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Abstract

Spiking Neural Networks (SNN) are promised to be energy-efficient and achieve1

Artificial Neural Networks (ANN) comparable performance through conversion2

processes. However, a converted SNN relies on large timesteps to compensate3

for conversion errors, which as a result compromises its efficiency in practice.4

In this paper, we propose a novel framework to convert an ANN to its SNN5

counterpart losslessly with minimal timesteps. By studying the errors introduced6

by the whole conversion process, an overlooked inference error is reveald besides7

the coding error occured during converting. Inspired by the quantization aware8

traning, a QReLU activation is introduced during training to eliminate the coding9

error theoretically. Furthermore, a buffered non-leaky-integrate-and-fire neuron10

that utilizes the same basic operations as in conventional neurons is designed to11

reduce the inference error. Experiments on classification and detection tasks show12

that our proposed method attains ANNs level performance using only 16 timesteps.13

To the best of our knowledge, it is the first time converted SNNs with low latency14

demonstrate their capability to achieve high performance on nontrivial vision tasks.15

Source code will be released later.16

1 Introduction17

Recently, Spiking Neural Networks (SNN) have attracted a great deal of researchers’ attention18

due to their essential advantages, such as spatio-temporal information processing capability and19

energy-efficient with low power consumption. Unlike conventional Artificial Neural Networks (ANN)20

communicating with every neuron between layers during every inference step, SNN only passes21

sparse events when particular neurons are fired. This compute-on-demand property of SNN is22

very friendly to low-power hardware, and suitable for neuromorphic platforms, such as event-based23

camera [11] and brain-inspired chips [32]. Such dedicated bionic systems can significantly reduce24

memory usage and energy consumption, which is very appealing to a wide range of applications like25

autonomous mobile robots.26

Despite the promising characteristics, it is still a challenging problem to train high-performance deep27

SNNs for practical tasks. Directly applying the backpropagation approach is infeasible because of the28

non-differentiable nature of the spike activity. Taking advantage of the ANN’s success, conversion29

methods have been proven to be a very promising direction in achieving high performance SNN. Cao30

et al. [4] first convert ANNs to SNNs by demonstrating the relationship between spiking neuron and31

ReLU function for rate-based methods. Diehl et al. [9] propose a weight normalization approach32

to mapping weights from ANN to SNN. Later, Rueckauer et al. [39] give a theoretical analysis on33

ANN-SNN conversion. A reset-by-subtraction IF neuron is proposed to better handle the accuracy34

degradation during the conversion. They also propose the weight normalization algorithm that uses35

percentile function instead of max value to achieve better performance. Kim et al. [23] propose a36

channel-wise normalization to further reduce the performance gap between ANNs and SNNs .37
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Although great progress has been made, those converted SNNs suffer from accuracy-latency trade-38

off [9, 31]. As a result, the converted SNNs need longer time to achieve comparable precision39

with their counterpart ANN during inference and compromises the efficiency in practice. To deal40

with this problem, hybrid methods [37, 36] are proposed to further finetune a converted SNN with41

approximated gradients to decrease the inference time. On the other hand, for the theoretical training42

gaps between ANNs and SNNs, Ding et al. [10] propose Rate Norm to better choose the scale factor43

and introduce extra loss to decrease the latency. Deng and Gu [8] utilize training samples to transfers44

the weights to the target SNN by combining threshold balance and soft-reset mechanisms. However,45

these works only focus on reducing the errors introduced by mapping feature values to spike trains.46

With an in-depth analysis of the entire coversion process, we recognize two types of conversion47

errors, namely coding error and inference error, that degrade the performance of SNN. As other48

conversion approaches mainly focus on the coding errors, our motivation is to reduce both the coding49

and inference errors. Inspired by the analysis in Rueckauer et al. [39], we notice that the SNN50

with step function resembles quantized ANNs. By establishing a strict equivalency between spiking51

neuron and quantized activation function, the coding error can be eliminated completely under limited52

timesteps. Further, we observe that the assumption in rate-based conversioin is inconsistent with53

the actual neuron behavior and the SNN’s dynamics during the inference. Most of the previous54

conversion-related literature overlook this problem, which limits the performance of the algorithms55

and leads to longer simulation time to achieve comparable results of the original ANN.56

