialBench [17] and our SSRBENCH. SSRBENCH ¢ and
SSRBENCH ® denote general and spatial tasks, respectively.

Size SpatialBench [17] SSRBENCH ¢ SSRBENCH °

Mamba VLM Position Existence Counting Size Existence Attribute Action Counting Position Object

Method

PROPRIETARY

GPT-40-mini [92] 47.1 75.0 70.5 21.7 72.0 482 63.1 53.7 444 46.1
Claude-3.5-Haiku [99] 559 65.0 72.2 26.7 51.4 522 43.7 42.0 34.1 383
OPEN-SOURCE
Spatial VLM [10, 100] 3B 529 80.0 77.1 28.3 31.7 58.3 63.7 31.7 55.8 65.4
LLaVA-1.5[2] 7B 44.1 45.0 82.8 30.0 81.3 643 66.9 439 63.6 63.6
LLaVA-NeXT [86] 7B 47.1 75.0 84.0 20.0 83.2 66.7 69.4 512 69.8 64.9
LLaVA-NeXT [86] 13B 47.1 75.0 82.9 20.0 86.9 69.6 71.3 41.5 69.8 532
SpatialBot [17] 3B 50.0 80.0 86.7 25.0 75.7 61.3 67.5 39.0 74.1 61.7
Emu3 [101] 8B 47.1 20.0 10.0 25.0 58.9 35.7 37.6 19.5 519 37.0
Qwen2.5-VL [91] 3B 55.9 80.0 76.4 25.0 66.4 58.9 63.1 34.1 60.5 519
Qwen2.5-VL [91] 7B 61.8 80.0 87.1 30.0 75.7 62.5 70.1 439 61.7 552
SSR (Ours) 130M 3B 64.7 80.0 82.9 31.7 83.2 82.1 72.6 51.2 83.3 74.7
SSR (Ours) 130M 7B 64.7 85.0 90.2 283 90.7 79.2 76.4 65.9 84.6 71.9

Table 4: Performance improvement of SSR compared to the backbone model. SpatialBench [17],
SSRBENCH, and CV-Bench [102] report average.

Method _ Size  gtialBench[17] _ SSRBENCH ypenenrioz; VSR whaesupri03)
Mamba VLM General Spatial Random  Zero-Shot
Qwen2.5-VL [91] 3B 593 62.8 48.8 67.0 73.0 764 854
SSR (Ours) 130M 3B 64.8(]5.4) 793 (116.5)  69.7 (120.9) 689 (11.9) 78.6 (15.6) 82.9(165) 87.9(12.5)
Qwen2.5-VL [91] 7B 647 69.4 536 73.0
SSR (Ours) 130M 7B 67.0(12.3) 82.1 (112.6) 76.1(122.5) 73.3(10.3)

We illustrate the process to construct SSRBENCH as shown in Appendix E.2. First, we define 6
distinct task categories. Then, we randomly sampled image-text pairs from SSR-COT, proportionally
retaining the distribution of its original data sources. These samples were independently classified
into task categories by GPT-40 [92] and Gemini-2.5-Pro [94]. Only instances for which both models
agreed on the assigned category were included in SSRBENCH; instances with disagreement were
returned to SSR-COT.

In recent years, LLMs have demonstrated significant advancements in language understanding,
reasoning, and text generation, exhibiting strong perceptual and comprehension capabilities through
the implicit world knowledge they encapsulate. Therefore, LLMs have increasingly been used as
assessors to evaluate generation performance in question-answering tasks [7, 1, 95, 96]. Consistent
with our approach in data quality evaluation, we employ the Qwen2.5-14B-Instruct-1M [38, 93], a
powerful LLM, to evaluate the performance of VLMs in this benchmark.

