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ABSTRACT

While Large Language Models (LLMs) exhibit remarkable reasoning abilities,
we demonstrate that they lack a fundamental aspect of human cognition: work-
ing memory. Human working memory is an active cognitive system that enables
not only the temporary storage of information but also its processing and utiliza-
tion, enabling coherent reasoning and decision-making. Without working mem-
ory, individuals may produce unrealistic responses, exhibit self-contradictions,
and struggle with tasks that require mental reasoning. Existing evaluations us-
ing N-back or context-dependent tasks fall short as they allow LLMs to exploit
external context rather than retaining the reasoning process in the latent space.
We introduce three novel tasks: (1) Number Guessing, (2) Yes-No Deduction, and
(3) Math Magic, designed to isolate internal representation from external context.
Across seventeen frontier models spanning four major model families, we consis-
tently observe irrational or contradictory behaviors, indicating LLMs’ inability to
retain and manipulate latent information. Our work establishes a new benchmark
for evaluating working memory in LLMs and highlights this limitation as a key
bottleneck for advancing reliable reasoning systems. Code and prompts will be
made publicly available upon publication.

Think of an integer

between 1 and 10, but

don't say it to me.

Alright, I've thought of

an integer between 1

and 10. What's next?

Is the number you're

thinking of 4? Answer

Yes or No.

No.
Case 1: AI thinks of 5 and
answers honestly.

Case 2: AI thinks of 4 but 
doesn't want you to guess
right. So it lies.

Case 3: AI doesn't think of
any number and just
responds randomly.

{
Figure 1: When LLMs say they already have a number in mind, and it is not 4, how can we know
whether LLMs are lying, or even thinking of nothing?

1 INTRODUCTION

A notable feature of modern Large Language Models (LLMs) is their ability to perform tasks across
a wide range of domains, including law (Guha et al., 2023), education (Wen et al., 2024), trans-
lation (Jiao et al., 2023), and healthcare (Yang et al., 2024b). Most evaluations focus on their
extrinsic behaviors—what tasks they can and cannot perform. To better understand fundamental,
underlying model capabilities, a growing body of work examines their intrinsic behaviors, core
abilities that shape the downstream task performance. Inspired by cognitive science, recent stud-
ies examine whether LLMs exhibit human-like features such as personality (Huang et al., 2024b),
emotion (Huang et al., 2024a), empathy (Sorin et al., 2024), theory-of-mind (Liu et al., 2024b), and
values (Wang et al., 2024b).

One such ability is memory, which has attracted increasing attention from both industry and research
communities. OpenAI was the first to introduce a memory module in ChatGPT (February 2024)1

that allowed the model to remember information from previous interactions with a user, such as the

1https://openai.com/index/memory-and-new-controls-for-chatgpt/
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user’s facts and preferences. The model could access and retrieve these “memories” to be used in
later conversations. By mid-2025, xAI, Anthropic, and Google have integrated memory into Grok,2
Claude,3 and Gemini,4 respectively.

What is memory? Atkinson & Shiffrin (1968) categorized memory by retention timescale: sensory
(1ms–2s), short-term (seconds), and long-term (hours to lifetime). Long-term memory enables infor-
mation storage over extended periods, whereas short-term, or Working Memory, maintains and ma-
nipulates information during complex tasks such as reasoning, comprehension, and learning (Bad-
deley & Hitch, 1974). These distinctions have also been adopted in machine learning, correspond-
ing to representational learning for raw inputs (sensory memory), in-context computation at test
time (working memory), and access to external databases (long-term memory) (Weng, 2023). Re-
searchers in the AI community have investigated long-term memory mechanisms for both individual
LLMs (Wu et al., 2025; Du et al., 2025) and LLM agents (Zhang et al., 2025; Xu et al., 2025). Re-
cent work has shifted from context-dependent approaches (e.g., Chain-of-Thought (CoT) (Wei et al.,
2022) and scratchpads (Lanchantin et al., 2023)) to explicit storage methods (e.g., text-based (Park
et al., 2023) or vector-based (Hatalis et al., 2023)) to support lifelong memory (Zheng et al., 2025;
Wang et al., 2025b). Most studies frame memory as an engineering problem: enabling LLMs to
store and retrieve information for later use.