In this paper, we propose a novel High Performance Conversion (HPC) method to drastically close57

the gap between ANNs and SNNs. Specifically, a QReLU activation is proposed to eliminate the58

coding error. Since QReLU is applied to the ANN training phase, no extra effort is required during59

the conversion. Besides, a noval buffered non-leaky IF neuron is designed to compensate for the60

inference error and retain SNN’s efficiency during inference. Utilizing a new form of activation61

function and novel efficient spiking neuron, SNN obtained by our proposed approach achieves high62

performance and low latency simultaneously. With only 16 timesteps, HPC achieves state-of-the-art63

performance across classification and detection tasks. Our major contributions are summarized as:64

• An overlooked inference error is discovered. The conversion errors including both coding65

errors and inference errors are theorically analized to clearify the reason of performance66

degration during conversion.67

• A novel high performance conversion method is proposed to deal with the two types of68

conversion errors. The coding errors are eliminated completely in theory and the inference69

error problem is relieved to a great extent.70

• Comprehensive experiments on different tasks demonstrate the efficacy of the proposed71

method. To the best of our knowledge, it is the first time converted SNN achieves ANN72

level performance while maintaining high efficiency and low latency across various tasks.73

2 Related Work74

Up to now, there exist two main categories of supervised training strategies for SNN: approximated75

error backpropagation methods, and conversion methods.76

Our proposed work is mainly related to ANN-SNN conversion methods with rate-based coding [9,77

35, 4, 39]. The goal of conversion approaches is to remain the high performance of ANN in SNN78

framework. Recently, Xing et al. [44] extend the territory of conversions by adding supports to79

more structures such as softmax activation and residual block. Instead of using longer timesteps80

to aproximate ANN accurately, conversion errors are analized and compensated by adjusting the81

parameters of converted SNN [27]. Rate Norm is proposed [10] to better choose the scale factor.82

Deng and Gu [8] utilize training samples to transfers the weights to the target SNN by combining83

threshold balance and soft-reset mechanisms. As a general approach, Kim et al. [23] show that84

conversion can be applied to detection tasks. However, only coding error are considerd in those85

work. We notice that the inference error or “unevenness error” is described in the parallel work [3].86

However, the “unevenness error” is ignored during the analysis of conversion error in their work.87

Other researchers [2, 29, 21] try to approximate the gradient to train the SNN by replacing the thresh-88

old function with other functions. A comprehensive summary of surrogated gradient backpropagation89

methods can be found in [30]. Huh [20] introduce differentiable synapse and neuron models to90

2



SNNs. Since spike trains are normaly sparse, gradients in SNNs are naturelly sparse compared91

to traditional ANNs. An sparse spiking gradient descent approach is introduced [34] to speed up92

the backpropgation. To enable very deep spiking neural network, modified residual module with93

element-wise functions [14] is proposed to mimic directly gradient path of ResNet [17]. Rather94

than compute the approximated gradient, a neuron with extra inner state is introduced in [42] to95

estimate the gradient. Different from [42], the buffered neruon proposed in this literature utlizes extra96

inner state to compensate for inference error. Backpropagation trained SNNs show the potential of97

achieving ANN level performance. However, extra efforts are required to train the SNN properly,98

making it hard to train and limit its application on real world tasks.99

Recently, combined methods [37, 36] emerges to alleviate the drawbacks that conversion methods100

require larger timesteps to achieve competative performance. These methods often contain two steps:101

conversion and fine-tuning. The SNN converted in the first step is served as a weight initialization for102

a further fine-tuning procedure using backpropagation. With the help of roughly mapped weights,103

several epochs of fine-tuning yield nearly loss-less performance with fewer timesteps [37]. How-104

ever, compared to conversion methods, extra efforts are required to fine-tune the SNN. Also, the105

backpropagation imposes additional limitations to the hybrid approach, which further restrains its106

application.107

3 Methods108

In this section, we first analyse the theoretical equivalency and gaps between a target SNN and an109

original ANN. Then, a quantized activation is proposed to minimize the coding error during the110

conversion. A buffered non-leaky IF neuron is presented to reduce the inference error. Finally, we111

integrate the proposed conversion framework to further decrease the difference between SNN and112

