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ABSTRACT

State-of-the-art medical multi-modal large language models (med-MLLM), such
as LLAVA-MED or BIOMEDGPT, leverage instruction-following data in their
pre-training stages. However, those models primarily focus on scaling the model
size and data volume to boost performance while mainly relying on the autore-
gressive learning objectives. Surprisingly, we reveal that such learning schemes
might result in a weak alignment between vision and language modalities, mak-
ing these models highly reliant on extensive pre-training datasets — a significant
challenge in medical domains due to the expensive and time-consuming nature
of curating high-quality instruction-following instances. We address this chal-
lenge with a new multi-graph alignment algorithm, namely LOGRA-MED, which
enforces triplet correlations on the latent embedding space among image modal-
ities, conversation-based descriptions, and extended contextual captions. Owing
to this technique, the model is encouraged to capture the semantic meaning of the
context, handle linguistic variability where the captions or questions may differ
from training instances, and learn cross-modal associations, linking visual ele-
ments with various textual interpretations. To scale our algorithm to the med-
MLLM setting, we also design an efficient end-to-end learning scheme based
on advanced black-box gradient-estimation techniques that permit fast forward
and backward steps through the LLM model (LLaMa 7B). Empirical results show
that we can match the performance of LLAVA-Med pre-trained on 600K image-
text pairs from PMC-15M for Medical VQA tasks and significantly outperform it
when trained on only 10% of the data. For instance, on VQA-RAD, we exceed
LLAVA-Med (both trained on 10%) by 20.13% and achieve near parity with the
100% pre-training setting (72.52% vs. 72.64%). Additionally, we also surpass
other SOTA pre-training methods and med-MLLM such as BIOMEDGPT on vi-
sual chatbot or RADFM on zero-shot image classification with VQA, showcasing
the power of multi-graph alignment in improving vision-language integration for
medical-MLLM.

1 INTRODUCTION

Generic Multi-Modal Large Language Models (MLLM) are an emerging field integrating processing
and generation across text, images, and audio. Models like GPT-4V (Achiam et al., 2023), LLaVa
(Liu et al., 2024b), and Next-GPT (Wu et al., 2023b) handle tasks from image captioning to com-
plex visual reasoning. A critical component in training these models is instruction-following (IF)
data (Lou et al., 2023), which involves complex, multi-turn interactions (Sun et al., 2024) where
the model is expected to respond to specific instructions or questions about the image. In the med-
ical domain, current efforts have been focused on building medical MLLM by curating specialized
IF datasets encompassing medical images, clinical notes, and diagnostic criteria (Xie et al., 2024).
These datasets are used to adapt general-purpose MLLM, aiming to transfer foundational knowl-
edge of generic concepts and reduce computation costs required in training steps. For instance,
in LLAVA-Med, (Li et al., 2024) 600K biomedical image-text pairs are sampled from PMC-15M
(Zhang et al., 2023c) and GPT-4 is used to create instruction data from the text inputs, resulting in
approximately 60K multi-modal IF data points. In the next step, (i) vision encoders and language
decoders are taken from LLaVa and are first aligned through trainable projection layers before (ii)
the models (with the exception of the vision encoders) are trained together on collected medical IF
data. Both steps are called the pre-training phase, where the auto-regressive function is used as the
primary objective. The model can then be fine-tuned to various downstream tasks.
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Figure 1: Illustration of the data-hungry behavior
of auto-regressive modeling in LLaVA-Med when
varying pre-training IF data size. Models are fine-
tuned and performance is reported on VQA-RAD.

Following the above approach, most later
works have focused on scaling up the amount
of medical IF data (Xie et al., 2024; Zhang
et al., 2023a; He et al., 2024) or increasing the
model size by incorporating larger vision en-
coders or language decoders (Wu et al., 2023a;
Jiang et al., 2024) while relying on the same
standard autoregressive learning scheme. Con-
trary to this, we question the effectiveness of
autoregressive objective functions when learn-
ing medical-MLLM with IF data. Surprisingly,
our findings reveal that autoregressive learning
is highly data-hungry during pre-training, i.e.,
without sufficient medical IF samples, model
performance plummets for downstream tasks,
even after fine-tuning. To illustrate this, we
pre-trained LLAVA-Med using only 10% of the
data and compared it to the version trained on 100%. Both models were fine-tuned on two medical
visual question-answering tasks - VQA-RAD (Lau et al., 2018) and PathVQA (He et al., 2020) -
and their average performance on open- and close-ended questions compared. The results show a
dramatic decline: from 72.64% to 52.39% on VQA-RAD and from 64.06% to 56.15% on PathVQA
(Figure 1). This underscores the instability of medical-MLLM trained with autoregressive methods
and highlights the problem that these methods require the curation of enough medical IF data to
achieve satisfactory performance.

To address this challenge, we present a novel multi-graph alignment algorithm, namely LOGRA-
MED, that improves the model’s ability to learn complex interactions between vision and lan-
guage modalities, mitigating the limitations of autoregressive functions when trained on limited
instruction-following data. Specifically, given pairs of input images with instruction data, we use
GPT-4 (Achiam et al., 2023) to form a longer version of the instruction, with more in-context expla-
nations for concepts and correlations among entities while preserving the same meaning. These data
pairs are fed into the MLLM, where a vision encoder extracts features for the image while the lan-
guage model (LLaMa) computes latent embedding of the instruction data and its extended versions.
The embedding vectors obtained from different IF samples in a batch are then used to construct
three graphs. The first graph’s vertices are the image features, while the vertices of the two other
graphs are the embeddings of the instructions and their extended versions. We subsequently learn
feature representation by solving the combinatorial multi-graph alignment problem between these
three graphs such that the input embedding of the graph alignment will output the triplet coupling
among the image, its instruction data, and the longer extension. By jointly learning this alignment
with autoregressive methods, we aim to preserve the LLMs’ sequential generation capabilities while
enhancing the model’s ability to capture deeper semantic relationships. This approach goes beyond
memorization, increases resilience to linguistic variability, and significantly improves cross-modal
coherence.

Our method differentiates itself from existing multi-modal alignment techniques for LLM (Park
et al., 2024; Li et al., 2023a; Chen et al., 2023a) in two ways. First, while prior contrastive objec-
tives primarily focus on learning projections to connect frozen vision encoders with frozen language
models, our algorithm directly trains LLM using the multi-graph framework. Second, we unify and
generalize pairwise contrastive learning, which focuses on individual image-caption pairs, by in-
corporating global constraints through graph structures. This allows us to integrate both feature
and structural consistencies using graph edges, enhancing robustness for similar entities (whether
images or descriptions) commonly found in medical datasets. Although combinatorial graph align-
ment is generally non-differentiable and solving multi-graph alignment is computationally expen-
sive, we overcome these challenges by leveraging modern implicit maximum likelihood estimation
techniques (Niepert et al., 2021; Minervini et al., 2023). This enables efficient gradient estimation
and allows for fast forward and backward propagation through large LLMs (e.g., LLaMa-7B), us-
ing a barycenter graph (Agueh & Carlier, 2011) for alignment. As a result, the model can scale
effectively with extensive datasets on large LLMs while maintaining alignment performance.

In summary, we make the following key contributions:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We reveal the data-demanding nature of autoregressive modeling in pre-training medical-
MLLM (LLaVa-Med), showing that insufficient instruction-following data leads to signifi-
cant performance drops on downstream tasks, even after fine-tuning.

• We introduce a novel multi-graph alignment objective that establishes triplet constraints
among images, their instruction-following context, and their enriched versions. Addition-
ally, we developed an efficient solver for training with LLMs and outlined theoretical prop-
erties related to distance and the shortest path in the geodesic space of multi-modal graphs.

• We demonstrate that using a small amount of pre-training data can achieve performance
comparable to LLaVa-Med trained on 100% data. Additionally, when trained on larger
datasets, LOGRA-MED outperforms several state-of-the-art medical mLLMs and advanced
multi-modal pre-training algorithms across three Medical VQA tasks, medical visual chat,
and the average zero-shot image classification performance on 23 datasets.

2 RELATED WORK

Medical Multi-modal LLMs. Recent developments in medical-MLLM like Biomed-GPT (Zhang
et al., 2023a), MedFlamingo (Moor et al., 2023), Med-Dr (He et al., 2024), LLAVA-Med (Li et al.,
2024), and Med-PaLMs (Singhal et al., 2023; Tu et al., 2024) are transforming healthcare by inte-
grating diverse data types and scaling medical instruction data. Biomed-GPT excels with multiple
biomedical modalities, MedFlamingo focuses on few-shot learning for medical visual question an-
swering, and LLAVA-Med leverages large-scale biomedical image-text pairs for improved perfor-
mance. Commonly, these models emphasize scaling medical instruction data and increasing model
parameters to enhance accuracy and applicability in real-world medical scenarios. In contrast, our
approach examines the widely used autoregressive pre-training algorithms and demonstrates that
incorporating long-context multi-graph alignment of exist instruction samples can significantly en-
hance medical-MLLM performance without requiring larger models or extensive datasets.

Visual Instruction Tuning. Visual instruction tuning techniques aim to bridge the gap between
frozen vision-language models and frozen LLMs trained on unimodal data, enabling them to work
effectively in a multi-modal context. These methods involve (i) learning a multi-layer perceptron
(MLP) layer to map embeddings from the vision model to the language model as LLaVa (Liu et al.,
2024b), VideoLLM (Chen et al., 2023a); (ii) using adapter-based adjustment as LLaMa-adapter
(Zhang et al., 2024), Voxposer (Huang et al., 2023), or (iii) learning multi-modal perceiver by gated
cross-attention (Alayrac et al., 2022) or Q-Former as in BLIP-2 (Li et al., 2023a). Pre-training al-
gorithms to train these models can be combined with both auto-regressive and contrastive learning
(Park et al., 2024; Zhai et al., 2023) or image-text matching as in (Li et al., 2022; 2023a). Our
algorithm differs from those by focusing on directly training LLMs rather than lightweight projec-
tors. This requires a fast solver capable of efficiently handling forward and backward passes through
large-scale LLMs with extensive parameters.

Vision-language Pretraining Algorithm. Pre-training algorithms commonly applied for vision-
language models, like CLIP (Radford et al., 2021), follow various strategies. Generative approaches,
such as masked prediction in language models (Devlin, 2018; Song et al., 2020), or autoregressive
algorithms that predict sequential text in LLMs (Liu et al., 2024b; Zhang et al., 2024), are widely
used. Another direction focuses on discriminative methods, which learn contrastive distances be-
tween image-text pairs (Liu et al., 2023; Zhai et al., 2023; Khan & Fu, 2023), optimal transport
(Chen et al., 2022; Nguyen et al., 2024a), or impose clustering constraints (Park et al., 2024). Our
function departs from these by generalizing them into a combinatorial graph-matching formulation
across cross-domain graphs. While LVM-Med (MH Nguyen et al., 2024) is the most similar to our
approach, it targets alignment within vision tasks, whereas we align images, instruction-following
data, and extended contextual information.