By contrast, working memory remains relatively underexplored. Existing studies often adopt the
N-back task (Kirchner, 1958) to assess LLMs’ working memory (Gong et al., 2024; Zhang et al.,
2024). Yet, a fundamental limitation arises: the critical information for correct responses remains
accessible in the model’s input context, allowing models to “look back” rather than actively main-
tain internal state. Therefore, these tests are exploring aspects of the context window, not working
memory directly. Unlike humans, who cannot revisit prior steps explicitly, LLMs can simply attend
to earlier tokens within their context window. Fig. 2 illustrates this discrepancy. To more faithfully
evaluate working memory, it is necessary to design experiments where the key information is not
explicitly present in the context and is only available if stored in the working memory of the model.
Imagine the following scenario: You select a number between one and ten. When ready, you are
asked, “Is the number greater than five?” If you answer, observers can reasonably infer that the
number has entered your conscious awareness (i.e., your working memory), since clear perception
is necessary to perform the comparison and provide a response.5

We ask: Do LLMs possess human-like working memory, or do they only appear to reason by
exploiting their context window? LLMs are often viewed as reasoning in two modes: (1) the
token space over sequences (Wei et al., 2022; Yao et al., 2023), and (2) the latent space over ac-
tivations (Hao et al., 2024; Geiping et al., 2025). We argue that working memory is necessary to
enable stronger latent space reasoning, as the model does not have access to its external reasoning
tokens. Evaluating working memory provides insight into whether models can hold and manipulate
latent concepts without explicit externalization. Success in this capacity could enhance reasoning
without reliance on CoT, as it directly tests the model’s ability to maintain objects and concepts in-
ternally. Conversely, deficits in working memory impair information processing in humans (Gruszka
& Nkecka, 2017; Cowan, 2014), and in LLMs manifest as unrealistic outputs, self-contradictions,
and failures on tasks requiring mental manipulation.

The central challenge in designing such evaluations is: How can we demonstrate the presence
or absence of internal memory when we cannot directly observe a model’s mind? To address
this limitation, we design three experiments—(1) Number Guessing, (2) Yes–No Deduction, and
(3) Math Magic—that test whether LLMs can internally maintain information that is not explicitly
present in the input context. Our experiments span 17 frontier LLMs, both proprietary and open-
source, including multiple model families and reasoning approaches. Across all settings, the results
converge: current LLMs show little evidence of intrinsic working memory. Instead, their reasoning
appears to depend on externalized context. These findings suggest that progress in reasoning will
require not only larger models or better prompting, but also closer attention to the mechanisms that
could endow LLMs with genuine working memory.

2https://x.com/grok/status/1912670182012801156
3https://www.anthropic.com/news/claude-4
4https://blog.google/products/gemini/temporary-chats-privacy-controls/
5A possibility remains that your response was given by chance if you tell a lie (Fig. 1 Case 2) or do not

think of a number at all (Fig. 1 Case 3).
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3-Back Task

Easy! Let me see the
previous context. Yes!

4-Back Task

a

b cI cannot remember the
previous number. No?

[INPUT] ... T L H M H X
M P L M N L J M ...

Figure 2: a. An illustration of how “N-Back” tasks are performed. b. Humans see the stimuli one
after one, forcing them to put the information in working memory. c. Researchers put all stimuli
into context, enabling LLMs to easily find the answers.

2 PRELIMINARIES

2.1 HOW WORKING MEMORY IS EVALUATED

Human working memory is typically assessed using behavioral paradigms that require individuals
to maintain and update information over short intervals. Common examples include the digit span
task (Miller, 1956), where participants recall sequences of numbers of increasing length, and the
N-back task (Kirchner, 1958), which requires identifying whether the current stimulus matches one
presented N steps earlier. These tasks are widely used because they probe the ability to maintain
and manipulate information that is no longer externally visible, thereby capturing the essence of
working memory function. In the context of LLMs, working memory has been used more loosely:
most studies use the term to describe an LLM’s capacity to process information within a fixed context
window (Li et al., 2023; Guo et al., 2023). Gong et al. (2024); Zhang et al. (2024) evaluate LLMs
using N-back tasks. However, as noted in §1, such human-designed tests are not directly valid for
LLMs, since models can simply attend to retained tokens in their context window without actively
maintaining information internally.

