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Abstract

Layer-wise normalization (LN) is an essential component of virtually all1

transformer-based large language models. While its effects on training stability are2

well documented, its role at inference time is poorly understood. Additionally, LN3

layers hinder mechanistic interpretability by introducing additional nonlinearities4

and increasing the interconnectedness of individual model components. Here, we5

show that all LN layers can be removed via fine-tuning from every GPT-2 model6

with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-7

2 XL). Thus, LN is not essential at inference to maintain comparable performance8

in language modeling. We find that the amount of fine-tuning data needed for LN9

removal grows sublinearly with model parameters, suggesting scaling to larger10

models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face.11

Furthermore, we test interpretability techniques on LN-free models. Direct logit12

attribution now gives the exact direct effect of individual components, while the13

accuracy of attribution patching does not significantly improve. We also confirm14

that GPT-2’s “confidence neurons” are inactive in the LN-free models. Our work15

clarifies the role of LN layers in language modeling, showing that GPT-2-class16

models can function without LN layers. We hope that our LN-free analogs of the17

GPT-2 family of models will enable more precise interpretability research and18

improve our understanding of language models.19

1 Introduction20

Large language models (LLMs) have seen widespread adoption in recent years [Touvron et al.,21

2023, OpenAI et al., 2024, Gemini Team et al., 2024], most of which are based on the Transformer22

architecture Vaswani et al. [2017]. A key component of virtually all such LLMs are layer-wise23

normalization (LN) layers, typically LayerNorm [Ba et al., 2016]24

LN(x) =
x− µ

σ
⊙ γ + β, µ =

1

H

H∑
h=1

xh, σ =

√√√√ 1

H

H∑
h=1

(xh − µ)2 + ϵ, (1)

or RMSNorm [Zhang and Sennrich, 2019, same formula without subtracting the mean µ]. These25

layers have been introduced to stabilize the training process [Ba et al., 2016], similar to batch26

normalization [Ioffe and Szegedy, 2015] in other network architectures.27

Unlike batch normalization however, LN layers cannot be replaced with a linear transformation at28

inference time. While the mean centering (µ), weight (γ), and bias (β) parameters can be folded into29

neighboring layers [e.g. fold_ln, Nanda and Bloom, 2022], the non-linear division by the norm or30
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Figure 1: Main training loss curves for all GPT-2 variants during LN removal. Original GPT-2
OpenWebText eval losses are shown for reference. Curves terminate at model suite checkpoints. LN
removal period shown as vertical lines.

standard deviation of the residual stream must be executed at inference time. This raises the question31

of what role LNs plays in the model and whether it is necessary for the model to function. Prior work32

has shown that LNs functions can implement complex non-linear functions in toy models [Winsor,33

2022], and proposed that LNs might play a role in confidence regulation in LLMs [Stolfo et al., 2024].34

Additionally, LN layers complicate mechanistic interpretability. Mechanistic interpretability typically35

aims to decompose the model into smaller components and to understand their individual effects36

and interactions. Both of these are complicated by the non-linearity of LN layers. Individual37

components cannot be easily attributed as their effect on LN depends on the residual stream activations38

([nostalgebraist, 2020, Elhage et al., 2021, Wang et al., 2022b, Nanda, 2023b],Nanda [2023a]).39

Interactions between components are also complicated by LN because it causes each component to40

affect almost every downstream component in the model (via the LN scale). This makes analyzing41

the interactions complex [e.g. Bushnaq et al., 2024, Farnik et al., 2025]. In practice, researchers42

approximate the LN layers as linear transformations [referred to as “freezing LayerNorm”; Bricken43

et al., 2023, McDougall et al., 2023, Kissane et al., 2024], or train models without LN layers [Elhage44

et al., 2021, Nabeshima, 2024].45

In this work we show that LN layers can be removed from transformer models at the end of training.46

We replace the LN layers with a linear transformation that is initialized to be close to the original47

LN transformation, and fine-tune the model on a small fraction of its training data. We do this for48

one LN layer at a time, essentially slowly weaning the model off of LN. This (a) shows that LLMs49

can function without LN layers, and (b) provides a LN-free versions of the GPT-2 family of models.50

These models can be studied on their own, simply to understand any large language model, or as a51

proxy for their corresponding original GPT-2 models. The latter is possible as our fine-tuned models52

have similar internals, but should be used with caution as similarity is not exact.53

Our contribution is threefold:54

• We show that LLMs can function without LN layers, achieving a cross-entropy loss compa-55

rable to the original models.56

• We provide a optimized protocol for removing LN layers from LLMs at the end of training57

or during fine-tuning, and provide a suite of LN-free GPT-2 models on Hugging Face.58
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• We validate that the interpretability of LN-free models is improved, finding that the direct59

logit attribution (DLA) error is reduced from 50% to 0%, and that attribution patching—60

contrary to expectations in the literature—does not improve with LN-free models.61

2 Related work62

Mechanistic interpretability: Interpretability aims to understand the internals of neural networks63

and the algorithms they implement. Most mechanistic interpretability methods attempt to decompose64

a model into smaller components and aim to understand the interactions between those components.65

The most popular methods are based on sparse dictionary learning, such as sparse autoencoders66

[Bricken et al., 2023] or cross-layer transcoders [Ameisen et al., 2025]. In both cases, researchers67

attempt to find a sparsely-interacting set of components that explain the model’s behavior [Marks68

et al., 2024, Lindsey et al., 2025]. The most common approach to deal with LN is to approximate the69

layer norm scale as constant [e.g. Bricken et al., 2023, McDougall et al., 2023, Kissane et al., 2024].70

Other methods introduce special cases for LN layers [e.g. Bushnaq et al., 2024].71

LN alternatives: The main alternative to layer normalization is batch normalization (BN). However,72

BN performs worse than LN in language model transformers due to changes between the training73

and inference distributions [e.g. Wang et al., 2022a].74

Concurrent work [Zhu et al., 2025] proposed a Dynamic Tanh (DyT) as an alternative to normalization.75

Instead of an LN layer, they apply an element-wise tanh(αx) function to the residual stream. This76

work confirms our results, finding that language models can work without LN. While DyT is preferable77

over LN, in some use cases, DyT is still a non-linear function whose role we don’t understand, and78

that affects interpretability. Our work goes further, replacing LN with a purely linear transformation.79

Transformers trained without normalization: Finally, Nabeshima [2024] trains toy language80

models from scratch, without normalization. However, we expect this method to work only for small81

language models, state-of-the-art language models continue being trained with normalization. Thus82

we focus on removing LN from an already-trained model.83

3 LN Removal strategy and methods84

We remove the nonlinearity of LN by replacing the standard deviation in (1) by a scalar, corresponding85

to an estimate of the average standard deviation, σavg, while fine-tuning on OpenWebText. We define86

a FakeLN block as87

FakeLN(x) =
x− µ

σavg
⊙ γ + β, σb,s =

√√√√ 1

H

H∑
h=1

(xb,s,h − µb,s)2 + ϵ, σavg =
1

BS

B∑
b=1

S∑
s=1

σb,s,

(2)

where σb,s is the standard deviation across the model dimension for batch index b and sequence88

position s, and σavg is the average across all tokens in a batch. σavg is the fixed scalar value used89

when replacing LN with FakeLN. Because removing all LN blocks simultaneously irreparably breaks90

the model’s performance, we adopt a sequential removal process during fine-tuning: we remove one91

LN block, fine-tune for a fixed number of steps to stabilize the loss (which typically spikes after each92

removal), and then proceed to the next LN block. Furthermore, σavg can drift during fine-tuning.93

Therefore, to minimize the disruption introduced by LN removal and stabilize the fine-tuning process,94

we recompute σavg for each batch and freeze the scaled factor in FakeLN at the moment of removal95

to σavg = σavg. For the small and medium models, the batch size is significantly large enough to96

produce reliable estimates of σavg. For GPT-2 Large and GPT-2 XL, we use an exponential moving97

average filter to update σavg for new batches. After LN removal, σavg is not updated anymore.98

We categorize LN blocks into LNl
qk, LNl

v, LNl
MLP and LNf , where l indicates the layer number.99

Respectively, these LN blocks normalize inputs to the query/key path, the value path, the MLP, and100

the final unembedding. While splitting LN for attention heads paths is uncommon, we find this101

more fine-grained removal of LN improves stability during fine-tuning. Our sequential removal102

process begins after an initial standard fine-tuning phase with the removal of LN0
MLP, followed by gmlp103
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fine-tuning steps. We then remove LN1
MLP, fine-tune again for gmlp steps and continue this pattern104

layer by layer until LNL
MLP is removed where L = Nlayers. We then apply the same pattern to remove105

LNl
qk and LNl

v blocks, each separated by gqk and gv fine-tuning steps, respectively. Finally, we remove106

LNf . The gaps between removal events are hyperparameters that have to be chosen carefully. Too107

small gaps can result in instabilities, while choosing very large gaps results in unnecessarily high108

computational costs. We provide a table with LN removal schedule and more details in Appendix B.109

We empirically found that beginning with LNMLP
l rather than LNqk

l led to more stable fine-tuning,110

likely because residual norm variance at beginning-of-sequence tokens affects the attention mecha-111

nism more strongly when its normalization is removed first. Despite removing LN blocks sequentially,112

instabilities can still occur during LN removal. To further stabilize LN-removal by fine-tuning, we113

used an additional auxiliary loss.114

Auxiliary Loss In models with LN, residual stream vectors are scaled by their standard deviation1.115

When LN is removed, large norm disparities across positions can lead to gradient spikes and destabi-116

lize fine-tuning. To encourage stable activations during this process, we introduce an auxiliary loss117

that promotes consistent standard deviations across token positions:118

Laux = λ · Eb,s

[
(σb,s − σ̂)2

]
, σ̂ =

1

|M|
∑

(b,s)∈M

σb,s, (3)

where λ is a scalar hyperparameter. While the loss itself is computed across all positions in the batch,119

the target σ̂ is the average standard deviation across the subset of token positionsM, excluding120

the first token (position 0) and any positions containing the end-of-text token (ID 50256). These121

exclusions from the target calculation are motivated by the observation that such positions consistently122

exhibit higher variance in GPT-2 models. We apply the auxiliary loss only at LNf since all residual123

streams propagate through this final normalization layer, making it a natural global target for norm124

regularization.125

4 LN Removal results126

We successfully remove LN during fine-tuning on OpenWebText from GPT-2 Small, Medium, Large,127

and XL (Tab. 1), demonstrating that our sequential LN removal strategy with auxiliary loss scales from128

a 124 million parameter model to a 1.5 billion parameter model. Figure 1 shows the main loss during129

fine-tuning for LN-removal (for details of the sequential LN-removal schedule and hyperparameters,130

see Appendix B). We find that the largest main loss spikes appear during the removal of LNMLP131

blocks, which is the first LN block that is removed. The LNqk and LNv block removals result only in132

small main loss spikes. Before introducing the auxiliary loss, the LN-removal fine-tuning loss curves133

were more spiky, suggesting that the auxiliary loss effectively absorbs some of the effects of LN134

removal. Furthermore, the auxiliary loss decreases quickly at the beginning of fine-tuning, indicating135

that the model successfully learns to maintain consistent standard deviations across token positions.136

