LANGUAGE MODELS DO NOT HAVE HUMAN-LIKE WORKING MEMORY

Anonymous authors

Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) exhibit remarkable reasoning abilities, we demonstrate that they lack a fundamental aspect of human cognition: working memory. Human working memory is an active cognitive system that enables not only the temporary storage of information but also its processing and utilization, enabling coherent reasoning and decision-making. Without working memory, individuals may produce unrealistic responses, exhibit self-contradictions, and struggle with tasks that require mental reasoning. Existing evaluations using N-back or context-dependent tasks fall short as they allow LLMs to exploit external context rather than retaining the reasoning process in the latent space. We introduce three novel tasks: (1) Number Guessing, (2) Yes-No Deduction, and (3) Math Magic, designed to isolate internal representation from external context. Across seventeen frontier models spanning four major model families, we consistently observe irrational or contradictory behaviors, indicating LLMs' inability to retain and manipulate latent information. Our work establishes a new benchmark for evaluating working memory in LLMs and highlights this limitation as a key bottleneck for advancing reliable reasoning systems. Code and prompts will be made publicly available upon publication.

Figure 1: When LLMs say they already have a number in mind, and it is not 4, how can we know whether LLMs are lying, or even thinking of nothing?

1 Introduction

A notable feature of modern Large Language Models (LLMs) is their ability to perform tasks across a wide range of domains, including law (Guha et al., 2023), education (Wen et al., 2024), translation (Jiao et al., 2023), and healthcare (Yang et al., 2024b). Most evaluations focus on their extrinsic behaviors—what tasks they can and cannot perform. To better understand fundamental, underlying model capabilities, a growing body of work examines their intrinsic behaviors, core abilities that shape the downstream task performance. Inspired by cognitive science, recent studies examine whether LLMs exhibit human-like features such as personality (Huang et al., 2024b), emotion (Huang et al., 2024a), empathy (Sorin et al., 2024), theory-of-mind (Liu et al., 2024b), and values (Wang et al., 2024b).

One such ability is memory, which has attracted increasing attention from both industry and research communities. OpenAI was the first to introduce a memory module in ChatGPT (February 2024)¹ that allowed the model to remember information from previous interactions with a user, such as the

https://openai.com/index/memory-and-new-controls-for-chatgpt/

user's facts and preferences. The model could access and retrieve these "memories" to be used in later conversations. By mid-2025, xAI, Anthropic, and Google have integrated memory into Grok,² Claude,³ and Gemini,⁴ respectively.

What is memory? Atkinson & Shiffrin (1968) categorized memory by retention timescale: sensory (1ms–2s), short-term (seconds), and long-term (hours to lifetime). Long-term memory enables information storage over extended periods, whereas short-term, or *Working Memory*, maintains and manipulates information during complex tasks such as reasoning, comprehension, and learning (Baddeley & Hitch, 1974). These distinctions have also been adopted in machine learning, corresponding to representational learning for raw inputs (sensory memory), in-context computation at test time (working memory), and access to external databases (long-term memory) (Weng, 2023). Researchers in the AI community have investigated long-term memory mechanisms for both individual LLMs (Wu et al., 2025; Du et al., 2025) and LLM agents (Zhang et al., 2025; Xu et al., 2025). Recent work has shifted from context-dependent approaches (e.g., Chain-of-Thought (CoT) (Wei et al., 2022) and scratchpads (Lanchantin et al., 2023)) to explicit storage methods (e.g., text-based (Park et al., 2023) or vector-based (Hatalis et al., 2023)) to support lifelong memory (Zheng et al., 2025; Wang et al., 2025b). Most studies frame memory as an engineering problem: enabling LLMs to store and retrieve information for later use.

By contrast, **working memory remains relatively underexplored**. Existing studies often adopt the N-back task (Kirchner, 1958) to assess LLMs' working memory (Gong et al., 2024; Zhang et al., 2024). Yet, a fundamental limitation arises: the critical information for correct responses remains accessible in the model's input context, allowing models to "look back" rather than actively maintain internal state. Therefore, these tests are exploring aspects of the context window, not working memory directly. Unlike humans, who cannot revisit prior steps explicitly, LLMs can simply attend to earlier tokens within their context window. Fig. 2 illustrates this discrepancy. To more faithfully evaluate working memory, it is necessary to design experiments where the key information is not explicitly present in the context and is only available if stored in the working memory of the model. Imagine the following scenario: You select a number between one and ten. When ready, you are asked, "Is the number greater than five?" If you answer, observers can reasonably infer that the number has entered your conscious awareness (*i.e.*, your working memory), since clear perception is necessary to perform the comparison and provide a response.⁵

We ask: **Do LLMs possess human-like working memory, or do they only appear to reason by exploiting their context window?** LLMs are often viewed as reasoning in two modes: (1) the *token space* over sequences (Wei et al., 2022; Yao et al., 2023), and (2) the *latent space* over activations (Hao et al., 2024; Geiping et al., 2025). We argue that working memory is necessary to enable stronger latent space reasoning, as the model does not have access to its external reasoning tokens. Evaluating working memory provides insight into whether models can hold and manipulate latent concepts without explicit externalization. Success in this capacity could enhance reasoning without reliance on CoT, as it directly tests the model's ability to maintain objects and concepts internally. Conversely, deficits in working memory impair information processing in humans (Gruszka & Nkecka, 2017; Cowan, 2014), and in LLMs manifest as unrealistic outputs, self-contradictions, and failures on tasks requiring mental manipulation.

