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Abstract

Layer-wise normalization (LN) is an essential component of virtually all
transformer-based large language models. While its effects on training stability are
well documented, its role at inference time is poorly understood. Additionally, LN
layers hinder mechanistic interpretability by introducing additional nonlinearities
and increasing the interconnectedness of individual model components. Here, we
show that all LN layers can be removed via fine-tuning from every GPT-2 model
with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-
2 XL). Thus, LN is not essential at inference to maintain comparable performance
in language modeling. We find that the amount of fine-tuning data needed for LN
removal grows sublinearly with model parameters, suggesting scaling to larger
models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face.
Furthermore, we test interpretability techniques on LN-free models. Direct logit
attribution now gives the exact direct effect of individual components, while the
accuracy of attribution patching does not significantly improve. We also confirm
that GPT-2’s “confidence neurons” are inactive in the LN-free models. Our work
clarifies the role of LN layers in language modeling, showing that GPT-2-class
models can function without LN layers. We hope that our LN-free analogs of the
GPT-2 family of models will enable more precise interpretability research and
improve our understanding of language models.

1 Introduction

Large language models (LLMs) have seen widespread adoption in recent years [Touvron et al.|
2023, |OpenAl et al., 2024} |Gemini Team et al., 2024], most of which are based on the Transformer
architecture Vaswani et al.[[2017]]. A key component of virtually all such LLMs are layer-wise
normalization (LN) layers, typically LayerNorm [Ba et al.,[2016]

H H
X — 1 1
— — = N — )2
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or RMSNorm [Zhang and Sennrich, 2019} same formula without subtracting the mean p]. These
layers have been introduced to stabilize the training process [Ba et al., 2016], similar to batch
normalization [loffe and Szegedy, [2015]] in other network architectures.

Unlike batch normalization however, LN layers cannot be replaced with a linear transformation at
inference time. While the mean centering (1), weight (vy), and bias (3) parameters can be folded into
neighboring layers [e.g. fold_1n, Nanda and Bloom| 2022}, the non-linear division by the norm or
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Figure 1: Main training loss curves for all GPT-2 variants during LN removal. Original GPT-2
OpenWebText eval losses are shown for reference. Curves terminate at model suite checkpoints. LN
removal period shown as vertical lines.

standard deviation of the residual stream must be executed at inference time. This raises the question
of what role LNs plays in the model and whether it is necessary for the model to function. Prior work
has shown that LNs functions can implement complex non-linear functions in toy models

[2022], and proposed that LNs might play a role in confidence regulation in LLMs 2024].

Additionally, LN layers complicate mechanistic interpretability. Mechanistic interpretability typically
aims to decompose the model into smaller components and to understand their individual effects
and interactions. Both of these are complicated by the non-linearity of LN layers. Individual
components cannot be easily attributed as their effect on LN depends on the residual stream activations
([nostalgebraist, 2020, [Elhage et al., 2021} [Wang et al.l [2022b| [Nandal, [2023b]]Nanda [2023al).
Interactions between components are also complicated by LN because it causes each component to
affect almost every downstream component in the model (via the LN scale). This makes analyzing
the interactions complex [e.g. [Bushnagq et all, 2024} [Farnik et al., [2025]]. In practice, researchers

pproximate the LN layers as linear transformations [referred to as “freezing LayerNorm”; Bricken|
et al.| 2023 McDougall et al.,[2023| [Kissane et al.|,[2024], or train models without LN layers [Elhage
et al.,2021] [Nabeshimal, [2024].

In this work we show that LN layers can be removed from transformer models at the end of training.
We replace the LN layers with a linear transformation that is initialized to be close to the original
LN transformation, and fine-tune the model on a small fraction of its training data. We do this for
one LN layer at a time, essentially slowly weaning the model off of LN. This (a) shows that LLMs
can function without LN layers, and (b) provides a LN-free versions of the GPT-2 family of models.
These models can be studied on their own, simply to understand any large language model, or as a
proxy for their corresponding original GPT-2 models. The latter is possible as our fine-tuned models
have similar internals, but should be used with caution as similarity is not exact.

Our contribution is threefold:

* We show that LLMs can function without LN layers, achieving a cross-entropy loss compa-
rable to the original models.

* We provide a optimized protocol for removing LN layers from LLMs at the end of training
or during fine-tuning, and provide a suite of LN-free GPT-2 models on Hugging Face.
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* We validate that the interpretability of LN-free models is improved, finding that the direct
logit attribution (DLA) error is reduced from 50% to 0%, and that attribution patching—
contrary to expectations in the literature—does not improve with LN-free models.

2 Related work

Mechanistic interpretability: Interpretability aims to understand the internals of neural networks
and the algorithms they implement. Most mechanistic interpretability methods attempt to decompose
a model into smaller components and aim to understand the interactions between those components.
The most popular methods are based on sparse dictionary learning, such as sparse autoencoders
[Bricken et al.,|2023]] or cross-layer transcoders [[Ameisen et al.,[2025]]. In both cases, researchers
attempt to find a sparsely-interacting set of components that explain the model’s behavior [Marks
et al., 2024} [Lindsey et al2025]. The most common approach to deal with LN is to approximate the
layer norm scale as constant [e.g. [Bricken et al.| 2023 [McDougall et al., [2023| Kissane et al., [2024]].
Other methods introduce special cases for LN layers [e.g. Bushnaq et al., [2024].

LN alternatives: The main alternative to layer normalization is batch normalization (BN). However,
BN performs worse than LN in language model transformers due to changes between the training
and inference distributions [e.g. [Wang et al., [2022a].

Concurrent work [Zhu et al.| 2025|] proposed a Dynamic Tanh (DyT) as an alternative to normalization.
Instead of an LN layer, they apply an element-wise tanh(ax) function to the residual stream. This
work confirms our results, finding that language models can work without LN. While DyT is preferable
over LN, in some use cases, DyT is still a non-linear function whose role we don’t understand, and
that affects interpretability. Our work goes further, replacing LN with a purely linear transformation.

Transformers trained without normalization: Finally, Nabeshima [2024] trains toy language
models from scratch, without normalization. However, we expect this method to work only for small
language models, state-of-the-art language models continue being trained with normalization. Thus
we focus on removing LN from an already-trained model.

3 LN Removal strategy and methods

We remove the nonlinearity of LN by replacing the standard deviation in () by a scalar, corresponding
to an estimate of the average standard deviation, 7,ye, while fine-tuning on OpenWebText. We define
a FakeLLN block as

H B S
X — 1 1
FakeLN(x) = = Oy +8, 053 = \| 7 > (@en — > T 6 Owg= 55 > D 0v.
ave h=1 b=1 s=1
2

where oy, ; is the standard deviation across the model dimension for batch index b and sequence
position s, and o,y is the average across all tokens in a batch. @, is the fixed scalar value used
when replacing LN with FakeLN. Because removing all LN blocks simultaneously irreparably breaks
the model’s performance, we adopt a sequential removal process during fine-tuning: we remove one
LN block, fine-tune for a fixed number of steps to stabilize the loss (which typically spikes after each
removal), and then proceed to the next LN block. Furthermore, o,y can drift during fine-tuning.
Therefore, to minimize the disruption introduced by LN removal and stabilize the fine-tuning process,
we recompute o,y for each batch and freeze the scaled factor in FakeLN at the moment of removal
t0 Oayg = Oavg. For the small and medium models, the batch size is significantly large enough to
produce reliable estimates of o,y,. For GPT-2 Large and GPT-2 XL, we use an exponential moving
average filter to update o,,, for new batches. After LN removal, 7,y is not updated anymore.

We categorize LN blocks into LN!,, LN!, LN, » and LN/, where [ indicates the layer number.
Respectively, these LN blocks normalize inputs to the query/key path, the value path, the MLP, and
the final unembedding. While splitting LN for attention heads paths is uncommon, we find this
more fine-grained removal of LN improves stability during fine-tuning. Our sequential removal
process begins after an initial standard fine-tuning phase with the removal of LNY; p, followed by Imlp
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fine-tuning steps. We then remove LN}, p, fine-tune again for gmip steps and continue this pattern
layer by layer until LNL; , is removed where L = Niayers. We then apply the same pattern to remove
LNf]k and LNlV blocks, each separated by gk and gy fine-tuning steps, respectively. Finally, we remove

LN/. The gaps between removal events are hyperparameters that have to be chosen carefully. Too
small gaps can result in instabilities, while choosing very large gaps results in unnecessarily high
computational costs. We provide a table with LN removal schedule and more details in Appendix [B]

We empirically found that beginning with LNM" rather than LNJ* led to more stable fine-tuning,
likely because residual norm variance at beginning-of-sequence tokens affects the attention mecha-
nism more strongly when its normalization is removed first. Despite removing LN blocks sequentially,
instabilities can still occur during LN removal. To further stabilize LN-removal by fine-tuning, we
used an additional auxiliary loss.

Auxiliary Loss In models with LN, residual stream vectors are scaled by their standard deviatimﬂ
When LN is removed, large norm disparities across positions can lead to gradient spikes and destabi-
lize fine-tuning. To encourage stable activations during this process, we introduce an auxiliary loss
that promotes consistent standard deviations across token positions:

1
Lax=XByo[(00:—06)°], 6=rr > obs 3)
‘M| (b,s)eEM

where A is a scalar hyperparameter. While the loss itself is computed across all positions in the batch,
the target ¢ is the average standard deviation across the subset of token positions M, excluding
the first token (position 0) and any positions containing the end-of-text token (ID 50256). These
exclusions from the target calculation are motivated by the observation that such positions consistently
exhibit higher variance in GPT-2 models. We apply the auxiliary loss only at LN/ since all residual
streams propagate through this final normalization layer, making it a natural global target for norm
regularization.

4 LN Removal results

We successfully remove LN during fine-tuning on OpenWebText from GPT-2 Small, Medium, Large,
and XL (Tab.[T), demonstrating that our sequential LN removal strategy with auxiliary loss scales from
a 124 million parameter model to a 1.5 billion parameter model. Figure|l|shows the main loss during
fine-tuning for LN-removal (for details of the sequential LN-removal schedule and hyperparameters,
see Appendix [B). We find that the largest main loss spikes appear during the removal of LNyp
blocks, which is the first LN block that is removed. The LNy and LN, block removals result only in
small main loss spikes. Before introducing the auxiliary loss, the LN-removal fine-tuning loss curves
were more spiky, suggesting that the auxiliary loss effectively absorbs some of the effects of LN
removal. Furthermore, the auxiliary loss decreases quickly at the beginning of fine-tuning, indicating
that the model successfully learns to maintain consistent standard deviations across token positions.

As a control, we compare the LN-free GPT-2 model suite to the original GPT-2 models and vanilla
fine-tuned models. The vanilla fine-tuned models were fine-tuned for the same number of steps and
with the same learning rate schedule as the LN-free models, but without auxiliary loss and without
removing LN. This control allows us to disentangle the effects of LN from the effects of fine-tuning.

We evaluate performance using mean cross-entropy loss on a validation set of OpenWebText, The
Pile, and The Pile-filtered (Tab.m). The Pile-filtered consists of sequences from The Pile dataset
(monology-pile-uncopyrighted), filtered by removing sequences containing tokens that appear in The
Pile but not in OpenWebText, such as control characters which arise from formatting discrepancies
between the two datasets (see Appendix [D]for more details).

We find that LN-free models perform comparably to their original variants, with performance
gaps ranging from +0.03 to 0.1 cross-entropy loss difference on The Pile-filtered (Tab.[I)). This
comparable performance extends to standard language understanding benchmarks, where LN-free
models maintain accuracy within 1-2 percentage points from their original variants (Appendix [E)).

! After subtracting the mean across features, i.e., removing the component in the [1, 1, .. ., 1] direction [Gupta
et al.| 2025].



150
151
152
153
154

156
157
158
159
160
161
162

163

164
165
166
167
168

169

170
171
172
173

Table 1: Overview of our LN-free, vanilla fine-tuned, and original GPT-2 models. Reported values
are mean cross-entropy losses for 10.2M tokens for The Pile and The Pile filtered and 4.5M tokens for
the OpenWebText (WT) validation set. For each model size and dataset, the lowest loss is highlighted
in bold, and the loss difference between the LN-free model and the best-performing model is shown
in brackets. All models are available on Hugging Face, see Appendix [A] We also discuss compute
requirements in Appendix [A]

Model FT steps  OWT (val) The Pile The Pile-filtered
GPT-2 Small original 0 3.1006 2.8450 2.7899

GPT-2 Small vanilla 300 3.0126 2.8511 2.8112

GPT-2 Small LN-free 300 3.0797 [+0.0671]  2.8852 [+0.0402] 2.8757 [+0.0858]
GPT-2 Medium original 0 2.8145 2.5163 2.5390

GPT-2 Medium vanilla 500 2.7390 2.5752 2.5724

GPT-2 Medium LN-free 500 2.7642 [+0.0252] 2.6579 [+0.1416] 2.6352 [+0.0962]
GPT-2 Large original 0 2.6623 2.5320 2.4347

GPT-2 Large vanilla 600 2.6240 2.6233 2.5074

GPT-2 Large LN-free 600 2.6384 [+0.0144] 2.7504 [+0.2184] 2.5159 [+0.0812]
GPT-2 XL original 0 2.5567 2.44360 2.3739

GPT-2 XL Vanilla 800 2.4799 2.4673 2.3821

GPT-2 XL LN-free 800 2.5052 [+0.0253]  130.2197[] 2.3992 [+0.0253]

The only notable exception is GPT-2 XL LN-free, which shows degraded performance on The Pile.
A closer examination of the distribution of losses reveals that the higher averaged CE loss is driven
by a very small number of samples and that the 99.9 percentile ranges of GPT-2 XL LN-free and
GPT-2 original are nearly identical for The Pile, indicating that the vast majority of sequences are
handled similarly by both models. This suggests that GPT-2 XL LN-free is highly overconfident on a
small number of sequences that are present in The Pile but absent from The Pile-filtered dataset.