As a control, we compare the LN-free GPT-2 model suite to the original GPT-2 models and vanilla137

fine-tuned models. The vanilla fine-tuned models were fine-tuned for the same number of steps and138

with the same learning rate schedule as the LN-free models, but without auxiliary loss and without139

removing LN. This control allows us to disentangle the effects of LN from the effects of fine-tuning.140

We evaluate performance using mean cross-entropy loss on a validation set of OpenWebText, The141

Pile, and The Pile-filtered (Tab. 1). The Pile-filtered consists of sequences from The Pile dataset142

(monology-pile-uncopyrighted), filtered by removing sequences containing tokens that appear in The143

Pile but not in OpenWebText, such as control characters which arise from formatting discrepancies144

between the two datasets (see Appendix D for more details).145

We find that LN-free models perform comparably to their original variants, with performance146

gaps ranging from +0.03 to 0.1 cross-entropy loss difference on The Pile-filtered (Tab.,1). This147

comparable performance extends to standard language understanding benchmarks, where LN-free148

models maintain accuracy within 1-2 percentage points from their original variants (Appendix E).149

1After subtracting the mean across features, i.e., removing the component in the [1, 1, . . . , 1] direction [Gupta
et al., 2025].
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Table 1: Overview of our LN-free, vanilla fine-tuned, and original GPT-2 models. Reported values
are mean cross-entropy losses for 10.2M tokens for The Pile and The Pile filtered and 4.5M tokens for
the OpenWebText (WT) validation set. For each model size and dataset, the lowest loss is highlighted
in bold, and the loss difference between the LN-free model and the best-performing model is shown
in brackets. All models are available on Hugging Face, see Appendix A. We also discuss compute
requirements in Appendix A.

Model FT steps OWT (val) The Pile The Pile-filtered

GPT-2 Small original 0 3.1006 2.8450 2.7899
GPT-2 Small vanilla 300 3.0126 2.8511 2.8112
GPT-2 Small LN-free 300 3.0797 [+0.0671] 2.8852 [+0.0402] 2.8757 [+0.0858]

GPT-2 Medium original 0 2.8145 2.5163 2.5390
GPT-2 Medium vanilla 500 2.7390 2.5752 2.5724
GPT-2 Medium LN-free 500 2.7642 [+0.0252] 2.6579 [+0.1416] 2.6352 [+0.0962]

GPT-2 Large original 0 2.6623 2.5320 2.4347
GPT-2 Large vanilla 600 2.6240 2.6233 2.5074
GPT-2 Large LN-free 600 2.6384 [+0.0144] 2.7504 [+0.2184] 2.5159 [+0.0812]

GPT-2 XL original 0 2.5567 2.4436 2 2.3739
GPT-2 XL Vanilla 800 2.4799 2.4673 2.3821
GPT-2 XL LN-free 800 2.5052 [+0.0253] 130.2197 3 2.3992 [+0.0253]

The only notable exception is GPT-2 XL LN-free, which shows degraded performance on The Pile.150

A closer examination of the distribution of losses reveals that the higher averaged CE loss is driven151

by a very small number of samples and that the 99.9 percentile ranges of GPT-2 XL LN-free and152

GPT-2 original are nearly identical for The Pile, indicating that the vast majority of sequences are153

handled similarly by both models. This suggests that GPT-2 XL LN-free is highly overconfident on a154

small number of sequences that are present in The Pile but absent from The Pile-filtered dataset.155

We also investigate whether the performance gap can be closed by simply fine-tuning LN-free models156

for longer. Contrary to our initial expectations, we find that extending fine-tuning does not reduce the157

loss gap to vanilla models. Instead, the gap remains approximately constant throughout fine-tuning,158

suggesting that LN contributes a small but persistent performance benefit that cannot be compensated159

by additional fine-tuning. We discuss potential mechanisms behind this behavior in Section 5.4. We160

also investigate if our methodology generalizes beyond the GPT2 model family, and successful apply161

our removal strategy to Pythia 70M [Biderman et al., 2023] (see Appendix C).162

5 Mechanistic interpretability analyses on LN-Free models163

Removing LN eliminates nonlinear dependencies between components and results in models where164

residual stream directions map linearly to output logits. In this section, we evaluate common165

interpretability methods, such as Direct Logit Attribution (DLA) [nostalgebraist, 2020, Elhage et al.,166

2021, Wang et al., 2022b, Nanda, 2023b] and attribution patching [Nanda, 2023a] on LN-free models167

and compare the results to their counterparts with LN.168

5.1 Direct Logit Attribution on LN-free models gives exact Direct Effect on logits169

Direct Logit Attribution (DLA) is an approximation to the Direct Effect (DE) of a component. The170

DE [Pearl, 2022, Geiger et al., 2024] is the effect of a model component on the outputs that is not171

mediated by intermediate components, and can be computed by subtracting a component’s output c172

from the residual stream r after the final layer, and taking the difference in outputs,173

DE(c) = LN(r) ·WU − LN(r − c) ·WU , (4)

2GPT-2 XL original: Median: 1.0103, 95 Percentile range: [0.0005, 10.6193], 99.9 percentile range [≈0.0000,
43.0064]

3GPT-2 XL LN-free: Median: 1.0937, 95 percentile range: [0.0004, 10.7548], 99.9 percentile range
[≈0.0000, 48.6459]
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Figure 2: Activation patching and attribution patching applied on the residual stream at different
layers and positions on GPT-2 Small and the corresponding vanilla and LN-free versions.

where WU denotes the unembedding, and LN the final LayerNorm. The DLA approximation is174

computed using the cached LN scale,175

DLA(c) = LNcached(c) ·WU , (5)

which effectively linearizes LayerNorm (LN).176

We calculated both DLA and DE on each attention head in GPT-2 Small original, GPT-2 Small177

vanilla FT, and GPT-2 Small LN-free FT, on 1,000 sequences of consisting of 512 tokens from The178

Pile-filtered, for logits corresponding to the correct target token. To compare metrics, we used the179

Normalized Mean Absolute Error (NMAE)4, which measures the average discrepancy between DLA180

and DE, expressed as a percentage of the average magnitude of the DE. Our LN-free fine-tuned181

model achieves a perfect 0.00% [0.00%, 0.00%] (95% Confidence Interval - CI) NMAE, whereas the182

original model exhibits an NMAE of 49.07% [29.92%, 66.10%]. This result shows that removing LNs183

makes these methods mathematically equivalent, eliminating the need for inaccurate linearization184

approximations. See Appendix F for more details.185

5.2 Accuracy of attribution patching on LN-free models does not significantly improve186

Activation patching [Meng et al., 2022, Zhang and Nanda, 2023, Heimersheim and Nanda, 2024] is an187

interpretability method used to assess the causal roles of neural network components by transferring188

activations from a "clean" prompt that elicits correct model behavior into a "corrupted" prompt that189

typically leads to incorrect behavior. Formally, this can be expressed as:190

∆ = f(xcorr; al ← al(xclean))− f(xcorr), (6)

where f(x) measures differences in model predictions (typically logit differences), and al ←191

al(xclean) indicates replacing the corrupted activation with its clean counterpart at layer l. While192

precise, activation patching is computationally expensive, scaling with the number of components193

tested. Attribution patching Nanda [2023a] addresses this approximating activation patching with a194

first-order Taylor expansion around the corrupted activation, requiring only two forward passes and195

one backward pass,196

∆ = f(xcorr; al ← al(xclean))− f(xcorr) ≈ ∇al
f(xcorr) · (al(xclean)− al(xcorr)) = ∆attr. (7)

4We calculate NMAE, using averages of absolute differences and DE magnitude rather than per-sample
ratios, as we did not observe a consistent proportional relationship between these two measures across samples.
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As LN projects residual vectors onto a (dmodel − 1)-dimensional sphere after removing the mean197

component, it causes derivatives to vanish when patched directions align with the residual stream and198

is, therefore, a source of attribution patching errors, i.e. discrepancies between attribution patching199

estimates and ground-truth activation patching results (Neel Nanda described it for this reason as "a200

particularly thorny nonlinearity"[Nanda, 2023a]).201

We investigate whether LN is the primary factor limiting attribution patching accuracy by compared202

attribution patching across three models: GPT-2 Small, the corresponding LN-free fine-tuned, and203

vanilla fine-tuned. We focused on the residual stream preceding each transformer block, a location204

where attribution patching is known to perform particularly poorly in models with LN. We used205

480 IOI Wang et al. [2022b] prompts, systematically varying names, places, and objects, with each206

prompt paired with counterparts covering all possible name orderings. To ensure alignment across207

inputs, all prompts had fixed token lengths and name positions. We applied both techniques and208

quantified how well attribution patching approximates activation patching across layers. We used209

normalized logit differences as the patching metric to enable robust comparisons across methods.210

Surprisingly, attribution patching yielded very similar results across layers in the three models (see211

Fig. 2) and despite removing LN, we observed no improvement in attribution patching accuracy. For212

each layer, we quantified this by computing the sum of absolute attribution patching errors across213

token positions in the vanilla fine-tuned model, and subtracting the corresponding value from the214

LN-free model. This yielded a per-layer improvement score, where positive values indicate lower215

attribution error in the LN-free model. Averaged across layers, the improvement is µ = −0.026,216

with standard deviation σ = 0.082. This negative but informative result suggests that attribution217

patching’s limitations likely arise from other more fundamental nonlinearities in the transformer218

architecture, namely the attention SoftMax or the MLP activation functions.219

5.3 First position tokens are no longer special220

A well-documented phenomena in transformer-based language models is the disproportionately high221