4.3 Implementation Details

In this paper, we utilize Mamba [71] as the lower-level efficient language model for reasoning,
Qwen2.5 [38] as the LLM for alignment in the first training stage, and Qwen2.5-VL [91] as the VLM
supporting multi-modal comprehension in the second training stage. During Stage 1, we exclusively
train the MIDI component on our proposed SSR-COT dataset. In Stage 2, we jointly train the SSR
using both the SSR-COT dataset and the LLaVA-Instruct-150K dataset [1]. Leveraging the efficiency
of LoRA [97] and Fully Sharded Data Parallel (FSDP) [98], training SSR requires approximately 19
hours for Stage 1 and 48 hours for Stage 2, using a single Nvidia 8-H800 GPU node equipped with
80GB VRAM. Detailed hyperparameter configurations are provided in Appendix A.

4.4 Main Results

Table 3 presents the comparative performance of the SSR against its backbone and state-of-the-art
baselines on SpatialBench [17] and SSRBENCH. As shown by the results, our SSR in 3 billion
parameters can achieve comparable or even higher results than large-scale baseline models, including
closed-source and backbone models. Our larger variant, comprising 7 billion parameters, yields
the best performance on most tasks across the two benchmarks. Compared to the top-performing
baselines in each benchmark, SSR exhibited notable improvements in the average question answering
accuracy, achieving a maximum enhancement of 13.6 and an average improvement of 6.77. Moreover,
we also provide a detailed analysis of the performance improvements compared to the backbone
model across additional benchmarks in Section 5.1.



Table 5: Performance comparison on general VQA benchmarks

Size

Method 77" VQAv2[104] TextVQA [105] POPE [106] MMBench [107] GQA [57]
Mamba VLM
Qwen2.5-VL [91] 3B 72.5 57.0 84.4 75.9 56.2
SSR (Ours) 130M 3B 79.0 (16.5) 61.3 (14.3) 86.0 (11.6) 78.3 (12.4) 63.6 (17.4)

Table 6: Performance comparison among the backbone model, the SSR with/without the second
training stage. p,p indicates that the MIDI module was employed in a plug-and-play manner.

Method Size SpatialBench [17] SSRBENCH © SSRBENCH 5
Mamba VLM Position Existence Counting Size Existence Attribute Action Counting Position Object
Qwen2.5-VL [91] 3B 55.9 80.0 76.4 25.0 66.4 58.9 63.1 34.1 60.5 51.9
64.7 80.0 79.6 30.0 70.1 59.5 63.7 36.6 61.1 53.2
SSResp 130M 3B (g0 (0.0) A32) (450 (137 106)  (106) (125 (106  (113)
SSR 130M 3B 64.7 80.0 829 31.7 832 82.1 72.6 51.2 833 74.7

(18.8) 0.0) (165)  (16.7)  (116.8) (1232)  (19.5)  (117.1)  (122.8) (122.8)

5 Analysis

5.1 Performance Improvement

We present additional experimental results in Table 4, demonstrating the improved performance of
SSR compared to the backbone model across the five benchmarks shown in Table 11 at varying
model scales. Specifically, across the three benchmarks reporting average values, SSR models of
different sizes demonstrated average improvements of 11.2 and 9.4 compared to the backbone model.
The most significant improvements were observed in the space task of the benchmark, where the
enhancements reached 20.9 and 22.5, respectively. This result exceeds the improvements reported in
Table 2, indicating that our SSR effectively reasons about information highly relevant to multi-modal
VQA tasks without introducing significant additional noise. Furthermore, the training paradigm of
SSR enhances performance not only on two evaluation datasets closely related to the training data but
also on the out-of-domain CV-Bench [102], VSR [82], What’s Up [103] and multiple general VQA
benchmarks [57, 104—107] as shown in Table 5. These findings indicate that our training approach
effectively further improves the generality and generalization capability of the SSR in addition to
enhanced spatial understanding performance.