We also investigate whether the performance gap can be closed by simply fine-tuning LN-free models
for longer. Contrary to our initial expectations, we find that extending fine-tuning does not reduce the
loss gap to vanilla models. Instead, the gap remains approximately constant throughout fine-tuning,
suggesting that LN contributes a small but persistent performance benefit that cannot be compensated
by additional fine-tuning. We discuss potential mechanisms behind this behavior in Section[5.4] We
also investigate if our methodology generalizes beyond the GPT2 model family, and successful apply
our removal strategy to Pythia 70M [Biderman et al.| [2023]| (see Appendix [C).

5 Mechanistic interpretability analyses on LN-Free models

Removing LN eliminates nonlinear dependencies between components and results in models where
residual stream directions map linearly to output logits. In this section, we evaluate common
interpretability methods, such as Direct Logit Attribution (DLA) [nostalgebraist, 2020} [Elhage et al.|
2021, |Wang et al., 2022b), Nandal 2023b] and attribution patching [Nandal 2023al] on LN-free models
and compare the results to their counterparts with LN.

5.1 Direct Logit Attribution on LN-free models gives exact Direct Effect on logits

Direct Logit Attribution (DLA) is an approximation to the Direct Effect (DE) of a component. The
DE [Pearl| 2022} |Geiger et al.,|2024] is the effect of a model component on the outputs that is not
mediated by intermediate components, and can be computed by subtracting a component’s output ¢
from the residual stream r after the final layer, and taking the difference in outputs,

DE(c) = LN(r) - Wy — LN(r — ¢) - Wy, 4

>GPT-2 XL original: Median: 1.0103, 95 Percentile range: [0.0005, 10.6193], 99.9 percentile range [~0.0000,
43.0064]

3GPT-2 XL LN-free: Median: 1.0937, 95 percentile range: [0.0004, 10.7548], 99.9 percentile range
[~0.0000, 48.6459]
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Figure 2: Activation patching and attribution patching applied on the residual stream at different
layers and positions on GPT-2 Small and the corresponding vanilla and LN-free versions.

where Wy, denotes the unembedding, and LN the final LayerNorm. The DLA approximation is
computed using the cached LN scale,

DLA(C) = LNcached(C) - Wy, ©)
which effectively linearizes LayerNorm (LN).

We calculated both DLA and DE on each attention head in GPT-2 Small original, GPT-2 Small
vanilla FT, and GPT-2 Small LN-free FT, on 1,000 sequences of consisting of 512 tokens from The
Pile-filtered, for logits corresponding to the correct target token. To compare metrics, we used the
Normalized Mean Absolute Error (NMAEﬂ which measures the average discrepancy between DLA
and DE, expressed as a percentage of the average magnitude of the DE. Our LN-free fine-tuned
model achieves a perfect 0.00% [0.00%, 0.00%] (95% Confidence Interval - CI) NMAE, whereas the
original model exhibits an NMAE of 49.07% [29.92%, 66.10%]. This result shows that removing LNs
makes these methods mathematically equivalent, eliminating the need for inaccurate linearization
approximations. See Appendix [F]for more details.

5.2 Accuracy of attribution patching on LN-free models does not significantly improve

Activation patching [Meng et al., 2022, Zhang and Nanda, 2023} |Heimersheim and Nanda, 2024] is an
interpretability method used to assess the causal roles of neural network components by transferring
activations from a "clean" prompt that elicits correct model behavior into a "corrupted" prompt that
typically leads to incorrect behavior. Formally, this can be expressed as:

A= f(xcorr; ap <— ap (Iclean)) - f(zcorr)y (6)

where f(z) measures differences in model predictions (typically logit differences), and a; <
a;(Zeclean) indicates replacing the corrupted activation with its clean counterpart at layer [. While
precise, activation patching is computationally expensive, scaling with the number of components
tested. Attribution patching |Nanda) [2023a] addresses this approximating activation patching with a
first-order Taylor expansion around the corrupted activation, requiring only two forward passes and
one backward pass,

A= f(xcorr; ap <— al(l'clean)) - f(xcorr) ~ Valf(mcorr) : (al (xclean) —Q (xcon')) = Aam" (7)

“We calculate NMAE, using averages of absolute differences and DE magnitude rather than per-sample
ratios, as we did not observe a consistent proportional relationship between these two measures across samples.
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As LN projects residual vectors onto a (dmedes — 1)-dimensional sphere after removing the mean
component, it causes derivatives to vanish when patched directions align with the residual stream and
is, therefore, a source of attribution patching errors, i.e. discrepancies between attribution patching
estimates and ground-truth activation patching results (Neel Nanda described it for this reason as "a
particularly thorny nonlinearity"[Nanda, [2023a])).

We investigate whether LN is the primary factor limiting attribution patching accuracy by compared
attribution patching across three models: GPT-2 Small, the corresponding LN-free fine-tuned, and
vanilla fine-tuned. We focused on the residual stream preceding each transformer block, a location
where attribution patching is known to perform particularly poorly in models with LN. We used
480 I0I|Wang et al.|[2022b] prompts, systematically varying names, places, and objects, with each
prompt paired with counterparts covering all possible name orderings. To ensure alignment across
inputs, all prompts had fixed token lengths and name positions. We applied both techniques and
quantified how well attribution patching approximates activation patching across layers. We used
normalized logit differences as the patching metric to enable robust comparisons across methods.
Surprisingly, attribution patching yielded very similar results across layers in the three models (see
Fig.[2)) and despite removing LN, we observed no improvement in attribution patching accuracy. For
each layer, we quantified this by computing the sum of absolute attribution patching errors across
token positions in the vanilla fine-tuned model, and subtracting the corresponding value from the
LN-free model. This yielded a per-layer improvement score, where positive values indicate lower
attribution error in the LN-free model. Averaged across layers, the improvement is ;n = —0.026,
with standard deviation o = 0.082. This negative but informative result suggests that attribution
patching’s limitations likely arise from other more fundamental nonlinearities in the transformer
architecture, namely the attention SoftMax or the MLP activation functions.

5.3 First position tokens are no longer special

A well-documented phenomena in transformer-based language models is the disproportionately high
L2 norm of first position token’s hidden representations [Xiao et al., 2024, |Yona et al.,2025| |Barbero
et al.,[2025]]. This characteristic has been identified as a key mechanism behind "attention sinks,"
where the first token captures an outsized portion of attention across multiple heads, affecting infor-
mation flow throughout the network. While this mechanism appears to help standard models avoid
representational collapse by controlling information mixing across layers, it introduces computational
irregularities and potential vulnerabilities [[Yona et al., 2025].

To investigate whether our models exhibit similar behaviours, we measured the L2 norm of first
position tokens, compared to all other tokens, on 1,000 sequences consisting of up to 512 tokens from
The Pile-filtered. LN-free models reveal a disruption of the typical first position token norm pattern.
As illustrated in Fig. 3] the LN-free model maintains consistently moderate L2 norm values (~300
to 500) across all layers for the first token, in contrast to the significant norm inflation observed in
models with LN. This more uniform norm across token positions represents a fundamental shift from
the standard architecture, where the first token’s norm typically exceeds that of other tokens by close
to an order of magnitude. The largest first token norm growth in all three models was due to the
attention head in layer 3, where norms grow from ~500 to 3,600 for the models with LN.

We also investigated the attention sink rate across models, defined as the proportion of attention
heads where the first token attracts at least 30% of overall attention. For the original model, the sink
rate was 55.3% [53.1%, 58.1%] (95% CI), which dropped to 45.3% [42.0%, 48.5%] for our LN-free
variant. Interestingly, while this represents a notable reduction in sink rate, it is not proportional to the
reduction we observed in L2 norms. This suggests that the relationship between relative token norm
magnitudes and attention sink behavior is likely complex, with attention mechanisms potentially
maintaining some degree of positional bias toward the first token even when its norm is substantially
reduced.

This effect is likely due to the constant linear scaling applied by FakeLLN. In models with LN,
residual stream vectors are scaled by their individual standard deviations, meaning components are
trained to operate under normalized input conditions. Once LN is removed, this normalization is no
longer enforced. To compensate, the model appears to adapt by reducing variability in token norms,
such as between the first token and the rest of the sequence. Our auxiliary loss further encourages
norm consistency by explicitly penalizing variation across positions, however, we did observe this
fundamental change in norm behavior even in experiments without this loss term.
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Figure 3: L2 norm growth for first position tokens (left) versus other positions tokens (right) for
GPT-2 Medium models. First token norms significant deviate from norms at other positions for
models trained with LN. LN-free model treats first token norm similarly to other positions.

5.4 Confidence neurons are neutered in LN-free models

When developing our LN-free model variants, we observed a consistent pattern: models exhibited
significant overconfidence compared to their original counterparts. For GPT-2 Medium, the average
entropy of the output distribution decreased from 2.86 [2.86, 2.87] (95% CI) in the original model to
2.53 [2.52, 2.54] in the LN-free version. Correspondingly, the expected calibration error, defined
as the average absolute difference between the predicted confidence and accuracy, increased from
0.0019 [0.018, 0.020] to 0.034 [0.033, 0.035]. Motivated by these observations, we investigated
how the recently discovered "confidence neurons" (also referred to as "entropy neurons") [Katz and
Belinkovl, 2023 |Gurnee et al., [2024| |Stolfo et al., [2024] in the final MLP layer were affected by our
LN removal strategy.

Following |Stolfo et al.| [2024], we define confidence neurons as neurons in the final MLP with
(a) a high weight norm, and (b) a uniform impact on all output logits. We detail how confidence
neurons were identified and further analysis in Appendix |G| We identified the same top-3 confidence
neurons (1083, 1108, 3144) in GPT-2 Medium original, vanilla FT, and LN-free. To measure their
importance in each model, we conducted mean ablations on 1,000 sequences consisting of 512 tokens
in The Pile-filtered. For each neuron 7, we replaced its input activation with its mean value across
the dataset (x; — E[z;]). This intervention removes the neuron’s contextual information while
maintaining its average contribution. Figure 4] highlights the absolute change in cross-entropy loss
when mean ablating each neuron. In the GPT-2 Medium original, all three neurons increase CE loss
when ablated, with neuron 3144 showing the largest effect. In contrast, the impact is completely
eliminated in LN-free model. This confirms that linearizing LN completely disables entropy neurons
in the final MLP layer, further supporting previous work that identified LN’s non-linearity as their
primary enabling mechanism [Stolfo et al.,|2024]]. We also observed a decrease in the effectiveness
of confidence neurons in our vanilla FT model, likely due to our fine-tuning hyperparameters, and is
discussed further in Appendix [G]

6 Discussion

6.1 Limitations

We successfully remove LN from all GPT-2 models. Here, we want to highlight common issues
and possible limitations of this process. We find that the fine-tuning process when LNs are partially
removed is, as expected, less stable. We find that the training loss can spike to high values on some
inputs, which sometimes causes the training run to fail (irrecoverably high loss). A common failure
we observed are exploding gradients, which most often occur during LN} removal. Instabilities
usually appear as a cascade of increasing gradient norms or exploding gradients in a single step.
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Figure 4: Absolute change in cross-entropy (CE) when ablating top-3 confidence neurons in GPT-2
Medium models. GPT-2 Medium original demonstrates a significant change in CE loss upon ablating,
effect is significantly dampened in vanilla FT, and completely disappears in LN-free.

While our LN-removal strategies developed on GPT-2 Small and Medium largely transfer to the
Large and XL models, they required significant hyperparameter tuning, which was computationally
expensive. Additionally, an early version of our protocol without auxiliary loss worked for GPT-2
Small, but did not scale to larger models, suggesting that protocols don’t always generalize across
models.

As highlighted in Section[5.4] all of our LN-free models exhibit overconfidence compared to their
LN counterparts. While our experiments demonstrate that removing LN effectively neutralizes
confidence neurons, the magnitude of the observed increase in overconfidence suggests additional
contributing factors. It’s possible that without the normalizing effect of standard LN, attention,
and MLP components must now handle greater variability in residual stream inputs, potentially
compromising their ability to contribute to appropriate uncertainty quantification.

6.2 Future work

More models: We focused primarily on GPT-2 models, due to their ubiquity in the interpretability
community. In the future, we would like to expand our LN removal protocol to more recent models.

Parameter efficient fine-tuning: So far we used full fine-tuning. While this was feasible for GPT-2
sized models, we want to explore parameter efficient fine-tuning strategies in the future.