Graph alignment across K domains (K ≥ 3) is highly computationally intensive. Current meth-
ods, such as multi-marginal optimal transport (Lin et al., 2022; Piran et al., 2024), Wasserstein
barycenters (Nguyen et al., 2024b), and multi-adjacency matrix assumptions (Bernard et al., 2019;
Swoboda et al., 2019), relax the problem but are limited to small-scale tasks and require multiple
solver steps, making them inefficient for LLM training. In contrast, our approach utilizes heuristic
solvers (Swoboda et al., 2017; Rolı́nek et al., 2020) and modern gradient estimation techniques for
black-box optimization (Niepert et al., 2021; Minervini et al., 2023), enabling scalable and efficient
performance for large language models.
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Vision Transformer

Projector
Large Language Model

Multi-Graph Alignment

Language Instructions

Answer: 
   The patient is a 23
   -year-old female.

Medical Images

Long Answer: 
The patient is a 23-year-
old female, indicating her
age and gender clearly. 
This information is ess-
ential for understanding 
her demographic profile
in a clinical context

Question: 
   What is the age and 
    gender of the patient?

Forward Pass
Backward Pass

Figure 2: Overview of LOGRA-MED: We train the large language model gσ and projector hϕ

by aligning a triplet consisting of the input image, its instruction data, and its extended long-context
version using a structure-aware multi-graph alignment between Gv,Ga, and Gae through a barycenter
graph Gbr.

3 MULTI-GRAPH ALIGNMENT LEARNING

We denote the vision encoder, projector, and large-language model (LLM) models are
fθ(.), hϕ(.), gσ(.), respectively. Figure 2 illustrates our LOGRA-MED algorithm, which learns
parameters for these models by solving a triplet alignment between modalities in instruction tuning
data. Below, we summarize the notations used before describing each component in detail.

Notation. Given any tensor T = (Ti,j,k,l) and matrix M = (Mk,l), we use T ⊗M to denote the
tensor-matrix multiplication, i.e., the matrix (

∑
k,l Ti,j,k,lMk,l)i,j . Given Y = [y1,y2, ...,yN ] ∈

RN×d, we define E(Y ) = 1
N

∑N
i=1 yi ∈ Rd. Moreover, we define the matrix scalar (or inner)

product associated with the Frobenius norm between two matrices M = (Mi,j) and N = (Ni,j) as
⟨·, ·⟩, i.e., ⟨M ,N⟩ =

∑
i,j Mi,jNi,j . We write [M ] = {1, 2, . . . ,M} for any natural number M .

3.1 LONG-CONTEXT ENRICHED MEDICAL INSTRUCTION-FOLLOWING DATA

Recent research has demonstrated that incorporating long-context significantly enhances LLMs’
ability to process complex inputs and improves instruction-following by retaining more relevant
information (Liu et al., 2024c; An et al., 2024; Pawar et al., 2024). Building on this insight, we ex-
tend medical instruction-following data by generating long-context paraphrased versions of existing
samples in the dataset, providing an additional enriched perspective of the original data.

In particular, a typical instruction sample includes {Xv, [X
1
q , X

1
a ], ..., [X

L
q , X

L
a ]} where Xv is an

input image, X l
q a question, and X l

a an answer at round l in multi-round L of a conversation. In the
medical domain, most of the questions are generic, and the information answer usually covers the
question, so we only focus on extending the answer Xa. We leverage the GPT API with a prompt
to form a longer-context for each X l

a by:

X l
ae = GPT

(
X l

q,X
l
a,prompt

)
, ∀l ∈ [L]. (1)

The details for prompt are presented in the Appendix. In short, we ask GPT to provide additional
explanations for concepts that appeared in the original answer Xa while keeping the content con-
sistent. An example output for X l

ae is illustrated in Figure 3.

3.2 MULTI-GRAPH CONSTRUCTION ON VISION-LANGUAGE EMBEDDING

For each image Xv ∈ R3×H×W where (H,W ) are the original spatial dimensions. We divide it
into a sequence of visual patches U = [ui]

N
i=1 with N = (H × W )/U with U as the patch size.

Using a pre-trained ViT model fθ, we extract patch-wise features as V = fθ(U) ∈ RN×dv and
apply another projector to map it into the projected embedding Z = hϕ(V ) ∈ RN×d. We then
pool the features from the image patches to define a global description as Zv = E(Z) ∈ Rd. For
each language input X l

c ∈ {X l
a,X

l
ae} with c ∈ {a, ae}, we assume it has M tokens, i.e., X l

c =
[xj ]

M
j=1 ∈ RM , and feed it into the LLM model to extract a set of embedding Zl

c = gσ([xj ]
M
j=1) =

[ej ]
M
j=1 ∈ RM×d. We subsequently concatenate all multi-round L in each single instruction tuning

to define Zc = 1
L

∑L
l=1 E(Zl

c) which collects average text embedding of original answers (c = a)
and their longer-context extended versions (c = ae) respectively.
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Question:What type of tissue is shown
         in the image?
Answer:The image shows a histopathologi-
cal section of an endonasal mass, which
is a tissue sample taken from inside
the nasal cavity.

You identify issues in biomedicalanswers
and generate improved versions while
keeping the content consistent

Long Answer:The image depicts a histopa-
thological section of an endonasal mass,
which typically consists of epithelial-
tissue,possibly indicating a neoplastic
process. This tissue sample is taken
from the nasal cavity and may show feat-
ures such as cellular atypia or inflam-
mation, depending on the underlying
pathology.

Figure 3: Illustration for creating
the longer-context instruction-following
data powered by GPT-4o.

Given a batch size of B instruction-tuning samples, we
now construct three graphs Gv = (Vv, Ev), Ga =
(Va, Ea), and Gae = (Vae, Eae) representing for vi-
sual image features, text embedding encoded by LLM
for original answers and their long-context embedding
extended by GPT. Specifically, for each triplet pair
{X(k)

v , [X l
a]

(k), [X l
ae]

(k)}k, (k ∈ [B]), we add a node
representing X

(k)
v to Vv , a node for [X l

a]
(k) to Ve,

and finally a node for [X l
ae]

(k) to Vae. This results
in a set of nodes Vv = {X(1)

v , ...,X
(B)
v }; Vc =

{[X l
c]
(1), ..., [X l

c]
(B)} for each c ∈ {a, ae}. We equip

node-level feature matrices for these graphs using their
embedding computed above, i.e., Fv = {Z(1)

v , ...,Z
(B)
v },

Fc = {Z(1)
c , ...,Z

(B)
c }. The edges for Ev, Ec afterward

can be created through the k-nearest neighbors algorithm
given the feature node matrices Fv, Fc. Finally, we can run a message-passing network mα(.) on
three built graphs to learn richer node representations. This approach has proven effective for repre-
sentation learning (Tang et al., 2022; Ju et al., 2024), resulting in aggregated feature-node matrices
as {Ẑ(1)

s , ..., Ẑ
(B)
s } = mα(Fs, Es), with s ∈ {v, a, ae}.

3.3 SECOND-ORDER GRAPH ALIGNMENT PROBLEM

We first provide background about the second-order graph alignment between two arbitrary graphs
G1 = (V1, E1) and G2 = (V2, E2), which is mentioned as quadratic assignment problem and applied
in several problems in vision and graphics to find correspondences between two graph structures
under consistent between node features and structure constraints (Zanfir & Sminchisescu, 2018;
Haller et al., 2022; Ehm et al., 2024).

We denote by V ∈ {0, 1}|V1||V2|, with |V1| = M and |V2| = N , the indicator matrix of matched
vertices, that is, Vi,j = 1 if a vertex vi ∈ V1 is matched with vj ∈ V2 and Vi,j = 0 otherwise.
That is, V is a binary matrix with exactly one non-zero entry in each row and column. Similarly,
we set E ∈ {0, 1}|E1||E2| as the indicator tensor of match edges, that is, Ei,k,j,l = 1 if Vi,j = 1 and
Vk,l = 1 and Ei,k,j,l = 0 otherwise. This implies that the tensor E is fully determined by the matrix
V , that is, Ei,k,j,l = Vi,jVk,l. We also define the vertex affinity matrix and edge affinity tensor as
Av ∈ R|V1||V2| and Ae ∈ R|E1||E2|, respectively. The set A(G1,G2) indicates for all admissible pairs
(V ,E) that encode a valid matching between G1 and G2.

A(G1,G2) =

V ∈ {0, 1}M×N :

M∑
i=1

Vi,j = 1,

N∑
j=1

Vi,j = 1

 . (2)

The second-order graph alignment (SoGA) problem now is defined as:

SoGA(Av,Ae) = argmin
V ∈A(G1,G2)

⟨Av + Ae ⊗ V ,V ⟩ = argmin
V ∈A(G1,G2)

∑
i,j

Av
i,jVi,j +

∑
i,j,k,l

Ae
i,j,k,lVi,jVk,l.

(3)3.4 SCALABLE MULTI-GRAPH ALIGNMENT

Our aim is to solve the graph alignment between three graphs Gv,Ga, and Gae to form a triplet
constraint between input image embedding, its original instruction embedding, and the long-context
extended version ones. However, solving a structure-aware graph alignment between K domains
is computationally expensive. One potential solution is to perform pairwise graph alignments

(
K
2

)
times, as shown in Eq. (3), while applying specific constraints to maintain consistency between
correspondences (Bernard et al., 2019; Swoboda et al., 2019). However, this method becomes im-
practical as K increases, making it unsuitable for larger-scale problems.