5.2 Ablation Studies

As reported in Table 6, these experiments illustrate the performance of the MIDI module when
integrated in a plug-and-play manner without second training stage, leading to improved spatial
understanding. Specifically, this approach achieves average performance gains of 4.4 and 1.6 on
different benchmark datasets. On certain tasks, the plug-and-play approach achieves performance
improvements of up to 8.8, demonstrating the effectiveness of this usage. In addition, after the
second stage training, the performance of the complete SSR model will be significantly improved
on this basis, achieving average performance gains of 5.7 and 18.7 on different benchmark datasets.
Moreover, we provide case studies in Appendix F.

5.3 Efficiency

We evaluate the Qwen2.5-VL [91] after fine-tuning on SSR-COT dataset, overly protracted and
convoluted textual intermediate reasoning chains not only increase the risk of erroneous conclusions
but also impose prohibitive computational costs that undermine inference efficiency, which can better
reflect the importance of latent reasoning method in CoT application. As illustrated in Table 7, the
results demonstrate that, although SSR introduces a modest absolute latency per generated token, its
latent-reasoning paradigm dramatically curtails the number of CoT tokens needed to reach a final
response. Consequently, under the CoT-based evaluation framework, the overall end-to-end inference
speed is substantially improved.



Table 7: Inference efficiency comparison on SpatialBench [17].

Model Size SpatialBench [17] Token Per Sample Token Per Second Inference Time Per Sample
Qwen2.5-VL [91] (w/ SFT on SSR-COT) 3B 51.3 437.28 18.88 23.16s
SSR (Ours) 3B 64.8 2.62 8.18 0.32s

Table 8: LLM-Assistant Evaluation Performance comparison on SSRBENCH, evaluated using
different LLMs. (For each result, the left column presents the original Qwen-based evaluation score,
while the right column reports the corresponding GPT judgment).

Model Size Existence Attribute Action Counting  Position Object
Qwen2.5-VL [91] 3B  66.4/589 589/59.5 63.1/675 34.1/341 60.5/58.6 519/52.6
SSR (Ours) 3B 832/81.3 82.1/79.8 72.6/733 51.2/51.2 833/80.8 74.7/74.7

5.4 LLM-Assistant Evaluation

To mitigate potential biases arising from employing models of the same family as judges, we re-
assessed the SSRBENCH results with GPT-40-mini [92], the outcomes are reported in Table 8. High
inter-model agreement between the evaluation scores assigned by different LLM judges in the table
suggests that simple answer-comparison tasks largely resist bias within model series.

5.5 Rationale Embedding

To analyze whether MIDI effectively captures depth information and
conducts spatial reasoning guided by rationale, we visualize the co-
sine similarity between latent tokens, both with and without rationale.
Figure 6 visualizes the cosine similarities between the latent tokens
produced in two different paradigms: x-axis: latent tokens inserted
inside the rationale, y-axis: latent tokens inserted immediately after

0

the question and used to start the answer generation. Diagonal cells
represent these two states of the same sample. High values on the Figure 6: Cosine similarity
diagonal indicate that the model has learned to map the rationale to  matrix of reasoning latent to-
the latent representation, confirming that it successfully distills the kens with/without rationale.
spatial knowledge embedded in the rationale. Low off-diagonal values

indicate that the latent tokens remain sample-specific and do not collapse to a generic representation.

6 Conclusion

In this paper, we propose a novel VLM SSR with an important module named MIDI to interpret
depth for enhancing the depth perception and spatial reasoning capabilities of existing VLMs. MIDI
can even be efficiently integrated into existing VLMs in a seamless, plug-and-play manner. To
enable effective training and evaluation, we curate a multi-modal CoT dataset SSR-COT and present
a comprehensive benchmark SSRBENCH. Extensive experiments conducted across four distinct
benchmarks demonstrate that SSR consistently achieves state-of-the-art performance enhancements
over existing approaches, particularly excelling in spatially-oriented visual question answering tasks.

Broader Impacts. Our proposed SSR demonstrates that spatial reasoning capabilities can be
incrementally enhanced without adversely affecting its existing VLM functionalities. This provides
an innovative avenue for research communities to integrate additional capabilities into VLMs.