The central challenge in designing such evaluations is: **How can we demonstrate the presence or absence of internal memory when we cannot directly observe a model's mind?** To address this limitation, we design three experiments—(1) Number Guessing, (2) Yes–No Deduction, and (3) Math Magic—that test whether LLMs can internally maintain information that is not explicitly present in the input context. Our experiments span 17 frontier LLMs, both proprietary and opensource, including multiple model families and reasoning approaches. Across all settings, the results converge: current LLMs show little evidence of intrinsic working memory. Instead, their reasoning appears to depend on externalized context. These findings suggest that progress in reasoning will require not only larger models or better prompting, but also closer attention to the mechanisms that could endow LLMs with genuine working memory.

²https://x.com/grok/status/1912670182012801156

³https://www.anthropic.com/news/claude-4

⁴https://blog.google/products/gemini/temporary-chats-privacy-controls/

⁵A possibility remains that your response was given by chance if you tell a lie (Fig. 1 Case 2) or do not think of a number at all (Fig. 1 Case 3).

Figure 2: **a.** An illustration of how "N-Back" tasks are performed. **b.** Humans see the stimuli one after one, forcing them to put the information in working memory. **c.** Researchers put all stimuli into context, enabling LLMs to easily find the answers.

2 PRELIMINARIES

2.1 How Working Memory is Evaluated

Human working memory is typically assessed using behavioral paradigms that require individuals to maintain and update information over short intervals. Common examples include the *digit span task* (Miller, 1956), where participants recall sequences of numbers of increasing length, and the *N-back task* (Kirchner, 1958), which requires identifying whether the current stimulus matches one presented *N* steps earlier. These tasks are widely used because they probe the ability to maintain and manipulate information that is no longer externally visible, thereby capturing the essence of working memory function. In the context of LLMs, working memory has been used more loosely: most studies use the term to describe an LLM's capacity to process information within a fixed context window (Li et al., 2023; Guo et al., 2023). Gong et al. (2024); Zhang et al. (2024) evaluate LLMs using N-back tasks. However, as noted in §1, such human-designed tests are not directly valid for LLMs, since models can simply attend to retained tokens in their context window without actively maintaining information internally.

2.2 Existing Engineering Solutions

A parallel line of work introduces explicit engineering solutions by equipping LLMs with external memory modules (Hu et al., 2025; Zeng et al., 2024). For example, Wang et al. (2024a) incorporate symbolic working memory to enhance reasoning, while Kang et al. (2024) use it to improve training efficiency. Other approaches implement scratch spaces (Lanchantin et al., 2023), internal CoT mechanisms (Jaech et al., 2024; OpenAI, 2025), and external vector databases (Hatalis et al., 2023), which may partially mitigate working memory limitations identified in this paper. However, these methods do not address whether LLMs possess an intrinsic working memory capacity, analogous to humans' ability to mentally simulate and manipulate objects. The distinction can be illustrated with an analogy: calculators make arithmetic trivial, yet schools continue to assess addition, subtraction, multiplication, and division. The purpose is not solely to solve problems efficiently, but to reveal individuals' underlying cognitive abilities. Similarly, while engineering techniques can extend an LLM's effective memory, we are ultimately interested in whether the model intrinsically has the basic cognitive capability of working memory. Without it, a model may function adequately through external tools, but its intrinsic reasoning ability remains fundamentally limited.

2.3 EXPERIMENTAL DESIGN

All three experiments in this paper are designed to demonstrate that current LLMs lack effective working memory, as evidenced by their inability to perform our proposed tasks. Since we cannot let models reveal what they are privately thinking, the three experiments each test a different hypothesis, corresponding to distinct consequences of impaired working memory. (1) The Number Guessing game (§3) evaluates whether an LLM's response distribution across repeated identical

queries remains valid. (2) The Yes–No Deduction game (§4) examines whether LLMs contradict themselves. (3) The Math Magic (§5) assesses whether LLMs' internal reasoning produces correct outcomes. We evaluate 17 frontier LLMs, including GPT (40 (Hurst et al., 2024) and 40-Mini (OpenAI, 2024)), o-series (01-Mini (Jaech et al., 2024), o3-Mini, and o4-Mini (OpenAI, 2025)), LLaMA (3.1 (Meta, 2024) and 3.3), Qwen-2.5 (Yang et al., 2024a) (7B and 72B), QwQ (Team, 2024), and DeepSeek (V3 (Liu et al., 2024a) and R1 (Guo et al., 2025)). All models are configured with a temperature of 1.0 and a top-p value of 1.0.