Further protocol optimization: We noticed that the gap between removing the LN in different
layers can be reduced for LNf]k and LN, p; in fact some experimental runs showed that we could

remove those instances of LN in all layers simultaneously (only LNlV always required gaps).

Circuits interpretability: Attempts to create a sparse computational graph to represent a neural
network are hindered by LN. It would be interesting to see if techniques like Marks et al.| [2024]]
benefit from removing LN layers.

7 Conclusions

We showed that layer normalization can be gradually removed from transformer models with minimal
performance loss using a fine-tuning procedure, demonstrating this on all GPT-2 models (and
Pythia-70M). We detailed our procedure and the strategies used to address hyperparameter sensitivity.
Applying interpretability techniques, we found that in LN-free models DLA becomes an exact estimate
of DE and first-token residual norms become comparable to those at other positions. Surprisingly,
attribution patching does not improve in LN-free models, suggesting its limitations stem from other
nonlinearities. Finally, we showed that LN-free models lack operational entropy neurons, contributing
towards the more generally observed trend of model overconfidence. Open-sourcing the models, we
hope to contribute to mechanistic interpretability research.



317

318
319

321
322
323
324

325

326
327
328

329
330
331
332

333
334
335

336
337
338
339

341
342

343
344

346

347
348
349

350
351
352
353
354
355

356
357

358
359
360

361
362
363

365
366

References

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein,
Petar Velickovié, and Razvan Pascanu. Why do LLMs attend to the first token? arXiv preprint
arXiv:2504.02732, 2025.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. arXiv preprint
arXiv:2304.01373, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 7432-7439, 2020.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Lucius Bushnagq, Stefan Heimersheim, Nicholas Goldowsky-Dill, Dan Braun, Jake Mendel, Kaarel
Hinni, Avery Griffin, Jorn Stohler, Magdalena Wache, and Marius Hobbhahn. The local interaction
basis: Identifying computationally-relevant and sparsely interacting features in neural networks.
arXiv preprint arXiv:2405.10928, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Lucy Farnik, Tim Lawson, Conor Houghton, and Laurence Aitchison. Jacobian sparse autoencoders:
Sparsify computations, not just activations. arXiv preprint arXiv:2502.18147, 2025.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
alignments between interpretable causal variables and distributed neural representations. In Causal
Learning and Reasoning, pages 160-187. PMLR, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy

10


https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html

367
368
369
370
371
372
373
374

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom
Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty, Eli
Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel, Jack
Krawczyk, Cosmo Du, Ed Chi, Heng-Tze Cheng, Eric Ni, Purvi Shah, Patrick Kane, Betty Chan,
Manaal Faruqui, Aliaksei Severyn, Hanzhao Lin, YaGuang Li, Yong Cheng, Abe Ittycheriah,
Mahdis Mahdieh, Mia Chen, Pei Sun, Dustin Tran, Sumit Bagri, Balaji Lakshminarayanan,
Jeremiah Liu, Andras Orban, Fabian Giira, Hao Zhou, Xinying Song, Aurelien Boffy, Harish
Ganapathy, Steven Zheng, HyunJeong Choe, Agoston Weisz, Tao Zhu, Yifeng Lu, Siddharth
Gopal, Jarrod Kahn, Maciej Kula, Jeff Pitman, Rushin Shah, Emanuel Taropa, Majd Al Merey,
Martin Baeuml, Zhifeng Chen, Laurent El Shafey, Yujing Zhang, Olcan Sercinoglu, George Tucker,
Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs,
Anais White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran Kazemi, Lucas
Gonzalez, Misha Khalman, Jakub Sygnowski, Alexandre Frechette, Charlotte Smith, Laura Culp,
Lev Proleev, Yi Luan, Xi Chen, James Lottes, Nathan Schucher, Federico Lebron, Alban Rrustemi,
Natalie Clay, Phil Crone, Tomas Kocisky, Jeffrey Zhao, Bartek Perz, Dian Yu, Heidi Howard, Adam
Bloniarz, Jack W. Rae, Han Lu, Laurent Sifre, Marcello Maggioni, Fred Alcober, Dan Garrette,
Megan Barnes, Shantanu Thakoor, Jacob Austin, Gabriel Barth-Maron, William Wong, Rishabh
Joshi, Rahma Chaabouni, Deeni Fatiha, Arun Ahuja, Gaurav Singh Tomar, Evan Senter, Martin
Chadwick, Ilya Kornakov, Nithya Attaluri, Ifiaki Iturrate, Ruibo Liu, Yunxuan Li, Sarah Cogan,
Jeremy Chen, Chao Jia, Chenjie Gu, Qiao Zhang, Jordan Grimstad, Ale Jakse Hartman, Xavier
Garcia, Thanumalayan Sankaranarayana Pillai, Jacob Devlin, Michael Laskin, Diego de Las Casas,
Dasha Valter, Connie Tao, Lorenzo Blanco, Adria Puigdomenech Badia, David Reitter, Mianna
Chen, Jenny Brennan, Clara Rivera, Sergey Brin, Shariq Igbal, Gabriela Surita, Jane Labanowski,
Abhi Rao, Stephanie Winkler, Emilio Parisotto, Yiming Gu, Kate Olszewska, Ravi Addanki,
Antoine Miech, Annie Louis, Denis Teplyashin, Geoff Brown, Elliot Catt, Jan Balaguer, Jackie
Xiang, Pidong Wang, Zoe Ashwood, Anton Briukhov, Albert Webson, Sanjay Ganapathy, Smit
Sanghavi, Ajay Kannan, Ming-Wei Chang, Axel Stjerngren, Josip Djolonga, Yuting Sun, Ankur
Bapna, Matthew Aitchison, Pedram Pejman, Henryk Michalewski, Tianhe Yu, Cindy Wang, Juliette
Love, Junwhan Ahn, Dawn Bloxwich, Kehang Han, Peter Humphreys, Thibault Sellam, James
Bradbury, Varun Godbole, Sina Samangooei, Bogdan Damoc, Alex Kaskasoli, Sébastien M. R.
Arnold, Vijay Vasudevan, Shubham Agrawal, Jason Riesa, Dmitry Lepikhin, Richard Tanburn,
Srivatsan Srinivasan, Hyeontaek Lim, Sarah Hodkinson, Pranav Shyam, Johan Ferret, Steven Hand,
Ankush Garg, Tom Le Paine, Jian Li, Yujia Li, Minh Giang, Alexander Neitz, Zaheer Abbas, Sarah
York, Machel Reid, Elizabeth Cole, Aakanksha Chowdhery, Dipanjan Das, Dominika Rogoziriska,
Vitaliy Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas Zilka, Flavien Prost, Luheng He,
Marianne Monteiro, Gaurav Mishra, Chris Welty, Josh Newlan, Dawei Jia, Miltiadis Allamanis,
Clara Huiyi Hu, Raoul de Liedekerke, Justin Gilmer, Carl Saroufim, Shruti Rijhwani, Shaobo Hou,
Disha Shrivastava, Anirudh Baddepudi, Alex Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu,
Daniel Sohn, Devendra Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie Petrova, Shashi
Narayan, Arthur Guez, Siddhartha Brahma, Jessica Landon, Miteyan Patel, Ruizhe Zhao, Kevin
Villela, Luyu Wang, Wenhao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung, James Keeling,
Petko Georgiev, Diana Mincu, Boxi Wu, Salem Haykal, Rachel Saputro, Kiran Vodrahalli, James
Qin, Zeynep Cankara, Abhanshu Sharma, Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George van den Driessche,
Tao Wang, Fan Yang, Shuo yiin Chang, Paul Komarek, Ross Mcllroy, Mario Luci¢, Guodong
Zhang, Wael Farhan, Michael Sharman, Paul Natsev, Paul Michel, Yamini Bansal, Siyuan Qiao,
Kris Cao, Siamak Shakeri, Christina Butterfield, Justin Chung, Paul Kishan Rubenstein, Shivani
Agrawal, Arthur Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan Pope, Loren
Maggiore, Jackie Kay, Priya Jhakra, Shibo Wang, Joshua Maynez, Mary Phuong, Taylor Tobin,
Andrea Tacchetti, Maja Trebacz, Kevin Robinson, Yash Katariya, Sebastian Riedel, Paige Bailey,
Kefan Xiao, Nimesh Ghelani, Lora Aroyo, Ambrose Slone, Neil Houlsby, Xuehan Xiong, Zhen
Yang, Elena Gribovskaya, Jonas Adler, Mateo Wirth, Lisa Lee, Music Li, Thais Kagohara, Jay
Pavagadhi, Sophie Bridgers, Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed, Tianqi Liu,
Richard Powell, Vijay Bolina, Mariko linuma, Polina Zablotskaia, James Besley, Da-Woon Chung,
Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, Guolong Su, Martin Polacek,
Raphaél Lopez Kaufman, Simon Tokumine, Hexiang Hu, Elena Buchatskaya, Yingjie Miao,
Mohamed Elhawaty, Aditya Siddhant, Nenad Tomasev, Jinwei Xing, Christina Greer, Helen Miller,
Shereen Ashraf, Aurko Roy, Zizhao Zhang, Ada Ma, Angelos Filos, Milos Besta, Rory Blevins,
Ted Klimenko, Chih-Kuan Yeh, Soravit Changpinyo, Jiaqi Mu, Oscar Chang, Mantas Pajarskas,

11



434

444

454

464

474

484

Carrie Muir, Vered Cohen, Charline Le Lan, Krishna Haridasan, Amit Marathe, Steven Hansen,
Sholto Douglas, Rajkumar Samuel, Mingqiu Wang, Sophia Austin, Chang Lan, Jiepu Jiang, Justin
Chiu, Jaime Alonso Lorenzo, Lars Lowe Sjosund, Sébastien Cevey, Zach Gleicher, Thi Avrahami,
Anudhyan Boral, Hansa Srinivasan, Vittorio Selo, Rhys May, Konstantinos Aisopos, Léonard
Hussenot, Livio Baldini Soares, Kate Baumli, Michael B. Chang, Adria Recasens, Ben Caine,
Alexander Pritzel, Filip Pavetic, Fabio Pardo, Anita Gergely, Justin Frye, Vinay Ramasesh, Dan
Horgan, Kartikeya Badola, Nora Kassner, Subhrajit Roy, Ethan Dyer, Victor Campos Campos, Alex
Tomala, Yunhao Tang, Dalia El Badawy, Elspeth White, Basil Mustafa, Oran Lang, Abhishek Jindal,
Sharad Vikram, Zhitao Gong, Sergi Caelles, Ross Hemsley, Gregory Thornton, Fangxiaoyu Feng,
Wojciech Stokowiec, Ce Zheng, Phoebe Thacker, Caglar Unlii, Zhishuai Zhang, Mohammad Saleh,
James Svensson, Max Bileschi, Piyush Patil, Ankesh Anand, Roman Ring, Katerina Tsihlas, Arpi
Vezer, Marco Selvi, Toby Shevlane, Mikel Rodriguez, Tom Kwiatkowski, Samira Daruki, Keran
Rong, Allan Dafoe, Nicholas FitzGerald, Keren Gu-Lemberg, Mina Khan, Lisa Anne Hendricks,
Marie Pellat, Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi
Hashemi, Richard Ives, Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze
Wang, Thibault Sottiaux, Michela Paganini, Jean-Baptiste Lespiau, Alexandre Moufarek, Samer
Hassan, Kaushik Shivakumar, Joost van Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh Goyal,
Matthew Tung, Andrew Brock, Hannah Sheahan, Vedant Misra, Cheng Li, Nemanja Rakicevic,
Mostafa Dehghani, Fangyu Liu, Sid Mittal, Junhyuk Oh, Seb Noury, Eren Sezener, Fantine Huot,
Matthew Lamm, Nicola De Cao, Charlie Chen, Sidharth Mudgal, Romina Stella, Kevin Brooks,
Gautam Vasudevan, Chenxi Liu, Mainak Chain, Nivedita Melinkeri, Aaron Cohen, Venus Wang,
Kristie Seymore, Sergey Zubkov, Rahul Goel, Summer Yue, Sai Krishnakumaran, Brian Albert,
Nate Hurley, Motoki Sano, Anhad Mohananey, Jonah Joughin, Egor Filonov, Tomasz K¢pa, Yomna
Eldawy, Jiawern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor Bos, Jerry Chang, Sanil Jain, Sri
Gayatri Sundara Padmanabhan, Subha Puttagunta, Kalpesh Krishna, Leslie Baker, Norbert Kalb,
Vamsi Bedapudi, Adam Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin, Xiang Zhou, Zhichun
Wu, Sam Sobell, Andrea Siciliano, Alan Papir, Robby Neale, Jonas Bragagnolo, Tej Toor, Tina
Chen, Valentin Anklin, Feiran Wang, Richie Feng, Milad Gholami, Kevin Ling, Lijuan Liu, Jules
Walter, Hamid Moghaddam, Arun Kishore, Jakub Adamek, Tyler Mercado, Jonathan Mallinson,
Siddhinita Wandekar, Stephen Cagle, Eran Ofek, Guillermo Garrido, Clemens Lombriser, Maksim
Mukha, Botu Sun, Hafeezul Rahman Mohammad, Josip Matak, Yadi Qian, Vikas Peswani, Pawel
Janus, Quan Yuan, Leif Schelin, Oana David, Ankur Garg, Yifan He, Oleksii Duzhyi, Anton
Algmyr, Timothée Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex Chinien, Rakesh Shivanna,
Aleksandr Chuklin, Josie Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed, Subhabrata Das,
Zihang Dai, Kyle He, Daniel von Dincklage, Shyam Upadhyay, Akanksha Maurya, Luyan Chi,
Sebastian Krause, Khalid Salama, Pam G Rabinovitch, Pavan Kumar Reddy M, Aarush Selvan,
Mikhail Dektiarev, Golnaz Ghiasi, Erdem Guven, Himanshu Gupta, Boyi Liu, Deepak Sharma,
Idan Heimlich Shtacher, Shachi Paul, Oscar Akerlund, Frangois-Xavier Aubet, Terry Huang, Chen
Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze, Francesco Bertolini, Liana-Eleonora Marinescu,
Martin Bolle, Dominik Paulus, Khyatti Gupta, Tejasi Latkar, Max Chang, Jason Sanders, Roopa
Wilson, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet, Tulsee Doshi, Sid Lall, Swaroop Mishra,
Wanming Chen, Thang Luong, Seth Benjamin, Jasmine Lee, Ewa Andrejczuk, Dominik Rabiej,
Vipul Ranjan, Krzysztof Styrc, Pengcheng Yin, Jon Simon, Malcolm Rose Harriott, Mudit Bansal,
Alexei Robsky, Geoff Bacon, David Greene, Daniil Mirylenka, Chen Zhou, Obaid Sarvana,
Abhimanyu Goyal, Samuel Andermatt, Patrick Siegler, Ben Horn, Assaf Israel, Francesco Pongetti,
Chih-Wei "Louis" Chen, Marco Selvatici, Pedro Silva, Kathie Wang, Jackson Tolins, Kelvin Guu,
Roey Yogev, Xiaochen Cai, Alessandro Agostini, Maulik Shah, Hung Nguyen, Noah O Donnaile,
Sébastien Pereira, Linda Friso, Adam Stambler, Adam Kurzrok, Chenkai Kuang, Yan Romanikhin,
Mark Geller, ZJ Yan, Kane Jang, Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qijun Tan, Dan
Banica, Daniel Balle, Ryan Pham, Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot Singh, Chris
Hidey, Niharika Ahuja, Pranab Saxena, Dan Dooley, Srividya Pranavi Potharaju, Eileen O’Neill,
Anand Gokulchandran, Ryan Foley, Kai Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta, Ragha
Kotikalapudi, Chalence Safranek-Shrader, Andrew Goodman, Joshua Kessinger, Eran Globen,
Prateek Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang Song, Ali Eichenbaum, Thomas Brovelli,
Sahitya Potluri, Preethi Lahoti, Cip Baetu, Ali Ghorbani, Charles Chen, Andy Crawford, Shalini
Pal, Mukund Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski, Pierre-Louis Cedoz, Chenmei Li,
Shiyuan Chen, Niccolod Dal Santo, Siddharth Goyal, Jitesh Punjabi, Karthik Kappaganthu, Chester
Kwak, Pallavi LV, Sarmishta Velury, Himadri Choudhury, Jamie Hall, Premal Shah, Ricardo
Figueira, Matt Thomas, Minjie Lu, Ting Zhou, Chintu Kumar, Thomas Jurdi, Sharat Chikkerur,

