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Abstract

Lipschitz bandits is a fundamental framework used to model sequential decision-1

making problems with large, structured action spaces. This framework has been2

applied in various areas. Previous algorithms, such as the Zooming algorithm,3

achieve near-optimal regret with O(T 2) time complexity and O(T ) arms stored4

in memory, where T denotes the size of the time horizons. However, in practical5

scenarios, learners may face limitations regarding the storage of a large number6

of arms in memory. In this paper, we explore the bounded memory stochastic7

Lipschitz bandits problem, where the algorithm is limited to storing only a limited8

number of arms at any given time horizon. We propose algorithms that achieve9

near-optimal regret with O(T ) time complexity and O(1) arms stored, both of10

which are almost optimal and state-of-the-art. Moreover, our numerical results11

demonstrate the efficiency of these algorithms.12

1 Introduction13

Multi-armed Bandits (MAB) is a powerful framework used to balance the exploration-exploitation14

trade-off in online decision-making problems. Within this framework, a learner sequentially selects15

arms (actions, decisions, or items) and learns from the associated feedback, aiming to maximize the16

expected total reward within finite time horizons. Some well-known algorithms, such as UCB1 and17

Exp3, have achieved near-optimal regret by storing records of all arms in memory. In many bandit18

problems, algorithms can access information about the similarity between arms, suggesting that arms19

with similar characteristics often yield similar expected rewards. The Lipschitz bandits framework20

is a prominent variant that addresses decision-making in large, structured action spaces, where the21

expected reward of the arms follows a Lipschitz function. For instance, in recommendation systems,22

the arms correspond to items represented by feature vectors. Items with similar feature vectors are23

likely to result in similar outcomes or conversions.24

Recently, a series of works in the field of online learning have been dedicated to managing scenarios25

with large action spaces while maintaining sub-linear memory usage. This direction is driven by the26

need to effectively tackle extensive real-world applications such as recommendation systems, search27

ranking, and crowdsourcing. In these applications, arms correspond to items, solutions, or models,28

which leads to significant memory demands. For instance, in recommendation systems, the learner29

faces the challenge of choosing from millions of items, like music and movies, to present to users,30

especially in scenarios characterized by limited space or an infinite number of arms. Therefore, the31

development of memory-efficient algorithms has become crucial for these applications. In recent32

years, substantial efforts have been made to address the challenge of bandits with limited memory33

(Assadi & Wang, 2020; Jin et al., 2021; Maiti et al., 2020; Agarwal et al., 2022; Assadi & Wang,34

2022; Wang, 2023; Assadi & Wang, 2023a). However, previous research has mainly focused on35

unstructured action spaces, often overlooking the fact that in these applications, arms with similar36

characteristics tend to yield similar expected rewards.37
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Table 1: Comparison with State-of-the-art Lipschitz Bandits Algorithms

Algorithm Regret Time complexity Space complexity

Zooming(Kleinberg et al., 2019) Õ
(
T

dz+1
dz+2

)
O
(
T 2
)

O(T )

HOO(Bubeck et al., 2011a) Õ
(
T

dz+1
dz+2

)
O (T log T ) O(T )

MBAD(Ours) Õ
(
T

dz+1
dz+2

)
O (T ) O (1)

One general approach to solving Lipschitz bandits is through discretizing the structured action space.38

Algorithms based on uniform discretization have been shown to achieve optimal worst-case regret up39

to a logarithmic factor (Kleinberg, 2004). Another strategy, adaptive discretization, progressively40

‘zooms in’ on more promising regions of the action space, yielding near-optimal problem-dependent41

regret (Kleinberg et al., 2019). However, existing algorithms like the Zooming algorithm necessitate42

O(T ) stored arms in memory and O(T 2) time complexity for stochastic Lipschitz bandits (Kleinberg43

et al., 2019; Feng et al., 2022), which may be impractical for many real-world applications. In44

this paper, we consider a typical scenario where the learner operates within the stochastic bandits45

framework over a Lipschitz action space while facing constraints on the number of arms that can be46

stored in memory.47

The limited memory constraint and large structured action space present several challenges, necessi-48

tating a nuanced approach to effectively balance exploration and exploitation under uncertainty. One49

key challenge is the propensity to over-exploit suboptimal arms retained in memory, leading to high50

regret. Conversely, reading new arms into memory risks discarding potentially valuable arms. In51

scenarios with infinite actions, the vast search space requires numerous samples to ensure adequate52

exploration. The structured nature of the action space demands that algorithms focus on zooming in53

on more promising regions, but space constraints limit the learner’s capacity to acquire comprehensive54

knowledge about the metric space. Traditional full-memory algorithms start by dividing the action55

space into many small subcubes, a process known as discretization. Each cube is treated as an arm,56

and in each round, the algorithm updates the average estimate of the selected cube’s reward based on57

feedback. It then compares this estimate against all other cubes in the storage space through various58

computational methods.59

1.1 Our Contributions60

Our primary insight revolves around two key aspects: metric embedding and pairwise comparisons.61