3 Number Guessing

Hypothesis. Consider a number-guessing game in which a human participant privately selects an integer between one and ten. The experimenter then asks whether the chosen number is one. By repeating this procedure multiple times, we can estimate the probability of selecting one, denoted p_1 . Extending this process to other numbers yields an estimated distribution over all choices, denoted p_1, \ldots, p_n . It is worth noting that, **if the participant truly selects a number and responds honestly, the estimated probabilities should form a valid distribution**, satisfying $\sum_{i=1}^n p_i = 1$. In contrast, if an LLM does not base its responses on an actual hidden choice, the resulting estimates will typically violate this constraint, producing $\sum_{i=1}^n p_i \neq 1$.

Setup. Leveraging this hypothesis, we design a controlled experiment. In each trial, the model is given a fixed prompt: "USER: Think of an integer between 1 and 10, but don't say it to me. ASSISTANT: Got it! I've thought of an integer between 1 and 10. What's next?" The model is then independently prompted 200 times for i = 1, ..., 10 with queries such as "Is the number you're thinking of i? Answer Yes or No." We record the frequency of "Yes" responses for each number and compute the estimated probabilities p_i . If the sum of these probabilities deviates significantly from one, it suggests that the LLM either is not maintaining a number commitment or lies to users.

Results. Fig. 3 presents the probabilities of "Yes" responses in each model for numbers from one to ten. Two key observations emerge: (1) Most LLMs never produce a "Yes" response; "No" dominates across models. This produces invalid distributions, further indicating that models are estimating the probability of a human guess being correct (10% in our setting, typically very low) rather than maintaining a private number choice. Given that LLMs generally follow instructions and do not deliberately deceive, we attribute this behavior to their failure to internally "think of" a number. (2) When LLMs do respond affirmatively, they exhibit a pronounced preference for the number seven. This tendency mirrors human biases (Miller, 1956; Kubovy & Psotka, 1976).

We quantify LLM performance on this task using the sum of probabilities. A value closer to one indicates better model performance. Table 1 reports

Table 1: The sum of probabilities of each model responding "Yes" for all numbers from one to ten. Color intensity reflects proximity to one: red indicates values closer to zero, while blue signifies values greater than one.

Model	Sum
GPT-4o-Mini-2024-07-18	0
GPT-4o-2024-05-13	0
GPT-4o-2024-08-06	1.085
GPT-4o-2024-11-20	0
GPT-4.1-2025-04-14	0
o1-Mini-2024-09-12	0.005
o3-Mini-2025-01-31	0.205
o4-Mini-2025-04-16	0.030
LLaMA-3.3-70B-Instruct-Turbo	-0.045
LLaMA-3.1-8B-Instruct-Turbo	0.980
LLaMA-3.1-70B-Instruct-Turbo	0.465
LLaMA-3.1-405B-Instruct-Turbo	1.195
Qwen2.5-7B-Instruct-Turbo	0
Qwen2.5-72B-Instruct-Turbo	0
QwQ-32B	0.005
DeepSeek-V3	0
DeepSeek-R1	0.640

these sums for each model. Several observations stand out: (1) Newer models do not necessarily outperform older ones. Within the GPT family, the 0806 version of GPT-40 (the model currently served under the "gpt-40" API) achieves the best performance, surpassing both the 1120 version and GPT-4.1. Similarly, LLaMA-3.3 underperforms relative to LLaMA-3.1. (2) Using CoT reasoning does not improve performance. Models employing such strategies—01, 03, 04, QwQ, and DeepSeek-R1—fail to produce probability sums closer to one. (3) Overall, LLaMA-3.1 performs

Figure 3: Probabilities of model answering "Yes" for each number from one to ten.

best, with the 8B variant outperforming both the 405B and 70B versions. Taken together, these findings suggest that acquisition of this capability appears largely stochastic and is less predictable with respect to model scale. More broadly, they suggest that the observed memory limitations arise not from model size or training sophistication but from a fundamental architectural deficiency.

Figure 4: Probabilities of GPT-4o-2024-08-06 answering "Yes" for each number in different ranges.

We further extend our experiments to include a broader range of numbers. Given that GPT-4o-2024-08-06 performs best among the OpenAI models, we focus on its behavior across different numerical ranges. Table 2 reports the summed probabilities for each range, while Fig. 4 illustrates the probability of individual numbers. Our findings reveal two key patterns: (1) For smaller ranges such as 3, 5, and 9, the model exhibits a strong bias toward answering "Yes," with the probability sum significantly exceeding one. In contrast, for larger ranges like 20, 30, and 40, "Yes" responses are rare. (2) When the model does produce a "Yes" response, it frequently corresponds to numbers ending in seven (*e.g.*, 7, 17, 37), as shown in Fig. 4.

Table 2: The sum of probabilities of GPT-4o-2024-08-06 responding "Yes" for all numbers in different ranges.