12



485
486
487
488
489
490
491
492
493
494
495
496
497

499
500
501
502
503

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

538
539
540
541
542
543

Yenai Ma, Adams Yu, Soo Kwak, Victor Ahdel, Sujeevan Rajayogam, Travis Choma, Fei Liu,
Aditya Barua, Colin Ji, Ji Ho Park, Vincent Hellendoorn, Alex Bailey, Taylan Bilal, Huanjie Zhou,
Mehrdad Khatir, Charles Sutton, Wojciech Rzadkowski, Fiona Macintosh, Konstantin Shagin, Paul
Medina, Chen Liang, Jinjing Zhou, Pararth Shah, Yingying Bi, Attila Dankovics, Shipra Banga,
Sabine Lehmann, Marissa Bredesen, Zifan Lin, John Eric Hoffmann, Jonathan Lai, Raynald Chung,
Kai Yang, Nihal Balani, Arthur BrazZinskas, Andrei Sozanschi, Matthew Hayes, Héctor Fernandez
Alcalde, Peter Makarov, Will Chen, Antonio Stella, Liselotte Snijders, Michael Mandl, Ante
Kirrman, Pawel Nowak, Xinyi Wu, Alex Dyck, Krishnan Vaidyanathan, Raghavender R, Jessica
Mallet, Mitch Rudominer, Eric Johnston, Sushil Mittal, Akhil Udathu, Janara Christensen, Vishal
Verma, Zach Irving, Andreas Santucci, Gamaleldin Elsayed, Elnaz Davoodi, Marin Georgiev, lan
Tenney, Nan Hua, Geoffrey Cideron, Edouard Leurent, Mahmoud Alnahlawi, Ionut Georgescu,
Nan Wei, Ivy Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper Snoek, Mukund Sundararajan,
Xuezhi Wang, Zack Ontiveros, Itay Karo, Jeremy Cole, Vinu Rajashekhar, Lara Tumeh, Eyal Ben-
David, Rishub Jain, Jonathan Uesato, Romina Datta, Oskar Bunyan, Shimu Wu, John Zhang, Piotr
Stanczyk, Ye Zhang, David Steiner, Subhajit Naskar, Michael Azzam, Matthew Johnson, Adam
Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias, Afroz Mohiuddin, Faizan Muhammad, Jin
Miao, Andrew Lee, Nino Vieillard, Jane Park, Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhijit
Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William Isaac,
Geoffrey Irving, Edward Loper, Michael Fink, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Ivan
Petrychenko, Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu, Peter Grabowski, Yu Mao,
Alberto Magni, Kaisheng Yao, Javier Snaider, Norman Casagrande, Evan Palmer, Paul Suganthan,
Alfonso Castaio, Irene Giannoumis, Wooyeol Kim, Mikotaj Rybinski, Ashwin Sreevatsa, Jennifer
Prendki, David Soergel, Adrian Goedeckemeyer, Willi Gierke, Mohsen Jafari, Meenu Gaba, Jeremy
Wiesner, Diana Gage Wright, Yawen Wei, Harsha Vashisht, Yana Kulizhskaya, Jay Hoover, Maigo
Le, Lu Li, Chimezie Iwuanyanwu, Lu Liu, Kevin Ramirez, Andrey Khorlin, Albert Cui, Tian
LIN, Marcus Wu, Ricardo Aguilar, Keith Pallo, Abhishek Chakladar, Ginger Perng, Elena Allica
Abellan, Mingyang Zhang, Ishita Dasgupta, Nate Kushman, Ivo Penchev, Alena Repina, Xihui Wu,
Tom van der Weide, Priya Ponnapalli, Caroline Kaplan, Jiri Simsa, Shuangfeng Li, Olivier Dousse,
Fan Yang, Jeff Piper, Nathan Ie, Rama Pasumarthi, Nathan Lintz, Anitha Vijayakumar, Daniel
Andor, Pedro Valenzuela, Minnie Lui, Cosmin Paduraru, Daiyi Peng, Katherine Lee, Shuyuan
Zhang, Somer Greene, Duc Dung Nguyen, Paula Kurylowicz, Cassidy Hardin, Lucas Dixon, Lili
Janzer, Kiam Choo, Ziqiang Feng, Biao Zhang, Achintya Singhal, Dayou Du, Dan McKinnon,
Natasha Antropova, Tolga Bolukbasi, Orgad Keller, David Reid, Daniel Finchelstein, Maria Abi
Raad, Remi Crocker, Peter Hawkins, Robert Dadashi, Colin Gaffney, Ken Franko, Anna Bulanova,
Rémi Leblond, Shirley Chung, Harry Askham, Luis C. Cobo, Kelvin Xu, Felix Fischer, Jun Xu,
Christina Sorokin, Chris Alberti, Chu-Cheng Lin, Colin Evans, Alek Dimitriev, Hannah Forbes,
Dylan Banarse, Zora Tung, Mark Omernick, Colton Bishop, Rachel Sterneck, Rohan Jain, Jiawei
Xia, Ehsan Amid, Francesco Piccinno, Xingyu Wang, Praseem Banzal, Daniel J. Mankowitz, Alex
Polozov, Victoria Krakovna, Sasha Brown, MohammadHossein Bateni, Dennis Duan, Vlad Firoiu,
Meghana Thotakuri, Tom Natan, Matthieu Geist, Ser tan Girgin, Hui Li, Jiayu Ye, Ofir Roval,
Reiko Tojo, Michael Kwong, James Lee-Thorp, Christopher Yew, Danila Sinopalnikov, Sabela
Ramos, John Mellor, Abhishek Sharma, Kathy Wu, David Miller, Nicolas Sonnerat, Denis Vnukov,
Rory Greig, Jennifer Beattie, Emily Caveness, Libin Bai, Julian Eisenschlos, Alex Korchemniy,
Tomy Tsai, Mimi Jasarevic, Weize Kong, Phuong Dao, Zeyu Zheng, Frederick Liu, Fan Yang,
Rui Zhu, Tian Huey Teh, Jason Sanmiya, Evgeny Gladchenko, Nejc Trdin, Daniel Toyama, Evan
Rosen, Sasan Tavakkol, Linting Xue, Chen Elkind, Oliver Woodman, John Carpenter, George
Papamakarios, Rupert Kemp, Sushant Kafle, Tanya Grunina, Rishika Sinha, Alice Talbert, Diane
Wu, Denese Owusu-Afriyie, Cosmo Du, Chloe Thornton, Jordi Pont-Tuset, Pradyumna Narayana,
Jing Li, Saaber Fatehi, John Wieting, Omar Ajmeri, Benigno Uria, Yeongil Ko, Laura Knight,
Amélie Héliou, Ning Niu, Shane Gu, Chenxi Pang, Yeqing Li, Nir Levine, Ariel Stolovich, Rebeca
Santamaria-Fernandez, Sonam Goenka, Wenny Yustalim, Robin Strudel, Ali Elqursh, Charlie
Deck, Hyo Lee, Zonglin Li, Kyle Levin, Raphael Hoffmann, Dan Holtmann-Rice, Olivier Bachem,
Sho Arora, Christy Koh, Soheil Hassas Yeganeh, Siim Pdder, Mukarram Tariq, Yanhua Sun,
Lucian Ionita, Mojtaba Seyedhosseini, Pouya Tafti, Zhiyu Liu, Anmol Gulati, Jasmine Liu, Xinyu
Ye, Bart Chrzaszcz, Lily Wang, Nikhil Sethi, Tianrun Li, Ben Brown, Shreya Singh, Wei Fan,
Aaron Parisi, Joe Stanton, Vinod Koverkathu, Christopher A. Choquette-Choo, Yunjie Li, TJ Lu,
Abe Ittycheriah, Prakash Shroff, Mani Varadarajan, Sanaz Bahargam, Rob Willoughby, David
Gaddy, Guillaume Desjardins, Marco Cornero, Brona Robenek, Bhavishya Mittal, Ben Albrecht,
Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson, Alireza Ghaffarkhah, Morgane Riviere, Alanna

13



544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

577
578
579
580
581
582
583
584
585

586
587

588
589

590

592

593

595
596
597
598
599

Walton, Clément Crepy, Alicia Parrish, Zongwei Zhou, Clement Farabet, Carey Radebaugh,
Praveen Srinivasan, Claudia van der Salm, Andreas Fidjeland, Salvatore Scellato, Eri Latorre-
Chimoto, Hanna Klimczak-Pluciniska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria
Mendolicchio, Lexi Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth
Odoom, Lucia Loher, Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina,
Tom Duerig, Antonio Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Lynette Webb,
Sahil Dua, Dong Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal, Tomer
Shani, Matan Eyal, Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay
Kale, Jinliang Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan
Lee, Pandu Nayak, Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, Martin
Wicke, Xiao Ma, Evgenii Eltyshev, Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri,
Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy Guo,
Austin Waters, Oliver Wang, Joshua Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob
Bauer, Feng Yang, Riham Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong
Cai, Warren Chen, XiangHai Sheng, Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei
Li, Anoop Sinha, Weiren Wang, Julia Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand
Iyer, Madhu Gurumurthy, Mark Goldenson, Parashar Shah, MK Blake, Hongkun Yu, Anthony
Urbanowicz, Jennimaria Palomaki, Chrisantha Fernando, Ken Durden, Harsh Mehta, Nikola
Momchev, Elahe Rahimtoroghi, Maria Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw,
Jinhyuk Lee, Denny Zhou, Komal Jalan, Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr,
Kieran Milan, Vladimir Mikulik, Juliana Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma
Mahendru, Andrea Hu, Joshua Howland, Ben Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao,
Rakesh Ghiya, Emma Wang, Ke Ye, Jean Michel Sarr, Melanie Moranski Preston, Madeleine
Elish, Steve Li, Aakash Kaku, Jigar Gupta, Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi
M., Xinyun Chen, Aida Amini, Alex Fabrikant, Eric Chu, Xuanyi Dong, Amruta Muthal, Senaka
Buthpitiya, Sarthak Jauhari, Nan Hua, Urvashi Khandelwal, Ayal Hitron, Jie Ren, Larissa Rinaldi,
Shahar Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal Godhia, Uli Sachs, Anthony Chen,
Yicheng Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, James Wang, Chen Liang, Jenny Hamer,
Chun-Sung Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vit Listik, Mathias Carlen, Jan van de
Kerkhof, Marcin Pikus, Krunoslav Zaher, Paul Miiller, Sasha Zykova, Richard Stefanec, Vitaly
Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico Xu, Chetan Ahuja, Beth Tsai,
Anca Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal, Akshay Gupta, Atharva Parulekar,
Divya Pitta, Jing Zhao, Vivaan Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin Li, Peter
Danenberg, Dennis Tu, Alex Pine, Vera Filippova, Abhipso Ghosh, Ben Limonchik, Bhargava
Urala, Chaitanya Krishna Lanka, Derik Clive, Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak,
Tanna Li, Kalind Thakkar, Kuanysh Omarov, Kushal Majmundar, Michael Alverson, Michael
Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo Pelagatti, Rohan Kohli, Saurabh
Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi Ramachandruni, Xiangkai Zeng, Ben
Bariach, Laura Weidinger, Tu Vu, Alek Andreev, Antoine He, Kevin Hui, Sheleem Kashem, Amar
Subramanya, Sissie Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam Sadovsky, Quoc Le,
Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey Dean, and Oriol Vinyals. Gemini: A family of
highly capable multimodal models, 2024. URL https://arxiv.org/abs/2312.11805.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/

OpenWebTextCorpus, 2019.