L2 norm of first position token’s hidden representations [Xiao et al., 2024, Yona et al., 2025, Barbero222

et al., 2025]. This characteristic has been identified as a key mechanism behind "attention sinks,"223

where the first token captures an outsized portion of attention across multiple heads, affecting infor-224

mation flow throughout the network. While this mechanism appears to help standard models avoid225

representational collapse by controlling information mixing across layers, it introduces computational226

irregularities and potential vulnerabilities [Yona et al., 2025].227

To investigate whether our models exhibit similar behaviours, we measured the L2 norm of first228

position tokens, compared to all other tokens, on 1,000 sequences consisting of up to 512 tokens from229

The Pile-filtered. LN-free models reveal a disruption of the typical first position token norm pattern.230

As illustrated in Fig. 3, the LN-free model maintains consistently moderate L2 norm values (∼300231

to 500) across all layers for the first token, in contrast to the significant norm inflation observed in232

models with LN. This more uniform norm across token positions represents a fundamental shift from233

the standard architecture, where the first token’s norm typically exceeds that of other tokens by close234

to an order of magnitude. The largest first token norm growth in all three models was due to the235

attention head in layer 3, where norms grow from ∼500 to 3,600 for the models with LN.236

We also investigated the attention sink rate across models, defined as the proportion of attention237

heads where the first token attracts at least 30% of overall attention. For the original model, the sink238

rate was 55.3% [53.1%, 58.1%] (95% CI), which dropped to 45.3% [42.0%, 48.5%] for our LN-free239

variant. Interestingly, while this represents a notable reduction in sink rate, it is not proportional to the240

reduction we observed in L2 norms. This suggests that the relationship between relative token norm241

magnitudes and attention sink behavior is likely complex, with attention mechanisms potentially242

maintaining some degree of positional bias toward the first token even when its norm is substantially243

reduced.244

This effect is likely due to the constant linear scaling applied by FakeLN. In models with LN,245

residual stream vectors are scaled by their individual standard deviations, meaning components are246

trained to operate under normalized input conditions. Once LN is removed, this normalization is no247

longer enforced. To compensate, the model appears to adapt by reducing variability in token norms,248

such as between the first token and the rest of the sequence. Our auxiliary loss further encourages249

norm consistency by explicitly penalizing variation across positions, however, we did observe this250

fundamental change in norm behavior even in experiments without this loss term.251
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Figure 3: L2 norm growth for first position tokens (left) versus other positions tokens (right) for
GPT-2 Medium models. First token norms significant deviate from norms at other positions for
models trained with LN. LN-free model treats first token norm similarly to other positions.

5.4 Confidence neurons are neutered in LN-free models252

When developing our LN-free model variants, we observed a consistent pattern: models exhibited253

significant overconfidence compared to their original counterparts. For GPT-2 Medium, the average254

entropy of the output distribution decreased from 2.86 [2.86, 2.87] (95% CI) in the original model to255

2.53 [2.52, 2.54] in the LN-free version. Correspondingly, the expected calibration error, defined256

as the average absolute difference between the predicted confidence and accuracy, increased from257

0.0019 [0.018, 0.020] to 0.034 [0.033, 0.035]. Motivated by these observations, we investigated258

how the recently discovered "confidence neurons" (also referred to as "entropy neurons") [Katz and259

Belinkov, 2023, Gurnee et al., 2024, Stolfo et al., 2024] in the final MLP layer were affected by our260

LN removal strategy.261

Following Stolfo et al. [2024], we define confidence neurons as neurons in the final MLP with262

(a) a high weight norm, and (b) a uniform impact on all output logits. We detail how confidence263

neurons were identified and further analysis in Appendix G. We identified the same top-3 confidence264

neurons (1083, 1108, 3144) in GPT-2 Medium original, vanilla FT, and LN-free. To measure their265

importance in each model, we conducted mean ablations on 1,000 sequences consisting of 512 tokens266

in The Pile-filtered. For each neuron i, we replaced its input activation with its mean value across267

the dataset (xi → E[xi]). This intervention removes the neuron’s contextual information while268

maintaining its average contribution. Figure 4 highlights the absolute change in cross-entropy loss269

when mean ablating each neuron. In the GPT-2 Medium original, all three neurons increase CE loss270

when ablated, with neuron 3144 showing the largest effect. In contrast, the impact is completely271

eliminated in LN-free model. This confirms that linearizing LN completely disables entropy neurons272

in the final MLP layer, further supporting previous work that identified LN’s non-linearity as their273

primary enabling mechanism [Stolfo et al., 2024]. We also observed a decrease in the effectiveness274

of confidence neurons in our vanilla FT model, likely due to our fine-tuning hyperparameters, and is275

discussed further in Appendix G.276

6 Discussion277

6.1 Limitations278

We successfully remove LN from all GPT-2 models. Here, we want to highlight common issues279

and possible limitations of this process. We find that the fine-tuning process when LNs are partially280

removed is, as expected, less stable. We find that the training loss can spike to high values on some281

inputs, which sometimes causes the training run to fail (irrecoverably high loss). A common failure282

we observed are exploding gradients, which most often occur during LNl
v removal. Instabilities283

usually appear as a cascade of increasing gradient norms or exploding gradients in a single step.284
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Figure 4: Absolute change in cross-entropy (CE) when ablating top-3 confidence neurons in GPT-2
Medium models. GPT-2 Medium original demonstrates a significant change in CE loss upon ablating,
effect is significantly dampened in vanilla FT, and completely disappears in LN-free.

While our LN-removal strategies developed on GPT-2 Small and Medium largely transfer to the285

Large and XL models, they required significant hyperparameter tuning, which was computationally286

expensive. Additionally, an early version of our protocol without auxiliary loss worked for GPT-2287

Small, but did not scale to larger models, suggesting that protocols don’t always generalize across288

models.289

As highlighted in Section 5.4, all of our LN-free models exhibit overconfidence compared to their290

LN counterparts. While our experiments demonstrate that removing LN effectively neutralizes291

confidence neurons, the magnitude of the observed increase in overconfidence suggests additional292

contributing factors. It’s possible that without the normalizing effect of standard LN, attention,293

and MLP components must now handle greater variability in residual stream inputs, potentially294

compromising their ability to contribute to appropriate uncertainty quantification.295

6.2 Future work296

More models: We focused primarily on GPT-2 models, due to their ubiquity in the interpretability297

community. In the future, we would like to expand our LN removal protocol to more recent models.298

Parameter efficient fine-tuning: So far we used full fine-tuning. While this was feasible for GPT-2299

sized models, we want to explore parameter efficient fine-tuning strategies in the future.300

Further protocol optimization: We noticed that the gap between removing the LN in different301

layers can be reduced for LNl
qk and LNl

MLP; in fact some experimental runs showed that we could302

remove those instances of LN in all layers simultaneously (only LNl
v always required gaps).303

Circuits interpretability: Attempts to create a sparse computational graph to represent a neural304

network are hindered by LN. It would be interesting to see if techniques like Marks et al. [2024]305

benefit from removing LN layers.306

7 Conclusions307

We showed that layer normalization can be gradually removed from transformer models with minimal308

performance loss using a fine-tuning procedure, demonstrating this on all GPT-2 models (and309

Pythia-70M). We detailed our procedure and the strategies used to address hyperparameter sensitivity.310

Applying interpretability techniques, we found that in LN-free models DLA becomes an exact estimate311

of DE and first-token residual norms become comparable to those at other positions. Surprisingly,312

attribution patching does not improve in LN-free models, suggesting its limitations stem from other313

nonlinearities. Finally, we showed that LN-free models lack operational entropy neurons, contributing314

towards the more generally observed trend of model overconfidence. Open-sourcing the models, we315

hope to contribute to mechanistic interpretability research.316
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Eldawy, Jiawern Lim, Rahul Rishi, Shirin Badiezadegan, Taylor Bos, Jerry Chang, Sanil Jain, Sri449

Gayatri Sundara Padmanabhan, Subha Puttagunta, Kalpesh Krishna, Leslie Baker, Norbert Kalb,450

Vamsi Bedapudi, Adam Kurzrok, Shuntong Lei, Anthony Yu, Oren Litvin, Xiang Zhou, Zhichun451

Wu, Sam Sobell, Andrea Siciliano, Alan Papir, Robby Neale, Jonas Bragagnolo, Tej Toor, Tina452

Chen, Valentin Anklin, Feiran Wang, Richie Feng, Milad Gholami, Kevin Ling, Lijuan Liu, Jules453

Walter, Hamid Moghaddam, Arun Kishore, Jakub Adamek, Tyler Mercado, Jonathan Mallinson,454

Siddhinita Wandekar, Stephen Cagle, Eran Ofek, Guillermo Garrido, Clemens Lombriser, Maksim455

Mukha, Botu Sun, Hafeezul Rahman Mohammad, Josip Matak, Yadi Qian, Vikas Peswani, Pawel456

Janus, Quan Yuan, Leif Schelin, Oana David, Ankur Garg, Yifan He, Oleksii Duzhyi, Anton457

Älgmyr, Timothée Lottaz, Qi Li, Vikas Yadav, Luyao Xu, Alex Chinien, Rakesh Shivanna,458

Aleksandr Chuklin, Josie Li, Carrie Spadine, Travis Wolfe, Kareem Mohamed, Subhabrata Das,459

Zihang Dai, Kyle He, Daniel von Dincklage, Shyam Upadhyay, Akanksha Maurya, Luyan Chi,460

Sebastian Krause, Khalid Salama, Pam G Rabinovitch, Pavan Kumar Reddy M, Aarush Selvan,461

Mikhail Dektiarev, Golnaz Ghiasi, Erdem Guven, Himanshu Gupta, Boyi Liu, Deepak Sharma,462

Idan Heimlich Shtacher, Shachi Paul, Oscar Akerlund, François-Xavier Aubet, Terry Huang, Chen463

Zhu, Eric Zhu, Elico Teixeira, Matthew Fritze, Francesco Bertolini, Liana-Eleonora Marinescu,464

Martin Bölle, Dominik Paulus, Khyatti Gupta, Tejasi Latkar, Max Chang, Jason Sanders, Roopa465

Wilson, Xuewei Wu, Yi-Xuan Tan, Lam Nguyen Thiet, Tulsee Doshi, Sid Lall, Swaroop Mishra,466

Wanming Chen, Thang Luong, Seth Benjamin, Jasmine Lee, Ewa Andrejczuk, Dominik Rabiej,467

Vipul Ranjan, Krzysztof Styrc, Pengcheng Yin, Jon Simon, Malcolm Rose Harriott, Mudit Bansal,468