Another direction leverages the barycenter concept from optimal transport, which identifies a central
distribution that minimizes the weighted sum of Wasserstein distances to the given input distribu-
tions. We follow this idea to reformulate the alignment of K graphs into K separate alignments
with a barycenter graph. Unlike previous unsupervised methods that estimate the barycenter before
aligning, we directly define the barycenter using known triplet pairs across the three graphs. This
significantly reduces complexity, making our solver more efficient in LLM settings.
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Specifically, we define a new barycenter graph Gbr = (Vbr, Ebr) where Vbr =
{
v
(1)
br , ..., v

(B)
br

}
with v

(k)
br = X

(k)
= {X(k)

v , [X l
a]

(k), [X l
ae]

(k)} and a correspondence feature node as Fbr =
1

3

{∑
s Ẑ

(1)
s , ...,

∑
s Ẑ

(B)
s

}
with s ∈ {v, a, ae}. The edge set Ebr is formed similarly to another

graph by running the k-nearest neighbor on feature node Fbr. We now state the multi-graph align-
ment as:

SoGA(Av
s ,A

e
s) = argmin

Vs∈A(Gs,Gbr)

∑
s∈{v,a,ae}

⟨Av
s + Ae

s ⊗ Vs,Vs⟩, (4)

where Vs is the indicator matrix representing for valid mapping between Gs and Gbr, Av
s ∈ R|Vs||Vbr|

and Ae
s ∈ R|Es||Ebr| be vertex affinity matrix and edge affinity tensor between Gs and Gbr. For e.g.,

(Av
s)ij = d

(
Ẑ

(i)
s ,

1

3

∑
s Ẑ

(j)
s

)
with d(.) be a distance metric (e.g., cosine distance) measuring

similarity between node ith in Gs and node jth in Gbr.

To address the NP-Hard nature of aligning each graph to the barycenter graph Gc, which arises from
its combinatorial complexity, we employ efficient heuristic solvers utilizing Lagrange decomposi-
tion techniques (Swoboda et al., 2017; Rolı́nek et al., 2020).

3.5 BACKPROPAGATION WITH BLACK-BOX GRADIENT ESTIMATION

Given V̂s = SoGA(Av
s ,A

e
s) be solution obtained from the solver, we aim to learn feature repre-

sentation for LLMs such that V̂s be identical to true triplet alignments explicitly indicated by the
barycenter graph. By denoting V ∗

s be an optimal mapping between the graph Gc to Gbr, we compute
the following total of hamming loss function:

L(V̂s,V
∗
s ) =

∑
s∈{v,a,ae}

⟨V̂s, (1− V ∗
s )⟩+ ⟨V ∗

s , (1− V̂s)⟩. (5)

However, computing the gradient of the loss function with respect to the matching problem inputs
(Av

s ,A
e
s), i.e., ∇Av

s ,A
e
s
L
(
V̂s,V

∗
s

)
, poses a challenge due to the piecewise constant nature of the

graph matching objective in Eq. (4) (Pogančić et al., 2020; Rolı́nek et al., 2020). To address this,
we resort to the IMLE techniques (Niepert et al., 2021; Minervini et al., 2023), a method permitting
estimate gradients over solutions of the combinatorial optimization problem by taking the difference
between solutions of matching problem perpetuated by Gumbel noise.

In particular, given (ϵ, ϵ′) ∼ Gumble(0, 1) and for each s ∈ {v, a, ae}, we compute:(
∂L
∂Av

s

,
∂L
∂Ae

s

)
≈ Ṽs − SoGA

(
Av

s,λ,A
e
s,λ

)
where Ṽs = SoGA (Av

s + ϵ,Ae
s + ϵ′) , (6)(

Av
s,λ,A

e
s,λ

)
= (Av

s + ϵ,Ae
s + ϵ′)− λ∇Ṽs

L(Ṽs,V
∗
s ), with λ is a step size. (7)

3.6 STRUCTURE ALIGNMENT-BASED GRAPH DISTANCE PROPERTIES

In this section, we present theoretical insights into the graph-matching problem outlined in Eq. (3).
Specifically, we demonstrate that once the optimal matching between two graphs is established, it
defines a valid metric distance. Additionally, the geodesic path (i.e., the shortest path distance)
connecting the two graphs in the manifold space can be derived based on the computed matching
alignments. We define a discrete between two graphs given a solution of matching alignment as:

dSoGA(G1,G2) = min
V ∈A(G1,G2)

(∑
i,j

Av
i,jVi,j +

∑
i,j,k,l

Ae
i,j,k,lVi,jVk,l

)
. (8)

We consider labelled graphs as tuples of the form G = (V, E ,Lf ,Ls), where the labelling function
Lf : V 7→ F assigns each vertex vi ∈ V to a feature fi = Lf (vi) in some feature space (F , df ).
Similarly, we denote Ls : V 7→ S as a structure function which links each vertex vi ∈ V with
its structure information si = Ls(vi), e.g., edge information, in some structure space (S, ds). By
associating a weight to each vertex, we allow the graph G to be represented by a fully supported
mixing measure µ =

∑N
i=1 wiδ(fi,si) over the product between feature space and structure space

F × S . Notably, µ is not necessarily a probability measure as the summation of its weights can be
different from one. We have the vertex affinity matrix between two graphs as Av ∈ RM×N , where
Av

i,j = (df (fi, fj))i, j. Structural similarity is measured by pairwise distances within each graph,
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represented by Ae ∈ R|E1||E2|, with Ae
i,j,k,l = |ds(si, sk) − ds(sj , sl)|, where ds(·) models node

distance, such as the shortest path. We then define the space of all structured graphs (F × S, df , µ)
over a metric feature space (F , df ) as S(F), where (S, ds) is a metric structure space and µ =∑N

i=1 wiδ(fi,si) is a mixing measure over F × S.

Theorem 1 (Metric properties). The distance dSoGA in Eq. (8) defines a metric in S(F).

Theorem 1 is proved in Appendix A.1. Intuitively, we can compare two graphs, G1 and G2, described
by their mixing measures µ1 =

∑M
i=1 w1iδ(f1i,s1i) and µ2 =

∑N
j=1 w2jδ(f2j ,s2j), with uniform

vertex weights (i.e., w1i = 1,∀i ∈ [M ], w2j = 1,∀j ∈ [N ]) and shortest path structure matrices.
The SoGA distance is zero if and only if there exists a one-to-one mapping between the graph
vertices that preserves both shortest paths and features and both graphs have the same number of
vertices.

Moreover, we also derive new constant speed geodesic in the SoGA context via Theorem 2, which
is proved in Appendix A.2. This geodesic property is useful in optimal transport (discrete measures)
to define the dynamic formulation and can be used in representation learning by sampling new data
on the geodesic connect two endpoints graphs.

Theorem 2 (Geodesic space). The space S(F) equipped with the dSoGA distance is geodesic.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model architectures. We use the LLaMA large language model (Touvron et al., 2023), the
CLIP-ViT-L-Patch14 visual encoder (Radford et al., 2021), and an MLP projection similar to
LLaVA 1.5 (Liu et al., 2024a). Stage 1 follows the standard LLaVA-Med (Li et al., 2024) setup,
while stage 2 incorporates our multi-graph alignment with autoregressive training. For multi-graph
alignment, a 2-layer graph convolutional network is applied to the output of the Projection and LLM
Decoder (handling both image and text modalities). We train for 1 epoch in stage 1 and 3 epochs
in stage 2 using the same dataset as LLava-Med. The model is optimized using Adam (Kingma,
2014) with CosineAnnealingLR scheduler and learning rates of 2e − 3 and 2e − 5 for stages 1 and
2, respectively.
Pre-training data. We follow the same dataset being used in LLaVA-Med (Li et al., 2024).
For stage 1, there are 600K image-text pairs filtered from PMC-15M. They are all converted to
instruction-following data with simple instructions for describing the image. For stage 2, there are
60K image-text pairs extracted from PMC-15M with 5 modalities: CXR (chest X-ray), CT (com-
puted tomography), MRI (magnetic resonance imaging), histopathology, and gross (i.e., macro-
scopic) pathology. Then, the authors from LLaVA-Med (Li et al., 2024) use language-only GPT-4
to generate multi-round questions and answers in a tone as if it could see the image to convert these
pairs to instruction-following format.
Running-time. We train LOGRA-MED using 4 A100-GPUs per with 80GB for both stages and
complete the training process for stage 1 in 7 hours and for stage 2 in 7.5 hours. With original
LLaVA-Med (version 1.5) (Li et al., 2024), the training process for stage 1 finishes in 6.5 hours,
and for stage 2 finishes in 7 hours. In total, we need extra one more hour to complete the whole
pre-training process compared to the LLaVa-Med.

4.2 DATA-HUNGRY PROBLEM OF AUTOREGRESSIVE

We begin by presenting the data-intensive nature of autoregressive training. To assess this, we
used LLaVA-Med, a state-of-the-art multimodal large language model in the biomedical domain.
LLaVA-Med follows a two-stage in their training process: Stage 1 aligns image-text tokens with
biomedical concepts, and Stage 2 fine-tunes the model for instruction-based tasks. We pre-trained
LLaVA-Med on varying data amounts (10%, 40%, 70%) and used the checkpoints to fine-tune
the visual question answering downstream task. As shown in Figure 1, performance on the VQA-
RAD dataset sharply declines when using 10% pre-training data compared with fully-training on
100%. To the best of our knowledge, this is the first time that the auto-regressive mechanism’s
data dependency issue in medical-MLLM has been revealed. This evidence indicates that without
using enough instruction-tuning data, the auto-regressive creates a weak connection between visual
features and text embeddings in LLM.
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To tackle this issue, our LOGRA-MED enhances image-text alignment through the semantic con-
straints between input images, their instruction response, and the long-context extended contexts.
We experiment with LOGRA-MED under the same settings as LLaVA-Med, pretraining on vary-
ing data sizes and utilizing the checkpoints for instruction fine-tuning. Figure 1 demonstrates that
LOGRA-MED effectively learns the biomedical concept alignment task, producing strong pretrain-
ing checkpoints for downstream fine-tuning while using only 10% of the data. For instance, while
LLaVa-Med is at 52.39 with 10%, LOGRA-MED reaches 72.52%, which is approximately LLaVa-
Med pre-trained on 100%. Across 10%, 40%, and 70% data usage, LOGRA-MED shows stable
performance with consistent improvement, positioning it as a competitive model compared to other
medical-MLLM like BioMed-GPT (Zhang et al., 2023a) or Med-MoE (Jiang et al., 2024). This
suggests that the multi-graph alignment strategy effectively mitigates the data-intensive demands of
autoregressive mechanisms in mLLMs.

4.3 MULTI-MODAL PRE-TRAINING COMPARISON

To validate the benefit of our multi-graph alignment, we compare it with other vision-language pre-
trained methods designed to train for the CLiP model or in visual instruction tuning to bridge frozen
vision-language models.