Akshat Gupta, Atahan Ozdemir, and Gopala Anumanchipalli. Geometric interpretation of layer

normalization and a comparative analysis with rmsnorm, 2025.

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei Kheirkhah, Qinyi Sun, Will Hathaway, Neel

Nanda, and Dimitris Bertsimas. Universal neurons in gpt2 language models. Transactions on
Machine Learning Research, 2024.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint

arXiv:2404.15255, 2024.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448-456, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/ioffelbs.html!

14


https://arxiv.org/abs/2312.11805
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html

600
601
602

603
604
605

606
607
608
609
610
611
612

613
614
615

616
617
618

619
620

621
622

623
624
625

626
627
628

629
630

631
632

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

649
650

Shahar Katz and Yonatan Belinkov. Visit: Visualizing and interpreting the semantic information
flow of transformers. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 14094—-14113, 2023.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Sparse autoencoders
work on attention layer outputs, Jan 2024. URL https://www.alignmentforum.org/posts/
DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs,

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.pub/
2025/attribution-graphs/biology.html.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy
Suppression: Comprehensively Understanding an Attention Head.  arXiv e-prints, art.
arXiv:2310.04625, October 2023. doi: 10.48550/arXiv.2310.04625.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. Advances in Neural Information Processing Systems, 36, 2022. arXiv:2202.05262.

Noa Nabeshima. Tinymodel: A tinystories Im with saes and transcoders, 2024. URL https:
//github.com/noanabeshima/tinymodel. Accessed: 2025-05-15.

Neel Nanda. Attribution patching:  Activation patching at industrial scale, Mar
2023a. URL  https://www.alignmentforum.org/posts/gtLLBhzQTG6nKTeCZ/
attribution-patching-activation-patching-at-industrial-scale.

Neel Nanda. Exploratory analysis demo (transformerlens). https://colab.research.google.
com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_
Analysis_Demo.ipynb, 2023b.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

nostalgebraist. interpreting gpt: the logit lens, Aug 2020. URL https://www.alignmentforum,
org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens!

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simén Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,

15


https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://github.com/noanabeshima/tinymodel
https://github.com/noanabeshima/tinymodel
https://github.com/noanabeshima/tinymodel
https://www.alignmentforum.org/posts/gtLLBhzQTG6nKTeCZ/attribution-patching-activation-patching-at-industrial-scale
https://www.alignmentforum.org/posts/gtLLBhzQTG6nKTeCZ/attribution-patching-activation-patching-at-industrial-scale
https://www.alignmentforum.org/posts/gtLLBhzQTG6nKTeCZ/attribution-patching-activation-patching-at-industrial-scale
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_Analysis_Demo.ipynb
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_Analysis_Demo.ipynb
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_Analysis_Demo.ipynb
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_Analysis_Demo.ipynb
https://colab.research.google.com/github/neelnanda-io/TransformerLens/blob/main/demos/Exploratory_Analysis_Demo.ipynb
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

671
672
673
674
675
676
677
678

679
680

681
682
683

684
685
686

687
688
689
690

691

693

694
695

696
697
698

699
700

701
702
703

Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Judea Pearl. Direct and indirect effects. In Probabilistic and causal inference: the works of Judea
Pearl, pages 373-392. 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Belinkov, Xingyi Song, Mrinmaya Sachan, and
Neel Nanda. Confidence regulation neurons in language models. arXiv preprint arXiv:2406.16254,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971,

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jiaxi Wang, Ji Wu, and Lei Huang. Understanding the failure of batch normalization for transformers
in nlp. Advances in Neural Information Processing Systems, 35:37617-37630, 2022a.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022b.

Eric Winsor. Re-examining layernorm.  Alignment Forum, 2022. URL https://www,
alignmentforum.org/posts/jfG6vdJZCwTQmG7kb/re-examining-layernorm.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. Advances in Neural Information Processing Systems, 37,
2024. arXiv:2309.17453.

16


https://arxiv.org/abs/2302.13971
https://www.alignmentforum.org/posts/jfG6vdJZCwTQmG7kb/re-examining-layernorm
https://www.alignmentforum.org/posts/jfG6vdJZCwTQmG7kb/re-examining-layernorm
https://www.alignmentforum.org/posts/jfG6vdJZCwTQmG7kb/re-examining-layernorm

704
705

706
707
708

709

710
711

712
713

Itay Yona, Ilia Shumailov, Jamie Hayes, Federico Barbero, and Yossi Gandelsman. Interpreting the
repeated token phenomenon in large language models. arXiv preprint arXiv:2503.08908, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. arXiv preprint arXiv:2309.16042, 2023.

Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
normalization, 2025.

17



~ Appendix

75 A Code and Model Availability

716 The LN removal code is available on: https://anonymous.4open.science/r/rm-LN-repo/

Table 2: Hugging Face links for models used and generated in this manuscript. The final links will
be shared upon publication due to double-blind review requirements. Furthermore, fine-tuning (FT)
steps and GPU hours are shown.

Model FT Steps FT GPU Hours Link
GPT-2 Small original 0 N/A
GPT-2 Small vanilla 300 1
GPT-2 Small LN-free 300 1.5
GPT-2 Medium original 0 N/A
GPT-2 Medium vanilla 500 2.5
GPT-2 Medium LN-free 500 35
GPT-2 Large 0 N/A
GPT-2 Large vanilla 600 6.5
GPT-2 Large LN-free 600 8
GPT2 XL original 0 N/A
GPT2 XL vanilla 800 14
GPT2 XL LN-free 800 26

717 Other Compute Requirements: The evaluation and interpretability experiments require a negligi-
71¢  ble amount of compute (on the order of a few GPU hours).
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B Blockwise LN-Removal Schedules

All schedules use a warmup phase, cosine learning rate decay schedule, and continue fine-tuning for
some iterations after LN removal is completed. Recomputation and auxiliary loss are applied to all
schedules. The removal steps in the schedule are configured by start, gap and number of layers hyper
parameters Tab. 3} See Tab. 4] for how these affect the final schedules.

Hyperparameter Small Medium Large XL
Original GPT-2 model gpt2 gpt2-medium  gpt2-large  gpt2-xl
Micro Batch Size 32 22 28 18
Gradient Accumulation Steps 16 23 18 28
Batch Tokens Per Step 524288 518144 516096 516096
Weight Decay 0.01 0.01 0.01 0.01
Learning Rate 0.0006  0.0006 0.0003 0.0001
Min Learning Rate 0.0003  0.0003 0.00004 0.00002
Aux Loss Weight 0.1 0.1 0.03 0.01
Gradient Checkpointing true true false false
GPU memory 80GB 80GB 180GB 180GB
Number of Layers 12 24 36 48
Warmup Steps 25 10 15 20
Max Steps 300 500 1200 1200
Start LNpp 20 20 30 50
Start LNg 44 68 174 242
Start LNy, 68 116 318 434
Start LN¢ 104 188 534 722
Gap LNMLP 2 2 4 4

Gap LN 2 2 4 4

Gap LN, 3 3 6 6

Table 3: Comparison of GPT-2 Small, Medium, Large, and XL LN-free Hyperparameters

| Small (12 layers) | Medium (24 layers) | Large (36 layers) | XL (48 layers)

| Step Removal | Step  Removal | Step Removal | Step Removal

20 LNg,[LP 20 LN}134LP 30 LN{IS,ILP 50 LNglJALP

MLp | 22 LNy | 22 LN p 34 LNyp | 54 LNyp
42 LNyip 66 LNZ 5 170 LN, | 238 LNyip

44 LNgk 68 LN%( 174 LN%( 242 LN%(

QK | 46 LN} 70 LN 178 LNy, 246 LNy
66 LNy | 114 LNz 314 LNY | 430 LNy

68 LNY 116 LNY 318 LNY 434 LNY

v 71 LN} 119 LN} 324 LN} 440  LN!
101 LN} 185 LN23 528 LNZ® 716 LNY7

Final | 104 LN/ 188 LN/ | 534 LN/ | 722 LN/

Table 4: LN removal schedule for GPT-2 Models (Small, Medium, Large, and XL). Values correspond
to fine-tuning steps when a particular LN is removed. Gaps between removal events are uniform

within each LN group.
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B.1 Empirical Guidelines for Hyperparameter Selection

Based on our empirical observations during the development of the LN-removal procedure, we
identified several common failure modes and here we provide effective mitigation strategies:

Exploding loss after removal events: If the main loss spikes dramatically shortly after removing a
LN module, this typically indicates that the removal schedule is too aggressive. The most effective
mitigation is to increase the gaps between removal events within each LN group.

Loss degradation after complete LN removal: When the loss begins to increase after all LN
modules have been removed, we found it beneficial to increase the minimum learning rate of the
learning rate schedule.

Sudden failures at some fine-tuning step during the query/key path LN removal schedule: In
this specific case, we found it beneficial to monitor standard deviation values for drop in replacement,
modify the EMA smoothing factor, change the learning rate, and change the auxiliary loss weight.

These strategies proved effective for achieving stable LN removal across all model sizes. Additionally,
the auxiliary loss and EMA estimation significantly helped in reducing sensitivity to hyperparameter
choices compared to approaches without these components.
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C Generalization Beyond GPT-2 Family

To evaluate whether our LN removal methodology extends beyond the GPT-2 model family, we
conducted additional experiments using Pythia 70M [Biderman et al.l [2023]]. We compared two
fine-tuning approaches on The Pile dataset: vanilla fine-tuning with LN intact, and our proposed
fine-tuning strategy where LN is removed.

The results demonstrate comparable performance degradation to our GPT-2 findings. The vanilla
fine-tuned model achieved a cross-entropy loss of 3.80 on the OpenWebText evaluation set, while the
LN-free variant achieved a cross-entropy loss of 3.89. This 0.09 increase in loss aligns closely with
the performance gap observed in GPT-2 Small (124M parameters), indicating that our methodology
exhibits consistent behavior across different transformer architectures. On the HellaSwag benchmark,
the original Pythia 70M model scored 0.2679, the vanilla fine-tuned model achieved 0.2667, and
the LN-free model obtained 0.2636, showing minimal performance degradation on this alternative
evaluation.

These findings provide evidence that our LN removal approach generalizes beyond the specific GPT-2
architecture to other transformer-based language models.
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D The Pile-filtered

When evaluating models on the Pile [Gao et al.,[2020], we observed unusually high cross-entropy
losses for specific tokens. To investigate this, we compared token frequency distributions between
1 million samples from this dataset and OpenWebText [Gokaslan and Cohen, 2019]], both pretok-
enized with GPT-2. We identified tokens that appeared in The Pile but not in OpenWebText, which
corresponded to sequences with high cross entropy loss. We filtered out sequences containing any
of these tokens, and created a small a 10,000-example filtered subset of The Pile. Upon acceptance,
the filtered dataset, along with token metadata and generation scripts, will be made available on the
Hugging Face Hub (due to double blind review requirements).

token_id token count
197 \t 4,260,185
628 \n\n 1,382,601
1849 \xa0 1,090,135
201 \r 725,891
191 \x03 50,457
200 \xOc 49,412
5624 \xa0 40,045
4603 \xa0\xa0 9,374
205 \x11 5,169
203  \xO0f 4,177

Table 5: Top 10 most frequent tokens present in The Pile and missing in OpenWebText.

D.1 GPT-2 XL LN-Free High Loss Samples on The Pile

We reported a very high mean CE loss (130.22) for GPT-2 XL LN-Free on The Pile. However,
the median and 99.9 percentile range are very similar to GPT-2 XL original. Three samples are
responsible for the high mean CE loss for GPT-2 XL LN-Free on The Pile. We list these samples
below. These samples contain a token or token sequence not present in OWT and are listed in Tab.[5]
At such tokens, the model has absurdly high CE losses, up to 5 million, i.e., the model is overconfident
that the true next token will not be the next. For the three samples, the first token prediction with CE
loss larger than 50 are “\x0c”, “\t”, and “\n” respectively. The last token of the sequence leading up
to the token with high errors is “\n” for all three samples, indicating that these specific tokens and
token combinations are causing overconfidence in the model. Further inspection reveals that these
high CE losses derive from very large negative logits. These outliers occur because, in rare cases
involving certain tokens not present in the fine-tuning dataset, the norm of residual stream vectors
before unembedding explodes. Interestingly, we observed this phenomenon only in GPT-2 XL.