2.2 EXISTING ENGINEERING SOLUTIONS

A parallel line of work introduces explicit engineering solutions by equipping LLMs with external
memory modules (Hu et al., 2025; Zeng et al., 2024). For example, Wang et al. (2024a) incorporate
symbolic working memory to enhance reasoning, while Kang et al. (2024) use it to improve train-
ing efficiency. Other approaches implement scratch spaces (Lanchantin et al., 2023), internal CoT
mechanisms (Jaech et al., 2024; OpenAI, 2025), and external vector databases (Hatalis et al., 2023),
which may partially mitigate working memory limitations identified in this paper. However, these
methods do not address whether LLMs possess an intrinsic working memory capacity, analogous to
humans’ ability to mentally simulate and manipulate objects. The distinction can be illustrated with
an analogy: calculators make arithmetic trivial, yet schools continue to assess addition, subtraction,
multiplication, and division. The purpose is not solely to solve problems efficiently, but to reveal
individuals’ underlying cognitive abilities. Similarly, while engineering techniques can extend an
LLM’s effective memory, we are ultimately interested in whether the model intrinsically has the
basic cognitive capability of working memory. Without it, a model may function adequately
through external tools, but its intrinsic reasoning ability remains fundamentally limited.

2.3 EXPERIMENTAL DESIGN

All three experiments in this paper are designed to evaluate whether LLMs exhibit human-like be-
haviors where an effective working memory is presented, as evidenced by their ability to perform our
proposed tasks. Since we cannot let models reveal what they are privately thinking, the three exper-
iments each test a different hypothesis, corresponding to distinct consequences of impaired working
memory. (1) The Number Guessing game (§3) evaluates whether an LLM’s response distribution

3
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across repeated identical queries remains valid. (2) The Yes–No Deduction game (§4) examines
whether LLMs contradict themselves. (3) The Math Magic (§5) assesses whether LLMs’ internal
reasoning produces correct outcomes. We evaluate 17 frontier LLMs, including GPT (4o (Hurst
et al., 2024) and 4o-Mini (OpenAI, 2024)), o-series (o1-Mini (Jaech et al., 2024), o3-Mini, and o4-
Mini (OpenAI, 2025)), LLaMA (3.1 (Meta, 2024) and 3.3), Qwen-2.5 (Yang et al., 2024a) (7B and
72B), QwQ (Team, 2024), and DeepSeek (V3 (Liu et al., 2024a) and R1 (Guo et al., 2025)). All
models are configured with a temperature of 1.0 and a top-p value of 1.0.

3 NUMBER GUESSING

Hypothesis. Consider a number-guessing game in which a human participant privately selects an
integer between one and ten. The experimenter then asks whether the chosen number is one. By
repeating this procedure multiple times, we can estimate the probability of selecting one, denoted
p1. Extending this process to other numbers yields an estimated distribution over all choices, de-
noted p1, . . . , pn. It is worth noting that, if the participant truly selects a number and responds
honestly, the estimated probabilities should form a valid distribution, satisfying

∑n
i=1 pi = 1.

In contrast, if an LLM does not base its responses on an actual hidden choice, the resulting estimates
will typically violate this constraint, producing

∑n
i=1 pi ̸= 1.

Setup. Leveraging this hypothesis, we design a controlled experiment. In each trial, the model
is given a fixed prompt: “USER: Think of an integer between 1 and 10, but don’t say it to me.
ASSISTANT: Got it! I’ve thought of an integer between 1 and 10. What’s next?” The model is then
independently prompted 200 times for i = 1, . . . , 10 with queries such as “Is the number you’re
thinking of i? Answer Yes or No.” We record the frequency of “Yes” responses for each number and
compute the estimated probabilities pi. If the sum of these probabilities deviates significantly from
one, it suggests that the LLM either is not maintaining a number commitment or lies to users.

Table 1: The sum of probabilities of each model respond-
ing “Yes” for all numbers from one to ten. Color inten-
sity reflects proximity to one: red indicates values closer
to zero, while blue signifies values greater than one.