Limitation and Future Works. Although SSR shows astounding performance, this study is limited
to the Qwen/Qwen-VL series; future work will broaden the VLM scope to test generalizability.
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A Hyperparameters

Detailed hyperparameter configurations are provided in Table 9.

Table 9: Training hyper-parameters of our proposed SSR.

Configuration Stage 1 Stage 2 | Configuration Stage1 Stage 2
Vision Encoder Clip-ViT-Large-Patch14-336 [67] Optimizer AdamW [108]
Depth Encoder Siglip-So400M-Patch14-384 [69, 109] Learning Rate 0.00002
Mamba Mamba 130M [71] Numerical Precision BFloatl6
LLM Qwen2.5 3B [38] Epoch 2 1
VLM Qwen2.5-VL 3B [91] | Global Batch Size 32 32
Question Length 256 Learning Schedule Cosine Decay
Rational Length 1024 Warm-up Ratio 0.02
Answering Length 256 Number of Latent Tokens 10

B SSRBENCH Results in Score Metrics

The evaluation metrics employed for SSRBENCH include both accuracy and a quantitative score
ranging from O to 5. Quantitative results are presented in Table 10, with detailed descriptions of the
assessment methodology provided in Appendix D. These scores are generally consistent with the
accuracy trends presented in Table 3.

Table 10: Score performance comparison on SSRBENCH. SSRBENCH ¢ and SSRBENCH ° denote
general and spatial tasks, respectively.

M Size SSRBENCH © SSRBENCH 5
ethod
Mamba VLM Existence Attribute Action Counting Position Object
PROPRIETARY
GPT-40-mini [92] 4.05 2.95 3.46 3.12 2.87 2.66
Claude-3.5-Haiku [99] 3.48 2.99 2.71 275 2.56 2.31
OPEN-SOURCE
Spatial VLM [10, 100] 3B 2.34 332 3.55 2.34 3.56 3.24
LLaVA-1.5[2] 7B 4.17 3.72 3.66 271 3.87 3.56
LLaVA-NeXT [86] 7B 423 3.59 3.79 2.66 3.69 3.41
LLaVA-NeXT [86] 13B 4.30 3.82 3.79 2.76 3.78 3.12
SpatialBot [17] 3B 3.97 3.47 3.82 2.66 3.96 3.47
Emu3 [101] 8B 3.07 2.35 2.39 1.71 3.04 2.28
Qwen2.5-VL [91] 3B 3.56 3.42 3.56 2.41 3.43 3.00
Qwen2.5-VL [91] 7B 4.07 3.55 3.71 2.85 3.50 3.16
SSR (Ours) 130M 3B 4.44 4.28 3.95 3.17 4.40 4.02
SSR (Ours) 130M 7B 4.65 4.17 4.10 3.71 443 4.16

Discussion with Meteor. Meteor [21] is an approach similar to ours, designed to compress ratio-
nales using efficient large language models. However, unlike our method, Meteor does not separate
the reasoning module from the large language model during response generation. Due to this tight
coupling, Meteor must be trained end-to-end from scratch, a process that demands extensive datasets
and significant computational resources. In contrast, our method specifically focuses on enhancing
the spatial awareness and reasoning abilities of Vision-Language Models (VLMs), leveraging their
inherent capabilities to a greater extent. Consequently, our approach substantially reduces the com-
plexity and resource requirements related to training VLMs from scratch. Moreover, we focus on
directionally enhancing the depth perception and spatial reasoning capabilities of existing VLMs in
this paper. Therefore, our comparative analysis primarily emphasizes evaluating model performance
before and after applying these enhancements.

C SSR-CoT

As detailed in Section 4, the SSR-COT is constructed from four distinct data sources, with spatially-
aware CoT rationales generated for each data sample. Representative samples are shown in Figure 4.
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Additionally, a comprehensive description of the rationale-generation pipeline specific to each data
source is presented in Appendix C.2, C.1, and C.3.