Sample 1:

Sample 2726 out of 10k has tokens with CE loss > 50.

First token with CE loss > 50:200 at position 11
Decoded:’
>

Decoded (unicode_escape):’\x0c’
Sequence of last 5 Tokens for prediction:220 220 220 1367 198
Decoded:’ 11

5

Decoded (unicode_escape):’ 11\n’

(Token:Loss)

220:N/A, 220:7.6214733, 220:7.988017, 220:0.7575181, 220:0.21067815, 220:0.11241462, 220:0.0828728, 220:0.07294927,
220:0.06983218, 1367:9.5656, 198:3.8515434, 200:54.273285, 42138:11.611183, 290:5.8352313, 2912:9.315803, 9021:17.121414,
286:5.927439, 8460:9.354071, 642:3.973015, 4310:4.678949, 761:10.288656, 407:0.60814863, 307:0.55970573, 3940:4.7689095,
13:1.346435, 41990:9.208092, 2173:7.9507837, 503:0.88767886, 326:0.47304547, 287:4.0013585, 428:2.462367, 198:7.3526363,
198:0.0011684026, 7442:1.6571776, 11:0.8788041, 262:1.2546973, 20693:6.1989183, 4934:4.3370743, 284:2.2307296, 38040:3.9622679,
10494:0.005666858, 19303:9.20058, 2457:4.18554, 3173:1.1498255, 1682:8.386018, 2058:4.2735405, 407:3.1076946, 422:0.1769652,
262:0.78079456, 198:2.1329598, 198:0.00015055, 36208:13.958086, 4537:12.094295, 16412:8.990057, 475:3.527892, 422:0.22476129,
262:0.55110574, 3893:8.833248, 17541:5.443501, 4347:10.620082, 1799:5.924607, 290:3.480315, 37159:10.124819, 2191:5.4837275,
286:1.5630095, 8235:9.437175, 357:4.602768, 447:6.1605263, 250:5.47846, 39:5.972879, 4061:5.5613327, 3838:6.2311015,
447:4.11596, 251:0.2733165, 828:5.8963223, 198:3.1704738, 198:3.05913, 14876:12.424786, 13:2.642362, 406:8.8554945,
13:4.501826, 1400:6.3063745, 13:2.2849069, 14436:11.087215, 12:3.5680172, 26492:13.83733, 11:2.9488518, 47171:9.930283,
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801 8949:10.020365, 11:2.4528143, 15143:9.181636, 11:2.0323732, 22219:9.782476, 11:1.5124732, 9796:9.335302, 5133:8.786331,

802  13:2.5590122, 27653:13.353212, 11:1.7378397, 27937:10.412004, 11:1.2108434, 15408:11.124487, 11:1.0378554, 1160:8.236352,
803  6469:10.613097, 357:3.7660804, 22288:7.9838486, 828:5.7518673, 543:3.3631327, 198:4.0904975, 198:0.05241805, 1939:11.162535,
804  40132:2.9781475, 1115:7.43649, 13788:11.595028, 10411:5.7753625, 8617:7.3080463, 656:7.60578, 13793:10.331831, 22312:10.301449,
805  11:1.4195569, 262:2.8994842, 18628:10.344179, 20197:7.251051, 6127:7.2656045, 11:2.1663508, 290:2.5125058, 198:4.6340384,
806  198:2.3188238, 1169:6.9466467, 5094:8.366037, 3893:6.32104, 4809:6.82047, 2191:6.6650662, 25:4.863468, 628:8.807043,

807  220:8.19655, 220:3.819473, 220:4.2062297, 220:4.961961, 220:4.995181, 220:5.277912, 383:5.82012, 4986:9.652403,

808  11:2.5059075, 6414:9.438324, 351:3.5732212, 2665:7.6105623, 14436:8.626756, 286:4.936455, 262:2.6958165, 3893:9.572085,

809  7276:6.6044493, 4347:11.077166, 1799:6.549804, 290:4.471074, 198:3.295391, 220:5.0134106, 220:6.064687, 220:5.9405313,

810  220:4.124799, 220:3.2302897, 220:1.6753389, 37159:11.453347, 2191:6.410646, 286:3.9341471, 8235:10.6037035, 11:2.1030743,
811 743:7.7276053, 38040:13.952975, 10494:12220.764, 884:1568.6077, 6647:2484.7053, 355:883.05884, 743:1939.9294, 307:1384.4974,
812 3306:2680.565, 198:469.1405, 220:1538.7728, 220:1178.9397, 220:1431.203, 220:1082.1162, 220:1259.7878, 220:1304.2883,

813 393:397.98828, 5035:2698.9102, 284:456.9895, 3283:2395.4785, 503:1655.8503, 262:674.69543, 8617:3220.739, 286:830.44946,
814 428:1525.5525, 685:797.9059, 3911:4231.721, 4083:2158.9766, 383:999.2892, 4986:2601.727, 743:1726.6406, 198:450.30127,

815 220:1403.6172, 220:2175.758, 220:2173.087, 220:1988.6704, 220:1560.3451, 220:1146.8448, 38040:4204.649, 10494:8649.862,

816  597:1345.0178, 19303:3773.4775, 2457:2029.5072, 3173:1839.6007, 355:568.34094, 262:590.8824, 4986:2062.4531, 15947:2279.8892,
817  389:1038.8564, 5035:2869.369, 284:779.21716, 198:396.0829, 220:881.5056, 220:1608.5259, 220:2106.2659, 220:1546.5009,

818  220:1546.5249, 220:1340.715, 3283:2450.9758, 503:1587.5262, 428:1318.5421, 685:882.85913, 3911:3507.6172, 4083:2057.4734,
819  198:216.41724, 198:246.9541, 1959:2581.9805, 471:1004.4808, 13:41.873535, 50:1349.8, 13:150.74365, 34:1408.8376,

820  13:197.64563, 8460:2291.2534, 15136:1785.7683, 16:2138.023, 66:1901.7491, 11:178.7539, 2608:2297.8555, 471:1437.7157,

821

822

823

824  Decoded:

825 11

826

827 notice and comment procedures of § 553 need not be followed. Plaintiff points out that in this

828

829 case, the statutory authority to promulgate interim final rules actually comes not from the

830

831 MHPAEA but from the Health Insurance Portability and Accountability Act of 1996 (‘‘HIPAA’’),
832

833 Pub. L. No. 104-191, §§ 101, 102, 401, 110 Stat. 1936, 1951, 1976, 2082 (1996), which

834

835  incorporated three substantially identical provisions into ERISA, the Internal Revenue Code, and
836
837  the Public Health Service Act:

838

839 The Secretary, consistent with section 104 of the Health Care Portability and

840 Accountability Act of 1996, may promulgate such regulations as may be necessary

841 or appropriate to carry out the provisions of this [part]. The Secretary may

842 promulgate any interim final rules as the Secretary determines are appropriate to

843 carry out this [part].

844

845 29 U.S.C. § 1191c, 26 U.S.C. § 9833 (replacing ‘‘part’’ with ‘‘chapter’’), and 42 U.S.C. § 300gg-
846

847 92 (replacing ‘‘part’” with ‘‘subchapter’’).4 Plaintiff argues that Congress only intended to give the
848
849 Secretaries authority to promulgate interim final rules relating to HIPAA and not the MHPAEA,

850

851 which was passed twelve years later. However, the MHPAEA’s substantive provisions are

852

853 amendments to the same sections of ERISA, the Internal Revenue Code, and the Public Health
854

855 Service Act that are governed by the HIPAA provisions cited above, and the statutory text clearly
856

857 gives the Secretaries authority to promulgate interim final rules to carry out these sections.
858

859  Therefore, the Court finds that Congress has authorized the Secretaries to ‘‘promulgate any

860

861 interim final rules as the[y] determine[] are appropriate to carry out the’> MHPAEA.

862

863 Finding that Congress authorized the promulgation of interim final rules does not end the
864

865 inquiry. Although the APA recognizes that Congress may modify the notice and comment

866

867

868 4

869 This regulatory authority covers part 7 of Subtitle B of Title I of ERISA (29 U.S.C. §§
870  1181-91c), Chapter 100 of the Internal Revenue Code (26 U.S.C. §§ 9801-33), and Part A of

871 Title XXVII of the Public Health Service Act (42 U.S.C. §§ 300gg to 300gg-92).

872

873 12

874

875 procedures called for by § 553, it states that a ‘‘[s]ubsequent statute may not be held to supersede
876

877  or modify [§ 553] . . . except to the extent that it does so expressly.’” 5 U.S.C. § 559. ‘“[Tlhe
878

879 import of the § 559 instruction is that Congress’s intent to make a substantive change be clear.’”’
880

881 Ass’n of Data Processing Serv. Orgs., Inc. v. Bd. of Governors, 745 F.2d 677, 686 (D.C. Cir.

882

883  1986). The statutory provisions authorizing interim final rules in this case do not mention notice
884

885 and comment or any other aspect of the APA. In such a case, the D.C. Circuit has defined the

886

887 relevant standard as ‘‘whether Congress has established procedures so clearly different from those
888

889 required by the APA that it must have intended to displace the norm.’’ Asiana Airlines v. FAA,

890

891 134 F.3d 393, 397 (D.C. Cir. 1998).

892
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893 Defendants rely on two cases in which the D.C. Circuit held that the notice and comment

894

895 provisions of § 553 were abrogated by specific statutory provisions authorizing interim final
896

897 rules. See Asiana Airlines v. Fed. Aviation Admin., 134 F.3d 393 (D.C. Cir. 1998); Methodist
898

899 Hosp. of Sacramento v. Shalala, 38 F.3d 1225 (D.C. Cir. 1994). In Methodist Hospital of

900

901 Sacramento, the court was faced with

902  Sample 2:

903  Sample 7323 out of 10k has tokens with CE loss > 50.

904 First token with CE loss > 50:197 at position 10.

905 Decoded:’ °’

906 Decoded (unicode_escape):’\t’

907 Sequence of last 5 Tokens for prediction:257 4731 7177 13 198

908 Decoded:’ a string array.

909

910  Decoded (unicode_escape):’ a string array.\n’

911 (Token:Loss)

912 1003:N/A, 1003:11.26658, 9726:11.162002, 46621:13.591053, 355:5.1217504, 257:1.9146276, 4731:7.4259768, 7177:8.642193,
913 13:1.57043, 198:1.4427543, 197:51.156723, 12235:14.619279, 39:10.696115, 7465:9.209376, 17635:11.363218, 8841:10.934766,

914 198:3.474833, 92:13.564951, 198:1.2806269, 198:0.0055186776, 1003:3.836342, 968:7.883165, 49:8.290166, 3798:5.798291,

915 272:7.7695932, 45356:11.567278, 40109:11.504518, 5860:9.337919, 257:1.5190241, 649:1.7121754, 4554:2.7947285, 543:4.841503,
916 460:2.3216853, 307:0.686766, 973:0.74536353, 284:0.4934966, 2071:5.992473, 257:1.6754444, 581:7.8475504, 5171:6.433069,
917 198:3.4856787, 1003:13.67105, 19449:8.2021055, 12:3.5855105, 49:5.30799, 5662:5.4760623, 3141:7.5336666, 13:2.6725016,

918 198:0.8083212, 1003:15.782787, 198:2.8173897, 1003:15.395724, 24550:5.2747335, 25:0.19102867, 770:2.1424239, 318:1.7225417,
919 257:1.5685425, 275:8.388821, 83:4.2324853, 10210:5.020052, 7552:5.175566, 49702:11.925024, 422:0.8439282, 33084:4.970866,

920 13:0.68376416, 785:0.20635764, 14:0.37836862, 12501:8.026502, 445:2.2101464, 14:0.4466647, 17896:7.95566, 4372:3.105786,
921 14:2.777247, 67:4.3537035, 6098:0.37673652, 17752:5.617012, 198:2.2561002, 1003:12.216859, 290:5.0420575, 4433:4.454626,
922 257:1.9344062, 2639:6.557314, 5459:0.1832912, 4637:3.1329556, 13:1.564306, 198:0.2661691, 20786:21.258528, 968:1.6345162,
923 49:0.024241818, 3798:2.4097002, 272:3.8780181, 45356:10.635372, 40109:9.851566, 7:3.763564, 9967:6.12138, 39:6.5091047,
924 7465:0.047564577, 17635:5.3687067, 8841:1.8500897, 8:6.0806694, 1635:5.2731657, 49:4.241615, 3798:2.2475796, 272:1.7413952,
925 45356:6.1853223, 40109:9.715792, 1391:10.957037, 198:3.2365587, 197:35.354282, 7783:13.6022215, 1222:7.565274, 49:5.145051,
926 3798:12.716011, 272:9.562733, 45356:12.930087, 40109:13.774559, 90:9.70529, 12235:5.3254843, 39:13.270555, 7465:12.182639,
927 25:3.5354931, 2512:9.293187, 39:12.1883745, 7465:14.035143, 92:11.704035, 198:3.7612562, 92:9.557363, 198:4.632967,