Metric embedding involves mapping elements from one metric space to another while preserving62

distance relationships as closely as possible. Our algorithm effectively maps the metric space to a tree,63

where each node represents a cube. Traversing this tree is analogous to navigating the entire metric64

space. Pairwise comparisons of arms reduce memory complexity. Instead of constantly covering the65

entire space, our approach considers all subcubes as a stream. From this stream, we continuously66

select cubes for pairwise comparisons, gradually converging to the optimal region.67

Based on this insight, we introduce two algorithms: the Memory Bounded Uniform Discretization68

(MBUD) algorithm and the Memory Bounded Adaptive Discretization (MBAD) algorithm. The69

MBUD algorithm employs a uniform discretization strategy combined with an Explore-First approach.70

In this method, all cubes are of the same size. The algorithm prioritizes selecting a near-optimal71

arm following an exploration phase and allocates the remaining rounds to exploitation, achieving72

near-optimal worst-case regret. The exploration phase consists of “cross exploration phases” and the73

“summarize phase”. During the cross exploration phases, exploration is confined to a subset of cubes74

to gather information about the optimal arm while minimizing regret. The summarize phase explores75

all cubes to pinpoint the optimal arm’s location.76

The MBAD algorithm utilizes an adaptive discretization strategy, incorporating a round-robin playing77

approach. This allows for subcubes within subcubes, organizing the entire action space into a tree78

structure. The algorithm selectively focuses on more promising regions of the action space, thereby79

attaining near-optimal instance-dependent regret. Each node in this structure represents a subcube,80

with parent and child nodes corresponding to subcubes and their subdivisions, respectively. Traversal81

involves transitioning from a node to its child and navigating through a parent node’s children to the82

next subcube. Pruning prevents over-zooming through two conditions: discarding inferior cubes with83

high confidence and establishing a lower bound on cube edge length, which decreases as exploration84

progresses. These conditions ensure efficient exploration without over-zooming.85
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Overall, our contribution lies in pioneering memory-efficient algorithms for large structured action86

spaces, particularly within Lipschitz metric spaces. We introduce the MBUD and MBAD algorithms,87

which achieve near-optimal regret while requiring storage for only the best-estimate arm for exploita-88

tion and one additional arm for exploration. This means only two arms need to be stored in memory,89

regardless of the problem’s scale. Furthermore, each algorithm exhibits O(T ) time complexity,90

indicating that their execution time scales linearly with the number of rounds.91

1.2 Related Work92

Lipschitz bandits. Multi-armed bandits is one of the most classical frameworks to model the93

trade-off between exploration and exploitation in online decision problems. The Lipschitz bandits94

framework considers the large, structured action space in which the algorithm has information on95

similarities between arms. The model was first introduced by Agrawal (1995) with interval [0, 1].96

The near-optimal upper and lower bounds for the worst case were provided in Kleinberg (2004)97

via the uniform discretization strategy. Subsequent work (Kleinberg et al., 2019) proposed the98

zooming algorithm, achieving near-optimal instance-dependent regret for the problem and studying99

the extension for the general metric action space. Several other works have established regret bounds100

for the stochastic reward feedback setting (Bubeck et al., 2011a; Magureanu et al., 2014; Lazaric101

et al., 2014). Other works have also extended the results to the adversarial version (Podimata &102

Slivkins, 2021; Kang et al., 2023), contextual setting (Slivkins, 2014; Krishnamurthy et al., 2019;103

Lee et al., 2022), ranked setting (Slivkins et al., 2013), contract design (Ho et al., 2014), federated104

X-armed bandit (Li et al., 2024a,b), and other settings (Bubeck et al., 2011b; Lu et al., 2019; Wang105

et al., 2020; Grant & Leslie, 2020; Feng et al., 2022; Xue et al., 2024).106

Memory-efficient learning. Another line relevant to this paper is online learning with memory107

constraints. Liau et al. (2018) considered stochastic bandits with constant arm memory and proposed108

an algorithm achieving an O(log 1/∆) factor of optimal instance-dependent regret, where ∆ is the109

gap between the best arm and the second-best arm. Chaudhuri & Kalyanakrishnan (2020) studied110

stochastic bandits with M stored arms and showed there is an algorithm with regret Õ(KM +111