Alexei Robsky, Geoff Bacon, David Greene, Daniil Mirylenka, Chen Zhou, Obaid Sarvana,469

Abhimanyu Goyal, Samuel Andermatt, Patrick Siegler, Ben Horn, Assaf Israel, Francesco Pongetti,470

Chih-Wei "Louis" Chen, Marco Selvatici, Pedro Silva, Kathie Wang, Jackson Tolins, Kelvin Guu,471

Roey Yogev, Xiaochen Cai, Alessandro Agostini, Maulik Shah, Hung Nguyen, Noah Ó Donnaile,472

Sébastien Pereira, Linda Friso, Adam Stambler, Adam Kurzrok, Chenkai Kuang, Yan Romanikhin,473

Mark Geller, ZJ Yan, Kane Jang, Cheng-Chun Lee, Wojciech Fica, Eric Malmi, Qijun Tan, Dan474

Banica, Daniel Balle, Ryan Pham, Yanping Huang, Diana Avram, Hongzhi Shi, Jasjot Singh, Chris475

Hidey, Niharika Ahuja, Pranab Saxena, Dan Dooley, Srividya Pranavi Potharaju, Eileen O’Neill,476

Anand Gokulchandran, Ryan Foley, Kai Zhao, Mike Dusenberry, Yuan Liu, Pulkit Mehta, Ragha477

Kotikalapudi, Chalence Safranek-Shrader, Andrew Goodman, Joshua Kessinger, Eran Globen,478

Prateek Kolhar, Chris Gorgolewski, Ali Ibrahim, Yang Song, Ali Eichenbaum, Thomas Brovelli,479

Sahitya Potluri, Preethi Lahoti, Cip Baetu, Ali Ghorbani, Charles Chen, Andy Crawford, Shalini480

Pal, Mukund Sridhar, Petru Gurita, Asier Mujika, Igor Petrovski, Pierre-Louis Cedoz, Chenmei Li,481

Shiyuan Chen, Niccolò Dal Santo, Siddharth Goyal, Jitesh Punjabi, Karthik Kappaganthu, Chester482

Kwak, Pallavi LV, Sarmishta Velury, Himadri Choudhury, Jamie Hall, Premal Shah, Ricardo483

Figueira, Matt Thomas, Minjie Lu, Ting Zhou, Chintu Kumar, Thomas Jurdi, Sharat Chikkerur,484

12



Yenai Ma, Adams Yu, Soo Kwak, Victor Ähdel, Sujeevan Rajayogam, Travis Choma, Fei Liu,485

Aditya Barua, Colin Ji, Ji Ho Park, Vincent Hellendoorn, Alex Bailey, Taylan Bilal, Huanjie Zhou,486

Mehrdad Khatir, Charles Sutton, Wojciech Rzadkowski, Fiona Macintosh, Konstantin Shagin, Paul487

Medina, Chen Liang, Jinjing Zhou, Pararth Shah, Yingying Bi, Attila Dankovics, Shipra Banga,488

Sabine Lehmann, Marissa Bredesen, Zifan Lin, John Eric Hoffmann, Jonathan Lai, Raynald Chung,489

Kai Yang, Nihal Balani, Arthur Bražinskas, Andrei Sozanschi, Matthew Hayes, Héctor Fernández490

Alcalde, Peter Makarov, Will Chen, Antonio Stella, Liselotte Snijders, Michael Mandl, Ante491

Kärrman, Paweł Nowak, Xinyi Wu, Alex Dyck, Krishnan Vaidyanathan, Raghavender R, Jessica492

Mallet, Mitch Rudominer, Eric Johnston, Sushil Mittal, Akhil Udathu, Janara Christensen, Vishal493

Verma, Zach Irving, Andreas Santucci, Gamaleldin Elsayed, Elnaz Davoodi, Marin Georgiev, Ian494

Tenney, Nan Hua, Geoffrey Cideron, Edouard Leurent, Mahmoud Alnahlawi, Ionut Georgescu,495

Nan Wei, Ivy Zheng, Dylan Scandinaro, Heinrich Jiang, Jasper Snoek, Mukund Sundararajan,496

Xuezhi Wang, Zack Ontiveros, Itay Karo, Jeremy Cole, Vinu Rajashekhar, Lara Tumeh, Eyal Ben-497

David, Rishub Jain, Jonathan Uesato, Romina Datta, Oskar Bunyan, Shimu Wu, John Zhang, Piotr498

Stanczyk, Ye Zhang, David Steiner, Subhajit Naskar, Michael Azzam, Matthew Johnson, Adam499

Paszke, Chung-Cheng Chiu, Jaume Sanchez Elias, Afroz Mohiuddin, Faizan Muhammad, Jin500

Miao, Andrew Lee, Nino Vieillard, Jane Park, Jiageng Zhang, Jeff Stanway, Drew Garmon, Abhijit501

Karmarkar, Zhe Dong, Jong Lee, Aviral Kumar, Luowei Zhou, Jonathan Evens, William Isaac,502

Geoffrey Irving, Edward Loper, Michael Fink, Isha Arkatkar, Nanxin Chen, Izhak Shafran, Ivan503

Petrychenko, Zhe Chen, Johnson Jia, Anselm Levskaya, Zhenkai Zhu, Peter Grabowski, Yu Mao,504

Alberto Magni, Kaisheng Yao, Javier Snaider, Norman Casagrande, Evan Palmer, Paul Suganthan,505

Alfonso Castaño, Irene Giannoumis, Wooyeol Kim, Mikołaj Rybiński, Ashwin Sreevatsa, Jennifer506
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Appendix714

A Code and Model Availability715

The LN removal code is available on: https://anonymous.4open.science/r/rm-LN-repo/716

Table 2: Hugging Face links for models used and generated in this manuscript. The final links will
be shared upon publication due to double-blind review requirements. Furthermore, fine-tuning (FT)
steps and GPU hours are shown.

Model FT Steps FT GPU Hours Link

GPT-2 Small original 0 N/A
GPT-2 Small vanilla 300 1
GPT-2 Small LN-free 300 1.5

GPT-2 Medium original 0 N/A
GPT-2 Medium vanilla 500 2.5
GPT-2 Medium LN-free 500 3.5

GPT-2 Large 0 N/A
GPT-2 Large vanilla 600 6.5
GPT-2 Large LN-free 600 8

GPT2 XL original 0 N/A
GPT2 XL vanilla 800 14
GPT2 XL LN-free 800 26

Other Compute Requirements: The evaluation and interpretability experiments require a negligi-717

ble amount of compute (on the order of a few GPU hours).718
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B Blockwise LN-Removal Schedules719

All schedules use a warmup phase, cosine learning rate decay schedule, and continue fine-tuning for720

some iterations after LN removal is completed. Recomputation and auxiliary loss are applied to all721

schedules. The removal steps in the schedule are configured by start, gap and number of layers hyper722

parameters Tab. 3; See Tab. 4 for how these affect the final schedules.723

Hyperparameter Small Medium Large XL

Original GPT-2 model gpt2 gpt2-medium gpt2-large gpt2-xl
Micro Batch Size 32 22 28 18
Gradient Accumulation Steps 16 23 18 28
Batch Tokens Per Step 524288 518144 516096 516096

Weight Decay 0.01 0.01 0.01 0.01
Learning Rate 0.0006 0.0006 0.0003 0.0001
Min Learning Rate 0.0003 0.0003 0.00004 0.00002
Aux Loss Weight 0.1 0.1 0.03 0.01
Gradient Checkpointing true true false false
GPU memory 80GB 80GB 180GB 180GB

Number of Layers 12 24 36 48
Warmup Steps 25 10 15 20
Max Steps 300 500 1200 1200
Start LNMLP 20 20 30 50
Start LNqk 44 68 174 242
Start LNv 68 116 318 434
Start LNf 104 188 534 722
Gap LNMLP 2 2 4 4
Gap LNqk 2 2 4 4
Gap LNv 3 3 6 6

Table 3: Comparison of GPT-2 Small, Medium, Large, and XL LN-free Hyperparameters

Small (12 layers) Medium (24 layers) Large (36 layers) XL (48 layers)

Step Removal Step Removal Step Removal Step Removal

MLP

20 LN0
MLP 20 LN0

MLP 30 LN0
MLP 50 LN0

MLP
22 LN1

MLP 22 LN1
MLP 34 LN1

MLP 54 LN1
MLP

· · · · · · · · · · · · · · · · · · · · · · · ·
42 LN11

MLP 66 LN23
MLP 170 LN35

MLP 238 LN47
MLP

QK

44 LN0
qk 68 LN0

qk 174 LN0
qk 242 LN0

qk
46 LN1

qk 70 LN1
qk 178 LN1

qk 246 LN1
qk

· · · · · · · · · · · · · · · · · · · · · · · ·
66 LN11

qk 114 LN23
qk 314 LN35

qk 430 LN47
qk

V

68 LN0
v 116 LN0

v 318 LN0
v 434 LN0

v
71 LN1

v 119 LN1
v 324 LN1

v 440 LN1
v

· · · · · · · · · · · · · · · · · · · · · · · ·
101 LN11

v 185 LN23
v 528 LN35

v 716 LN47
v

Final 104 LNf 188 LNf 534 LNf 722 LNf

Table 4: LN removal schedule for GPT-2 Models (Small, Medium, Large, and XL). Values correspond
to fine-tuning steps when a particular LN is removed. Gaps between removal events are uniform
within each LN group.
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B.1 Empirical Guidelines for Hyperparameter Selection724

Based on our empirical observations during the development of the LN-removal procedure, we725

identified several common failure modes and here we provide effective mitigation strategies:726

Exploding loss after removal events: If the main loss spikes dramatically shortly after removing a727

LN module, this typically indicates that the removal schedule is too aggressive. The most effective728

mitigation is to increase the gaps between removal events within each LN group.729

Loss degradation after complete LN removal: When the loss begins to increase after all LN730

modules have been removed, we found it beneficial to increase the minimum learning rate of the731

learning rate schedule.732

Sudden failures at some fine-tuning step during the query/key path LN removal schedule: In733

this specific case, we found it beneficial to monitor standard deviation values for drop in replacement,734

modify the EMA smoothing factor, change the learning rate, and change the auxiliary loss weight.735

These strategies proved effective for achieving stable LN removal across all model sizes. Additionally,736

the auxiliary loss and EMA estimation significantly helped in reducing sensitivity to hyperparameter737

choices compared to approaches without these components.738
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C Generalization Beyond GPT-2 Family739