C.1 Visual-CoT

For Visual-CoT [52], each data sample includes a bounding box that serves as a CoT rationale to
guide the generation of the corresponding answer. We utilize this bounding box, which is closely
related to the target answer, as an intermediate step to query spatial information about the selected
object using SpatialRGPT [65], a spatial question-answering model tailored for vertical domains.
Subsequently, we aggregate the obtained spatial question-and-answer information using a powerful
LLM such as GPT-40 [92]. The resulting text serves as the CoT rationale for the Visual-CoT data
source within SSR-COT.

Spatial Query for Visual-CoT

1. What is the object in [bbox]? Think step by step, and avoid repetition.

2. Can you estimate the height and width of [bbox]? Think step by step, and avoid
repetition.

3. What is the object to the left of [bbox], and what is its height and width? Think step
by step, and avoid repetition.

4. What is the object to the left of [bbox], and what is its distance to [bbox]? Think
step by step, and avoid repetition.

5. What is the object to the right of [bbox], and what is its height and width? Think
step by step, and avoid repetition.

6. What is the object to the right of [bbox], and what is its distance to [bbox|? Think
step by step, and avoid repetition.

7. What is the object in front of [bbox], and what is its height and width? Think step
by step, and avoid repetition.

8. What is the object in front of [bbox ], and what is its distance to [bbox|? Think step
by step, and avoid repetition.

9. What is the object behind [bbox], and what is its height and width? Think step by
step, and avoid repetition.

10. What is the object behind [bbox], and what is its distance to [bbox]? Think step by
step, and avoid repetition.

11. What is the object below [bbox], and what is its height and width? Think step by
step, and avoid repetition.

12. What is the object below [bbox], and what is its distance to [bbox]? Think step by
step, and avoid repetition.

13. What is the object above [bbox], and what is its height and width? Think step by
step, and avoid repetition.

14. What is the object above [bbox], and what is its distance to [bbox]? Think step by
step, and avoid repetition.

Rationale Generation for Visual-CoT

Please generate an image description in continuous paragraphs using these strict guidelines:

Coordinate Usage Rules:
1. ONLY use coordinates that are explicitly defined in this mapping table:
- Region [0]: [bbox]

2. Do NOT create or infer any new coordinates
3. Each coordinate can only be used ONCE in the description
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4. Coordinates must be written in [x1,y1,x2,y2] format without spaces

Content Rules:

1. Place coordinate immediately after describing its corresponding object

2. Integrate coordinates naturally within complete sentences

3. Include all provided measurements and spatial relationships

4. Maintain narrative flow while incorporating technical details

5. Focus on visual elements and their relationships

6. Embed coordinates from the mapping table immediately after their corresponding region
objects (e.g., "a dog [x1,y1,x2,y2]")

7. Maintain paragraph continuity by integrating coordinates within complete sentences
8. Preserve strict region-coordinate mapping from the provided table

9. Use only [x1,y1,x2,y2] format without spaces

10. Exclude technical metadata and region index numbers from final text

11. Automatically resolve spatial contradictions using coordinate data

12. Ensure coordinate annotations flow naturally after object nouns

Input Data:
Spatial Query and Response for Visual-CoT

C.2 VoCoT

VoCoT [53] includes multiple bounding boxes per data sample, more than Visual-CoT [52], to clearly
outline reasoning paths involving multiple objects within an image. Similar to the process used for
Visual-CoT, we perform spatial queries on each object associated with a bounding box. Additionally,
we capture the relative spatial relationships between every pair of objects to comprehensively utilize
available spatial context and support accurate reasoning. Finally, we aggregate this spatially derived
question-and-answer information using a robust language model, such as GPT-40 [92].