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (10%) 43.38↓20.27 61.4↓20.22 52.39↓20.25 80.94↓2.5 80.29↓3.12 80.62↓2.81 24.26↓13.69 88.03↓3.18 56.15↓7.91 63.05↓10.32

InfoNCE 59.39 77.57 68.48 82.4 83.17 82.78 34.59 91.45 63.02 71.43
PLOT 16.86 26.47 21.67 37.81 56.25 47.03 11.79 81.36 46.58 38.42
SigLIP 56.99 77.94 67.47 80.86 80.53 80.69 18.08 50.85 34.465 60.88
VLAP 57.49 76.47 66.98 80.05 82.21 81.13 32.21 91.16 61.685 69.93
LoGra-Med 66.02 79.04 72.52 84.92 85.1 85.01 37.25 91.45 64.34 73.96

Table 1: Fine-tuning performance on MedVQA downstream datasets (pre-trained 10%). Bold indi-
cates the best values among pre-training algorithms, excluding LLaVA-Med (pre-trained 100%)

.
Datasets. We evaluate pre-trained models on three prominent biomedical VQA datasets: VQA-RAD
(Lau et al., 2018), SLAKE (Liu et al., 2021), and PathVQA (He et al., 2020). VQA-RAD includes
3,515 questions across 315 radiology images, while SLAKE contains 642 radiology images from
various body parts and over 7k QA pairs. PathVQA, focused on pathology, features 5k images and
32.8k questions. All datasets include open-ended (e.g., what, why, where) and closed-ended (yes/no
or two-option) question types. We provide more details in the Appendix.
Baselines. We compare four approaches, including InfoNCE-based methods (Khan & Fu, 2023;
Liu et al., 2023), SigLIP (Zhai et al., 2023), PLOT (Chen et al., 2022), and VLAP (Park et al.,
2024). Among this, SigLIP adapts the Sigmoid loss on image-text pairs to break the global view
of the pairwise similarities for normalization, resulting in scaling in large batch size. PLOT defines
optimal transport as a distance between visual image patches and text embedding. In contrast, VLAP
uses assignment prediction to bridge the modality gap between the visual and LLM embeddings. We
train the baselines under the same settings as LOGRA-MED with varying pre-training data rates and
compare their performance on downstream tasks.

Results. In Tables 1, 2 and 12, We compare the performance of LOGRA-MED and the baselines
when pre-trained with 10%, 40%, and 100% of instruction-tuning data. While most contrastive
baselines improve LLaVA-Med at 10%, LOGRA-MED consistently outperforms LLaVA-Med and
other methods overall. In open-ended questions, which require external knowledge, LOGRA-MED
delivers the best results. Notably, it maintains stable improvements across all three VQA datasets,
unlike other methods that peak at 40% pre-training and decline afterward. For example, SigLIP
scores 72.14% (Average) and 72.12% (Overall) on VQA-RAD at 40% but drops over 6% and 1%
at 100%. In contrast, LOGRA-MED continues to improve, reaching 74.91% (Average) and 74.75%
(Overall).

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (40%) 62.23↓1.42 79.41↓2.21 70.82↓1.82 84.42↑0.98 83.65↓0.24 84.04↑0.61 31.86↓4.92 84.99↓6.34 58.43↓5.63 71.09↓2.28

InfoNCE 63.11 77.57 70.34 82.68 83.89 83.29 33.58 89.62 61.6 71.74
PLOT 64.36 79.41 71.89 83.38 82.93 83.16 35.11 89.59 62.35 72.46
SigLIP 63.02 81.25 72.14 81.26 80.29 80.77 36.01 90.86 63.435 72.12
VLAP 63.17 79.04 71.11 83.38 83.89 83.64 35.62 90.83 63.225 72.66
LoGra-Med 66.01 82.72 74.37 84.17 85.82 84.99 37.41 91.27 64.34 74.57

Table 2: Performance fine-tuning on MedVQA downstream datasets (pre-trained 40%). Bold indi-
cate for best values among pre-training algorithms excluding LLaVA-Med (pre-trained 100%).
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4.4 MED-VQA COMPARISON WITH MEDICAL MLLMS

We now compare LOGRA-MED pre-trained with 100% data against other medical foundation mod-
els, each trained on varying datasets and employing different architectures or model sizes.
Baselines. We compare with eight competitors, both generic or medical foundation models, in-
cluding LLaVA (Liu et al., 2024b), LLaVA-Med (Li et al., 2024), Med-Flamingo (Moor et al.,
2023), Med-Dr (He et al., 2024), Biomed-GPT (Zhang et al., 2023a), M2I2 (Li et al., 2023b),
GPT-4o (Achiam et al., 2023) and Med-MoE (Jiang et al., 2024). Whilst LLaVA and GPT-4o have
no medical background, the others are pre-trained on a variety of biomedical knowledge. With the
exception of LLaVa, which we reproduced, the results for the other baselines are taken from the
literature. Moreover, we also present an enhanced version, LOGRA-MED + DCI, which integrates
multi-scale visual features from vision encoders (Yao et al., 2024), potentially benefiting medical
image analysis by considering both local (detailed) and global (contextual) features.

Method #Params VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (Li et al., 2024) 7B 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
BiomedGPT-B (Zhang et al., 2023a) 182M 60.9 81.3 71.1 84.3 89.9 87.1 28 88 58 72.07
M2I2 (Li et al., 2023b) - 61.8 81.6 71.7 74.7 91.1 82.9 36.3 88 62.15 72.25
BioMed-CLIP (Zhang et al., 2023d) 422M 67.6 79.8 73.7 82.5 89.7 86.1
Med-Dr (He et al., 2024) 40B 37.5 78.9 58.2 74.2 83.4 78.8 33.5 90.2 61.85 66.28
LLaVA (general) (Liu et al., 2024b) 7B 50 65.1 57.55 78.2 63.2 70.7 7.7 63.2 35.45 54.57
GPT-4 (Achiam et al., 2023) 200B 39.5 78.9 59.2 33.6 43.6 38.6
Med-MoE (Phi2) (Jiang et al., 2024) 3.6B 58.55 82.72 70.64 85.06 85.58 85.32 34.74 91.98 63.36 73.11
Med-MoE (Stable LM) (Jiang et al., 2024) 2B 50.08 80.07 65.08 83.16 83.41 83.29 33.79 91.30 62.55 70.3
LoGra-Med 7B 66.35 83.46 74.91 85.34 85.58 85.46 36.82 90.92 63.87 74.75
LoGra-Med + DCI 7B 67.31 81.99 74.65 84.88 85.82 85.23 37.77 91.86 64.82 74.9

Table 3: Performance comparing on MedVQA vs. other Med-MLLM.

Results. Overall, two LOGRA-MED versions perform better than the baseline models (Table 3),
especially the version combined with DCI gains the best performance for PathVQA on Average
score (64.82%) and for Overall result (74.9%). Compared to LLaVA-Med, LOGRA-MED exhibits
significant improvements on every task result, such as 2.01% on VQA-RAD, 2.03% on SLAKE and
0.76% on PathVQA. Furthermore, it is important to note that both the plain and DCI versions of
LOGRA-MED demonstrate competitive performance across all VQA datasets, despite having sig-
nificantly fewer parameters. For instance, the two 7B-parameter LOGRA-MED versions outperform
the 40B-parameter Med-Dr across all three datasets.

4.5 MEDICAL VISUAL CHATBOT EVALUATION

Datasets. Following the experimental settings in LLaVA-Med, we evaluate LOGRA-MED on a
biomedical multimodal conversational dataset containing a total of 193 questions including conver-
sation (143 samples), description (50 samples). Additionally, the experimental setup categorizes the
test samples into five medical domains, including Chest X-ray (CXR), Magnetic Resonance Imaging
(MRI), Histology, Gross, and Computed Tomography (CT).
Baselines. We evaluate with several SOTA multimodal large language models, including general
models like LLaVA and GPT-4o, as well as medical-focused models such as LLaVA-Med and its
variants, Med-Flamingo, Med-Dr, and Biomed-GPT. We use the officially provided weights
for all comparison baselines without additional reproduction steps. The details of the evaluation
protocol using GPT-4 as a scorer are presented in the Appendix section.

Results. Table 4 summarizes our finding results, which shows that in most of
the settings, two of our LOGRA-MED deliver the top records. We provide ad-
ditional analytics and visualizations of typical model outputs in the Appendix.

Method #Params Question Type Domain Overall
Conver. Descr. CXR MRI Histology Gross CT

LLAVA 7B 39.40 26.20 41.60 33.40 38.40 32.91 33.40 36.1
LLAVA-Med 1.0∗ 7B 47.4 33.99 51.31 36.32 45.61 41.09 44.87 43.93
LLAVA-Med 1.5∗ 7B 46.78 34.58 54.58 36.5 41.85 40.3 45.02 43.62
MedFlamingo 8.3B 28.58 13.89 26.93 21.34 22.09 32.71 22.25 24.77
Med-Dr 40B 35.61 19.28 38.98 26.28 29.10 35.40 28.30 31.38
Biomed-GPT 182M 20.71 17.99 27.53 18.50 17.18 14.72 22.08 20.01
GPT-4o 200B 42.04 25.47 42.77 39.74 38.68 31.40 35.59 37.75
LoGra-Med 7B 48.49 34.32 58.37 36.82 46.05 45.19 38.24 44.82
LoGra-Med + DCI 7B 48.99 34.01 59.9 32.34 51.88 42.53 38.28 45.11

Table 4: Medical visual chatbot evaluation. Results are re-
ported using GPT-4 as the scorer.

Method VQA-RAD SLAKE

LoGra-Med (Full) 74.37 84.99
LVM-Med with synonyms 72.39 82.93
LoGra-Med in two stages 72.81 84.14
LVM-Med w/o long-context 72.12 81.95
LVM-Med w/o message passing 73.90 84.29

Table 5: LoGra-Med ablation study.
Results are presented as average scores
on VQA-RAD and SLAKE, using pre-
trained weights on 40%. The two key
factors are emphasized.
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4.6 ZERO-SHOT IMAGE CLASSIFICATION AS MEDVQA
Datasets. We assess the generalization of LOGRA-MED on zero-shot image classification by adapt-
ing public datasets from (Hu et al., 2024). We convert image classification tasks into visual question
answering, where the model selects the correct answer from input options based on the given im-
age (See Figure 6, Appendix). We focus on three key data modalities prevalent in our pre-training:
Microscopy, Computed Tomography (CT), and Chest X-Ray (CXR). This evaluation spans sev-
eral downstream tasks, including 8 datasets for Microscopy, 4 for CT, and 11 for CXR, totaling
23 datasets.

Baselines. We use checkpoints from LLaVa-Med, Med-Flamingo, and RadFM (Wu et al.,
2023a) for zero-shot inference on the collected datasets. Notably, RadFM is pre-trained on 16M
2D and 3D medical scans, while LOGRA-MED is trained on just 600K instruction-following data.
For baseline models, we follow the prompts proposed by (Hu et al., 2024), with detailed evalua-
tions using third-party software to align model outputs with ground-truth answers, as outlined in the
Appendix.