To evaluate whether our LN removal methodology extends beyond the GPT-2 model family, we740

conducted additional experiments using Pythia 70M [Biderman et al., 2023]. We compared two741

fine-tuning approaches on The Pile dataset: vanilla fine-tuning with LN intact, and our proposed742

fine-tuning strategy where LN is removed.743

The results demonstrate comparable performance degradation to our GPT-2 findings. The vanilla744

fine-tuned model achieved a cross-entropy loss of 3.80 on the OpenWebText evaluation set, while the745

LN-free variant achieved a cross-entropy loss of 3.89. This 0.09 increase in loss aligns closely with746

the performance gap observed in GPT-2 Small (124M parameters), indicating that our methodology747

exhibits consistent behavior across different transformer architectures. On the HellaSwag benchmark,748

the original Pythia 70M model scored 0.2679, the vanilla fine-tuned model achieved 0.2667, and749

the LN-free model obtained 0.2636, showing minimal performance degradation on this alternative750

evaluation.751

These findings provide evidence that our LN removal approach generalizes beyond the specific GPT-2752

architecture to other transformer-based language models.753
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D The Pile-filtered754

When evaluating models on the Pile [Gao et al., 2020], we observed unusually high cross-entropy755

losses for specific tokens. To investigate this, we compared token frequency distributions between756

1 million samples from this dataset and OpenWebText [Gokaslan and Cohen, 2019], both pretok-757

enized with GPT-2. We identified tokens that appeared in The Pile but not in OpenWebText, which758

corresponded to sequences with high cross entropy loss. We filtered out sequences containing any759

of these tokens, and created a small a 10,000-example filtered subset of The Pile. Upon acceptance,760

the filtered dataset, along with token metadata and generation scripts, will be made available on the761

Hugging Face Hub (due to double blind review requirements).

token_id token count
197 \t 4,260,185
628 \n\n 1,382,601

1849 \xa0 1,090,135
201 \r 725,891
191 \x03 50,457
200 \x0c 49,412

5624 \xa0 40,045
4603 \xa0\xa0 9,374
205 \x11 5,169
203 \x0f 4,177

Table 5: Top 10 most frequent tokens present in The Pile and missing in OpenWebText.

762

D.1 GPT-2 XL LN-Free High Loss Samples on The Pile763

We reported a very high mean CE loss (130.22) for GPT-2 XL LN-Free on The Pile. However,764

the median and 99.9 percentile range are very similar to GPT-2 XL original. Three samples are765

responsible for the high mean CE loss for GPT-2 XL LN-Free on The Pile. We list these samples766

below. These samples contain a token or token sequence not present in OWT and are listed in Tab. 5.767

At such tokens, the model has absurdly high CE losses, up to 5 million, i.e., the model is overconfident768

that the true next token will not be the next. For the three samples, the first token prediction with CE769

loss larger than 50 are “\x0c”, “\t”, and “\n” respectively. The last token of the sequence leading up770

to the token with high errors is “\n” for all three samples, indicating that these specific tokens and771

token combinations are causing overconfidence in the model. Further inspection reveals that these772

high CE losses derive from very large negative logits. These outliers occur because, in rare cases773

involving certain tokens not present in the fine-tuning dataset, the norm of residual stream vectors774

before unembedding explodes. Interestingly, we observed this phenomenon only in GPT-2 XL.775

Sample 1:776

777
Sample 2726 out of 10k has tokens with CE loss > 50.778

779
First token with CE loss > 50:200 at position 11.780
Decoded:’781
’782
Decoded (unicode_escape):’\x0c’783
Sequence of last 5 Tokens for prediction:220 220 220 1367 198784
Decoded:’ 11785
’786
Decoded (unicode_escape):’ 11\n’787

788
(Token:Loss)789
220:N/A, 220:7.6214733, 220:7.988017, 220:0.7575181, 220:0.21067815, 220:0.11241462, 220:0.0828728, 220:0.07294927,790
220:0.06983218, 1367:9.5656, 198:3.8515434, 200:54.273285, 42138:11.611183, 290:5.8352313, 2912:9.315803, 9021:17.121414,791
286:5.927439, 8460:9.354071, 642:3.973015, 4310:4.678949, 761:10.288656, 407:0.60814863, 307:0.55970573, 3940:4.7689095,792
13:1.346435, 41990:9.208092, 2173:7.9507837, 503:0.88767886, 326:0.47304547, 287:4.0013585, 428:2.462367, 198:7.3526363,793
198:0.0011684026, 7442:1.6571776, 11:0.8788041, 262:1.2546973, 20693:6.1989183, 4934:4.3370743, 284:2.2307296, 38040:3.9622679,794
10494:0.005666858, 19303:9.20058, 2457:4.18554, 3173:1.1498255, 1682:8.386018, 2058:4.2735405, 407:3.1076946, 422:0.1769652,795
262:0.78079456, 198:2.1329598, 198:0.00015055, 36208:13.958086, 4537:12.094295, 16412:8.990057, 475:3.527892, 422:0.22476129,796
262:0.55110574, 3893:8.833248, 17541:5.443501, 4347:10.620082, 1799:5.924607, 290:3.480315, 37159:10.124819, 2191:5.4837275,797
286:1.5630095, 8235:9.437175, 357:4.602768, 447:6.1605263, 250:5.47846, 39:5.972879, 4061:5.5613327, 3838:6.2311015,798
447:4.11596, 251:0.2733165, 828:5.8963223, 198:3.1704738, 198:3.05913, 14876:12.424786, 13:2.642362, 406:8.8554945,799
13:4.501826, 1400:6.3063745, 13:2.2849069, 14436:11.087215, 12:3.5680172, 26492:13.83733, 11:2.9488518, 47171:9.930283,800
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8949:10.020365, 11:2.4528143, 15143:9.181636, 11:2.0323732, 22219:9.782476, 11:1.5124732, 9796:9.335302, 5133:8.786331,801
13:2.5590122, 27653:13.353212, 11:1.7378397, 27937:10.412004, 11:1.2108434, 15408:11.124487, 11:1.0378554, 1160:8.236352,802
6469:10.613097, 357:3.7660804, 22288:7.9838486, 828:5.7518673, 543:3.3631327, 198:4.0904975, 198:0.05241805, 1939:11.162535,803
40132:2.9781475, 1115:7.43649, 13788:11.595028, 10411:5.7753525, 8617:7.3080463, 656:7.60578, 13793:10.331831, 22312:10.301449,804
11:1.4195569, 262:2.8994842, 18628:10.344179, 20197:7.251051, 6127:7.2656045, 11:2.1663508, 290:2.5125058, 198:4.6340384,805
198:2.3188238, 1169:6.9466467, 5094:8.366037, 3893:6.32104, 4809:6.82047, 2191:6.6650662, 25:4.863468, 628:8.807043,806
220:8.19655, 220:3.819473, 220:4.2062297, 220:4.961961, 220:4.995181, 220:5.277912, 383:5.82012, 4986:9.652403,807
11:2.5059075, 6414:9.438324, 351:3.5732212, 2665:7.6105623, 14436:8.626756, 286:4.936455, 262:2.6958165, 3893:9.572085,808
7276:6.6044493, 4347:11.077166, 1799:6.549804, 290:4.471074, 198:3.295391, 220:5.0134106, 220:6.064687, 220:5.9405313,809
220:4.124799, 220:3.2302897, 220:1.6753389, 37159:11.453347, 2191:6.410646, 286:3.9341471, 8235:10.6037035, 11:2.1030743,810
743:7.7276053, 38040:13.952975, 10494:12220.764, 884:1568.6077, 6647:2484.7053, 355:883.05884, 743:1939.9294, 307:1384.4974,811
3306:2680.565, 198:469.1405, 220:1538.7728, 220:1178.9397, 220:1431.203, 220:1082.1162, 220:1259.7878, 220:1304.2883,812
393:397.98828, 5035:2698.9102, 284:456.9895, 3283:2395.4785, 503:1655.8503, 262:674.69543, 8617:3220.739, 286:830.44946,813
428:1525.5525, 685:797.9059, 3911:4231.721, 4083:2158.9766, 383:999.2892, 4986:2601.727, 743:1726.6406, 198:450.30127,814
220:1403.6172, 220:2175.758, 220:2173.087, 220:1988.6704, 220:1560.3451, 220:1146.8448, 38040:4204.649, 10494:8649.862,815
597:1345.0178, 19303:3773.4775, 2457:2029.5072, 3173:1839.6007, 355:568.34094, 262:590.8824, 4986:2062.4531, 15947:2279.8892,816
389:1038.8564, 5035:2869.369, 284:779.21716, 198:396.0829, 220:881.5056, 220:1608.5259, 220:2106.2659, 220:1546.5009,817
220:1546.5249, 220:1340.715, 3283:2450.9758, 503:1587.5262, 428:1318.5421, 685:882.85913, 3911:3507.6172, 4083:2057.4734,818
198:216.41724, 198:246.9541, 1959:2581.9805, 471:1004.4808, 13:41.873535, 50:1349.8, 13:150.74365, 34:1408.8376,819
13:197.64563, 8460:2291.2534, 15136:1785.7683, 16:2138.023, 66:1901.7491, 11:178.7539, 2608:2297.8555, 471:1437.7157,820

821
...822

823
Decoded:824

11825
826

notice and comment procedures of § 553 need not be followed. Plaintiff points out that in this827
828

case, the statutory authority to promulgate interim final rules actually comes not from the829
830

MHPAEA but from the Health Insurance Portability and Accountability Act of 1996 (“HIPAA”),831
832

Pub. L. No. 104-191, §§ 101, 102, 401, 110 Stat. 1936, 1951, 1976, 2082 (1996), which833
834

incorporated three substantially identical provisions into ERISA, the Internal Revenue Code, and835
836

the Public Health Service Act:837
838

The Secretary, consistent with section 104 of the Health Care Portability and839
Accountability Act of 1996, may promulgate such regulations as may be necessary840
or appropriate to carry out the provisions of this [part]. The Secretary may841
promulgate any interim final rules as the Secretary determines are appropriate to842
carry out this [part].843

844
29 U.S.C. § 1191c, 26 U.S.C. § 9833 (replacing “part” with “chapter”), and 42 U.S.C. § 300gg-845

846
92 (replacing “part” with “subchapter”).4 Plaintiff argues that Congress only intended to give the847

848
Secretaries authority to promulgate interim final rules relating to HIPAA and not the MHPAEA,849

850
which was passed twelve years later. However, the MHPAEA’s substantive provisions are851