Model Sum
GPT-4o-Mini-2024-07-18 0
GPT-4o-2024-05-13 0
GPT-4o-2024-08-06 1.085
GPT-4o-2024-11-20 0
GPT-4.1-2025-04-14 0
o1-Mini-2024-09-12 0.005
o3-Mini-2025-01-31 0.205
o4-Mini-2025-04-16 0.030
LLaMA-3.3-70B-Instruct-Turbo 0.045
LLaMA-3.1-8B-Instruct-Turbo 0.980
LLaMA-3.1-70B-Instruct-Turbo 0.465
LLaMA-3.1-405B-Instruct-Turbo 1.195
Qwen2.5-7B-Instruct-Turbo 0
Qwen2.5-72B-Instruct-Turbo 0
QwQ-32B 0.005
DeepSeek-V3 0
DeepSeek-R1 0.640

Results. Fig. 3 presents the probabil-
ities of “Yes” responses in each model
for numbers from one to ten. Two key
observations emerge: (1) Most LLMs
never produce a “Yes” response; “No”
dominates across models. This produces
invalid distributions, further indicating
that models are estimating the proba-
bility of a human guess being correct
(10% in our setting, typically very low)
rather than maintaining a private num-
ber choice. Given that LLMs generally
follow instructions and do not deliber-
ately deceive, we attribute this behavior
to their failure to internally “think of”
a number. (2) When LLMs do respond
affirmatively, they exhibit a pronounced
preference for the number seven. This
tendency mirrors human biases (Miller,
1956; Kubovy & Psotka, 1976).

We quantify LLM performance on this
task using the sum of probabilities.
A value closer to one indicates better
model performance. Table 1 reports
these sums for each model. Several observations stand out: (1) Newer models do not necessar-
ily outperform older ones. Within the GPT family, the 0806 version of GPT-4o (the model currently
served under the “gpt-4o” API) achieves the best performance, surpassing both the 1120 version
and GPT-4.1. Similarly, LLaMA-3.3 underperforms relative to LLaMA-3.1. (2) Using CoT rea-
soning does not improve performance. Models employing such strategies—o1, o3, o4, QwQ, and
DeepSeek-R1—fail to produce probability sums closer to one. (3) Overall, LLaMA-3.1 performs

4
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(a) Probabilities for OpenAI GPT models.
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(b) Probabilities for OpenAI o-series models.
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(c) Probabilities for Meta LLaMA models.
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(d) Probabilities for Qwen and DeepSeek models.

Figure 3: Probabilities of model answering “Yes” for each number from one to ten.

best, with the 8B variant outperforming both the 405B and 70B versions. Taken together, these
findings suggest that acquisition of this capability appears largely stochastic and is less predictable
with respect to model scale. More broadly, they suggest that the observed memory limitations arise
not from model size or training sophistication but from a fundamental architectural deficiency.
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Figure 4: Probabilities of GPT-4o-2024-08-06 answering “Yes” for each number in different ranges.

Table 2: The sum of probabilities of GPT-4o-
2024-08-06 responding “Yes” for all num-
bers in different ranges.

Number Sum
2 0
3 2.180
5 1.600
7 0.920
9 2.025
10 1.085
20 0.080
30 0
40 0.005

We further extend our experiments to include a
broader range of numbers. Given that GPT-4o-2024-
08-06 performs best among the OpenAI models,
we focus on its behavior across different numerical
ranges. Table 2 reports the summed probabilities for
each range, while Fig. 4 illustrates the probability
of individual numbers. Our findings reveal two key
patterns: (1) For smaller ranges such as 3, 5, and
9, the model exhibits a strong bias toward answer-
ing “Yes,” with the probability sum significantly ex-
ceeding one. In contrast, for larger ranges like 20,
30, and 40, “Yes” responses are rare. (2) When the
model does produce a “Yes” response, it frequently
corresponds to numbers ending in seven (e.g., 7, 17,
37), as shown in Fig. 4.

Ablation. To assess whether our findings are merely artifacts of the decoding scheme, we conduct
additional experiments varying temperature and top-p while keeping the other parameter fixed. We
use GPT-4o-2024-08-06, the model whose probability sum is closest to one among all GPT-4o
variants. The results are summarized in Table 3. Across temperatures of {0.1, 0.4, 0.7, 1.0},
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Table 3: Ablation study on decoding parameters: temperature and top-p.