Spatial Query for VoCoT

Query for each bounding box:

1. What is the object in [bbox]? Think step by step, and avoid repetition.

2. Can you estimate the height and width of [bbox]? Think step by step, and avoid
repetition.

3. What is the object to the left of [bbox], and what is its height and width? Think step
by step, and avoid repetition.

4. What is the object to the left of [bbox], and what is its distance to [bbox]? Think
step by step, and avoid repetition.

5. What is the object to the right of [bbox], and what is its height and width? Think
step by step, and avoid repetition.

6. What is the object to the right of [bbox], and what is its distance to [bbox|? Think
step by step, and avoid repetition.

7. What is the object in front of [bbox], and what is its height and width? Think step
by step, and avoid repetition.

8. What is the object in front of [bbox |, and what is its distance to [bbox|? Think step
by step, and avoid repetition.

9. What is the object behind [bbox], and what is its height and width? Think step by
step, and avoid repetition.

10. What is the object behind [bbox], and what is its distance to [bbox]|? Think step by
step, and avoid repetition.

11. What is the object below [bbox], and what is its height and width? Think step by
step, and avoid repetition.
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12. What is the object below [bbox], and what is its distance to [bbox]? Think step by
step, and avoid repetition.

13. What is the object above [bbox], and what is its height and width? Think step by
step, and avoid repetition.

14. What is the object above [bbox], and what is its distance to [bbox]? Think step by
step, and avoid repetition.

Query for every two bounding box:

1. Which one is higher between [bbox 1] and [bbox2]? Think step by step, and avoid
repetition.

2. Can you estimate how far apart [bbox1] and [bbox2] are? Think step by step, and
avoid repetition.

3. What direction is [bbox2] in relation to [bbox1]? Think step by step, and avoid
repetition.

4. How far is [bbox1] from [bbox2] horizontally? Think step by step, and avoid
repetition.

5. Does [bbox 1] have a larger size compared to [bbox2]? Think step by step, and avoid
repetition.

6. Does [bbox1] have a lesser width compared to [bbox2]? Think step by step, and
avoid repetition.

Rationale Generation for VoCoT

Integrate all measurements values and spatial information from the conversation into answer
to get detailed reasoning rationale with spatial details.
Then, extract the direct question and answer from question and answer respectively.

Content Rules:

1. Place coordinate immediately after describing its corresponding object first time, make
sure each coordinate appear only once.

2. Avoid introducing other coordinates that do not appear in answer.

3. Add all provided measurements values and spatial relationships from the conversation to
the rationale detailedly.

4. Ensure the rationale contains all the information from each sentence in the conversation,
especially the measurements values and spatial relationships.

5. Automatically resolve spatial contradictions using coordinate data based on the image.

Output in the following json template:
{

"question": <question>

, "rationale": <rationale>

, "answer": <answer>

}

Question: Question
Answer: Answer
Conversation: Spatial Query and Response for VoCoT

C.3 SpatialQA
Unlike Visual-CoT [52] and VoCoT [53], the SpatialQA [17] dataset does not provide intermediate

CoT reasoning steps or bounding boxes for object identification. Therefore, we leverage GPT-40 [92],
a powerful multi-modal large language model, to generate detailed synthetic rationale data. These
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synthetic rationales supply the necessary intermediate reasoning processes to enable accurate answer
generation.

Rationale Generation for Spatial QA

I have an image and a question that I want you to answer.

I need you to strictly follow the format with four specific sections: summary, caption,
reasoning, and conclusion.

It is crucial that you adhere to this structure exactly as outlined and that the final answer in
the conclusion matches the standard correct answer precisely.

To explain further:

- In summary, briefly explain what steps you’ll take to solve the problem.

- In caption, describe the contents of the image, specifically focusing on details relevant to
the question.

- In reasoning, outline a step-by-step thought process you would use to solve the problem
based on the image.

- In conclusion, give the final answer in a direct format, and it must match the correct
answer exactly. If it’s a multiple choice question, the conclusion should only include the
option without repeating what the option is.