852
amendments to the same sections of ERISA, the Internal Revenue Code, and the Public Health853

854
Service Act that are governed by the HIPAA provisions cited above, and the statutory text clearly855

856
gives the Secretaries authority to promulgate interim final rules to carry out these sections.857

858
Therefore, the Court finds that Congress has authorized the Secretaries to “promulgate any859

860
interim final rules as the[y] determine[] are appropriate to carry out the” MHPAEA.861

862
Finding that Congress authorized the promulgation of interim final rules does not end the863

864
inquiry. Although the APA recognizes that Congress may modify the notice and comment865

866
867

4868
This regulatory authority covers part 7 of Subtitle B of Title I of ERISA (29 U.S.C. §§869

1181-91c), Chapter 100 of the Internal Revenue Code (26 U.S.C. §§ 9801-33), and Part A of870
Title XXVII of the Public Health Service Act (42 U.S.C. §§ 300gg to 300gg-92).871

872
12873

874
procedures called for by § 553, it states that a “[s]ubsequent statute may not be held to supersede875

876
or modify [§ 553] . . . except to the extent that it does so expressly.” 5 U.S.C. § 559. “[T]he877

878
import of the § 559 instruction is that Congress’s intent to make a substantive change be clear.”879

880
Ass’n of Data Processing Serv. Orgs., Inc. v. Bd. of Governors, 745 F.2d 677, 686 (D.C. Cir.881

882
1986). The statutory provisions authorizing interim final rules in this case do not mention notice883

884
and comment or any other aspect of the APA. In such a case, the D.C. Circuit has defined the885

886
relevant standard as “whether Congress has established procedures so clearly different from those887

888
required by the APA that it must have intended to displace the norm.” Asiana Airlines v. FAA,889

890
134 F.3d 393, 397 (D.C. Cir. 1998).891

892
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Defendants rely on two cases in which the D.C. Circuit held that the notice and comment893
894

provisions of § 553 were abrogated by specific statutory provisions authorizing interim final895
896

rules. See Asiana Airlines v. Fed. Aviation Admin., 134 F.3d 393 (D.C. Cir. 1998); Methodist897
898

Hosp. of Sacramento v. Shalala, 38 F.3d 1225 (D.C. Cir. 1994). In Methodist Hospital of899
900

Sacramento, the court was faced with901

Sample 2:902

Sample 7323 out of 10k has tokens with CE loss > 50.903
First token with CE loss > 50:197 at position 10.904
Decoded:’ ’905
Decoded (unicode_escape):’\t’906
Sequence of last 5 Tokens for prediction:257 4731 7177 13 198907
Decoded:’ a string array.908
’909
Decoded (unicode_escape):’ a string array.\n’910
(Token:Loss)911
1003:N/A, 1003:11.26658, 9726:11.162002, 46621:13.591053, 355:5.1217504, 257:1.9146276, 4731:7.4259768, 7177:8.642193,912
13:1.57043, 198:1.4427543, 197:51.156723, 12235:14.619279, 39:10.696115, 7465:9.209376, 17635:11.363218, 8841:10.934766,913
198:3.474833, 92:13.564951, 198:1.2806269, 198:0.0055186776, 1003:3.836342, 968:7.883165, 49:8.290166, 3798:5.798291,914
272:7.7695932, 45356:11.567278, 40109:11.504518, 5860:9.337919, 257:1.5190241, 649:1.7121754, 4554:2.7947285, 543:4.841503,915
460:2.3216853, 307:0.686766, 973:0.74536353, 284:0.4934966, 2071:5.992473, 257:1.6754444, 581:7.8475504, 5171:6.433069,916
198:3.4856787, 1003:13.67105, 19449:8.2021055, 12:3.5855105, 49:5.30799, 5662:5.4760623, 3141:7.5336666, 13:2.6725016,917
198:0.8083212, 1003:15.782787, 198:2.8173897, 1003:15.395724, 24550:5.2747335, 25:0.19102867, 770:2.1424239, 318:1.7225417,918
257:1.5685425, 275:8.388821, 83:4.2324853, 10210:5.020052, 7552:5.175566, 49702:11.925024, 422:0.8439282, 33084:4.970866,919
13:0.68376416, 785:0.20635764, 14:0.37836862, 12501:8.026502, 445:2.2101464, 14:0.4466647, 17896:7.95566, 4372:3.105786,920
14:2.777247, 67:4.3537035, 6098:0.37673652, 17752:5.617012, 198:2.2561002, 1003:12.216859, 290:5.0420575, 4433:4.454626,921
257:1.9344062, 2639:6.557314, 5459:0.1832912, 4637:3.1329556, 13:1.564306, 198:0.2661691, 20786:21.258528, 968:1.6345162,922
49:0.024241818, 3798:2.4097002, 272:3.8780181, 45356:10.635372, 40109:9.851566, 7:3.763564, 9967:6.12138, 39:6.5091047,923
7465:0.047564577, 17635:5.3687067, 8841:1.8500897, 8:6.0806694, 1635:5.2731657, 49:4.241615, 3798:2.2475796, 272:1.7413952,924
45356:6.1853223, 40109:9.715792, 1391:10.957037, 198:3.2365587, 197:35.354282, 7783:13.6022215, 1222:7.565274, 49:5.145051,925
3798:12.716011, 272:9.562733, 45356:12.930087, 40109:13.774559, 90:9.70529, 12235:5.3254843, 39:13.270555, 7465:12.182639,926
25:3.5354931, 2512:9.293187, 39:12.1883745, 7465:14.035143, 92:11.704035, 198:3.7612562, 92:9.557363, 198:4.632967,927
198:1.6126469, 20786:11.7582035, 2315:11.252395, 3419:599915.1, 1391:128406.42, 198:21275.512, 197:436295.1, 1003:167360.28,928
383:44864.34, 9729:140597.66, 287:10736.5625, 428:79266.625, 2393:104939.37, 389:51231.992, 691:73092.914, 24284:177729.25,929
416:58283.36, 2639:149387.14, 11603:219064.45, 13:6765.0703, 198:32484.742, 197:443424.3, 33152:201537.97, 19039:195013.5,930
471:62431.207, 37:97675.016, 1135:110187.266, 1443:234881.84, 5459:269756.94, 10049:242653.28, 628:112184.06, 197:436574.7,931
34320:148946.5, 38804:172249.12, 40109:219531.69, 7203:188346.6, 41299:237815.0, 5344:139417.62, 1600:119173.45, 20789:137373.7,932
47649:202613.36, 5344:148038.86, 40109:232167.31, 5769:212062.88, 45991:286692.56, 828:95972.62, 9701:161537.31,933
8:45388.77, 198:26669.29, 197:461318.66, 34320:180015.84, 38804:183880.8, 40109:273160.8, 7203:128039.91, 2220:195715.38,934
17602:179212.78, 24455:165867.17, 1600:177894.75, 20789:196518.0, 8912:206497.88, 46047:205311.12,935
22417:217080.81, 40109:232314.2, 5769:212559.25, 45991:271713.0, 828:92336.35, 9701:131772.14, 8:71338.83, 198:9289.922,936
197:479748.06, 34320:161961.17, 38804:183598.38, 40109:324803.62, 7203:168302.4, 1662:152243.08, 1958:311552.6,937
27372:174300.81, 1600:175331.19, 20789:198232.06, 3673:121481.22, 1958:134500.3, 45356:281647.62, 40109:218485.22,938

939
...940

941
942

Decoded:943
// Block hashes as a string array.944
BlockHashes []string945

}946
947

// NewRescanBlocksCmd returns a new instance which can be used to issue a rescan948
// JSON-RPC command.949
//950
// NOTE: This is a btcd extension ported from github.com/decred/dcrd/dcrjson951
// and requires a websocket connection.952
func NewRescanBlocksCmd(blockHashes []string) *RescanBlocksCmd {953
return &RescanBlocksCmd{BlockHashes: blockHashes}954

}955
956

func init() {957
// The commands in this file are only usable by websockets.958
flags := UFWebsocketOnly959

960
MustRegisterCmd("authenticate", (*AuthenticateCmd)(nil), flags)961
MustRegisterCmd("loadtxfilter", (*LoadTxFilterCmd)(nil), flags)962
MustRegisterCmd("notifyblocks", (*NotifyBlocksCmd)(nil), flags)963
MustRegisterCmd("notifynewtransactions", (*NotifyNewTransactionsCmd)(nil), flags)964
MustRegisterCmd("notifyreceived", (*NotifyReceivedCmd)(nil), flags)965
MustRegisterCmd("notifyspent", (*NotifySpentCmd)(nil), flags)966
MustRegisterCmd("session", (*SessionCmd)(nil), flags)967
MustRegisterCmd("stopnotifyblocks", (*StopNotifyBlocksCmd)(nil), flags)968
MustRegisterCmd("stopnotifynewtransactions", (*StopNotifyNewTransactionsCmd)(nil), flags)969
MustRegisterCmd("stopnotifyspent", (*StopNotifySpentCmd)(nil), flags)970
MustRegisterCmd("stopnotifyreceived", (*StopNotifyReceivedCmd)(nil), flags)971
MustRegisterCmd("rescan", (*RescanCmd)(nil), flags)972
MustRegisterCmd("rescanblocks", (*RescanBlocksCmd)(nil), flags)973

}974
Faithless Execution: Fighting Presidential Lawlessness975

976
The first few days of rolling out my new book, Faithless Execution, have been exhilarating, with few things more977
gratifying and humbling than the wonderful review by one of my very favorites, PJ Media’s own Roger Simon.978

979
It has been uplifting to see how many people really are alarmed—rather than indifferent, as I worried—to the problem of rampant980
presidential lawlessness. People really do grasp that the separation of powers, which is so threatened by President981
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Obama’s usurpation of the powers of the states and other federal departments, really is the key to protecting our liberties. Too982
much accumulation of power in one government official’s hand—particularly, the Framers observed, the joining of the983
legislative and executive power in a single department or person—is the road to tyranny.984

985
When people grasp that, they similarly grasp that presidential lawlessness is not a conservative versus liberal issue, nor986
Republican versus Democrat. It is a question of whether we still aspire to be a republic under the rule of law instead of987
subjects under presidential whim. If they are not knocked down, the precedents that President Obama is setting for imperial988
executive power will be available for exploitation by every future president, regardless or party or ideological989
orientation. That ought to frighten all Americans, not just opponents of the current president’s policies.990