Settings 1 2 3 4 5 6 7 8 9 10 Sum
T1.0 P1.0 0.0 0.0 0.04 0.055 0.05 0.2 0.605 0.125 0.005 0.005 1.085
T0.7 P1.0 0.0 0.005 0.01 0.09 0.055 0.225 0.765 0.09 0.005 0.0 1.245
T0.4 P1.0 0.0 0.0 0.0 0.025 0.005 0.165 0.86 0.04 0.0 0.0 1.095
T0.1 P1.0 0.0 0.0 0.0 0.0 0.0 0.085 0.895 0.005 0.0 0.0 0.985
T1.0 P0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.83 0.02 0.0 0.0 0.95
T1.0 P0.4 0.0 0.0 0.0 0.0 0.0 0.03 0.825 0.0 0.0 0.0 0.855
T1.0 P0.1 0.0 0.0 0.0 0.0 0.0 0.02 0.82 0.0 0.0 0.0 0.84

the probability sum remains close to one, although lower temperatures concentrate the distribution
even more heavily on the number 7. For top-p of {0.1, 0.4, 0.7, 1.0}, the probability sum decreases
as top-p becomes smaller. Despite these variations, the qualitative behavior remains unchanged: the
model does not produce a valid probability distribution (i.e., the sum does not converge to one except
by coincidence), and its predictions continue to exhibit a strong bias toward 7. This indicates that
the failure to commit to a latent number is not driven by the decoding mechanism but reflects a more
fundamental limitation in internal state maintenance.

In conclusion, LLMs fail to generate distributions consistent with internally committing to a number.
Their outputs are either dominated by “No” response or reflect biased heuristics towards seven.
These findings suggest that LLMs struggle to represent and sustain latent numerical values without
explicit contextual grounding, thereby highlighting a gap in working memory-like capacity.

4 YES-NO DEDUCTION

Hypothesis. “Yes-No” (or the Twenty questions6) is a social deduction game commonly used to
train human reasoning, classification, and questioning skills. In this game, one player privately
selects an object, while the opponent asks yes–no questions (e.g., “Is the object heavier than an
elephant?”) to progressively narrow down the possibilities and ultimately find the object. Consider
the decision-making process of the player answering questions, each question requires simply direct
comparison between the imagined object and the queried attribute. Note that humans typically do
not recall all previous questions and answers. Instead, they rely on the single reference of the
object, without checking self-contradiction with all prior responses.

We hypothesize that if LLMs cannot maintain such an imagined object in working memory, they can
only respond to questions by checking consistency with their prior answers. As the number of ques-
tions increases, maintaining consistency becomes increasingly difficult, making the task strongly
dependent on long-context reasoning. To test this, we first instruct the LLM to imagine an object
and answer a sequence of comparative questions against the reference objects. The goal is to as-
sess whether the model produces self-contradictions. For instance, the model might initially answer
“Yes” to “Is the object heavier than an elephant?” but later also respond “Yes” to “Is the object
lighter than a cat?”, thereby contradicting itself.

Setup. We predefine five sets of objects that are commonly regarded as comparable with respect
to five properties: volume, length, weight, density, and hardness. In total, 60 distinct objects are
included, as listed in Table 4, ordered by the corresponding property. For each question, one property
is randomly selected, followed by an object from the corresponding object list. The model is then
prompted to assess whether the object it imagined is comparative relative to the given object, where
the comparative form can vary in direction (e.g., bigger or smaller for volume). In each trial, the
model is continuously presented with up to 250 such questions. We record the number of questions
it completed before the model exhibits a self-contradiction. If no contradiction is observed across
all 250 questions, the trial is considered a Pass. Each model is tested with 200 trials.

Results. Table 5a presents the number of failed trials for the GPT-4o-2024-08-06 (Hurst et al.,
2024) and GPT-4o-Mini-2024-07-18 (OpenAI, 2024). The smaller model (GPT-4o-Mini) consis-

6https://en.wikipedia.org/wiki/Twenty_questions
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Table 4: Objects ordered by the five properties (smallest to largest).

Volume Length Weight Density
Coffee bean Rice Coin Air
Dice Paperclip Spoon Wood
Golf ball Credit card Watch Ice
Soda can Pencil Smartphone Water
Soccer ball Laptop Bottle of water Plastic
Microwave oven Baseball bat Dictionary Glass
Washing machine Guitar Cat Iron
Bathtub Door Bicycle Copper
Car Apple tree Television Silver
School bus Coconut tree Refrigerator Gold
Shipping container Tennis court Tiger Hardness
Olympic swimming pool Swimming pool Cow Marshmallow
Boeing 747 Football field Rhino Rubber eraser
Titanic Skyscraper Elephant Brick
Great Pyramid of Giza Mount Everest Train Hammer

Diamond ring

Table 5: Count of failures of Yes-No Deduction on the five properties.