ANN.113

3.1 Theoretical Errors and Analysis114

Following Rueckauer et al. [39], we here illustrate the equivalency between SNN and ANN and115

introduce two types of errors when using the conversion methods with rate-based coding. The target116

SNN shares a similar overall architecture with the original ANN except two significant discrepancies.117

First, neurons in the SNN communicate with each other by spike trains S(t) where S(t) ∈ {0, 1} for118

each timestep t ∈ {1, ..., T}, while the activation functions in ANN utilize real-value. T is the total119

timesteps. Second, a non-leaky integrate-and-fire (IF) neuron is used instead of the ReLU activation120

in conventional ANN. The membrane function of the non-leaky IF neuron j can be described as:121

Vj(t) = Vj(t− 1) + Vth

∑
i∈Nj

ws
ijSi(t)− VthSj(t). (1)

where Vj(t) is the membrane potential of the jth neuron and t is the timestep. Nj is the set of all122

input neurons in the last layer connecting to jth neuron. ws
ij is the weight and connection strength123

between the input ith neuron and current jth neuron. Vth is the threshold for the neuron to fire a124

signal. Si(t) and Sj(t) are input and the resulting output spike trains of current neuron, respectively.125

The firing signals are generated as follow:126

Sj(t) =

{
1, if V ′

j (t) ≥ Vth

0, otherwise.
(2)

where V ′
j (t) = Vj(t− 1) + Vth

∑Nj ws
ijSi(t) denotes the membrane potential before signal firing127

and potential reset operation.128

Considering ANN-SNN conversion and rate-based coding, we can compute spike rate as r =129 ∑T
t=1 S(t)/T for a total timestep T . The goal of a conversion process is to derive a function transfers130

the parameters of an ANN to the SNN as ws = f(wa) so that each neuron in the SNN produces a131

spike rate r ∝ a after T timesteps, where a is the corresponding activation value of original networks.132

To this end, we can derive the spike count of the output spike train by summing Eqn. 1 over total133

timesteps T :134
T∑

t=1

Sj(t) =
∑
i∈Nj

ws
ij

T∑
t=1

Si(t)−
Vj(T )− Vj(1)

Vth
, (3)
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Figure 1: For each step of the membrane potential line in the figure, the left horizontal line indicates V (t− 1).
The peak point indicates V ′(t), and the right horizontal line indicates V (t) which is transferred to the next step.
For over-fire spike train(purple),

∑T
t=1 Sj(t) = 1 while

∑T
t=1 S

∗
j (t) = 0. For under-fire spike train(orange),∑T

t=1 Sj(t) = 11 while
∑T

t=1 S
∗
j (t) = 15.

where Vj(1) is the initial membrane potential. For convenience, we set Vj(1) = 0 in this work135

without loss of generality. Eqn. 3 gives the relation between the total spike count of current neuron136

and its input neurons’ spike count besides the internal membrane potential.137

For an ideal conversion, the spiking neuron intergrates membrane potential uniformly accross time138

and introduces no error during inference. Under this ideal condition, the output spike count should139

fullfill the following equation,140

T∑
t=1

S∗
j (t) =

⌊
max

(
Va

Vth
, 0

)⌋
, (4)

where Va = Vth

∑
i∈Nj

ws
ij

∑T
t=1 Si(t) denotes the accumulated membrane potential. Please refer141

to the appedix for detail proof. Assuming Eqn. 4 hold, we can derive the ideal output spike rate by142

averaging Eqn. 4 over timesteps T :143

r∗j = max

∑
i∈Nj

ws
ijri, 0

−R∗. (5)

where R∗ is defined as follow.144

R∗ =

{
Va
Vth

−⌊ Va
Vth

⌋
T , if Va > 0

0, otherwise.
(6)