Microscopy CT CXR
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Figure 4: LOGRA-MED performance on 23 zero-
shot image classification tasks within three data
modalities.

Results. Figure 4 illustrates the average per-
formance of LOGRA-MED across Microscopy,
CT, and Chest X-Ray modalities, with the total
number of images and question-answer items
listed below. Detailed results for each dataset
within these modality groups are provided in
Tables 8, 10, and 9 in the Appendix. Over-
all, LOGRA-MED still outperforms other mod-
els across all datasets, especially excelling in
the microscopy modality, where it exceeds the
runner-up, RadFM, by 8.2%. We attribute these
benefits to the strong alignment between visual
features and language embeddings achieved
through triplet constraints, which compel the
model to capture deeper semantic relationships.

4.7 ABLATION STUDIES

We validate LOGRA-MED under the following
settings: (i) applying multi-graph alignment in
both stages instead of only in stage 2 (default); (ii) performing simple paraphrasing during instruc-
tion tuning by replacing keywords with their synonyms; (iii) using only two graphs in the alignment
step (excluding long-context graphs); and (iv) applying message passing to enhance node features.
Table 5 shows that each proposed factor boosts the final performance wherein the multi-graph align-
ment and using ChatGPT as an extender are the most crucial components.

5 CONCLUSION
We have shown that enforcing triplet correlations among image modalities, their instruction data, and
the extended contextual captions can improve vision-language alignment, which is often lacking in
models trained by auto-regressive, especially given less pre-training data size as demonstrated for
the LLaVa-Med model. We also present LOGRA-MED, a new multi-graph alignment algorithm to
handle such requirements, which is efficient in training and matches LLAVA-Med’s performance on
just 10% of the training data while outperforming other state-of-the-art methods on various tasks.
These findings underscore that selecting the appropriate learning algorithm for training MLLMs is
as crucial as scaling model size or data volume.

Limitations and Future Work While we have conducted several experiments using the LLaVa
model, it is crucial to validate LOGRA-MED with other architectures, such as the Flamingo model
(Alayrac et al., 2022). Additionally, integrating a vision encoder or LLM specifically trained on
medical sources (Chen et al., 2023b; MH Nguyen et al., 2024) holds promise for enhancing perfor-
mance and improving robustness—an approach we have not yet evaluated. Lastly, we propose to
investigate adaptor-based methods (Hu et al., 2022; Zhang et al., 2023b) for fine-tuning downstream
tasks, as frozen backbone models can significantly reduce memory usage and maximize efficiency.
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A PROOFS OF THE MAIN THEORETICAL RESULTS

In this appendix, we provide detailed technical proofs of our main theoretical results.

A.1 PROOF OF THEOREM 1

For the sake of simplicity, we denote the labeled graphs G and structured graphs discussed above
only by µ the whole structured graph.

To prove Theorem 1, for any two graphs G1 and G2 in the structured graph space S(F), described
respectively by their mixing measure µ1 =

∑M
i=1 w1iδ(f1i,s1i) and µ2 =

∑N
j=1 w2jδ(f2j ,s2j), re-

spectively, we wish to prove the following properties:

1. Positivity: dSoGA(G1,G2) > 0 for any G1 ̸= G2.
2. Equality relation: dSoGA(G1,G2) = 0 if and only if G1 = G2.
3. Symmetry: dSoGA(G1,G2) = dSoGA(G2,G1).
4. Triangle inequality: dSoGA(G1,G3) ≤ dSoGA(G1,G2) + dSoGA(G2,G3) for any graph G3.

Note first that 1. Positivity and 3. Symmetry hold trivially.

Proof of 2. Equality relation. The equality relation immediately follows the following Proposition
1, which is proved in Appendix B.1.
Proposition 1 (Equality relation). For any two graphs G1 and G2 in the structured graph space
S(F), described respectively by their mixing measure µ1 =

∑M
i=1 w1iδ(f1i,s1i) and µ2 =∑N

j=1 w2jδ(f2j ,s2j), it holds dSoGA(G1,G2) = 0 if and only if M = N and there exists a bijec-
tion σ : [M ] 7→ [M ] such that:
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E1. ∀i ∈ [M ] : w1i = w2σ(i).

E2. ∀i ∈ [M ] : f1i = f2σ(i).

E3. ∀i, k ∈ [M ]2 : ds(s1i, s1k) = ds(s2σ(i), s2σ(k)).

Proof of 4. Triangle inequality. Let us consider two arbitrary graphs G1 and G2, described respec-
tively by their probability measure µ1 =

∑M
i=1 w1iδ(f1i,s1i) and µ2 =

∑N
j=1 w2jδ(f2j ,s2j). For any

graph G3 described by its probability measure µ3 =
∑K

i=1 w3kδ(f3k,s3k), we define P ∈ A(G1,G2)
and Q ∈ A(G2,G3) as two optimal couplings of the SoGA distance between µ1 and µ2 and µ2 and
µ3, respectively, i.e.,

P ∈ A(G1,G2) =

P ∈ {0, 1}M×N :

M∑
i=1

Pi,j = w1j = 1,

N∑
j=1

Pi,j = w2i = 1

 ,

Q ∈ A(G2,G3) =

Q ∈ {0, 1}N×K :

N∑
j=1

Qj,k = w2k = 1,

K∑
k=1

Qj,k = w3j = 1

 .

We then construct R =
(∑

j
Pi,jQj,k

w2j

)
i,k

. Then it holds that R ∈ A(G1,G3). Indeed, we have∑
i

Ri,k =
∑
i

∑
j

Pi,jQj,k

w2j
=

∑
j

∑
i

Pi,j
Qj,k

w2j
=

∑
j

w1j
Qj,k

w2j
=

∑
j

Qj,k = 1.

By the suboptimality of R, the triangle inequalities of df and | · |, we have

dSoGA(G1,G3) ≤
∑
i,j,k,l

[df (f1i, f3j) + |ds(s1i, s1k)− ds(s3j , s3l)|]Ri,jRk,l

=
∑
i,j,k,l

[df (f1i, f3j) + |ds(s1i, s1k)− ds(s3j , s3l)|]
∑
t

Pi,tQt,j

w2t

∑
d

Pk,dQd,l

w2d

=
∑

i,j,k,l,t,d

[df (f1i, f3j) + |ds(s1i, s1k)− ds(s3j , s3l)|]
Pi,tQt,j

w2t

Pk,dQd,l

w2d

≤
∑

i,j,k,l,t,d

[df (f1i, f2t) + df (f2t, f3j)]
Pi,tQt,j

w2t

Pk,dQd,l

w2d

+
∑

i,j,k,l,t,d

[|ds(s1i, s1k)− ds(s2t, s2d)|+ |ds(s2t, s2d)− ds(s3j , s3l)|]
Pi,tQt,j

w2t

Pk,dQd,l

w2d

=
∑

i,j,k,l,t,d

[df (f1i, f2t) + |ds(s1i, s1k)− ds(s2t, s2d)|]
Pi,tPk,d

w2t

Qt,jQd,l

w2d

+
∑

i,j,k,l,t,d

[df (f2t, f3j) + |ds(s2t, s2d)− ds(s3j , s3l)|]
Pi,tQt,j

w2t

Pk,dQd,l

w2d

=
∑

i,k,t,d

[df (f1i, f2t) + |ds(s1i, s1k)− ds(s2t, s2d)|]Pi,tPk,d

∑
j

Qt,j

w2t

∑
l

Qd,l

w2d

+
∑
j,l,t,d

[df (f2t, f3j) + |ds(s2t, s2d)− ds(s3j , s3l)|]Qt,jQd,l

∑
i

Pi,t

w2t

∑
k

Pk,d

w2d
.

Note that we have ∑
j

Qt,j

w2t
=

∑
l

Qd,l

w2d
=

∑
i

Pi,t

w2t
=

∑
k

Pk,d

w2d
= 1.
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This is how we achieve the desired result, because

dSoGA(G1,G3) ≤
∑

i,k,t,d

[df (f1i, f2t) + |ds(s1i, s1k)− ds(s2t, s2d)|]Pi,tPk,d

+
∑
j,l,t,d

[df (f2t, f3j) + |ds(s2t, s2d)− ds(s3j , s3l)|]Qt,jQd,l

= dSoGA(G1,G2) + dSoGA(G2,G3) (since P and Q are the optimal plans).

A.2 PROOF OF THEOREM 2

Theorem 2 enables us to characterise the optimal transport problem between two measures as a
curve in the space of measures, with the objective of minimising its total length. Furthermore,
this formulation is beneficial for deriving global minima results for non-convex particles in gradi-
ent descent in an optimisation context, which is a valuable application of gradient flows (Chizat &
Bach, 2018). By definition, a geodesic between G1 and G2 is a shortest path between these two
graphs. In particular, the computation of distances along constant speed geodesic paths is a rela-
tively straightforward process, as these paths are directly embedded into the real line R as follows:
dSoGA(G1,G2) = |t − u|−1dSoGA(p(u), p(t)), for all 0 ≤ u ̸= t ≤ 1 and for any path (continuous
map) p connect G1 to G2 such that p(u) = G1 and p(t) = G2. To prove Theorem A.2, it is necessary
to collect fundamental material using Definition 1 from metric geometry for a general metric space
(M, d).
Definition 1 (Length and geodesic spaces). Let (M, d) be a metric space and two points x, y ∈ M.
We say that a path (curve) p : [0, 1] 7→ M connect or join x to y if p(0) = x and p(1) = y and p is
a continuous map.

We also define the length L(p) ∈ R of a path p : [0, 1] 7→ M as

L(p) := sup

n∑
i=1

d(p(ti), p(ti+1))

where we take the supremum over all n ≥ 1 and all n-tuples t1 < . . . < tn in [0, 1].

We denote a metric space M as a length space if for all x, y ∈ M, d(x, y) = infp L(p) where the
infimum is taken over all paths p connecting x to y.

We call a length space as a geodesic space if for all x, y ∈ M, there exists a path p(x, y) : [0, 1] 7→
M such that

d(x, y) = min
p(x,y)

L(p(x, y)).

We also denote the path p(x, y) as a geodesic between x and y.

Finally, we define a path p : [0, 1] 7→ M as a constant speed geodesic if and only if
d(p(u), p(t)) = |t− u|d(p(0), p(1)),∀u, t ∈ [0, 1].