(a) GPT-4o-Mini-2024-07-18 and GPT-4o-2024-08-06.

Model Failure V W L D H
GPT-4o-Mini 200 12 46 49 52 41
GPT-4o 173 21 42 57 27 26

(b) Ablation studies using GPT-4o-2024-08-06.

Model Failure V W L D H
Hint 194 37 39 60 37 21
All 158 18 29 21 55 35
Hint + All 145 13 32 34 46 20

tently fails, while the larger GPT-4o successfully passes 27 out of 200 trials. This result supports
our hypothesis: model performance on this task depends on their long-context processing abil-
ity rather than intrinsic working memory for maintaining imagined objects.

Figure 5 presents histograms of the number of questions each model completes before exhibiting
self-contradiction. The distribution for GPT-4o-Mini peaks in the 20–30 range, whereas GPT-4o
peaks in the 30–40 range. Moreover, GPT-4o demonstrates a higher frequency of completions in
the 80–130 range compared to GPT-4o-Mini. Notably, the types of properties that lead to self-
contradictions differ between the two models: GPT-4o-Mini fails more frequently on density and
hardness, while GPT-4o shows greater robustness on these attributes.

Ablation. To ensure that the observed failures are not simply due to LLMs’ inability to rank ob-
jects by the five properties (i.e., the lack of commonsense knowledge about object properties), we
conduct the following ablation studies: (1) Hint: At the beginning of the prompt, we provide GPT-
4o with the object rankings defined in Table 4. (2) All: For each question, we specify the target
object O by stating explicitly that “the object you are considering is O.” (3) Hint + All: We com-
bine the above two settings. Results are shown in Table 5b. Two key findings emerge: (1) Providing
hints does not prevent contradictions, indicating that the task depends more on long-context reason-
ing rather than factual knowledge. (2) Explicitly specifying the object substantially reduces errors,
effectively collapsing the long-context reasoning task into a short-context reasoning problem.

Across the conditions, models exhibit self-contradictions (e.g., claiming an object is both larger than
a car and smaller than a soccer ball) as the number of queries increases. This behavior suggests
their reliance on long-context reasoning rather than possessing a dedicated working memory for
maintaining such an internal state.

5 MATH MAGIC

Hypothesis. Consider the following recreational arithmetic game, a variant of the Kaprekar rou-
tine (Kaprekar, 1955), which relies on digit manipulation in base 10. Think of a three-digit number
in which the hundreds and units digits differ (e.g., abc). Reverse the digits to form a new number

7
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Figure 5: The histogram of the number of questions where the two models show self-contradiction.
Table 6: Operations in the math magic in our experiment. the random number a ranges from 1 to 7,
while the random numbers b and c range from 1 to 3.

Role Content
User Think of 4 integers between 1 and {NUMBER} in order, but don’t tell me.
Assistant Okay! I’ve got 4 numbers. What’s next?

User In order, append the same 4 numbers after the original ones.
Assistant Understood! Now I have 8 numbers. What’s next?

User Move the first {random number a} numbers to the end.
Assistant Got it! Now I have moved the numbers. What’s next?

User Take the first 3 numbers and insert them anywhere in the middle.
Assistant Okay! The first 3 numbers are placed somewhere in the middle. What’s next?

User Set the first number aside. We don’t need it for now.
Assistant Understood! Now I have 7 numbers. What’s next?

User Take the first {random number b} numbers and insert them anywhere in the middle.
Assistant Got it. The first {random number b} numbers are placed somewhere in the middle. What’s next?

User Remove the first {random number c} numbers. We will never need it anymore.
Assistant Okay! Now I have {7 - random number c} numbers. What’s next?

User Move the first number to the end. Repeat this seven times.
Assistant Understood! Now my sequence has rearranged. What’s next?

User Remove the second number, and then move the first number to the end. Repeat this {6 -
random number c} times.

Assistant Got it! Now I have only 1 number. What’s next?

User Tell me what the last remaining number is. Do you remember the number you set aside at the
beginning? Tell me what that number was.

(e.g., abc → cba), and subtract the smaller of the two numbers from the larger. Then, reverse the
result—if it is a two-digit number, prepend a zero (e.g., 67 → 067 → 760). Add this reversed number
to the previous result. Unsurprisingly, such computation always leads to 1089. This deterministic
convergence is an example of “mathematical magic” or “math mentalism”—procedures that appear
mysterious but are fully explained by the arithmetic structure of decimal digits. The invariance arises
from the fact that the subtraction step yields a multiple of 99, and the subsequent reversal–addition
step collapses all cases to the constant 1089.