991
I make a sustained attempt in the book to explain that impeachment—the ultimate constitutional response to presidential992
lawlessness—is a political remedy, not a legal one. You can have a thousand impeachable offenses, but if there is not a strong993
public will that the president be removed, impeachment is a nonstarter. The political case for removal is the one that is994
uphill. Establishing the legal case for impeachment—i.e., demonstrating that high crimes and misdemeanors have been995
committed—is the easy part.// The label and actions expect to be in a flex container. Since this component adds another996

997
// wrapping layer to the mdc-snackbar__surface, it should also include flex display.998
.mat-mdc-simple-snack-bar {999

display: flex;1000
}1001

1002
"It was like the Alamo at times. Nothing went for us. It feels like we have lost but the final is over two legs and we have to1003
be delighted with the overall scoreline."1004

1005
Liverpool first-team captain Steven Gerrard and central defender Jamie carragher were quickly in touch after the win and Heighway1006
added: "They have followed us all the way through.1007

1008
"They texted us before every game and they have texted us again after the win.1009

1010
"They are steeped in the history of this club and know what it means to win this tournament."1011

1012
City’s academy chief Jim Cassell1013

Sample 3:1014

Sample 9335 out of 10k has tokens with CE loss > 50.1015
First token with CE loss > 50:198 at position 155.1016
Decoded:’1017
’1018
Decoded (unicode_escape):’\n’1019
Sequence of last 5 Tokens for prediction:49704 49704 9705 20379 1981020
Decoded:’///////////////////////////////////////////////////////////////////////1021
’1022
Decoded (unicode_escape):’///////////////////////////////////////////////////////////////////////\n’1023
(Token:Loss)1024
407:N/A, 407:4.6831055, 1624:7.360232, 326:1.4473916, 345:3.3804011, 2630:7.6741157, 262:1.3505429, 2656:4.104636,1025
3788:4.6768866, 13:1.0597951, 1002:2.57059, 345:0.35921186, 779:3.5662773, 428:2.6555552, 3788:0.4169199, 287:1.3137746,1026
257:0.32647714, 1720:1.4579158, 11:0.9270898, 281:3.5136762, 48182:1.3712287, 287:0.2596935, 262:0.058141652,1027
1720:0.16443609, 10314:0.29576224, 561:0.5035581, 307:0.02398988, 16373:0.48682904, 475:0.81268287,1028
318:0.05656958, 407:0.007545187, 2672:0.050823122, 13:0.0214831, 198:0.7484702, 17:13.849314, 13:0.13205929, 978:7.044759,1029
4400:2.0608654, 2723:2.2134705, 6300:2.333941, 1276:0.88757795, 307:0.4205811, 30723:1.4280686, 7498:0.11422959,1030
355:0.0134238945, 884:0.00481102, 11:0.5958381, 290:0.08005254, 1276:0.2439856, 407:0.08167637, 307:0.025275672,1031
26521:0.17200725, 276:0.0023700502, 355:0.0029704517, 852:0.14899838, 262:0.0020197486, 2656:0.022728885,1032
3788:0.20550326, 13:0.04337017, 198:0.31131023, 18:6.3787313, 13:0.00059801334, 770:0.9271791, 4003:1.7363278, 743:1.0793377,1033
407:0.281329, 307:0.013555973, 4615:0.9492111, 393:0.0392538, 14294:0.19510294, 422:0.03199716, 597:0.038671132,1034
2723:0.24237014, 6082:0.28850555, 13:0.014584245, 198:0.0928015, 16208:7.4476423, 198:0.10754685, 198:0.00033825875,1035
49704:7.4027767, 49704:0.059470795, 49704:2.1608517, 49704:1.4772909, 49704:1.1133443, 49704:0.9488324,1036
9705:2.1151383, 20379:1.1406435, 198:0.10158871, 35343:20.283905, 198:0.5157568, 1635:10.543703, 197:30.43997,1037
4264:13.305223, 1299:0.07563411, 2438:3.0418704, 329:1.6119438, 281:4.073881, 317:5.7669916, 6242:7.9582887, 33:0.08353172,1038
2927:11.291942, 1304:2.9536972, 13:1.0874708, 198:1.0187862, 1635:12.628989, 197:33.37102, 59:6.926921, 7753:7.370697,1039
197:33.560585, 197:31.852251, 3185:14.746413, 34:4.736884, 62:2.4475694, 3838:5.085874, 33833:6.238099, 692:5.69899,1040
1304:0.86001503, 13:0.34363738, 71:1.2452692, 198:0.81940943, 1635:9.853174, 197:32.87166, 59:3.7674747, 9800:6.4635477,1041
197:33.271984, 197:31.412739, 36910:15.742162, 3813:8.258679, 67:5.3074374, 24086:2.1277742, 198:0.7815698, 1635:3.943909,1042
197:33.18875, 59:9.100214, 4475:15.064762, 197:33.80469, 197:38.404465, 21339:16.17667, 11:3.2231097, 352:6.5712805,1043
301:12.503309, 11:3.5788884, 6244:13.497032, 198:4.3184443, 9466:12.119115, 198:4.7258415, 49704:23.561052, 49704:21.665047,1044
49704:19.027508, 49704:20.011747, 49704:21.655386, 49704:40.67674, 9705:22.09228, 20379:27.61382, 198:8.27015,1045
198:399.37866, 49704:809.2328, 49704:763.74054, 49704:722.9032, 49704:811.80115, 49704:693.3036, 49704:730.6386, 9705:677.8175,1046
20379:544.15265, 198:84.33852, 1003:409.64636, 40348:589.6119, 4932:453.42014, 198:66.265816, 2:368.93063, 361:344.89172,1047
358:423.16663, 891:447.8988, 11593:460.6718, 3185:463.0637, 34:137.90085, 62:323.4264, 3838:367.394, 33833:424.9605,1048
46:197.75824, 3069:536.48846, 41237:674.64325, 62:188.37312, 39:61808.293, 834:1737813.5, 198:58819.594, 2:501469.34,1049
13086:476518.62, 11593:430323.34, 3185:436209.5, 34:149311.72, 62:225198.66, 3838:499536.16, 33833:440378.56, 46:344437.5,1050
3069:506636.12, 41237:671244.25, 62:330165.34, 39:305198.0, 834:412493.72, 628:283896.75, 197:1610916.9, 7249:487438.94,1051
440:274647.84, 5662:508110.75, 16820:601000.5, 62:200508.23, 17614:568054.25, 317:109115.234, 6242:376880.62, 2749:538623.9,1052
4891:787976.1, 1058:368174.3, 14701:435548.7, 30562:738873.94, 198:122744.25, 197:1227677.4, 90:353759.03, 198:107419.83,1053
197:1258664.6, 197:1695466.2, 197:1546377.4, 197:1209663.6, 197:1201286.0, 197:1118433.5, 3838:524715.4, 33833:448043.62,1054
4891:523260.6, 3419:404699.94, 1058:314273.38, 12301:389488.12,1055

1056
....1057

1058
Decoded:1059
must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product1060
documentation would be appreciated but is not required.1061

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.1062
3. This notice may not be removed or altered from any source distribution.1063
*/1064

1065
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////1066
/////////////////////////////////////////////////////////////////////1067
/**1068
* Contains code for an AABB collider.1069
* \file OPC_AABBCollider.h1070
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* \author Pierre Terdiman1071
* \date January, 1st, 20021072
*/1073

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////1074
/////////////////////////////////////////////////////////////////////1075

1076
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////1077
/////////////////////////////////////////////////////////////////////1078
// Include Guard1079
#ifndef __OPC_AABBCOLLIDER_H__1080
#define __OPC_AABBCOLLIDER_H__1081

1082
struct OPCODE_API AABBCache : VolumeCache1083
{1084

AABBCache() : FatCoeff(1.1f)1085
{1086
FatBox.mCenter.Zero();1087
FatBox.mExtents.Zero();1088

}1089
1090

// Cached faces signature1091
CollisionAABB FatBox; //!< Box used when performing the query resulting in cached faces1092
// User settings1093
float FatCoeff; //!< mRadius2 multiplier used to create a fat sphere1094

};1095
1096

class OPCODE_API AABBCollider : public VolumeCollider1097
{1098
public:1099
// Constructor / Destructor1100

AABBCollider();1101
virtual ~AABBCollider();1102

1103
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////1104

/////////////////////////////////////////////////////////////////////////////////////1105
/**1106
* Generic collision query for generic OPCODE models. After the call, access the results:1107
* - with GetContactStatus()1108
* - with GetNbTouchedPrimitives()1109
* - with GetTouchedPrimitives()1110
*1111
* \param cache [in/out] a box cache1112
* \param box [in] collision AABB in world space1113
* \param model [in] Opcode model to collide with1114
* \return true if success1115
* \warning SCALE NOT SUPPORTED. The matrices must contain rotation & translation parts only.1116
*/1117

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////1118
/////////////////////////////////////////////////////////////////////////////////////1119
bool Collide(AABBCache& cache, const CollisionAABB& box, const Model& model);1120

//1121
bool Collide(AABBCache& cache, const CollisionAABB& box, const AABBTree* tree);1122

protected:1123
CollisionAABB mBox; //!< Query box in (center, extents) form1124
Point mMin; //!< Query box min point1125
Point mMax; //!< Query box max point1126

// Leaf description1127
Point mLeafVerts[3]; //!< Triangle vertices1128

// Internal methods1129
void _Collide(const AABBCollisionNode* node);1130
void _Collide(const AABBNoLeafNode* node);1131
void _Collide(const AABBQuantizedNode* node);1132
void _Collide(const AABBQuantizedNoLeafNode* node);1133
void _Collide(const AABBTreeNode* node);1134
void _CollideNoPrimitiveTest(const AABBCollisionNode* node);1135
void _CollideNoPrimitiveTest(const AABBNoLeafNode* node1136
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E Evaluation on Standard Benchmarks1137

We additionally evaluated our models on four widely used benchmarks: BoolQ [Clark et al., 2019],1138

HellaSwag [Zellers et al., 2019], PIQA [Bisk et al., 2020], and WinoGrande [Sakaguchi et al., 2021].1139

These tasks assess general language understanding, commonsense reasoning, and pronoun resolution.1140

Tables 6–9 report normalized accuracy for each model before and after LayerNorm removal. LN-free1141

models maintain performance comparable to their baselines, with only minor variations across tasks.1142

Task GPT-2 XL original GPT-2 XL vanilla FT GPT-2 XL LN-free FT
BoolQ 61.8 62.2 61.9
HellaSwag 50.9 49.8 48.8
PIQA 70.5 70.5 69.9
WinoGrande 58.3 57.5 56.1

Table 6: Accuracy of GPT-2 XL model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Large original GPT-2 Large vanilla FT GPT-2 Large LN-free FT
BoolQ 60.5 62.1 62.0
HellaSwag 45.4 43.4 42.8
PIQA 69.2 68.7 69.3
WinoGrande 55.3 56.2 54.6

Table 7: Accuracy of GPT-2 Large model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Medium original GPT-2 Medium LN-free FT
BoolQ 58.6 59.9
HellaSwag 39.4 37.4
PIQA 66.4 65.6
WinoGrande 53.1 51.5

Table 8: Accuracy of GPT-2 Medium model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Task GPT-2 Small original GPT-2 Small LN-free FT
BoolQ 48.7 52.0
HellaSwag 31.1 30.2
PIQA 62.5 61.4
WinoGrande 51.6 50.9

Table 9: Accuracy of GPT-2 Small model variants on BoolQ, HellaSwag, PIQA, and WinoGrande.