Finally, integrate these sections into a natural thinking paragraph.

Here’s the question and answer:
Question: Question
Answer: Answer

D LLM-Assistant Evaluation

As discussed in Section 4, we utilize the LLM-Assistant evaluation method to assess the data quality
of SSR-COT and measure the performance of SSRBENCH [7, 1, 95, 96]. Evaluation metrics
include accuracy and a quantitative score ranging from O to 5; both metrics are determined by the
LLM-Assistant powered by the Qwen2.5-14B-Instruct-1M [38, 93].

Prompt for LLM-Assistant VQA Evaluation

You are an intelligent chatbot designed for evaluating the correctness of generative outputs
for question-answer pairs.

Your task is to compare the predicted answer with the correct answer and determine if they
match meaningfully. Here’s how you can accomplish the task:

##INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the correct answer.

- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared to the answer.

Please evaluate the following image-based question-answer pair:

Question: question

Correct Answer: answer

Predicted Answer: response

Provide your evaluation only as a yes/no and score where the score is an integer value between
0 and 5, with 5 indicating the highest meaningful match.

Please generate the response in the form of a Python dictionary string with keys "pred” and
’score’, where value of "pred’ is a string of "yes’ or 'no’ and value of ’score’ is in INTEGER,
not STRING.

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string.

For example, your response should look like this: {’pred’: ’yes’, ’score’: 4.8}.
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E Benchmarks

E.1 Benchmark Employed

We evaluate our method using various benchmarks: SpatialBench [17], CV-Bench [102], VSR
[1, What’s Up [], our proposed SSRBENCH, and multiple general VQA benchmarks []. Table 11
summarizes the statistics for the all benchmarks. Tables 3 and 6 present comparisons between SSR
and baseline methods, along with comprehensive ablation studies conducted on SpatialBench and
SSRBENCH. Furthermore, Table 4 summarizes the performance improvements observed across all
spatial-related benchmarks.

Table 11: Statistics of benchmarks utilized in this paper.

Benchmark Task Size Benchmark Task Size
Position 34 Count 788
. Existence 40 Relation 650
SpatialBench [17] Counting 20 CV-Bench [102] Depth 600
Size 40 Distance 600
ToraL 114 ToTAL 2638
Existence 107 Counting 41
General Attribute 168 Spatial ~ Position 162
SSRBENCH Action 157 Object 154
ToraL 789
VSR [82] Random 1222 Zero-Shot 2195
ToTAL 3417
What’s Up [103] ToTAL 820 VQAV2 [104] ToraL 107k
TextVQA [105] TOTAL 5k POPE [106] ToTAL 9k
MMBench [107] ToTAL 3k GQA [57] ToraL 12k

E.2 SSRBENCH

To construct the SSRBENCH dataset, we first filter data samples from SSR-COT. Subsequently, we
feed each filtered sample into the multi-modal large language models GPT-40 [92] and Gemini-2.5-
Pro [94], using the following prompt to classify the task category. As mentioned in Section 4 and
shown in Figure 7, if the classification results from both models are consistent, the sample is added to
SSRBENCH; otherwise, it is returned to SSR-COT.

Reflux x Classify @ 9
Sampling W Image-Text [ ] Task Add
SSR-CoT @ Pair B @ Category

SSRBench

(©

"\
Reflux x Classify G e m I n I J

Figure 7: Schematic of SSRBENCH construction pipeline.

Task classification for SSRBENCH

You are an expert in image-based question classification.
You need to classify each input question into a specific task type based on the following
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taxonomy.
Task Categories:
Spatial:
Explanation: Involve identifying and understanding the position, size, shape, and relative
relationships of objects in an image.
Subtasks:
Count: Counting objects in the image (e.g., questions like “How many ...7”).
Relative Position Recognition: Determining spatial relations like “to the left of”,
“above”, or “on the right”.
Position Based Object Recognition: Identifying an object based on its spatial relation
to another object (e.g., “What is the object to the left of the dog?”).