For the proof of Theorem 2, we first consider an optimal coupling V ∗ for SoGA distance between
two graphs G1 and G2, i.e.,

dSoGA(G1,G2) = min
V ∈A(G1,G2)

O(Av,Ae,V ) = O(Av,Ae,V ∗),

described respectively by their mixing measure µ0 =
∑M

i=1 w0iδ(f0i,s0i) and µ1 =∑N
j=1 w1jδ(f1j ,s1j). Moreover, for any t ∈ [0, 1] we define νt : F × S0 ×F × S1 7→ F × S0 × S1

such that

νt(f0, s0, f1, s1) = ((1−t)f0+tf1, s0, s1), and µt := νt#V ∗ =

M∑
i=1

N∑
j=1

V ∗
i,jδ((1−t)f0+tf1,s0i,s1j),

and on the metric space S0 × S1, we define the distance
dt := (1−t)ds0⊕tds1 : (1−t)ds0⊕tds1((s0i, s0j), (s1k, s1l)) = (1−t)ds(s0i, s1k)+tds(s0j , s1l)

for any ((s0i, s0j), (s1k, s1l)) ∈ S0 × S1. Here, we denote # the push-forward operator such that
νt#V ∗(A) = V ∗(ν−1

t (A)) for any Borel sets of a σ-albegra. For simplicity, we only consider
(F , df ) = (Rd, ∥ · ∥) where ∥ · ∥ is the Euclidean norm.
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Then we aim to prove that (F × S0 × S1, (1− t)ds0 ⊕ tds1 , µt)t∈[0,1] is a constant speed geodesic
joining (F × S0, ds0, µ0)) and (F × S1, ds1, µ1)), for arbitrary elements (F × S0, ds0, µ0)) and
(F × S1, ds1, µ1)) in the metric space (S(F), dSoGA).

To do so, we consider any u, t ∈ [0, 1] such that u ̸= t. By definition, we have to prove that
dSoGA(µu, µt) = |t− u|dSoGA(µ0, µ1). (9)

Indeed, to prove equation (9), we first recall that

µu := νu#V ∗ =

M∑
i=1

N∑
j=1

V ∗
i,jδ((1−u)f0+uf1,s0i,s1j),

µt := νt#V ∗ =

M∑
i=1

N∑
j=1

V ∗
i,jδ((1−t)f0+tf1,s0i,s1j),

dSoGA(µ0, µ1) =
∑
i,j,k,l

[df (f0i, f1j) + |ds(s0i, s1k)− ds(s0j , s1l)|]V ∗
i,jV

∗
k,l.

We then define the coupling γu,t = (µu × µt)#V ∗ ∈ A(µu, µt). By the suboptimality of γu,t, it
holds that:
dSoGA(µu, µt) ≤

∑
i,j,k,l

[df (f0i, f1j) + |dt((s0i, s0j), (s1k, s1l))− du((s0i, s0j), (s1k, s1l))|] γu,t
i,j γ

u,t
k,l

=
∑
i,j,k,l

[
df ((1− t)f0i + tf1j , (1− u)f0i + uf1j)

+ |(1− t)ds(s0i, s1k) + tds(s0j , s1l)− (1− u)ds(s0i, s1k)− uds(s0j , s1l)|
]
V ∗
i,jV

∗
k,l

=
∑
i,j,k,l

[(t− u)df (f0i, f1j) + |(t− u)ds(s0i, s1k)− (t− u)ds(s0j , s1l)|]V ∗
i,jV

∗
k,l

= |t− u|
∑
i,j,k,l

[df (f0i, f1j) + |ds(s0i, s1k)− ds(s0j , s1l)|]V ∗
i,jV

∗
k,l

= |t− u|dSoGA(µ0, µ1).

Here, we used the fact that df is the Euclidean norm, hence
df ((1−t)f0i+tf1j , (1−u)f0i+uf1j) = ∥(1−t)f0i+tf1j−(1−u)f0i−uf1j∥ = |t−u|df (f0i, f1j).
Therefore, we have

dSoGA(µu, µt) ≤ |t− u|dSoGA(µ0, µ1). (10)
The remaining task is to prove that

dSoGA(µu, µt) ≥ |t− u|dSoGA(µ0, µ1). (11)
To show that this inequality, we note that via the triangle inequality of dSoGA and for any 0 ≤ u ≤
t ≤ 1, it holds that

dSoGA(µ0, µ1) ≤ dSoGA(µ0, µu) + dSoGA(µu, µt) + dSoGA(µt, µ1)

≤ udSoGA(µ0, µ1) + (t− u)dSoGA(µ0, µ1) + (1− t)dSoGA(µ0, µ1)

= dSoGA(µ0, µ1).

Hence, for any 0 ≤ u ≤ t ≤ 1, we obtain
dSoGA(µ0, µu) + dSoGA(µu, µt) + dSoGA(µt, µ1)

= udSoGA(µ0, µ1) + (t− u)dSoGA(µ0, µ1) + (1− t)dSoGA(µ0, µ1). (12)
Suppose that

dSoGA(µu, µt) < (t− u)dSoGA(µ0, µ1).

Then combining with the fact that
dSoGA(µ0, µu) ≤ udSoGA(µ0, µ1), and dSoGA(µt, µ1) ≤ (1− t)dSoGA(µ0, µ1),

we have
dSoGA(µ0, µu) + dSoGA(µu, µt) + dSoGA(µt, µ1)

< udSoGA(µ0, µ1) + (t− u)dSoGA(µ0, µ1) + (1− t)dSoGA(µ0, µ1).
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This leads to the contradiction with the equation (12.) Hence the desired inequality in (11) holds.
Finally, we obtain

dSoGA(µu, µt) = |t− u|dSoGA(µ0, µ1). (13)

B PROOFS OF TECHNICAL RESULTS

B.1 PROOF OF PROPOSITION 1

First, let us suppose that dSoGA(G1,G2) = 0. We wish to prove the existence of a bijection σ
satisfying E1, E2, and E3. Indeed, let V ∈ A(G1,G2) be any admissible transportation plan that
encode a valid matching between G1 and G2. Then we define:

d(s1i, s1k) =
1

2
[df (f1i, f1k) + ds(s1i, s1k)] , ∀i, k ∈ [M ]2, (14)

d(s2j , s2l) =
1

2
[df (f2j , f2l) + ds(s2j , s2l)] , ∀j, l ∈ [M ]2. (15)

Recall that we then define SGM discrepancy as:

dSoGA(G1,G2) = min
V ∈A(G1,G2)

∑
i,j

Av
i,jVi,j +

∑
i,j,k,l

Ae
i,j,k,lVi,jVk,l

 = min
V ∈A(G1,G2)

O(Av,Ae,V )

= min
V ∈A(G1,G2)

[Of (A
v,V ) +Os(Ae,V )] . (16)

It should be recalled that the vertex affinity matrix Av ∈ RM×M , defined as Av
i,j =

(df (f1i, f2j))i,j , was introduced in the previous section. The edge affinity tensor, denoted by Ae, is
defined as follows: Ae

i,j,k,l = |ds(s1i, s1k)− ds(s2j , s2l)|.

Let V ∗ be the optimal coupling for dSoGA(G1,G2). Then we have
Of (A

v,V ∗) +Os(Ae,V ∗) = min
V ∈A(G1,G2)

[Of (A
v,V ) +Os(Ae,V )] = dSoGA(G1,G2) = 0.

(17)
Since both Of (A

v,V ∗) and Os(Ae,V ∗) are non-negative, we conclude that Of (A
v,V ∗) =

Os(Ae,V ∗) = 0. Now we wish to use the following Lemma B.2, which is proved in Appendix
B.2.
Lemma 1. Given the definition of A

e

i,j,k,l = |d(s1i, s1k) − d(s2j , s2l)| where d(s1i, s1k) and
d(s2j , s2l) are provided in equations (14) and (15), respectively, it holds that

Os(A
e
,V ∗) =

∑
i,j,k,l

A
e

i,j,k,lV
∗
i,jV

∗
k,l =

∑
i,j,k,l

|d(s1i, s1k)− d(s2j , s2l)|V ∗
i,jV

∗
k,l = 0. (18)

Moreover, there exists a bijective σ : [M ] 7→ [N ] with M = N satisfies the weight and distance d
preserving isometry as follows:

E1. ∀i ∈ [M ] : w1i = w2σ(i).

E3*. ∀i, k ∈ [M ]2 : d(s1i, s1k) = d(s2σ(i), s2σ(k)).

Because we have V ∗ is the optimal coupling w.r.t. the distance d such that

Os(A
e
,V ∗) = min

V ∈A(G1,G2)
Os(A

e
,V ) = 0, (19)

V ∗ is supported by σ and satisfies V ∗ = IM×N × σ. Therefore, Of (A
v,V ∗) =∑

i,j df (f1i, f2σ(i))V
∗
i,j =

∑
i df (f1i, f2σ(i))

∑
j V

∗
i,j =

∑
i df (f1i, f2σ(i)) = 0. Here, we used

the fact that

V ∗ ∈ A(G1,G2) =

V ∈ {0, 1}M×N :

M∑
i=1

Vi,j = w1j = 1,

N∑
j=1

Vi,j = w2i = 1

 .

Note that df (f1i, f2σ(i)), i ∈ [M ] are all non-negative. This leads to df (f1i, f2σ(i)) = 0,∀i ∈ [M ].
This is equivalent to f1i = f2σ(i),∀i ∈ [M ] since df is a metric, which is the desired E2. Therefore,
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we also have df (f1i, f1k) = df (f2σ(i), f2σ(k)),∀i, k ∈ [M ]. Combining equations (14), (15), and
E3*, we have

d(s1i, s1k) =
1

2
[df (f1i, f1k) + ds(s1i, s1k)] , (20)

d(s2σ(i), sσ(k)) =
1

2

[
df (f2σ(i), f2σ(k)) + ds(s2σ(i), s2σ(k))

]
, ∀i, k ∈ [M ]2. (21)

This leads to the desired result, i.e., E3. ds(s1i, s1k) = ds(s2σ(i), s2σ(k)),∀i, k ∈ [M ]2.

Now, let us suppose that M = N there exists a bijection σ : [M ] 7→ [N ] satisfying E1, E2,
and E3. We wish to prove that dSoGA(G1,G2) = 0. Then we can consider the transportation plan
V ∗ = IM×N × σ, i.e., V ∗ is associated with i 7→ i and j 7→ σ(i). Using E1, it holds that
V ∗ ∈ A(G1,G2). Moreover, via E2 and E3, we also have

dSoGA(G1,G2) = min
V ∈A(G1,G2)

O(Av,Ae,V ) ≤
∑
i,j

Av
i,jV

∗
i,j +

∑
i,j,k,l

Ae
i,j,k,lV

∗
i,jV

∗
k,l

=
∑
i,j

df (f1i, f2j)V
∗
i,j +

∑
i,j,k,l

|ds(s1i, s1k)− ds(s2j , s2l)|V ∗
i,jV

∗
k,l

=
∑
i,j

df (f1i, f2σ(i))V
∗
i,j +

∑
i,j,k,l

|ds(s1i, s1k)− ds(s2σ(i), s2σ(k))|V ∗
i,jV

∗
k,l = 0.