For the ideal ANN-SNN conversion situation, when R∗ is approaching zero, the formal expression of145

a simple IF neuron becomes similar to the ReLU function in processing information. Thus, the weight146

of a SNN can be transformed from its counterpart ANN directly. Since spike rate r∗ is bounded, a147

linear mapping function is utilized to convert ANN weights W s = f(W a) = λi

λj
W a, in which λi is148

the scale factor for layer i.149

3.1.1 Coding Error150

As shown in Eqn. 5, R∗ can be viewed as a coding error term for the ideal conversion process151

during the ANN-SNN weight mapping. As Va

Vth
−

⌊
Va

Vth

⌋
< 1 for Va > 0, the upper bound of the152

conversion error R∗ < 1/T continuously decreases when the timesteps is set increasingly. Due to153

errors accumulated between layers, the converted SNNs with deep layers require large timesteps T to154

maintain high fidelity and performance [39, 23]. On the other hand, the large timesteps impair the155

efficiency of the SNN. This phenomenon is also known as accuracy-latency trade-off [9, 31].156
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3.1.2 Inference Error157

Besides the conversion error, the assumption in Eqn. 4 can be contravened easily due to essential158

nature of SNN neurons during the inference. Intuitively, the inference process of SNN is quite159

dynamic and spiking neurons are unable to accumulate membraine potential uniformly accross160

timesteps as Eqn. 4, which leads to the divergence of overall output spike counts. We refer to this161

type of error as inference error.162

We conclude two situations where the Eqn. 4 is violated during inference: over-fire and under-fire163

phenomenons. Over-fire indicates the situation where number of total generated spikes is greater164

than number of expected spikes
∑T

t=1 Sj(t) >
∑T

t=1 S
∗
j (t). Volatile membrane potential may165

cross the threshold V ′
j (t) ≥ Vth and cause spike Sj(t) = 1 that makes the number of generating166

spikes exceeding the number of expected spikes. Conversely, under-fire refers to the situation where167

insufficient spikes have been generated
∑T

t=1 Sj(t) <
∑T

t=1 S
∗
j (t). With inadequate spikes, under-168

fire neurons will have membrane potential large than Vth at the end of inference. Fig. 1a shows an169

example of these two situations.170

3.2 Quantized ReLU Activation171

To deal with the coding error, we propose a Quantized ReLU activation function in ANN training172

stage to accurately transform the weights to SNN with limited timesteps. According to Eqn.4, we can173

reformulate Eqn. 5 in a different way :174

r∗j =

⌊
T max(

∑Nj ws
ijri, 0)

⌋
T

. (7)

Let xs =
∑Nj wsri be the weighted sum of input spike rates in SNNs. Taking maximal spike rate175

into consideration, IF neuron(Fig. 1b) can be described with step function as follow,176

IF (xs) =


0, if xs ≤ 0

rmax, if xs ≥ rmax

⌊Txs⌋
T otherwise.

(8)

The rmax is the maximum spike rate of a spike train, which is 1 for conventional spike trains. The177

proposed function is strictly equivalent to the IF neuron instead of increasing total timesteps T to178

approximate the ReLU function with a fine-grain step function. By mapping spike rate and activation179

value a = λr, the proposed activation function is derived through Eqn. 8 :180

QReLU(xa, λ) = λIF (
xa

λ
) =


0, if xa ≤ 0

λ, if xa ≥ λ
⌊T

λ xa⌋
T
λ

, otherwise.
(9)

We name the proposed activation function as QReLU, since it can be seen as a quantized version of181

the ReLU function. The approximate gradients are given by the PACT algorithm [6] originated from182

STE [1]:183

∂QReLU(xa, λ)

∂λ
=

{
0, if xa < λ

1, otherwise.
(10)

∂QReLU(xa, λ)

∂xa
=

{
1, if 0 < xa < λ

0, otherwise.
(11)

The scale factor λ here is also referred to as quantization boundary and is learned during the ANN184

training process. Guaranteed by the success of quantization techniques [1, 6], a neural network185

consisting of QReLU is capable of achieving similar performance compared to the original ANN. By186
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mapping weights from an ANN equiped with QReLU activation, the coding error R∗ is eliminated in187

theory.188

3.3 Buffered Non-leaky IF Neuron189

For the inference error, we observe that reduing over-fire problem alone can boost performance190

siginificantly based on our experiments. To further improve our conversion framework, we propose a191

novel buffered non-leaky IF neuron to relieve the over-fire situation to compensate for the inference192

errors.193

The proposed buffered neuron utilizes a recurrent mechanism to regulate the spikes. In the proposed194

neuron, an additional buffered potential V b is introduced as follows:195

V b
j (t) = V b

j (t− 1) + VthSj(t). (12)