General:
Explanation: Involve classifying, recognizing, or reasoning about visual content without

necessarily focusing on spatial relations.
Subtasks:
Existence: Determining whether an object or feature is present (e.g., “Is there a cat?”).
Attribute Recognition: Identifying attributes like color, texture, size, or state (e.g.,
“What color is the apple?”).
Action Recognition: Recognizing what action or activity is occurring (e.g., “What is
the man doing?”).

For each input question:
First determine whether the question belongs to the spatial or general category.
Then classify it into one of the three subtasks under that category.
If the question does not match any of the subtasks under either category, return None.

Output format:
{"category": "spatial" or "general", "subtask": "subtask_name" or "None"}

Example Input: "Is there a bicycle in the image?"

n,on

Example Output: {"category": "general", "subtask": "existence"}

Now, let’s begin classification. Here’s the question:
Question: Question

F Case Studies

SSRBench

SpatialBench

[

[Q] Are the hands of the man away from the banana?
[A] Yes

[Q] What is placed on the wooden table?
[A] Tablecloth

Claude-3.5-Haiku ~ No X  LLaVA-NeXT-7B No X

Claude-3.5-Haiku Nothing X  LLaVA-NeXT-7B  Dishes X

GPT-40-mini No X Qwen25-VL-3B No GPT-40-mini None X  Qwen25-VL-3B Chair X

SpatialBot No X SSR-3B(Ours) Yes SpatialBot Plant X  SSR-3B (Ours) Tablecloth o«

Figure 8: Two examples illustrating question-answering performance by baseline models compared
to our SSR are presented.

To further illustrate the effectiveness of our proposed SSR, we provide two example cases in Figure 8§,
comparing the performance of SSR against five baseline models: Claude-3.5-Haiku [99], GPT-4o-
mini [92], SpatialBot [17], LLaVA-NeXT-7B [86], and the backbone model Qwen2.5-VL-3B [91].
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As shown, our SSR consistently produces correct answers, whereas all baseline models fail to provide
accurate responses.

In the left example, the images depict only people and bananas. Consequently, the model must
abandon conventional assumptions and carefully reason about the spatial relations explicitly present
in the image to answer accurately. In the right example, complex relationships among numerous
objects are depicted, and relevant features for answering the posed question are not immediately
obvious. In this case, the model must thoroughly comprehend the correspondence between each
object and the given question, as well as understand intricate spatial relations among these objects, to
produce a correct response. These examples clearly demonstrate that our SSR effectively enhances
the spatial awareness and reasoning capabilities of vision-language models, thereby significantly
improving their ability to understand complex spatial relationships.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims we presented in the abstract and introduction are clearly stated and
fully aligned with the contributions of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Section 6..
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: None of theoretical assumptions.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details to reproduce the main experimental
results in Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Instructions for reproducing our experiments are provided in Section 4. We
will publicly release the data and code once they have been finalized and prepared.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setup required for our study is described in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Conducting experimentfor statistical significance when training large-scale
models typically demands an exponential increase in computational resources. To ad-
dress this concern, we performed comprehensive multi-angle analyses on SSR, and our
experimental results consistently validated its effectiveness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar rather than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

* If error bars are reported in tables or plots, the authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details regarding the computational resources used for all experiments are
presented in Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers, CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs, as well as estimate the total compute.

* The paper should disclose whether the full research project required more computing
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss impacts in the Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

30


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We used a publicly available visual instruction tuning dataset and pre-trained
visual foundation models and large language models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best-faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models) used in
the paper properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited models and datasets we deal with in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented, and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We propose a novel model SSR, curate a dataset SSR-COT, and construct a
benchmark SSRBENCH.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include human subjects in this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not include human subjects in this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, the declaration is not required.

Answer: [Yes]

Justification: We utilized LLM for data synthesis and the reporting of performance indicators,
which are comprehensively described throughout this paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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