(K3/2
√
T )/M). Subsequent work (Agarwal et al., 2022) provided an algorithm achieving regret112

O(
√
KT log T log log T ). In addition to the bandits problem, there are also many works about113

other online learning problems. Srinivas et al. (2022); Peng & Zhang (2022) showed the trade-off114

between regret and memory for the expert problem. More pure exploration models with memory115

constraints were considered in Assadi & Wang (2020), including the coin tossing problem, noisy116

comparisons problem, and Top-K arms identification. Previous works on bandits with limited117

memory have not considered structured action spaces and could not deal with infinite actions. There118

are some other works on memory-efficient online learning (Peng & Rubinstein, 2023; Assadi &119

Wang, 2023b). Beyond the online learning setting, the memory-efficient learning problem was solved120

in different situations, including statistical learning (Steinhardt et al., 2016; Garg et al., 2017; Raz,121

2017; Garg et al., 2019; Sharan et al., 2019; Lyu et al., 2023), convex optimization (Marsden et al.,122

2022; Blanchard et al., 2023a,b; Chen & Peng, 2023), estimation problems (Acharya et al., 2019;123

Diakonikolas et al., 2022; Berg et al., 2022), parity learning (Raz, 2019; Kol et al., 2017), and other124

learning problems (Hopkins et al., 2021; Brown et al., 2022; Chen et al., 2022).125

2 Problem Setup and Preliminaries126

Notations. In this paper, we use bold fonts to represent vectors and matrices. For a positive integer127

T , we use [T ] to denote the set {1, 2, . . . , T}. For a set X , we use |X | to denote its cardinality. For a128

random variable Z, we use E[Z] to denote its expectation. For an event E , we use P[E ] to denote its129

probability.130

2.1 Problem Setup131

We formally define the Lipschitz bandits problem below. Given T rounds, dimension d, and arm space132

X = [0, 1]d, each arm x ∈ X is associated with an unknown reward distribution Dx. In each round133

t ∈ [T ], the algorithm selects an arm xt ∈ X and obtains a scalar-valued reward feedback rt ∈ [0, 1],134

which is a sample from the reward distribution Dxt . The expected reward µ(·) of the reward135

distribution satisfy the Lipschitz condition: |µ(x)− µ(y)| ≤ L · |x− y| ∀x, y ∈ X . And we call L136

the Lipschitz constant. Then a problem instance is specified by the known number of time horizons T ,137

known Lipschitz constant L, and unknown mean reward µ(·). For the purposes of simplification in our138

proofs, we assume L = 1. The algorithm aims to maximize the expected total reward E[
∑

t∈[T ] rt].139
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We use regret to measure the performance of the algorithm compared with the expected total reward140

of the best-fixed arm in action space X : RX (T ) = T · supx∈X µ(x)− E
[∑

t∈[T ] rt

]
.141

Then we present the memory model employed in the paper. The algorithm operates by selecting142

arms from the memory and pulling them. When the memory reaches the capacity and the algorithm143

attempts to choose a new arm, it becomes necessary to discard at least one arm from the memory.144

Consequently, any statistical information associated with the discarded arm, including its index, mean145

reward, and number of pulls, is forgotten and will not be retained thereafter. We measure the space146

complexity of the algorithm by the hard constraint for the number of arms stored in the memory. This147

constraint aligns with the assumption of having oracle access to the input arm, as commonly defined148

in streaming problems.149

2.2 Covering Dimension and Zooming Dimension150

Then we provide some technical tools that are used in this paper and introduce the covering dimension151

and zooming dimension for one action spaceX . We use the definitions in (Slivkins, 2019) and provide152

them below. Notice that the Lipschitz bandits problem is defined in an infinite-action space. We153

select a fixed, finite discretization actions space S ⊂ X . Let {X1, . . . ,XN}[Xi ⊂ X ] be an cover154

of the action space X . Let ϵ denote the maximum diameter of Xi for all i ∈ [N ]. Then the arm set155