Number	Sum
2	0
3	2.180
5	1.600
7	0.920
9	2.025
10	1.085
20	0.080
30	0
40	0.005

In conclusion, LLMs fail to generate distributions consistent with internally committing to a number. Their outputs are either dominated by "No" response or reflect biased heuristics towards seven. These findings suggest that LLMs struggle to represent and sustain latent numerical values without explicit contextual grounding, thereby highlighting a gap in working memory-like capacity.

4 YES-NO DEDUCTION

Hypothesis. "Yes-No" (or the Twenty questions⁶) is a social deduction game commonly used to train human reasoning, classification, and questioning skills. In this game, one player privately selects an object, while the opponent asks yes—no questions (*e.g.*, "Is the object heavier than an elephant?") to progressively narrow down the possibilities and ultimately find the object. Consider the decision-making process of the player answering questions, each question requires simply direct comparison between the imagined object and the queried attribute. Note that humans typically do not recall all previous questions and answers. Instead, **they rely on the single reference of the object, without checking self-contradiction with all prior responses**.

We hypothesize that if LLMs cannot maintain such an imagined object in working memory, they can only respond to questions by checking consistency with their prior answers. As the number of questions increases, maintaining consistency becomes increasingly difficult, making the task strongly dependent on long-context reasoning. To test this, we first instruct the LLM to imagine an object and answer a sequence of comparative questions against the reference objects. The goal is to assess whether the model produces self-contradictions. For instance, the model might initially answer "Yes" to "Is the object heavier than an elephant?" but later also respond "Yes" to "Is the object lighter than a cat?", thereby contradicting itself.

Table 3: Objects ordered by the five properties (smallest to largest).

Volume	Length	Weight	Density
Coffee bean	Rice	Coin	Air
Dice	Paperclip	Spoon	Wood
Golf ball	Credit card	Watch	Ice
Soda can	Pencil	Smartphone	Water
Soccer ball	Laptop	Bottle of water	Plastic
Microwave oven	Baseball bat	Dictionary	Glass
Washing machine	Guitar	Cat	Iron
Bathtub	Door	Bicycle	Copper
Car	Apple tree	Television	Silver
School bus	Coconut tree	Refrigerator	Gold
Shipping container	Tennis court	Tiger	Hardness
Olympic swimming pool	Swimming pool	Cow	Marshmallow
Boeing 747	Football field	Rhino	Rubber eraser
Titanic	Skyscraper	Elephant	Brick
Great Pyramid of Giza	Mount Everest	Train	Hammer
			Diamond ring

Setup. We predefine five sets of objects that are commonly regarded as comparable with respect to five properties: volume, length, weight, density, and hardness. In total, 60 distinct objects are included, as listed in Table 3, ordered by the corresponding property. For each question, one property is randomly selected, followed by an object from the corresponding object list. The model is then prompted to assess whether the object it imagined is *comparative* relative to the given object, where the *comparative* form can vary in direction (*e.g.*, bigger or smaller for volume). In each trial, the model is continuously presented with up to 250 such questions. We record the number of questions it completed before the model exhibits a self-contradiction. If no contradiction is observed across all 250 questions, the trial is considered a *Pass*. Each model is tested with 200 trials.

Results. Table 4a presents the number of failed trials for the GPT-4o-2024-08-06 (Hurst et al., 2024) and GPT-4o-Mini-2024-07-18 (OpenAI, 2024). The smaller model (GPT-4o-Mini) consistently fails, while the larger GPT-4o successfully passes 27 out of 200 trials. This result supports our hypothesis: **model performance on this task depends on their long-context processing ability rather than intrinsic working memory for maintaining imagined objects**.

Figure 5 presents histograms of the number of questions each model completes before exhibiting self-contradiction. The distribution for GPT-4o-Mini peaks in the 20–30 range, whereas GPT-4o

⁶https://en.wikipedia.org/wiki/Twenty_questions

Table 4: Count of failures of Yes-No Deduction on the five properties.

(a) GPT-40-	-Mini-2024	-07-18 a	nd GPT-40	-2024-08-	-06

(b) Ablation	studies	using	GPT-40	-2024-08-06.
(0) 1101441011	Secretor		O	

Model	Failure	V	W	L	D	Н
GPT-4o-Mini	200	12	46	49	52	41
GPT-4o	173	21	42	57	27	26

Model	Failure	\mathbf{V}	\mathbf{W}	L	D	H
Hint	194	37	39	60	37	21
All	158	18	29	21	55	35
Hint + All	145	13	32	34	46	20

Figure 5: The histogram of the number of questions where the two models show self-contradiction.

peaks in the 30–40 range. Moreover, GPT-40 demonstrates a higher frequency of completions in the 80–130 range compared to GPT-40-Mini. Notably, the types of properties that lead to self-contradictions differ between the two models: GPT-40-Mini fails more frequently on density and hardness, while GPT-40 shows greater robustness on these attributes.