Similar to the membrane potential, the initial buffer potential V b
j (1) is set to zero for convenience.196

The spike generating process is described as197

Sj(t) =


1, if V ′

j (t) > Vth

−1, if V ′
j (t) < 0 and V b

j (t− 1) ≥ Vth

0, otherwise.
(13)

Intuitively, the proposed Buffered Non-leaky IF Neuron generates negative spikes to regulate the total198

spikes count for the inference errors. Thus, the over-fire problem can be alleviated. Please refer to199

appendix for detail proof. As same as ordinary IF neurons, only addition operation and threshold200

functions are involved in the proposed neuron. The inference efficiency is preserved since the extra201

power required by transmitting sign bit between neurons is negligible [45].202

3.4 Integration with Multiple Bits Spike Train203

To further improve the performance of the proposed conversion framework, we integrate shift-204

based multi-bits spike train into the proposed framework. Unlike the previous work [45] which205

compressed an existing SNN to speed up the inference, we extend the definition of the spike as206

S(t) ∈ {2n|n ∈ N, 2n ≤ Smax} to facilitate the shift operation directly during the conversion. The207

multi-bits spike train version of Eqn.13 is as follow:208

Sj(t) =



A(
⌊
V ′
j (t)

Vth

⌋
), if V ′

j (t) > Vth

A(min

(⌊
V ′
j (t)

−Vth

⌋
,

⌊
V b
j (t−1)

Vth

⌋)
),

if V ′
j (t) < 0

and

V b
j (t) ≥ Vth

0, otherwise,

(14)

where the adjust function A(·) is defined as209

A(x) = 2⌊log2(min(x,Smax))⌋. (15)

Multiple bits spike train carries more information than ubiquitous on-off spikes [5, 22, 33, 47].210

However, expensive multiplications are required during the integration with non-uniform spikes. To211

avoid multiplication, we employ the log2 adjust function and shift operation [45] as an alternative and212

achieve high energy efficiency. The adjust function can be implemented with a conditional function.213

For QReLU, as the maximal ratio coding is equal to maximal spike counts, rmax =
∑T

t=1 S
max/T =214

Smax, the multi-bits version of Eqn. 9 can be described as follow:215
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Table 1: Classification performance compared to other methods in CIFAR10 and ImageNet-1k

Model Arch
SNN
Top-1 ∆ T

CIFAR10

Rueckauer et al. [39] 4 Conv, 2 Linear 90.85% -1.06% 400
Sengupta et al. [40] ResNet20 87.46% -1.64% 2500
Lee et al. [26] VGG9 90.45% - 100
Kim and Panda [24] VGG9 90.50% - 25
Wu et al. [43] 5 Conv, 2 Linear 90.53% - 12
Han et al. [16] ResNet20 91.36% -0.11% 2048
Rathi et al. [37] ResNet20 92.22% -0.93% 250
Rathi and Roy [36] ResNet20 92.14% -0.65% 25
Zheng et al. [48] ResNet19 93.16% - 6
Yu et al. [47] 6 Conv, 2 Linear 93.90% -0.23% 300
Yan et al. [46] VGG19 92.48% -0.08% 600
Deng and Gu [8] ResNet20 92.41% 0.09% 16
Ding et al. [10] PreActResNet18 91.96% -1.10% 64
Bu et al. [3] ResNet18 94.82% -1.22% 8
Bu et al. [3] ResNet18 95.92% -0.12% 16
Ours ResNet18 95.13% -0.17% 8
Ours ResNet18 95.14% -0.04% 16