S = {xi|xi ∈ Xi, i ∈ [N ]} is an ϵ-mesh. The covering dimension d of the action space X is defined156

as d = infα≥0 {|S| ≤ ϵ−α,∀ϵ > 0}. Let µ∗
X := supx∈X µ(x) denote the expected per-round reward157

of the optimal arm in space X and ∆(x) := µ∗
X −µ(x) denote the gap between arm x and the optimal158

arm. Define Yj = {x ∈ X : 2−j ≤ ∆(x) < 21−j , j ∈ N}, then set Yj contains all arms whose gap159

is between 2−j and 21−j . Consider the ϵ-mesh Sj for space Yj . Then the zooming dimension dz for160

the action space X is dz = infβ≥0

{
|Sj | ≤ ϵβ , ϵ = 2−j ,∀j ∈ N

}
.161

Covering dimension is a property of the action space while the zooming dimension is a property of162

the instance. Notice that we always have dz ≤ d. This is because the covering dimension considers163

the ϵ-mesh of the entire action space X , whereas the zooming dimension focuses only on the set Yj .164

The covering dimension is closely related to other notions of dimensionality in a metric space, such as165

the Hausdorff dimension, capacity dimension, and box-counting dimension, all of which characterize166

the covering properties in fractal geometry. Similarly, the zooming dimension is another measure167

used to evaluate the structure of a metric space. Both of these dimensions are widely utilized in the168

field of Lipschitz bandits. For further details and alternative formulations regarding the covering169

dimension and zooming dimension, refer to (Kleinberg et al., 2019).170

3 Warm Up: Uniform Discretization Algorithm171

This section provides the intuition, specification, and theoretical analysis of the Memory Bounded172

Uniform Discretization (MBUD) algorithm (shown in Algorithm 1) for the stochastic Lipschitz173

bandits problem.174

Algorithm overview. To facilitate our discussion, we begin by outlining the core idea behind the175

algorithm. This algorithm employs a uniform discretization strategy and adopts an Explore-First176

methodology, which endeavors to identify a near-optimal arm following the exploration phase and177

dedicates the remaining rounds to exploitation. Throughout the exploration stage, the algorithm allo-178

cates two units of memory space: one for storing the best-estimated arm and another for temporarily179

holding a newly read arm. Note that the best-estimated arm serves a dual purpose: it is not only180

crucial for the exploitation phase but also enables the swift identification of sub-optimal arms.181

The exploration phase in Algorithm 1 is divided into ⌈log log T ⌉ phases, further structured into182

two main segments: the ‘cross exploration phases’ and the ‘summarize phase’. During the initial183

⌈log log T ⌉ − 1 phases, the algorithm iterates over the arms within the discretized action space to184

minimize regret. Exploration is limited to a subset of cubes at a time, allowing the algorithm to185

gather information about the optimal arm while minimizing regret. In the final phase, termed the186

‘summarize phase’, the algorithm revisits all arms within the uniform discretization space. Overall,187

each arm is read into memory twice to ensure thorough evaluation. Furthermore, we implement a188

budgeting strategy for each phase, wherein the total number of pulls across all arms is constrained by189

a predefined budget. The goal is to select the optimal arm with high probability after accumulating190

sufficient information during the previous phases. This structured approach balances exploration and191
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Algorithm 1 Memory Bounded Uniform Discretization (MBUD)
Input: arm space X = [0, 1]d, time horizon T , parameter c.

1: y ← 0, r̄y ← 0, ny ← 0, B−1 ← 1, ϵ =
(

log T
T

)1/(d+2)

, ϕ← ⌈log log T ⌉ − 1.
2: for p = 0, · · · , ϕ− 1 do
3: Bp ←

√
TBp−1.

4: for q = 1, · · · , ⌊ϕϵ−d⌋ do
5: Generate a new cube C ← CROSSCUBE(ϕ, ϵ, p, q), and select a arm x from C.
6: (y, r̄y, ny)← COMPARE(c,x,y, r̄y, ny, ϵBp).
7: end for
8: end for
9: for q = 1, · · · , ⌊ϵ−d⌋ do

10: Generate a new cube C ← GENERATECUBE(ϵ, q), and select a arm x from C.
11: (y, r̄y, ny)← COMPARE(c,x,y, r̄y, ny, ϵBϕ−1).
12: end for
13: Play arm y until the end of the game.