To ensure that the observed failures are not simply due to LLMs' inability to rank objects by the five properties (*i.e.*, the lack of commonsense knowledge about object properties), we conduct the following ablation studies: (1) **Hint**: At the beginning of the prompt, we provide GPT-40 with the object rankings defined in Table 3. (2) **All**: For each question, we specify the target object \mathcal{O} by stating explicitly that "the object you are considering is \mathcal{O} ." (3) **Hint** + **All**: We combine the above two settings. Results are shown in Table 4b. Two key findings emerge: (1) Providing hints does not prevent contradictions, indicating that the task depends more on long-context reasoning rather than factual knowledge. (2) Explicitly specifying the object substantially reduces errors, effectively collapsing the long-context reasoning task into a short-context reasoning problem.

Across the conditions, models exhibit self-contradictions (*e.g.*, claiming an object is both larger than a car and smaller than a soccer ball) as the number of queries increases. This behavior suggests their reliance on long-context reasoning rather than possessing a dedicated working memory for maintaining such an internal state.

5 MATH MAGIC

Hypothesis. Consider the following recreational arithmetic game, a variant of the Kaprekar routine (Kaprekar, 1955), which relies on digit manipulation in base 10. Think of a three-digit number in which the hundreds and units digits differ (e.g., abc). Reverse the digits to form a new number $(e.g., abc \rightarrow cba)$, and subtract the smaller of the two numbers from the larger. Then, reverse the result—if it is a two-digit number, prepend a zero $(e.g., 67 \rightarrow 067 \rightarrow 760)$. Add this reversed number to the previous result. Unsurprisingly, such computation always leads to 1089. This deterministic convergence is an example of "mathematical magic" or "math mentalism"—procedures that appear mysterious but are fully explained by the arithmetic structure of decimal digits. The invariance arises from the fact that the subtraction step yields a multiple of 99, and the subsequent reversal–addition step collapses all cases to the constant 1089.

From a cognitive perspective, performing such routines requires humans to encode digits in working memory, apply digit-level transformations (reversing, subtracting, padding), and track intermediate results internally—similar to remembering a poker card during a trick. This process relies on work-

Table 5: Operations in the math magic in our experiment. the random number a ranges from 1 to 7, while the random numbers b and c range from 1 to 3.

Role	Content
User Assistant	Think of 4 integers between 1 and {NUMBER} in order, but don't tell me. Okay! I've got 4 numbers. What's next?
User Assistant	In order, append the same 4 numbers after the original ones. Understood! Now I have 8 numbers. What's next?
User Assistant	Move the first {random_number_a} numbers to the end. Got it! Now I have moved the numbers. What's next?
User Assistant	Take the first 3 numbers and insert them anywhere in the middle. Okay! The first 3 numbers are placed somewhere in the middle. What's next?
User Assistant	Set the first number aside. We don't need it for now. Understood! Now I have 7 numbers. What's next?
User Assistant	Take the first {random_number_b} numbers and insert them anywhere in the middle. Got it. The first {random_number_b} numbers are placed somewhere in the middle. What's next?
User Assistant	Remove the first {random_number_c} numbers. We will never need it anymore. Okay! Now I have {7 - random_number_c} numbers. What's next?
User Assistant	Move the first number to the end. Repeat this seven times. Understood! Now my sequence has rearranged. What's next?
User	Remove the second number, and then move the first number to the end. Repeat this {6 - random_number_c} times.
Assistant	Got it! Now I have only 1 number. What's next?
User	Tell me what the last remaining number is. Do you remember the number you set aside at the beginning? Tell me what that number was.

ing memory, a lack of which would lead to failure to reproduce these deterministic outcomes when asked to simulate the trick.

Setup. Our preliminary experiments show that LLMs can recognize and accurately predict the number 1089, suggesting that this well-known game is likely included in the training data, invalidating this game as an evaluation protocol. To more effectively assess LLMs' capability for multi-step mental manipulation, we select a more complicated routine based on the Josephus Problem (Schumer, 2002). In this task, participants are asked to imagine four numbers and perform a sequence of operations, including duplication, rotation, and removal. The full procedure is illustrated in Table 5. Ultimately, only two numbers remain, and mathematical constraints guarantee they are identical. In our experiment, we prompt LLMs to privately select four numbers and mentally execute the sequence of operations. We report the proportion of 150 trials in which the model correctly produced two identical numbers.

Results. Table 6a reports the accuracy of prompting models to output the two numbers directly. **Most LLMs perform poorly on this task**, with notably higher accuracy observed in the LLaMA model family. This finding aligns with results from the number guessing game shown in Table 1, where LLaMA models generate more realistic distributions than other models. Taken together, these findings point to a consistent trend: while some models perform marginally better, current LLMs generally fail to maintain the internal state required for this kind of sequential manipulation.