Model Arch
SNN
Top-1 ∆ T

ImageNet

Rueckauer et al. [39] VGG16 49.61% -14.28% 400
Sengupta et al. [40] VGG16 69.96% -0.56% 2500
Han et al. [16] VGG16 73.09% -0.40% 4096
Rathi et al. [37] VGG16 65.19% -4.16% 250
Rathi and Roy [36] VGG16 66.52% -3.56% 25
Deng and Gu [8] VGG16 55.80% -16.6% 16
Bu et al. [3] VGG16 50.97% -23.32% 16
Bu et al. [3] VGG16 68.47% -5.82% 32
Ours VGG16 73.65% -1.69% 8
Ours VGG16 75.96% -0.07% 16
Sengupta et al. [40] ResNet34 65.47% -5.22% 2000
Han et al. [16] ResNet34 65.47% % 4096
Fang et al. [14] ResNet34 67.04% - 4
Zheng et al. [48] ResNet34 63.72% - 6
Li et al. [27] ResNet34 64.51% -11.12% 32
Li et al. [27] ResNet34 74.61% -1.05% 256
Bu et al. [3] ResNet34 59.35% -14.97% 16
Bu et al. [3] ResNet34 69.37% -4.95% 32
Ours ResNet34 73.20% -0.52% 8
Ours ResNet34 74.46% 0.08% 16

Table 2: Detection performance

Model Arch
SNN
AP50 ∆ T

PASCAL VOC

Kim et al. [23] tiny-yolo 51.83% -1.18% 5000
Ours tiny-yolo 65.20% -0.13% 16
Ours tiny-yolo 65.73% -0.06% 32

MS COCO

Kim et al. [23] tiny-yolo 25.66% -0.58% 5000
Ours tiny-yolo 38.6% -1.1% 16
Ours tiny-yolo 39.2% -0.6% 32

Table 3: SNN computation efficiency.

Methods
Architecture
(timesteps)

Operation
ratio

SNN/ANN
energy ratio

CIFAR10

Rathi and Roy [36] ResNet20(25) 2.55 0.51
Ours ResNet18(8) 0.92 0.19
Ours ResNet18(16) 1.69 0.34

ImageNet

Rathi and Roy [36] VGG16(25) 1.62 0.32
Ours VGG16(8) 1.92 0.39
Ours VGG16(16) 3.03 0.62

QReLU(xa, λ
b) =


0, if xa ≤ 0

λb, if xa ≥ λb

⌊ P

λb xa⌋
P

λb

, otherwise.
(16)

Here the λb = λSmax is the quantization boundary and P = TSmax is the representation power.216

As implied by the definition of the representation power, even the minimal shift extension with217

Smax = 2 can maintain the same representation power with half timesteps. This phenomenon is218

named strength-latency trade-off.219

4 Experiments220

In this section, we conduct experiments on both classification and detection tasks to demonstrate the221

efficiency and effectiveness of the proposed method. Since the equivalency of features and spike rates222

are universal throughout the entire network, real-valued input is directly utilized in the converted223

SNN. We select a unity threshold Vth = 1 for all our experiments. Max spike value Smax = 2 is224

used for all experiments if not stated otherwise. Other implementation details can be found in the225

appendix.226

4.1 Visual Object Recognition and Detection Performance227

We test our proposed High Performance Conversion framework (HPC) on visual object recognition228

and detection tasks. A ResNet18 [17] like architecture is utilized as backbone networks to con-229

duct experiments on the CIFAR10 [25] dataset and a VGG16 [41] like network is trained on the230

ImageNet [7] dataset. Table 1 reports the classification accuracy of the proposed HPC compared231
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Figure 2: Left: Operation ratio and performance with ImageNet dataset under 16 timesteps. Data points with
same operation ratio are converted SNN and its corresbonding ANN. Right: Distribution of spike values.

with other methods. Top-1 accuracy is used to evaluate the performance. Since the performance of232

converted SNN is closely related to the ANN baseline, a performance drop ∆ is also reported. As233

illustrated in Table 1, the proposed HPC can perform nearly lossless conversion while maintaining234

low inference latency.235

As a general method, we also test our HPC with tiny-yolo [38] structure on both PASCAL VOC [13]236

and MS COCO [28] datasets. Table 2 summarizes the AP50 performance of the proposed method.237