Overall, these results show that LN-free models maintain comparable performance on standard1143

benchmarks, supporting their use in interpretability studies.1144
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F Direct Logit Attribution becomes exact1145

To quantify the discrepancy between Direct Logit Attribution (DLA) and the Direct Effect (DE),1146

we compute the Normalized Mean Absolute Error (NMAE) through a two-stage process. For each1147

attention head h in the model, we calculate:1148

NMAEh =
1
N

∑N
i=1 |DLAi,h −DEi,h|
1
N

∑N
i=1 |DEi,h|

× 100% (8)

where, i indexes individual sequences in The Pile-Filtered dataset, h indexes attention heads, DLAi,h1149

and DEi,h are the corresponding DLA and DE values for sequence i and head h. We then average1150

across all attention heads to obtain the overall NMAE:1151

NMAE =
1

H

H∑
h=1

NMAEh (9)

The original model exhibits an NMAE of 49.07% [29.92%, 66.10%] (95% Confidence Interval - CI),1152

indicating that Direct Linear Attribution (DLA) estimates deviate from direct effect measurements by1153

approximately half of the true effect magnitude on average across all attention heads. The vanilla1154

fine-tuned model demonstrates an even larger discrepancy with an NMAE of 57.85% [38.52%,1155

74.52%]. In contrast, the LN-free fine-tuned model achieves a perfect 0.00% [0.00%, 0.00%] NMAE,1156

empirically confirming that removing the non-linearity introduced by LN eliminates the discrepancy1157

between DLA and direct ablation methods. This result validates that without LN’s non-linearity,1158

the two attribution methods are mathematically equivalent, eliminating the need for linearization1159

approximations, which can be significantly inaccurate.1160

To ensure our overall NMAE metric was not biased by a few significant outliers, we visualized the1161

per-head NMAE values across all attention heads in GPT-2 Small models (Figure 5). In models1162

with LN, the disagreement is widespread across most attention heads rather than driven primarily1163

by a small number of outliers. Later layers showed NMAE values exceeding 100%. In contrast, the1164

LN-free model shows no disagreement between the both methods, with NMAE values of zero across1165

all heads.1166

Figure 5: Per-head NMAE (%) between DLA and Direct Effect across all attention heads in GPT-2
Small models: baseline (left), vanilla fine-tuned (middle), and LN-free fine-tuned (right). Significant
deviations occur across most attention heads in models with LN. The LN-free model shows no
difference across all heads, demonstrating that DLA and DE are equivalent.
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G Confidence Neurons1167

As mentioned in Section 5.4, confidence neurons exhibit two key characteristics: (a) high weight1168

norm, implying importance despite weight decay regularization, and (b) approximately constant1169

contribution to all next token logits, suggesting minimal impact on token prediction. These seemingly1170

contradictory characteristics are reconciled by the final LN, between wout,i and the unembedding1171

matrix WU . The effect of confidence neurons on output logits is mediated by this normalization, a1172

mechanism absent in our LN-free models.1173

These neurons regulate confidence by writing high-norm vectors that project onto an effective1174

nullspace of the unembedding matrix. When these vectors increase the residual stream norm, the final1175

LN scales everything down uniformly, making the output distribution more uniform while preserving1176

token rankings. To identify (b), neurons that preserve token logits ranking, we followed Stolfo et al.1177

[2024] and calculated LogitVar(wout,i), the variance in the normalized projection of the neuron’s1178

weights with each token in the unembedding matrix:1179

LogitVar(wout,i) = Var
(

WUwout,i

∥WU∥dim=1∥wout,i∥

)
. (10)

Confidence Neurons (CN) maximize the ratio of (a) and (b):1180

CN(i) =
∥wout,i∥

LogitVar(wout,i)
. (11)

Figure 6 summarizes CN identification in both GPT-2 Small and GPT-2 Medium models: the same1181

identical set confidence neurons persist as across all model variants (we chose to highlight the top-7),1182

including LN-free models where their theorized mechanism of action is absent. These neurons1183

maintain their characteristic high weight norm and low logit variance signature despite fine-tuning1184

and even the removal of LN.1185

Figure 6: Identification of confidence neurons in GPT-2 Small (top) and GPT-2 Medium (bottom)
across different model variants: original pretrained models (left), vanilla fine-tuned models (middle),
and LN-free fine-tuned models (right). The same confidence neurons (highlighted in red) persists
across all model variants, exhibiting characteristically high weight norms and low logit variance.

Having observed identical confidence neurons across all model variants, we next investigated whether1186

their effective nullspaces were modified by performing Singular Value Decomposition (SVD) on1187

each model’s unembedding matrix. Figure 7 shows the normalized singular values (solid lines),1188
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revealing similar nullspace patterns, though fine-tuned variants exhibit a slightly smaller effective1189

nullspace. The cosine similarity between top confidence neurons and singular vectors (dashed lines)1190

demonstrates these neurons predominantly project onto the nullspace in all variants, with some non-1191

negligible overlap in transitional regions where singular values approach zero. This may explain why1192

our vanilla fine-tuned model has less effective confidence regulation when mean ablated. Interestingly,1193

the LN-free model maintains an almost identical nullspace and cosine-similarity pattern to the vanilla1194

fine-tuned model, despite having no ability to affect logit rankings.1195

Figure 7: SVD of the unembedding matrix for GPT-2 Small (left) and GPT-2 Medium (right) across
model variants. Solid lines show normalized singular values, revealing similar nullspaces across
variants, though fine-tuning appears to make the effective nullspace slightly smaller. Dashed lines
represent the cosine similarity between the top confidence neuron (584 for Small, 1083 for Medium)
and each singular vector. These neurons predominantly interact with the nullspace in all variants,
with overlap in regions where singular values approach zero in the fine-tuned models.

To test whether confidence neurons maintain their functional impact across model variants, we1196

performed mean ablation on these neurons (similar to the total effect described in Stolfo et al. [2024]),1197

and measured the resulting change in cross-entropy loss. Figure 8 shows the absolute change in loss1198

when ablating the top-3 confidence neurons in each model. The original GPT-2 Small and GPT-21199

Medium models exhibit substantial variation when these neurons are ablated. Without the context-1200

specific LN scaling these neurons provide, the models predicted logit distributions significantly1201

change. The vanilla fine-tuned models show reduced but still notable effects, suggesting these1202

neurons have less effective due to our fine-tuning strategy. This reduced effectiveness may be related1203

to the slightly smaller effective nullspace, though further investigation is needed to confirm this1204

relationship. The LN-free models show almost no variation, implying that these neurons have no1205

effective mechanism to impact final logits despite maintaining their structural characteristics.1206

To empirically verify that confidence neurons primarily work by modifying the entropy of outputs, we1207

cumulatively ablated the top three confidence neurons in GPT-2 Medium across all variants. Figure 91208

illustrates the results. In the original model, ablating all three neurons decreases entropy by over1209

3% while changing cross-entropy loss by only 0.1%—a 30x difference in magnitude. The vanilla1210

fine-tuned model shows a similar but reduced effect, consistent with our earlier observations of its1211

slightly degraded confidence regulation capability. Again, the LN-free model exhibits no change in1212

either metric. These results directly demonstrate that confidence neurons function by modulating1213

distribution entropy through LN scaling, with minimal impact on which tokens are predicted, allowing1214

them to regulate model uncertainty without changing token rankings. We also investigated whether1215

cumulative confidence neuron ablation of GPT-2 Small vanilla fine-tuned model could yield identical1216

CE loss and entropies to the LN-free model. While the entropies matched (approximately 2.785)1217

when ablating the top-3 neurons, there remained an absolute difference of approximately 0.06 (2%)1218

in CE loss, implying that the general trend of overconfidence in LN-free models arises from more1219

complex mechanisms beyond simply disabled confidence neurons in the final MLP.1220
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Figure 8: Change in CE loss upon mean ablation of top-3 confidence neurons for GPT-2 Small (left)
and GPT-2 Medium (right). The original models (blue) show substantial loss changes when these
neurons are ablated, indicating their significant role in confidence regulation. The vanilla fine-tuned
models (yellow) exhibit reduced but still notable effects. The LN-free models (green) show almost
no change in loss when the same neurons are ablated, confirming that without LN, they lack the
mechanism to directly affect output logits.

Figure 9: Cumulative effect of ablating the top three confidence neurons in GPT-2 Medium. Left:
Relative change in CE loss. Right: Relative change in entropy. The original model (blue) shows
a disproportionately large impact on entropy compared to CE loss, demonstrating these neurons
primarily regulate distribution confidence rather than token predictions. The vanilla fine-tuned model
(yellow) shows reduced effects, while the LN-free model (green) shows no measurable change in
either metric.

31



H Impact Statement1221

Our work investigates the role of Layer Norm in transformer-based language models, showing that it1222

can be entirely removed from all GPT-2 models with minimal performance loss. This contributes to the1223

broader interpretability agenda by removing nonlinearity and reducing complexity and entanglement.1224

Our results do not move the frontier of model capabilities; thus, we do not expect our work to1225

create novel risks. In contrast, our work may support safer and more transparent model development1226

by making more tractable and accurate mechanistic interpretability techniques. As with other1227

interpretability advances, there remains the possibility that our work could be used to develop more1228

capable AI systems. However, we believe the release of LN-free GPT-2 models will primarily1229

serve researchers working to understand model internals and improve the transparency of current1230

architectures.1231
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