We further examine whether CoT prompting improves performance on this task. Table 6b presents the results of prompting models to reason step by step, as well as the performance of o1-like long reasoning models (LRMs). Base models prompted to reason step-by-step achieve 10–30% accuracy—substantially higher than without CoT. DeepSeek-R1 attains 100% accuracy, and other LRMs also perform well. Notably, models also exhibit a strong preference for the number seven, consistent with our number-guessing experiment. For example, 66.7% of o1-Mini's correct predictions, 46.9% of o3-Mini's, and 68.5% of o4-Mini's involve the number seven. Notably, o3-Mini—being least likely to guess 7—achieves a higher accuracy than other two o-series models. These findings suggest that CoT and LRMs can improve accuracy by externalizing intermediate steps, but the success depends on explicit reasoning tokens rather than latent persistence for working memory. The

Table 6: LLM performance on the math magic task.

(a) LLMs without CoT. GPT-4.1-2025-04-14 fails to complete most of the cases, incorrectly assuming that (b) LLMs with CoT and Large Reasoning Models. the necessary numerical inputs are missing.

GPT-40-2024-11-20 consistently fails this task.

Model	Count	Acc (%)
GPT-4o-Mini-2024-07-18	0/150	0.0
GPT-4o-2024-05-13	4/150	2.7
GPT-4o-2024-08-06	3/150	2.0
GPT-4o-2024-11-20	0/150	0.0
GPT-4.1-2025-04-14	-	-
LLaMA-3.3-70B-Instruct-Turbo	7/150	5.7
LLaMA-3.1-8B-Instruct-Turbo	20/150	13.3
LLaMA-3.1-70B-Instruct-Turbo	7/150	5.7
LLaMA-3.1-405B-Instruct-Turbo	39/150	26.0
Qwen2.5-7B-Instruct-Turbo	8/150	5.3
Qwen2.5-72B-Instruct-Turbo	2/150	1.3
DeepSeek-V3	4/150	2.7

Model w/ CoT or LRM	Count	Acc (%)
GPT-4o-Mini-2024-07-18	5/150	3.3
GPT-4o-2024-05-13	26/150	17.3
GPT-4o-2024-08-06	31/150	20.7
GPT-4o-2024-11-20	-	-
LLaMA-3.3-70B-Instruct-Turbo	25/150	16.7
Qwen2.5-7B-Instruct-Turbo	49/150	32.7
Qwen2.5-72B-Instruct-Turbo	37/150	24.7
DeepSeek-V3	48/150	32.0
o1-Mini-2024-09-12	75/150	50.0
o3-Mini-2025-01-31	145/150	96.7
o4-Mini-2025-04-16	54/150	36.0
QwQ-32B	135/150	90.0
DeepSeek-R1	150/150	100

persistence of number preference bias and failure on these tasks suggests that current LLMs struggle with tasks that require sustained internal state and mental manipulation.

6 DISCUSSION

Summary. In this study, we present three carefully designed experiments to investigate whether LLMs exhibit human-like working memory. Across all experiments, the results reveal a consistent pattern: LLMs do not exhibit behavior indicative of a functional working memory. They fail to internally represent or manipulate transient information across multiple reasoning steps, relying instead on the immediate prompt context. Even advanced prompting strategies, such as CoT prompting, yield only marginal improvements on tasks requiring internal state management.

Implications. The absence of working memory manifests in three ways: unrealistic responses, self-contradictions, and inability to perform mental manipulations. This deficit directly constrains LLM performance on real-world tasks that require internal state maintenance for execution, including real-world planning tasks such as travel planning (Xie et al., 2024a; Wang et al., 2025a), scientific inquiry (Nathani et al., 2025), and application navigation (Xie et al., 2024b; He et al., 2024; Lyu et al., 2025). The challenges are further magnified in multi-agent settings: without working memory, LLM agents quickly lose track in extended dialogues (Laban et al., 2025), abandon their initial goals (goal drift (Arike et al., 2025)), or mistakenly adopt others' perspectives as their own (identity drift (Choi et al., 2024)). Moreover, for LLM-based multi-agent social simulation, the lack of working memory departs LLMs from real-world human subjects, potentially invalidating the simulation as the behavior is fundamentally different (Zhou et al., 2025). In short, the lack of working memory is not just a theoretical concern: it directly undermines reliability, coherence, and validity in applied AI systems. In human cognition, both are necessary: we reason aloud and also rely on a silent working memory buffer to hold commitments, track goals, and compare states. The absence of this buffer in LLMs may explain why they excel at visible reasoning (e.g., think step by step) yet collapse when asked to "think silently."

Future work. A natural next step is to explore mechanisms that could grant LLMs intrinsic working memory. While engineering approaches such as external text- or vector-based memories can compensate for some deficits, they do not address the core limitation: LLMs' inability to sustain internal, latent state over time. We argue that solutions should move beyond external augmentation toward intrinsic mechanisms—architectural innovations, recurrent depth, or hybrid symbolic—neural components—to provide robust working memory. Interpretability studies have shown that specialized attention heads (Wang et al., 2023; Olsson et al., 2022) or expert subnetworks (Cai et al., 2025) encode distinct functions, hinting at potential internal substrates for working memory. Such development could bridge the gap between superficial token recall and genuine state maintenance, enabling more human-like reasoning, advancing both reliability and cognitive plausibility.