928 198:1.6126469, 20786:11.7582035, 2315:11.252395, 3419:599915.1, 1391:128406.42, 198:21275.512, 197:436295.1, 1003:167360.28,
929 383:44864.34, 9729:140597.66, 287:10736.5625, 428:79266.625, 2393:104939.37, 389:51231.992, 691:73092.914, 24284:177729.25,
930 416:58283.36, 2639:149387.14, 11603:219064.45, 13:6765.0703, 198:32484.742, 197:443424.3, 33152:201537.97, 19039:195013.5,
931 471:62431.207, 37:97675.016, 1135:110187.266, 1443:234881.84, 5459:269756.94, 10049:242653.28, 628:112184.06, 197:436574.7,
932 34320:148946.5, 38804:172249.12, 40109:219531.69, 7203:188346.6, 41299:237815.0, 5344:139417.62, 1600:119173.45, 20789:137373.
933 47649:202613.36, 5344:148038.86, 40109:232167.31, 5769:212062.88, 45991:286692.56, 828:95972.62, 9701:161537.31,

934 8:45388.77, 198:26669.29, 197:461318.66, 34320:180015.84, 38804:183880.8, 40109:273160.8, 7203:128039.91, 2220:195715.38,
935 17602:179212.78, 24455:165867.17, 1600:177894.75, 20789:196518.0, 8912:206497.88, 46047:205311.12,

936 22417:217080.81, 40109:232314.2, 5769:212559.25, 45991:271713.0, 828:92336.35, 9701:131772.14, 8:71338.83, 198:9289.922,
937 197:479748.06, 34320:161961.17, 38804:183598.38, 40109:324803.62, 7203:168302.4, 1662:152243.08, 1958:311552.6,

938 27372:174300.81, 1600:175331.19, 20789:198232.06, 3673:121481.22, 1958:134500.3, 45356:281647.62, 40109:218485.22,

939

940

941

942

943  Decoded:

944 // Block hashes as a string array.

945 BlockHashes []string

946 }

947

948  // NewRescanBlocksCmd returns a new instance which can be used to issue a rescan

949  // JSON-RPC command.

950 //

951  // NOTE: This is a btcd extension ported from github.com/decred/dcrd/dcrjson

952 // and requires a websocket connection.

953  func NewRescanBlocksCmd(blockHashes [lstring) *RescanBlocksCmd {

954 return &RescanBlocksCmd{BlockHashes: blockHashes}

955 }

956

957  func init() {

958 // The commands in this file are only usable by websockets.

959 flags := UFWebsocketOnly

960

961 MustRegisterCmd ("authenticate", (*AuthenticateCmd)(nil), flags)

962 MustRegisterCmd("loadtxfilter", (*LoadTxFilterCmd)(nil), flags)

963 MustRegisterCmd("notifyblocks", (*NotifyBlocksCmd) (nil), flags)

964 MustRegisterCmd ("notifynewtransactions", (*NotifyNewTransactionsCmd)(nil), flags)

965 MustRegisterCmd("notifyreceived", (*NotifyReceivedCmd) (nil), flags)

966 MustRegisterCmd("notifyspent", (*#NotifySpentCmd)(nil), flags)

967 MustRegisterCmd("session", (*SessionCmd)(nil), flags)

968 MustRegisterCmd("stopnotifyblocks", (*StopNotifyBlocksCmd)(nil), flags)

3

969 MustRegisterCmd ("stopnotifynewtransactions", (*StopNotifyNewTransactionsCmd)(nil), flags)
970 MustRegisterCmd ("stopnotifyspent", (*StopNotifySpentCmd)(nil), flags)
971 MustRegisterCmd ("stopnotifyreceived", (xStopNotifyReceivedCmd) (nil), flags)

972 MustRegisterCmd("rescan", (*RescanCmd)(nil), flags)
973 MustRegisterCmd("rescanblocks", (*RescanBlocksCmd)(nil), flags)

974 }
975 Faithless Execution: Fighting Presidential Lawlessness
976

977 The first few days of rolling out my new book, Faithless Execution, have been exhilarating, with few things more

978  gratifying and humbling than the wonderful review by one of my very favorites, PJ Media’s own Roger Simon.

979

980 It has been uplifting to see how many people really are alarmed-rather than indifferent, as I worried-to the problem of rampant
981 presidential lawlessness. People really do grasp that the separation of powers, which is so threatened by President
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982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

Obama’s usurpation of the powers of the states and other federal departments, really is the key to protecting our liberties. Too
much accumulation of power in one government official’s hand-particularly, the Framers observed, the joining of the
legislative and executive power in a single department or person-is the road to tyranny.

When people grasp that, they similarly grasp that presidential lawlessness is not a conservative versus liberal issue, nor
Republican versus Democrat. It is a question of whether we still aspire to be a republic under the rule of law instead of
subjects under presidential whim. If they are not knocked down, the precedents that President Obama is setting for imperial
executive power will be available for exploitation by every future president, regardless or party or ideological
orientation. That ought to frighten all Americans, not just opponents of the current president’s policies.

I make a sustained attempt in the book to explain that impeachment-the ultimate constitutional response to presidential
lawlessness-is a political remedy, not a legal one. You can have a thousand impeachable offenses, but if there is not a strong
public will that the president be removed, impeachment is a nonstarter. The political case for removal is the one that is
uphill. Establishing the legal case for impeachment-i.e., demonstrating that high crimes and misdemeanors have been
committed-is the easy part.// The label and actions expect to be in a flex container. Since this component adds another

// wrapping layer to the mdc-snackbar__surface, it should also include flex display.
.mat-mdc-simple-snack-bar {
display: flex;

"It was like the Alamo at times. Nothing went for us. It feels like we have lost but the final is over two legs and we have to
be delighted with the overall scoreline."

Liverpool first-team captain Steven Gerrard and central defender Jamie carragher were quickly in touch after the win and Heighway
added: "They have followed us all the way through.

"They texted us before every game and they have texted us again after the win.
"They are steeped in the history of this club and know what it means to win this tournament."

City’s academy chief Jim Cassell

Sample 3:

Sample 9335 out of 10k has tokens with CE loss > 50.

First token with CE loss > 50:198 at position 155.

Decoded:’

Decoded (unicode_escape):’\n’

Sequence of last 5 Tokens for prediction:49704 49704 9705 20379 198
Decoded:’/////////111171111171717717111717717717717717711717711711711717711717117
>

Decoded (unicode_escape):’////////////////1//77177/77/7777/11777/7777/1777/777/7/17777/17/77/71777]//\n’

(Token:Loss)

407:N/A, 407:4.6831055, 1624:7.360232, 326:1.4473916, 345:3.3804011, 2630:7.6741157, 262:1.3505429, 2656:4.104636,
3788:4.6768866, 13:1.0597951, 1002:2.57059, 345:0.35921186, 779:3.5662773, 428:2.6555552, 3788:0.4169199, 287:1.3137746,
257:0.32647714, 1720:1.4579158, 11:0.9270898, 281:3.5136762, 48182:1.3712287, 287:0.2596935, 262:0.058141652,
1720:0.16443609, 10314:0.29576224, 561:0.5035581, 307:0.02398988, 16373:0.48682904, 475:0.81268287,

318:0.05656958, 407:0.007545187, 2672:0.050823122, 13:0.0214831, 198:0.7484702, 17:13.849314, 13:0.13205929, 978:7.044759,
4400:2.0608654, 2723:2.2134705, 6300:2.333941, 1276:0.88757795, 307:0.4205811, 30723:1.4280686, 7498:0.11422959,
355:0.0134238945, 884:0.00481102, 11:0.5958381, 290:0.08005254, 1276:0.2439856, 407:0.08167637, 307:0.025275672,
26521:0.17200725, 276:0.0023700502, 355:0.0029704517, 852:0.14899838, 262:0.0020197486, 2656:0.022728885,

3788:0.20550326, 13:0.04337017, 198:0.31131023, 18:6.3787313, 13:0.00059801334, 770:0.9271791, 4003:1.7363278, 743:1.0793377,
407:0.281329, 307:0.013555973, 4615:0.9492111, 393:0.0392538, 14294:0.19510294, 422:0.03199716, 597:0.038671132,
2723:0.24237014, 6082:0.28850555, 13:0.014584245, 198:0.0928015, 16208:7.4476423, 198:0.10754685, 198:0.00033825875,
49704:7.4027767, 49704:0.059470795, 49704:2.1608517, 49704:1.4772909, 49704:1.1133443, 49704:0.9488324,

9705:2.1151383, 20379:1.1406435, 198:0.10158871, 35343:20.283905, 198:0.5157568, 1635:10.543703, 197:30.43997,
4264:13.305223, 1299:0.07563411, 2438:3.0418704, 329:1.6119438, 281:4.073881, 317:5.7669916, 6242:7.9582887, 33:0.08353172,
2927:11.291942, 1304:2.9536972, 13:1.0874708, 198:1.0187862, 1635:12.628989, 197:33.37102, 59:6.926921, 7753:7.370697,
197:33.560585, 197:31.852251, 3185:14.746413, 34:4.736884, 62:2.4475694, 3838:5.085874, 33833:6.238099, 692:5.69899,
1304:0.86001503, 13:0.34363738, 71:1.2452692, 198:0.81940943, 1635:9.853174, 197:32.87166, 59:3.7674747, 9800:6.4635477,
197:33.271984, 197:31.412739, 36910:15.742162, 3813:8.258679, 67:5.3074374, 24086:2.1277742, 198:0.7815698, 1635:3.943909,
197:33.18875, 59:9.100214, 4475:15.064762, 197:33.80469, 197:38.404465, 21339:16.17667, 11:3.2231097, 352:6.5712805,
301:12.503309, 11:3.5788884, 6244:13.497032, 198:4.3184443, 9466:12.119115, 198:4.7258415, 49704:23.561052, 49704:21.665047,
49704:19.027508, 49704:20.011747, 49704:21.655386, 49704:40.67674, 9705:22.09228, 20379:27.61382, 198:8.27015,
198:399.37866, 49704:809.2328, 49704:763.74054, 49704:722.9032, 49704:811.80115, 49704:693.3036, 49704:730.6386, 9705:677.8175,
20379:544.15265, 198:84.33852, 1003:409.64636, 40348:589.6119, 4932:453.42014, 198:66.265816, 2:368.93063, 361:344.89172,
358:423.16663, 891:447.8988, 11593:460.6718, 3185:463.0637, 34:137.90085, 62:323.4264, 3838:367.394, 33833:424.9605,
46:197.75824, 3069:536.48846, 41237:674.64325, 62:188.37312, 39:61808.293, 834:1737813.5, 198:58819.594, 2:501469.34,
13086:476518.62, 11593:430323.34, 3185:436209.5, 34:149311.72, 62:225198.66, 3838:499536.16, 33833:440378.56, 46:344437.5,
3069:506636.12, 41237:671244.25, 62:330165.34, 39:305198.0, 834:412493.72, 628:283896.75, 197:1610916.9, 7249:487438.94,
440:274647.84, 5662:508110.75, 16820:601000.5, 62:200508.23, 17614:568054.25, 317:109115.234, 6242:376880.62, 2749:538623.9,
4891:787976.1, 1058:368174.3, 14701:435548.7, 30562:738873.94, 198:122744.25, 197:1227677.4, 90:353759.03, 198:107419.83,
197:1258664.6, 197:1695466.2, 197:1546377.4, 197:1209663.6, 197:1201286.0, 197:1118433.5, 3838:524715.4, 33833:448043.62,
4891:523260.6, 3419:404699.94, 1058:314273.38, 12301:389488.12,

Decoded:
must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

*/

LI1117710717777771777777777777177717777777717777777777777777771777777777777777777777777777171777777777717171777777771717171177171777
II1117177177777777777777177177777177177777117177177117177117117117777

/%%

* Contains code for an AABB collider.