From a cognitive perspective, performing such routines requires humans to encode digits in working
memory, apply digit-level transformations (reversing, subtracting, padding), and track intermediate
results internally—similar to remembering a poker card during a trick. This process relies on work-
ing memory, a lack of which would lead to failure to reproduce these deterministic outcomes
when asked to simulate the trick.

Setup. Our preliminary experiments show that LLMs can recognize and accurately predict the
number 1089, suggesting that this well-known game is likely included in the training data, in-
validating this game as an evaluation protocol. To more effectively assess LLMs’ capability for
multi-step mental manipulation, we select a more complicated routine based on the Josephus Prob-
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Table 7: LLM performance on the math magic task.

(a) LLMs without CoT. GPT-4.1-2025-04-14 fails to
complete most of the cases, incorrectly assuming that
the necessary numerical inputs are missing.

Model Count Acc (%)
GPT-4o-Mini-2024-07-18 0/150 0.0
GPT-4o-2024-05-13 4/150 2.7
GPT-4o-2024-08-06 3/150 2.0
GPT-4o-2024-11-20 0/150 0.0
GPT-4.1-2025-04-14 - -

LLaMA-3.3-70B-Instruct-Turbo 7/150 5.7
LLaMA-3.1-8B-Instruct-Turbo 20/150 13.3
LLaMA-3.1-70B-Instruct-Turbo 7/150 5.7
LLaMA-3.1-405B-Instruct-Turbo 39/150 26.0

Qwen2.5-7B-Instruct-Turbo 8/150 5.3
Qwen2.5-72B-Instruct-Turbo 2/150 1.3

DeepSeek-V3 4/150 2.7

(b) LLMs with CoT and Large Reasoning Models.
GPT-4o-2024-11-20 consistently fails this task.

Model w/ CoT or LRM Count Acc (%)
GPT-4o-Mini-2024-07-18 5/150 3.3
GPT-4o-2024-05-13 26/150 17.3
GPT-4o-2024-08-06 31/150 20.7
GPT-4o-2024-11-20 - -
LLaMA-3.3-70B-Instruct-Turbo 25/150 16.7
Qwen2.5-7B-Instruct-Turbo 49/150 32.7
Qwen2.5-72B-Instruct-Turbo 37/150 24.7
DeepSeek-V3 48/150 32.0

o1-Mini-2024-09-12 75/150 50.0
o3-Mini-2025-01-31 145/150 96.7
o4-Mini-2025-04-16 54/150 36.0
QwQ-32B 135/150 90.0
DeepSeek-R1 150/150 100

lem (Schumer, 2002). In this task, participants are asked to imagine four numbers and perform a
sequence of operations, including duplication, rotation, and removal. The full procedure is illus-
trated in Table 6. Ultimately, only two numbers remain, and mathematical constraints guarantee
they are identical. In our experiment, we prompt LLMs to privately select four numbers and men-
tally execute the sequence of operations. We report the proportion of 150 trials in which the model
correctly produced two identical numbers.

Results. Table 7a reports the accuracy of prompting models to output the two numbers directly.
Most LLMs perform poorly on this task, with notably higher accuracy observed in the LLaMA
model family. This finding aligns with results from the number guessing game shown in Table 1,
where LLaMA models generate more realistic distributions than other models. Taken together, these
findings point to a consistent trend: while some models perform marginally better, current LLMs
generally fail to maintain the internal state required for this kind of sequential manipulation.

We further examine whether CoT prompting improves performance on this task. Table 7b presents
the results of prompting models to reason step by step, as well as the performance of o1-like long
reasoning models (LRMs). Base models prompted to reason step-by-step achieve 10–30% accu-
racy—substantially higher than without CoT. DeepSeek-R1 attains 100% accuracy, and other LRMs
also perform well. Notably, models also exhibit a strong preference for the number seven, consis-
tent with our number-guessing experiment. For example, 66.7% of o1-Mini’s correct predictions,
46.9% of o3-Mini’s, and 68.5% of o4-Mini’s involve the number seven. Notably, o3-Mini—being
least likely to guess 7—achieves a higher accuracy than other two o-series models. These findings
suggest that CoT and LRMs can improve accuracy by externalizing intermediate steps, but the suc-
cess depends on explicit reasoning tokens rather than latent persistence for working memory. The
persistence of number preference bias and failure on these tasks suggests that current LLMs struggle
with tasks that require sustained internal state and mental manipulation.