REFERENCES

- Rauno Arike, Elizabeth Donoway, Henning Bartsch, and Marius Hobbhahn. Technical report: Evaluating goal drift in language model agents. *arXiv preprint arXiv:2505.02709*, 2025.
- Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its control processes. In *Psychology of learning and motivation*, volume 2, pp. 89–195. Elsevier, 1968.
 - Alan D Baddeley and Graham Hitch. Working memory. In *Psychology of Learning and Motivation*, volume 8, pp. 47–89. Elsevier, 1974.
 - Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture of experts in large language models. *IEEE Transactions on Knowledge and Data Engineering*, 2025.
 - Junhyuk Choi, Yeseon Hong, Minju Kim, and Bugeun Kim. Examining identity drift in conversations of llm agents. *arXiv preprint arXiv:2412.00804*, 2024.
 - Nelson Cowan. Working memory underpins cognitive development, learning, and education. *Educational psychology review*, 26:197–223, 2014.
 - Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata, Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and future directions. *arXiv preprint arXiv:2505.00675*, 2025.
 - Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent reasoning: A recurrent depth approach. *arXiv* preprint arXiv:2502.05171, 2025.
 - Dongyu Gong, Xingchen Wan, and Dingmin Wang. Working memory capacity of chatgpt: An empirical study. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 10048–10056, 2024.
 - Aleksandra Gruszka and Edward Nkecka. Limitations of working memory capacity: The cognitive and social consequences. *European Management Journal*, 35(6):776–784, 2017.
 - Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively built benchmark for measuring legal reasoning in large language models. *Advances in neural information processing systems*, 36:44123–44279, 2023.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. *Nature*, 645(8081):633–638, 2025.
 - Jing Guo, Nan Li, Jianchuan Qi, Hang Yang, Ruiqiao Li, Yuzhen Feng, Si Zhang, and Ming Xu. Empowering working memory for large language model agents. *arXiv preprint arXiv:2312.17259*, 2023.
 - Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv* preprint *arXiv*:2412.06769, 2024.
 - Kostas Hatalis, Despina Christou, Joshua Myers, Steven Jones, Keith Lambert, Adam Amos-Binks, Zohreh Dannenhauer, and Dustin Dannenhauer. Memory matters: The need to improve long-term memory in Ilm-agents. In *Proceedings of the AAAI Symposium Series*, volume 2, pp. 277–280, 2023.
 - Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pp. 6864–6890, 2024.

- Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. HiAgent:
 Hierarchical working memory management for solving long-horizon agent tasks with large language model. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 32779–32798, 2025.
 - Jen-tse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenxuan Wang, Wenxiang Jiao, Zhaopeng Tu, and Michael R Lyu. Apathetic or empathetic? evaluating llms' emotional alignments with humans. *Advances in Neural Information Processing Systems*, 37:97053–97087, 2024a.
 - Jen-tse Huang, Wenxuan Wang, Eric John Li, Man Ho Lam, Shujie Ren, Youliang Yuan, Wenxiang Jiao, Zhaopeng Tu, and Michael Lyu. On the humanity of conversational ai: Evaluating the psychological portrayal of llms. In *The Twelfth International Conference on Learning Representations*, 2024b.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv* preprint arXiv:2412.16720, 2024.
 - Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing Wang, Shuming Shi, and Zhaopeng Tu. Is chatgpt a good translator? yes with gpt-4 as the engine. *arXiv* preprint arXiv:2301.08745, 2023.
 - Jikun Kang, Romain Laroche, Xingdi Yuan, Adam Trischler, Xue Liu, and Jie Fu. Think before you act: decision transformers with working memory. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 23001–23021, 2024.
 - DR Kaprekar. An interesting property of the number 6174. Scripta Math, 21:304, 1955.
 - Wayne K Kirchner. Age differences in short-term retention of rapidly changing information. *Journal of experimental psychology*, 55(4):352, 1958.
 - Michael Kubovy and Joseph Psotka. The predominance of seven and the apparent spontaneity of numerical choices. *Journal of Experimental Psychology: Human Perception and Performance*, 2 (2):291, 1976.
 - Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn conversation. *arXiv preprint arXiv:2505.06120*, 2025.
 - Jack Lanchantin, Shubham Toshniwal, Jason Weston, Sainbayar Sukhbaatar, et al. Learning to reason and memorize with self-notes. *Advances in Neural Information Processing Systems*, 36: 11891–11911, 2023.
 - Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu, and Sanjiv Kumar. Large language models with controllable working memory. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1774–1793, 2023.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv* preprint *arXiv*:2412.19437, 2024a.
 - Ziyi Liu, Abhishek Anand, Pei Zhou, Jen-tse Huang, and Jieyu Zhao. Interintent: Investigating social intelligence of llms via intention understanding in an interactive game context. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 6718–6746, 2024b.
 - Yougang Lyu, Xiaoyu Zhang, Lingyong Yan, Maarten de Rijke, Zhaochun Ren, and Xiuying Chen. Deepshop: A benchmark for deep research shopping agents. *arXiv preprint arXiv:2506.02839*, 2025.
 - Meta. Introducing llama 3.1: Our most capable models to date. *Meta Blog Jul 23 2024*, 2024. URL https://ai.meta.com/blog/meta-llama-3-1/.