* \file OPC_AABBCollider.h
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1071 * \author Pierre Terdiman

1072 * \date January, 1st, 2002

1073 */

1074 //71777771771777771771777771771771771777777777777777777777777777777777777777777777777777777777777777777777777777177177777177177777
1075 //7/77777177777777177777777177777177777717777777777777717717171717777

1076

1077 //77777777771777771771777777777777771777777777777777777777777777777777777777777777777777777777777777777777777777177177177177777777
1078 ////77177177777777177777177777717777777777777777777777117717177777777

1079  // Include Guard

1080 #ifndef __OPC_AABBCOLLIDER_H__

1081 #define __OPC_AABBCOLLIDER_H__

1082

1083 struct OPCODE_API AABBCache : VolumeCache

1084 {

1085 AABBCache() : FatCoeff(1.1f)

1086 {

1087 FatBox.mCenter.Zero();

1088 FatBox.mExtents.Zero();

1089 }

1090

1091 // Cached faces signature

1092 CollisionAABB FatBox; //!< Box used when performing the query resulting in cached faces
1093 // User settings

1094 float FatCoeff; //!< mRadius2 multiplier used to create a fat sphere

1095 };

1096

1097 class OPCODE_API AABBCollider : public VolumeCollider

1098 {

1099 public:

1100 // Constructor / Destructor

1101 AABBCollider();

1102 virtual ~AABBCollider();

1103

1104 111717777777717777177771777777777717777777771777777777777777777777777777777777777777777777777777777777777777717777
1105 [111717717777777777777771777777777777777777777777777777777777177771177711777117777177
1106 /xx

1107 * Generic collision query for generic OPCODE models. After the call, access the results:
1108 * - with GetContactStatus()

1109 * - with GetNbTouchedPrimitives()

1110 * - with GetTouchedPrimitives()

1111 *

1112 * \param cache [in/out] a box cache

1113 * \param box [in] collision AABB in world space

1114 * \param model [in] Opcode model to collide with

1115 * \return true if success

1116 * \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.
1117 */

1118 I11717777777717777177771777777777717777777777777777777777777777777777777777777777777777777777777777777777777717777
1119 I111777717777177777777771777777777777777777777777777777777777777771177711777117777177
1120 bool Collide (AABBCache& cache, const CollisionAABB& box, const Model& model);

1121 //

1122 bool Collide(AABBCache& cache, const CollisionAABB& box, const AABBTree* tree);
1123 protected:

1124 CollisionAABB mBox; //'< Query box in (center, extents) form

1125 Point  mMin; //'< Query box min point

1126 Point  mMax; //'< Query box max point

1127 // Leaf description

1128 Point mLeafVerts[3]; //!< Triangle vertices

1129 // Internal methods

1130 void _Collide(const AABBCollisionNode* node) ;

1131 void _Collide(const AABBNoLeafNode* node) ;

1132 void _Collide(const AABBQuantizedNode* node) ;

1133 void _Collide(const AABBQuantizedNoLeafNode* node) ;

1134 void _Collide(const AABBTreeNode* node);

1135 void  _CollideNoPrimitiveTest(const AABBCollisionNode* node);

1136 void _CollideNoPrimitiveTest (const AABBNoLeafNode* node
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E Evaluation on Standard Benchmarks

We additionally evaluated our models on four widely used benchmarks: BoolQ [Clark et al.,|2019],
HellaSwag [Zellers et al.,[2019]], PIQA [Bisk et al.l 2020], and WinoGrande [Sakaguchi et al.} 2021].
These tasks assess general language understanding, commonsense reasoning, and pronoun resolution.
Tables [6H9] report normalized accuracy for each model before and after LayerNorm removal. LN-free
models maintain performance comparable to their baselines, with only minor variations across tasks.

Task GPT-2 XL original GPT-2 XL vanilla FT GPT-2 XL LN-free FT
BoolQ 61.8 62.2 61.9
HellaSwag 50.9 49.8 48.8
PIQA 70.5 70.5 69.9
WinoGrande 58.3 57.5 56.1

Table 6: Accuracy of GPT-2 XL model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Large original GPT-2 Large vanilla FT GPT-2 Large LN-free FT
BoolQ 60.5 62.1 62.0
HellaSwag 454 434 42.8
PIQA 69.2 68.7 69.3
WinoGrande 55.3 56.2 54.6

Table 7: Accuracy of GPT-2 Large model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Medium original GPT-2 Medium LN-free FT
BoolQ 58.6 59.9
HellaSwag 394 374
PIQA 66.4 65.6
WinoGrande 531 51.5

Table 8: Accuracy of GPT-2 Medium model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Small original GPT-2 Small LN-free FT
BoolQ 48.7 52.0
HellaSwag 31.1 30.2
PIQA 62.5 61.4
WinoGrande 51.6 50.9

Table 9: Accuracy of GPT-2 Small model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Overall, these results show that LN-free models maintain comparable performance on standard
benchmarks, supporting their use in interpretability studies.

27



1145

1146
1147
1148

1149
1150
1151

1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163
1164
1165
1166

F Direct Logit Attribution becomes exact

To quantify the discrepancy between Direct Logit Attribution (DLA) and the Direct Effect (DE),
we compute the Normalized Mean Absolute Error (NMAE) through a two-stage process. For each
attention head h in the model, we calculate:

%SV IDLA; ), — DE; 4|
% 2n IDE;

NMAE,, = x 100% ®)

where, 4 indexes individual sequences in The Pile-Filtered dataset, i indexes attention heads, DLA; p,
and DE; ;, are the corresponding DLA and DE values for sequence ¢ and head h. We then average
across all attention heads to obtain the overall NMAE:

H
1
NMAE = o ; NMAE;,, 9)

The original model exhibits an NMAE of 49.07% [29.92%, 66.10%] (95% Confidence Interval - CI),
indicating that Direct Linear Attribution (DLA) estimates deviate from direct effect measurements by
approximately half of the true effect magnitude on average across all attention heads. The vanilla
fine-tuned model demonstrates an even larger discrepancy with an NMAE of 57.85% [38.52%,
74.52%]. In contrast, the LN-free fine-tuned model achieves a perfect 0.00% [0.00%, 0.00%] NMAE,
empirically confirming that removing the non-linearity introduced by LN eliminates the discrepancy
between DLA and direct ablation methods. This result validates that without LN’s non-linearity,
the two attribution methods are mathematically equivalent, eliminating the need for linearization
approximations, which can be significantly inaccurate.

To ensure our overall NMAE metric was not biased by a few significant outliers, we visualized the
per-head NMAE values across all attention heads in GPT-2 Small models (Figure [5). In models
with LN, the disagreement is widespread across most attention heads rather than driven primarily
by a small number of outliers. Later layers showed NMAE values exceeding 100%. In contrast, the
LN-free model shows no disagreement between the both methods, with NMAE values of zero across
all heads.

Per-head NMAE (%) between DLA and Direct Effect

baseline finetuned noLN

1 l-l1-lTl 150

8
100

Layer

4 | 50

Per-head NMAE (%)

0 | | 0

0 5 10 0 5 10 0 5 10
Attention Head

Figure 5: Per-head NMAE (%) between DLA and Direct Effect across all attention heads in GPT-2
Small models: baseline (left), vanilla fine-tuned (middle), and LN-free fine-tuned (right). Significant
deviations occur across most attention heads in models with LN. The LN-free model shows no
difference across all heads, demonstrating that DLA and DE are equivalent.
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G Confidence Neurons

As mentioned in Section [5.4] confidence neurons exhibit two key characteristics: (a) high weight
norm, implying importance despite weight decay regularization, and (b) approximately constant
contribution to all next token logits, suggesting minimal impact on token prediction. These seemingly
contradictory characteristics are reconciled by the final LN, between w,,,; ; and the unembedding
matrix Wy. The effect of confidence neurons on output logits is mediated by this normalization, a
mechanism absent in our LN-free models.

These neurons regulate confidence by writing high-norm vectors that project onto an effective

nullspace of the unembedding matrix. When these vectors increase the residual stream norm, the final

LN scales everything down uniformly, making the output distribution more uniform while preserving

token rankings. To identify (b), neurons that preserve token logits ranking, we followed Stolfo et al.|
[2024]] and calculated LogitVar(w,y,;), the variance in the normalized projection of the neuron’s

weights with each token in the unembedding matrix:

. Wuwou,i )
LogitVar(wgy ;) = Var : (10)
£ ( o ) (”WU”dim_lWout,i I
Confidence Neurons (CN) maximize the ratio of (a) and (b):
. ||Woul 4 ||
CN(#) = ———F+—. 11
(®) LogitVar(wou ;) (1n

Figure [f] summarizes CN identification in both GPT-2 Small and GPT-2 Medium models: the same
identical set confidence neurons persist as across all model variants (we chose to highlight the top-7),
including LN-free models where their theorized mechanism of action is absent. These neurons
maintain their characteristic high weight norm and low logit variance signature despite fine-tuning
and even the removal of LN.
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Normal Normal Normal
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Figure 6: Identification of confidence neurons in GPT-2 Small (top) and GPT-2 Medium (bottom)
across different model variants: original pretrained models (left), vanilla fine-tuned models (middle),
and LN-free fine-tuned models (right). The same confidence neurons (highlighted in red) persists
across all model variants, exhibiting characteristically high weight norms and low logit variance.

Having observed identical confidence neurons across all model variants, we next investigated whether
their effective nullspaces were modified by performing Singular Value Decomposition (SVD) on
each model’s unembedding matrix. Figure [7] shows the normalized singular values (solid lines),
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revealing similar nullspace patterns, though fine-tuned variants exhibit a slightly smaller effective
nullspace. The cosine similarity between top confidence neurons and singular vectors (dashed lines)
demonstrates these neurons predominantly project onto the nullspace in all variants, with some non-
negligible overlap in transitional regions where singular values approach zero. This may explain why
our vanilla fine-tuned model has less effective confidence regulation when mean ablated. Interestingly,
the LN-free model maintains an almost identical nullspace and cosine-similarity pattern to the vanilla
fine-tuned model, despite having no ability to affect logit rankings.
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Figure 7: SVD of the unembedding matrix for GPT-2 Small (left) and GPT-2 Medium (right) across
model variants. Solid lines show normalized singular values, revealing similar nullspaces across
variants, though fine-tuning appears to make the effective nullspace slightly smaller. Dashed lines
represent the cosine similarity between the top confidence neuron (584 for Small, 1083 for Medium)
and each singular vector. These neurons predominantly interact with the nullspace in all variants,
with overlap in regions where singular values approach zero in the fine-tuned models.

To test whether confidence neurons maintain their functional impact across model variants, we
performed mean ablation on these neurons (similar to the total effect described in [Stolfo et al.|[2024]]),
and measured the resulting change in cross-entropy loss. Figure[§|shows the absolute change in loss
when ablating the top-3 confidence neurons in each model. The original GPT-2 Small and GPT-2
Medium models exhibit substantial variation when these neurons are ablated. Without the context-
specific LN scaling these neurons provide, the models predicted logit distributions significantly
change. The vanilla fine-tuned models show reduced but still notable effects, suggesting these
neurons have less effective due to our fine-tuning strategy. This reduced effectiveness may be related
to the slightly smaller effective nullspace, though further investigation is needed to confirm this
relationship. The LN-free models show almost no variation, implying that these neurons have no
effective mechanism to impact final logits despite maintaining their structural characteristics.

To empirically verify that confidence neurons primarily work by modifying the entropy of outputs, we
cumulatively ablated the top three confidence neurons in GPT-2 Medium across all variants. Figure 9]
illustrates the results. In the original model, ablating all three neurons decreases entropy by over
3% while changing cross-entropy loss by only 0.1%—a 30x difference in magnitude. The vanilla
fine-tuned model shows a similar but reduced effect, consistent with our earlier observations of its
slightly degraded confidence regulation capability. Again, the LN-free model exhibits no change in
either metric. These results directly demonstrate that confidence neurons function by modulating
distribution entropy through LN scaling, with minimal impact on which tokens are predicted, allowing
them to regulate model uncertainty without changing token rankings. We also investigated whether
cumulative confidence neuron ablation of GPT-2 Small vanilla fine-tuned model could yield identical
CE loss and entropies to the LN-free model. While the entropies matched (approximately 2.785)
when ablating the top-3 neurons, there remained an absolute difference of approximately 0.06 (2%)
in CE loss, implying that the general trend of overconfidence in LN-free models arises from more
complex mechanisms beyond simply disabled confidence neurons in the final MLP.
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Figure 8: Change in CE loss upon mean ablation of top-3 confidence neurons for GPT-2 Small (left)
and GPT-2 Medium (right). The original models (blue) show substantial loss changes when these
neurons are ablated, indicating their significant role in confidence regulation. The vanilla fine-tuned
models (yellow) exhibit reduced but still notable effects. The LN-free models (green) show almost
no change in loss when the same neurons are ablated, confirming that without LN, they lack the
mechanism to directly affect output logits.

0.00

|
o
o
)

I
o
o
=

1
o
o
=

—0.08

Change in Cross-Entropy Loss (%)

-0.10

o
o

|
o
@

-1.0

Change in Entropy (%)

=e— GPT2-Medium original
GPT2-Medium vanilla FT
== GPT2-Medium LN-free FT

0 1

Number of Neurons Ablated

2

0 1

2
Number of Neurons Ablated

Figure 9: Cumulative effect of ablating the top three confidence neurons in GPT-2 Medium. Left:
Relative change in CE loss. Right: Relative change in entropy. The original model (blue) shows
a disproportionately large impact on entropy compared to CE loss, demonstrating these neurons
primarily regulate distribution confidence rather than token predictions. The vanilla fine-tuned model
(yellow) shows reduced effects, while the LN-free model (green) shows no measurable change in
either metric.
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H Impact Statement

Our work investigates the role of Layer Norm in transformer-based language models, showing that it
can be entirely removed from all GPT-2 models with minimal performance loss. This contributes to the
broader interpretability agenda by removing nonlinearity and reducing complexity and entanglement.
Our results do not move the frontier of model capabilities; thus, we do not expect our work to
create novel risks. In contrast, our work may support safer and more transparent model development
by making more tractable and accurate mechanistic interpretability techniques. As with other
interpretability advances, there remains the possibility that our work could be used to develop more
capable Al systems. However, we believe the release of LN-free GPT-2 models will primarily
serve researchers working to understand model internals and improve the transparency of current
architectures.
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