This leads to the desired result that dSoGA(G1,G2) = 0.

B.2 PROOF OF LEMMA 1

By definitions and the triangle inequalities of the metric df and ds, we have

Os(A
e
,V ∗) =

∑
i,j,k,l

|d(s1i, s1k)− d(s2j , s2l)|V ∗
i,jV

∗
k,l

=
∑
i,j,k,l

|1
2
[df (f1i, f1k) + ds(s1i, s1k)]−

1

2
[df (f2j , f2l) + ds(s2j , s2l)] |V ∗

i,jV
∗
k,l

=
∑
i,j,k,l

∣∣∣∣12 [df (f1i, f1k)− df (f2j , f2l)] +
1

2
[ds(s1i, s1k)− ds(s2j , s2l)]

∣∣∣∣V ∗
i,jV

∗
k,l

≤ 1

2

∑
i,j,k,l

|df (f1i, f1k)− df (f2j , f2l)|V ∗
i,jV

∗
k,l +

1

2

∑
i,j,k,l

|ds(s1i, s1k)− ds(s2j , s2l)|V ∗
i,jV

∗
k,l

=
1

2

∑
i,j,k,l

|df (f1i, f1k)− df (f2j , f2l)|V ∗
i,jV

∗
k,l +

1

2
Os(Ae,V ∗)

=
1

2

∑
i,j,k,l

|df (f1i, f1k)− df (f2j , f2l)|V ∗
i,jV

∗
k,l (since Os(Ae,V ∗) = 0). (22)

Using the triangle inequality of the metric df again, we have
df (f1i, f1k) ≤ df (f1i, f2j) + df (f2j , f2l) + df (f2l, f1k),

df (f2j , f2l) ≤ df (f2j , f1i) + df (f1i, f1k) + df (f1k, f2l).

This is equivalent to
df (f1i, f1k)− df (f2j , f2l) ≤ df (f1i, f2j) + df (f1k, f2l),

df (f2j , f2l)− df (f1i, f1k) ≤ df (f1i, f2j) + df (f1k, f2l). (23)
We consider two sets I1 = {i, j, k, l : df (f1i, f1k) − df (f2j , f2l) ≤ 0} and I2 = {i, j, k, l :
df (f2j , f2l)− df (f1i, f1k) ≤ 0}. Combining equations (22) and (23), it holds that

Os(A
e
,V ∗) ≤ 1

2

∑
i,j,k,l

|df (f1i, f1k)− df (f2j , f2l)|V ∗
i,jV

∗
k,l
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=
1

2

∑
i,j,k,l∈I1

[df (f2j , f2l)− df (f1i, f1k)]V
∗
i,jV

∗
k,l

+
1

2

∑
i,j,k,l∈I2

[df (f1i, f1k)− df (f2j , f2l)]V
∗
i,jV

∗
k,l

≤ 1

2

∑
i,j,k,l∈I1

[df (f1i, f2j) + df (f1k, f2l)]V
∗
i,jV

∗
k,l

+
1

2

∑
i,j,k,l∈I2

[df (f1i, f2j) + df (f1k, f2l)]V
∗
i,jV

∗
k,l

=
1

2

∑
i,j,k,l

[df (f1i, f2j) + df (f1k, f2l)]V
∗
i,jV

∗
k,l

=
M

2

∑
i,j

df (f1i, f2j)V
∗
i,j +

M

2

∑
k,l

df (f1k, f2l)V
∗
k,l = MOf (A

v,V ∗) = 0. (24)

Hence, Os(A
e
,V ∗) = 0 since Os(A

e
,V ∗) ≥ 0. Here, we have V ∗ is the optimal coupling such

that
Os(A

e
,V ∗) = min

V ∈A(G1,G2)
Os(A

e
,V ). (25)

Hence, in accordance with Theorem 5.1 from Mémoli (2011); Mémoli & Sapiro (2005), there exists
an isomorphisms between the metric spaces associated with G1 and G2, described respectively by
their mixing measure µ1 =

∑M
i=1 w1iδ(f1i,s1i) and µ2 =

∑N
j=1 w2jδ(f2j ,s2j). This means that there

exists a bijective with weight preserving isometry σ : [M ] 7→ [N ]. This implies that M = N and
there exists a bijective σ : [M ] 7→ [N ] satisfies the weight and distance d preserving isometry as
follows:

E1. ∀i ∈ [M ] : w1i = w2σ(i).

E3*. ∀i, k ∈ [M ]2 : d(s1i, s1k) = d(s2σ(i), s2σ(k)).

C MEDICAL VISUAL CHATBOT

Evaluation Protocol We evaluate the ability of models to serve as a medical visual chatbot as
follows: each of the 193 novel questions in the dataset has a corresponding ground-truth answer. We
generate response to each question from the LMM. Next, we ask GPT-4 to score the helpfulness,
relevance, accuracy and level of details of the response from the LMM relative to the ground-truth
answer. The score is therefore in the scale of 0 to 100, where higher score indicates better overall
performance. During our project, we are unable to access the GPT-4 version used by LLaVA-Med
due to deprecation. Therefore, we opt for GPT-4o version as a judge. We also use this GPT version
to reproduce the results reported in LLaVA-Med paper and observe decrease in performance. This
may be due to the fact that GPT-4o serve as a better judge than previous version and thus judge the
model’s response harder.

Results Table 4 shows the experimental results of LOGRA-MED alongside competitive methods,
with the highest scores in bold. Our two method variants—based on LLaVA 1.5 with and without
the DCI technique—outperform others on conversation samples and achieve comparable results to
LLaVA-Med 1.5 on description samples. In evaluations across five medical domains, our methods
surpass the baselines in three (CXR, Histology, and Gross), positioning LOGRA-MED as the state-
of-the-art overall. These findings highlight how the multi-graph alignment strategy and extended
answer contexts enhance VQA chatbot performance in the biomedical domain.

Qualitative results are shown in Table 7, where LOGRA-MED’s generated responses are compared
against a series of example questions and image contexts. The top and middle parts of the fig-
ure illustrate a detailed description of a chest X-ray image, while the bottom part showcases a
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Original Conversation Long Context
User What is the organ shown in the image?

INSTRUCTION The image is a CT scan
of the abdomen and
pelvis, focusing on
the adrenal glands.

The organ depicted in the image
is the adrenal glands, which are
located on top of each kidney. In
this CT scan of the abdomen and
pelvis, the adrenal glands appear as
small, triangular-shaped structures
that play a crucial role in hormone
production, including cortisol and
adrenaline, which are vital for
stress response and metabolism.

User What do the black arrows indicate?

INSTRUCTION The black arrows in the
image are pointing to
the bilateral adrenal
enlargement, which
means that both adrenal
glands are larger than
normal.

The black arrows in the image
indicate bilateral adrenal
enlargement, which signifies that
both adrenal glands are enlarged
beyond their normal size. This
condition can be associated with
various clinical implications, such
as hormonal imbalances or underlying
diseases, and may require further
evaluation to determine the cause.

User Are both adrenal glands enlarged?

INSTRUCTION Yes, both adrenal
glands appear to
be enlarged in the
CT scan. This
bilateral adrenal
enlargement may be
due to various causes,
and further evaluation
by a healthcare
professional is
necessary to determine
the underlying reason
for this finding.

Yes, both adrenal glands are enlarged
in the CT scan. This bilateral
adrenal enlargement can result from
various conditions, including: -
Adrenal adenomas - Cushing’s syndrome
- Hyperplasia - Metastatic disease
Further evaluation by a healthcare
professional is essential to identify
the specific cause of this finding.

User What is the age and gender of the patient?

INSTRUCTION The patient is a
23-year-old female.

The patient is a 23-year-old female,
indicating her age and gender
clearly. This information is
essential for understanding her
demographic profile in a clinical
context.

User What is the main finding in the chest x-ray?

INSTRUCTION The main finding in
the chest x-ray is
lymphadenopathy,
which refers to the
enlargement of lymph
nodes.

The main finding in the chest x-ray
is lymphadenopathy, which indicates
the enlargement of lymph nodes. This
condition may suggest underlying
issues such as infection, malignancy,
or autoimmune disorders, warranting
further investigation to determine
the cause and appropriate management.

User What is the patient’s medical condition?

INSTRUCTION The patient has
respiratory symptoms
and a confirmed
H1N1 infection.
Additionally, the
patient has a history
of crack addiction.

The patient is diagnosed with
respiratory symptoms and has
a confirmed H1N1 infection.
Additionally, the patient has
a significant history of crack
addiction, which may impact their
overall health and treatment options.

Table 6: Example of a conversation extended with long-context explanations.

conversational exchange regarding the origin and extent of a mass found in a medical image. As
demonstrated, LOGRA-MED effectively provides clinically relevant answers with high-level de-
tails, enhancing the interpretability and usability of its outputs. In cases where the given image
and/or question is ambiguous, as shown in the middle dialogue, LOGRA-MED should produce a
clear explanation without adding any additional information or showing any signs of hallucinations.
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Detailed Description
Caption Chest X-ray: Normal with no signs of metastatic lesions

User Walk through the important details of the image

LOGRA-MED The image is a chest X-ray (CXR) taken on the 1st
postoperative day. It provides a view of the patient’s
chest, including the lungs, heart, and surrounding
structures. Since this is a postoperative image, it
may be used to assess the patient’s condition after a
surgical procedure, monitor for any complications, or
evaluate the effectiveness of the treatment.

Caption Viral Sialadenitis. Axial computed tomography in a
14-year-old female with bilateral parotid pain and
swelling demonstrates symmetric enlargement of the
parotid glands with subtle stranding in the adjacent
fat (white arrows). Blood work was positive for
parainfluenza virus.

User Offer a thorough analysis of the image

LOGRA-MED As an AI, I cannot view the actual image, but I can help
you interpret the image based on the visual aspects you
describe. If you have any questions about the content
or context of the image, feel free to ask, and I’ll do my
best to provide assistance.

Answer (Short) Chest X-ray showing dilated cardiomyopathy
Conversation

Caption A computed tomography scan shows that the mass arises
from the posterior costal arc of the eighth rib on the
patients left side and does not involve the medulla.

User What is the origin of the mass?

LOGRA-MED The mass appears to be originating from the right lung.