- George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological review*, 63(2):81, 1956.
 - Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new framework and benchmark for advancing ai research agents. *arXiv preprint arXiv:2502.14499*, 2025.
 - Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.
 - OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. *Ope-nAI Blog Jul 18 2024*, 2024. URL https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
 - OpenAI. Introducing openai o3 and o4-mini. *OpenAI Blog Apr 16 2025*, 2025. URL https://openai.com/index/introducing-o3-and-o4-mini/.
 - Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.
 - Peter Schumer. The josephus problem: Once more around. *Mathematics magazine*, 75(1):12–17, 2002.
 - Vera Sorin, Dana Brin, Yiftach Barash, Eli Konen, Alexander Charney, Girish Nadkarni, and Eyal Klang. Large language models and empathy: systematic review. *Journal of medical Internet research*, 26:e52597, 2024.
 - Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Qwen Blogs Nov 28 2024, 2024. URL https://qwenlm.github.io/blog/qwq-32b-preview/.
 - Kaimin Wang, Yuanzhe Shen, Changze Lv, Xiaoqing Zheng, and Xuan-Jing Huang. Triptailor: A real-world benchmark for personalized travel planning. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 9705–9723, 2025a.
 - Ke Wang, Yiming Qin, Nikolaos Dimitriadis, Alessandro Favero, and Pascal Frossard. Memoir: Lifelong model editing with minimal overwrite and informed retention for llms. *arXiv* preprint *arXiv*:2506.07899, 2025b.
 - Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren. Symbolic working memory enhances language models for complex rule application. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 17583–17604, 2024a.
 - Wenxuan Wang, Wenxiang Jiao, Jingyuan Huang, Ruyi Dai, Jen-tse Huang, Zhaopeng Tu, and Michael Lyu. Not all countries celebrate thanksgiving: On the cultural dominance in large language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 6349–6384, 2024b.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Qingsong Wen, Jing Liang, Carles Sierra, Rose Luckin, Richard Tong, Zitao Liu, Peng Cui, and Jiliang Tang. Ai for education (ai4edu): Advancing personalized education with llm and adaptive learning. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6743–6744, 2024.

- Lilian Weng. Llm-powered autonomous agents. *lilianweng.github.io*, Jun 2023. URL https://lilianweng.github.io/posts/2023-06-23-agent/.
 - Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in the era of llms. *arXiv preprint arXiv:2504.15965*, 2025.
 - Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. Travelplanner: a benchmark for real-world planning with language agents. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 54590–54613, 2024a.
 - Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for open-ended tasks in real computer environments. *Advances in Neural Information Processing Systems*, 37:52040–52094, 2024b.
 - Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024a.
 - Ziqi Yang, Xuhai Xu, Bingsheng Yao, Ethan Rogers, Shao Zhang, Stephen Intille, Nawar Shara, Guodong Gordon Gao, and Dakuo Wang. Talk2care: An llm-based voice assistant for communication between healthcare providers and older adults. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 8(2):1–35, 2024b.
 - Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.
 - Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of llm agents. *arXiv preprint arXiv:2412.15266*, 2024.
 - Chunhui Zhang, Yiren Jian, Zhongyu Ouyang, and Soroush Vosoughi. Working memory identifies reasoning limits in language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 16896–16922, 2024.
 - Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory: Tracing hierarchical memory for multi-agent systems. *arXiv preprint arXiv:2506.07398*, 2025.
 - Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and Qianli Ma. Lifelong learning of large language model based agents: A roadmap. *arXiv* preprint *arXiv*:2501.07278, 2025.
 - Jiaxu Zhou, Jen-tse Huang, Xuhui Zhou, Man Ho Lam, Xintao Wang, Hao Zhu, Wenxuan Wang, and Maarten Sap. The pimmur principles: Ensuring validity in collective behavior of llm societies. *arXiv preprint arXiv:2509.18052*, 2025.

THE USE OF LARGE LANGUAGE MODELS

LLMs were employed in a limited capacity for writing optimization. Specifically, the authors provided their own draft text to the LLM, which in turn suggested improvements such as corrections of grammatical errors, clearer phrasing, and removal of non-academic expressions. LLMs were also used to inspire possible titles for the paper. While the system provided suggestions, the final title was decided and refined by the authors and is not directly taken from any single LLM output. In addition, LLMs were used as coding assistants during the implementation phase. They provided code completion and debugging suggestions, but all final implementations, experimental design, and validation were carried out and verified by the authors. Importantly, LLMs were NOT used for generating research ideas, designing experiments, or searching and reviewing related work. All conceptual contributions and experimental designs were fully conceived and executed by the authors.