We can see that our proposed HPC can achieve state-of-the-art conversion performance within 32238

timesteps, which is over 100 times faster than the previous SNN detection work [23].239

4.2 Energy Efficiency240

To evaluate the energy efficiency of the proposed method, operation ratio is adopted to measure the241

overall efficiency as described in Eqn. 17. In contrast to actual energy consumption which may vary242

between hardware devices [32], counting-based metric [36] is straightforward and representative243

for different methods. For a fair comparison, integration operations triggered by spikes for both244

membrane potential and buffer potential are counted in our experiments.245

operation ratio =
#(addition ops in SNN)

#(flops in ANN)
. (17)

Operation ratios, as well as estimated energy consumption ratio, are summarized in Table 3. Here246

we roughly estimate that multiplication consumes 4 times more energy than addition according247

to Horowitz [18]. The results on the CIFAR10 dataset show a strong correlation between timesteps248

and energy efficiency. To further study energy efficiency, we test the relationship between operation249

ratio and networks performance. As depicted in Fig. 2a, under the same timesteps setting, the250

spike ratio continuously decreases with the overall performance. Our experiments confirm a general251

relationship between inference energy and performance, which holds even under constant latency.252

Fig. 2b depicts the distributions of spike values in classification experiments. Without loss of gener-253

ality, we conclude that only 20% of the spikes require shift operation. As measured by Gudovskiy254

and Rigazio [15], the shift operation only cost 10% of energy consumed by addition operation. Thus,255

multi-bits spike only use 2% extra energy, which is negligible.256

4.3 Ablation Study257

To reveal the effectiveness of the proposed framework, we conduct ablation studies on both clas-258

sification and detection tasks. Specifically, we remove the quantized training technique and the259

buffered IF neuron sequentially and compare the results. The baseline ANN is trained and fixed for260

experiments without QReLU component, meanwhile quantized ANN networks are trained separately261

for different timestep configurations. Without the QReLU, the scale factor is calculated using the262

percentile function with the parameter empirically set to 99.0. Channel-wise normalization is utilized263

to ensure competitive performances. Since conventional converted SNN requires large timesteps to264
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Figure 3: Ablation study of proposed techniques. Q-ANN denotes ANNs trained with QReLU, Q-SNN denotes
SNNs converted from ANN trained with QReLU. SNN w/ buffered IF means that buffered non-leaky integrated
and fire neuron are used. SNN w/o buffered IF are conventional SNNs with out the proposed neuron.

achieve plausible performance, we only report those performances with 32 or more timesteps for the265

CIFAR10 dataset and 64 for others.266

Fig. 3 validates the effectiveness of the proposed techniques. Compared to conventional SNNs,267

the SNN integrates with buffered neurons only requires a quarter of timesteps to reach the same268

performance. As the buffered neuron mitigates only the over-fire problem, we conclude that the269

over-fire situation is the primary cause of performance degradation during inference. The introduction270

of quantized training further enhances the performance of converted SNN under limited timesteps.271

Similar trends can be observed across experiments.272

5 Conclusion and Limitation273

In this paper, we proposed a novel High Performance Conversion (HPC) method to simultaneously274

achieve high-performance SNN inference with low latency. Efforts had been made to reduce both275

coding errors and often overlooked inference errors. A novel QReLU activation was proposed to276

eliminates the conversion error. Meanwhile, a buffered non-leaky IF neuron was designed to mitigate277

the over-fire problem and boost the inference performance while maintaining its simplicity and278

efficiency. For the first time, efficient SNN converted without extra fine-tuning revealed its capability279

to achieve state-of-the-art performances in nontrivial vision tasks.280

However, there are limitations. Since no actual hardware is involved, the efficiency is estimated using281

energy consumed by simple operations. As computing platform evolves rapidly, it is beyond our282

reach to accomplish real neuromorphic hardware which can be researched in further work.283

For furture work, we believe further study on novel structures such as attention mechanisms SE [19]284

and transformer [12] can extend the current framework and may lead to better understanding of the285

underlying perception mechanism. Moreover, applications of SNN on video-like input that achieves286

ANN level performance with great efficiency are another promising direction.287
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