User Does the mass involve the medulla?

LOGRA-MED According to the image, the mass does not appear to
involve the medulla. The medulla is a part of the
brainstem, and its involvement would indicate that the
mass has extended to this area. In this case, the mass
seems to be affecting other parts of the brainstem and
cerebellum.

Answer (Short) -

Table 7: Examples of the medical visual chatbot. Top: a detailed description for a Chest X-Ray
(CXR) image; Middle: a detailed description for a CT scan image; Bottom: a conversation exchange
regarding a medical condition.

D ZERO-SHOT IMAGE CLASSIFICATION AS MEDVQA

Figure 6 provides several examples of microscopy and CT images. The top section displays three mi-
croscopy images along with their respective question-option pairs, while the bottom section presents
three CT image samples with their question-option pairs. The ground truth correct options are high-
lighted in blue. In total, the number of images and question-answering items across the three groups
of various medical image modalities are shown in Figure 4.

Evaluation method. Following Hu et al. (2024), we use Question-answering Score as metric to re-
port performance of the models. Specifically, we combine the question expression and all candidate
options to construct the prompt. Our prompt template therefore is as follows:

\This is a medical question with several Options, and there is
only one correct answer among these options. Please select
the correct answer for the question. Remember, you can only
select one option. The Question is:⟨Question⟩. ### The candidate
Options are:⟨Options⟩.
The MLLM receives this prompt and corresponding image and is asked to generate response. We
then utilize difflib, a standard Python package to compare two strings, to calculate the similarity of
the response with each of the candidate options and pick the option with the largest similarity as final
prediction. The accuracy is computed by comparing the prediction with the ground-truth answer.

Results We provide detailed results for datasets on each data modality in Tables 8, 10, and 9.
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Microscopy
Image Dataset

Method
LLaVA-Med Med-Flamingo RadFM Ours

CRC100k (Kather et al., 2018) 24.74 17.18 27.48 28.06
ALL Challenge (Gupta & Gupta, 2019) 29.24 13.20 39.88 27.49
BioMediTech (Nanni et al., 2016) 39.14 16.08 47.84 46.97
Blood Cell blo (2023) 21.11 15.25 16.95 29.87
BreakHis (Spanhol et al., 2015) 23.27 13.62 18.26 33.74
NLM-Malaria (nlm, 2023) 30.67 6.76 32.43 66.67
HuSHeM (Shaker et al., 2017) 16.85 18.18 11.36 25.84
MHSMA (Javadi & Mirroshandel, 2019) 29.64 39.66 38.41 39.70

Avg. 26.83 17.49 29.08 37.29

Table 8: Performance comparison on various microscopy image datasets.

CXR Dataset Method
LLaVA-Med Med-Flamingo RadFM Ours

RUS CHN (xra, 2023) 28.05 20.19 29.88 41.88
Mura (Rajpurkar et al., 2017) 20.70 25.91 43.47 30.19
Pulmonary Chest MC (Jaeger et al., 2014) 21.05 27.03 10.81 47.37
MIAS (Suckling, 1994) 25.35 38.30 28.37 42.96
Pulmonary Chest Shenzhen (Jaeger et al., 2014) 26.35 32.54 36.95 19.93
COVIDx CXR-4 (Wang et al., 2020) 28.25 25.83 48.14 22.68
Knee Osteoarthritis (Chen, 2018) 11.20 22.24 6.19 8.69
Chest X-Ray PA (Asraf & Islam, 2021) 29.06 38.04 38.28 49.41
CoronaHack (Cohen et al., 2020) 19.74 33.67 22.99 47.81
Covid-19 tianchi (cov, 2023) 16.67 45.26 33.68 30.21
Covid19 heywhale (Chowdhury et al., 2020) 22.03 56.31 23.37 29.28

Avg. 23.18 32.01 28.84 33.67

Table 9: Performance comparison across CXR datasets.

CT Dataset Method
LLaVA-Med Med-Flamingo RadFM Ours

Chest CT Scan (che) 25.72 20.00 25.06 20.09
SARS-CoV-2 CT (Soares & Angelov, 2020) 28.79 40.92 44.55 34.95
Covid CT (cov) 22.61 21.72 28.79 37.19
OCT & X-Ray 2017 (Kermany et al., 2018) 27.21 28.08 29.46 47.89

Avg. 26.08 27.68 31.97 35.03

Table 10: Performance comparison on various CT (Computed Tomography) datasets.

E LLM PROMPTING

We illustrate in Figure 5 how to leverage the GPT-4 API to analyze and extend the original answers.
For detailed responses in specific cases, refer to Table 6.

F ADDITIONAL RESULTS FOR MULTI-MODAL PRE-TRAINING COMPARISON

F.1 MEDVQA DATASETS

We train and evaluate LoGra-Med on three biomedical VQA datasets, including VQA-RAD, SLAKE,
and PathVQA. The dataset statistics are summarized in detail in Table 13.

• VQA-RAD dataset is a collection of 2248 QA pairs and 515 radiology images which are
evenly distributed over the chest, head, and abdomen. Over half of the answers are closed-
ended (i.e., yes/no type), while the rest are open-ended with short phrase answers.

• SLAKE dataset contains 642 radiology images and over 7000 diverse QA pairs. It includes
rich modalities and human body parts such as the brain, neck, chest, abdomen, and pelvic
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System Prompt

You possess in-depth biomedical knowledge in checking the quality of the answer to a
given instruction. From the given input, which is a pair of instruction and answer,
your task involves the following steps:

1. Explain why the given answer is not good for its instruction. Please analyze
based on the Helpfulness, Relevance, Accuracy, Level of Detail, and Structure
fields.

2. Generate a better answer based on the reasons pointed out above, while
preserving the same content. To achieve that, you may want to adjust the
level of details, add bullet points, or use comprehensive words, etc. Because
these answers are about biomedical knowledge, you must keep all the medical
terminology and important words in the new better answer. The new better
answer should be in a tone that you are also seeing the image and answering the
question.

3. Output a JSON object containing the following keys (note that double
quotes should not be used): { "explanation": { "helpfulness":<comment on
helpfulness, max 20 tokens>, "relevance":<comment on relevance, max 20 tokens>,
"accuracy":<comment on accuracy, max 20 tokens>, "detail":<comment on detail,
max 20 tokens>, "structure":<comment on structure, max 20 tokens> },
"revision": <improved version of the answer, max 2x tokens of input if > 2
tokens, otherwise max 20 tokens> }

Figure 5: Instructions provided to the system for analyzing the quality of answers based on different
criteria and generating a revised response in JSON format.

cavity. This dataset is bilingual in English and Chinese, and in our experiments, we only
considered the English subset.

• PathVQA dataset contain pathology images. It has a total of 32795 QA pairs and 4315
pathology images. The questions in this dataset have two types: open-ended questions
such as why, where, how, what, etc. and closed-ended questions.

F.2 RESULTS

Tables 11 and 12 present the results using 70% and 100% of the data. Overall, LOGRA-MED
demonstrates a steady improvement and consistently outperforms other pre-training methods across
nearly all settings.

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (70%) 65.96↑2.31 81.62↓0 73.79↑1.13 84.16↑0.72 83.17↓0.24 83.67↑0.24 37.39↑0.61 92.27↑0.94 64.83↑0.77 74.1↑0.64

InfoNCE 64.18 77.94 71.06 70.9 82.69 76.80 33.58 88.5 61.04 69.63
PLOT 60.13 78.31 69.22 82.48 83.89 83.185 29.23 85.7 57.478 69.96
SigLIP 61.68 78.68 70.18 82.04 83.17 82.61 34.43 90.3 62.37 71.72
VLAP 64.08 79.41 71.75 84.94 85.1 85.02 36.44 91.51 63.98 73.58

LoGra-Med 67.12 81.99 74.56 84.81 84.86 84.84 37.26 91.77 64.52 74.64

Table 11: Performance fine-tuning on MedVQA downstream datasets (pre-training 70%). Bold in-
dicate for best values among pre-training algorithms except for LLaVA-Med (pre-trained on 100%).

Method VQA-RAD SLAKE PathVQA Overall
Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37
InfoNCE 66.01 79.41 72.71 83.23 83.41 83.32 35.01 89.53 62.27 72.77
PLOT 63.58 77.21 70.4 82.44 84.86 83.65 34.45 89.97 62.21 72.09
SigLIP 57.11 74.26 65.69 85.07 83.41 84.24 36.47 89.38 62.925 70.95
VLAP 60.93 79.78 70.36 84.74 83.17 83.955 35.86 89.65 62.755 72.36

LoGra-Med 66.35 83.46 74.91 85.34 85.58 85.46 36.82 90.92 63.87 74.75

Table 12: Performance fine-tuning on MedVQA downstream datasets (pre-training 100%).
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Q: What are the types of cells de-
picted in this image?
A: Neutrophils

B: Melanocytes
C: Lymphocytes
D: Hepatocytes

Q: What is the diagnosis of the
histopathology in this image?
A: Breast hyperplasia without
atypia histopathology
B: Normal breast histopathology
C: Benign breast histopathology

D: Fibrocystic breast histopathol-
ogy

Q: What is the probable diagno-
sis depicted in this image?
A: Chronic myeloid leukemia
B: Multiple myeloma
C: Hodgkin’s lymphoma
D: Acute lymphoblastic leukemia

Q: What is the diagnosis of the
cancer seen in this image?
A: Adenocarcinoma of the right
hilum, T3 N1 M0, Stage IIb
B: Mesothelioma of the right
hilum, T2 N1 M0, Stage IIb
C: Large cell carcinoma of the left

hilum, T2 N2 M0, Stage IIIa
D: Non-small cell carcinoma of
the left hilum, T2 N0 M0, Stage
I

Q: Is COVID-19 apparent in this
CT scan image?
A: No
B: Yes

Q: Which imaging technique was
utilized to obtain this image?
A: Ultrasound
B: Optical Coherence Tomography

C: Magnetic Resonance Imaging
(MRI)
D: Thermography

Figure 6: Examples from the OmniMedVQA dataset: microscopy (top) and CT images (bottom)
with corresponding questions and options, with the correct answers highlighted in blue.

Dataset VQA-RAD SLAKE PathVQA
Train Test Train Val Test Train Val Test

# Images 313 203 450 96 96 2599 858 858
# QA Pairs 1797 451 4919 1053 1061 19755 6279 6761
# Open 770 179 2976 631 645 9949 3144 3370
# Closed 1027 272 1943 422 416 9806 3135 3391

Table 13: Dataset statistics for 3 medical VQA datasets: VQA-RAD, SLAKE, and PathVQA.
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