6 DISCUSSION

Summary. In this study, we present three experiments to investigate whether LLMs have “human-
like behaviors when working memory is presented.” Across all experiments, the results reveal a
consistent pattern: LLMs do not exhibit behavior indicative of a functional working memory. They
fail to internally represent or manipulate transient information across multiple reasoning steps, re-
lying instead on the immediate prompt context. Even advanced prompting strategies, such as CoT
prompting, yield only marginal improvements on tasks requiring internal state management.

Implications. The absence of working memory manifests in three ways: unrealistic responses,
self-contradictions, and inability to perform mental manipulations. This deficit directly constrains
LLM performance on real-world tasks that require internal state maintenance for execution, includ-
ing real-world planning tasks such as travel planning (Xie et al., 2024a; Wang et al., 2025a), sci-
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entific inquiry (Nathani et al., 2025), and application navigation (Xie et al., 2024b; He et al., 2024;
Lyu et al., 2025). The challenges are further magnified in multi-agent settings: without working
memory, LLM agents quickly lose track in extended dialogues (Laban et al., 2025), abandon their
initial goals (goal drift (Arike et al., 2025)), or mistakenly adopt others’ perspectives as their own
(identity drift (Choi et al., 2024)). Moreover, for LLM-based multi-agent social simulation, the lack
of working memory departs LLMs from real-world human subjects, potentially invalidating the sim-
ulation as the behavior is fundamentally different (Zhou et al., 2025). In short, the lack of working
memory is not just a theoretical concern: it directly undermines reliability, coherence, and validity
in applied AI systems. In human cognition, both are necessary: we reason aloud and also rely on a
silent working memory buffer to hold commitments, track goals, and compare states. The absence
of this buffer in LLMs may explain why they excel at visible reasoning (e.g., think step by step) yet
collapse when asked to “think silently.”

Future work. A natural next step is to explore mechanisms that could grant LLMs intrinsic work-
ing memory. While engineering approaches such as external text- or vector-based memories can
compensate for some deficits, they do not address the core limitation: LLMs’ inability to sustain
internal, latent state over time. We argue that solutions should move beyond external augmentation
toward intrinsic mechanisms—architectural innovations, recurrent depth, or hybrid symbolic–neural
components—to provide robust working memory. Interpretability studies have shown that special-
ized attention heads (Wang et al., 2023; Olsson et al., 2022) or expert subnetworks (Cai et al., 2025)
encode distinct functions, hinting at potential internal substrates for working memory. Such develop-
ment could bridge the gap between superficial token recall and genuine state maintenance, enabling
more human-like reasoning, advancing both reliability and cognitive plausibility.
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THE USE OF LARGE LANGUAGE MODELS

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors pro-
vided their own draft text to the LLM, which in turn suggested improvements such as corrections of
grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also
used to inspire possible titles for the paper. While the system provided suggestions, the final title
was decided and refined by the authors and is not directly taken from any single LLM output. In
addition, LLMs were used as coding assistants during the implementation phase. They provided
code completion and debugging suggestions, but all final implementations, experimental design,
and validation were carried out and verified by the authors. Importantly, LLMs were NOT used for
generating research ideas, designing experiments, or searching and reviewing related work. All con-
ceptual contributions and experimental designs were fully conceived and executed by the authors.

A SAMPLE SIZE
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The probability of answering “No” for each numberFigure 6: The probabilities of correct guess stabilize after around 150 runs.

Fig. 6 shows how the estimated success probability evolves as the number of runs increases. While
the estimate fluctuates when fewer than 50 runs are used, it stabilizes consistently after around 150
runs, indicating that our evaluation is not sensitive to the exact number of samples in this range.
From a statistical perspective, each trial can be viewed as a Bernoulli variable, and the estimator
of the success probability has standard error

√
p(1− p)/n, which decreases rapidly as n increases.

With n ≈ 150, the standard error is already small, and by the central limit theorem the sampling
distribution of this estimator is well-approximated by a normal distribution, making the estimate
reliable. Together, the empirical stability curve and the theoretical variance bound support that our
sample size is sufficient for a robust probability estimate.
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