Algorithm 2 CROSSCUBE

Input: number of phases ϕ, edge-length ϵ, parameters q.
1: κ1 ← maxk∈N{kd ≤ ϕ}, κ2 ← maxk∈N{kd ≤ ⌊ϕϵ−d⌋}.
2: Let node← ϵGd (p, κ1) +

ϵϕ√
d
Gd (q, κ2), then the cube could be determined by node and ϵ.

exploitation under memory constraints, aiming to quickly identify the optimal arm while minimizing192

the sampling of suboptimal arms. The specifics of this approach will be detailed subsequently.193

Exploration strategies. For the cross exploration phases, the gap between neighboring arms is194

ϵϕ (ϕ defined in Algorithm 1). There are O(ϵ−d) cubes (arms) in the discretization action set,195

which is an ϵ-mesh of X . Each cross exploration phase will only explore O
(

1
log log T

)
of them.196

We generate a new cube by using the function Gd(a, b), a, b ∈ N which converts the integer a to a197

d-dimension vector. And the i-th entry of the vector is the i-th right-most digit in base b. To aid198

understanding, we offer several examples: G3(3, 2) = (0, 1, 1), G3(1208, 26) = (1, 20, 12), and199

G2(1208, 26) = (20, 12). The function could be done by a succession of Euclidean divisions by b.200

For the summarize phase, the gap is ϵ and all cubes in the discretization set are explored.201

The CROSSCUBE function generates cubes for the cross exploration phases by calculating parameters202

based on the number of phases and the edge-length of the cubes. Specifically, CROSSCUBE generates203

a new cube using a combination of two geometric sequences. It first calculates the parameters κ1204

and κ2 as the maximum integers such that kd ≤ ϕ and kd ≤ ⌊ϕϵ−d⌋, respectively. The function then205

determines the cube’s position using these parameters and the edge-length ϵ. The cube is defined206

by a node position generated by ϵGd(p, κ1) and ϵϕ√
d
Gd(q, κ2), where Gd is a geometric sequence207

generator that converts an integer to a d-dimensional vector. The GENERATECUBE function is similar208

to CROSSCUBE but is used during the summarize phase to generate cubes without considering the209

phases. It calculates the parameter κ as the maximum integer such that kd ≤ ⌊ϵ−d⌋. The cube is then210

determined by the edge-length ϵ and a node position generated by ϵGd(q, κ).211

Compare strategy. Then we introduce the compare strategy, which is also useful for the MBAD212

algorithm described in the following section. The algorithm always selects the arm with the fewest213

pulls in the memory. After sufficient samples, it will eliminate one sub-optimal arm based on its214

upper confidence bound and then generate a new arm (i.e., read a new arm into the memory). Notice215

that the algorithm may prioritize two sub-optimal arms with a small gap. Therefore, there is a cap216

on the number of pulls each phase for any arm. It helps the algorithm in striking a balance between217

exploration (read a new arm) and exploitation (play arms in memory).218

The algorithm maintains three statistics for one arm in memory: the index x, the mean reward219

estimator r̄x, and the number of pulls nx. The constant c is an exploration and exploitation balancing220

parameter. In the exploration part, there are ⌈log log T ⌉ phases. Let Bp be the budget of samples for221

the p-th phase. We use y and x to denote the best-estimated arm and the new arm in the algorithm,222
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Algorithm 3 GENERATECUBE

Input: edge-length ϵ, parameters q.
1: κ← maxk∈N{kd ≤ ⌊ϵ−d⌋}.
2: Let node← ϵGd (q, κ), then the cube could be determined by node and ϵ.

Algorithm 4 COMPARE

Input: constant c, arm x and y, r̄y , ny , b.
1: r̄x ← 0, nx ← 0.
2: while nx ≤ b or ny ≤ b do
3: Pull the least played arm between x and y. If there is no single least played arm, select a

random arm.
4: Update r̄x, nx, r̄y , ny .
5: if min{r̄x +

√
(c log T )/nx, 1} < max{r̄y −

√
(c log T )/ny, 0} then

6: Break and return (y, r̄y, ny).
7: else if max{r̄x −

√
(c log T )/nx, 0} > max{r̄y −

√
(c log T )/ny, 0} then

8: Break and return (x, r̄x, nx).
9: end if

10: end while
11: Return (y, r̄y, ny).

respectively. If the upper confidence bound (UCB) of arm x is less than the lower confidence bound223

(LCB) of arm y, then x is suboptimal with high probability. If the LCB of y is less than the LCB of224

arm x, then x is not too bad with high probability. For the remaining cases, we could choose either x225

or y, and we choose arm y at the end of the algorithm.226

Flowchart. In Appendix A.1, we include a flowchart that illustrates the operation of the algorithm.227

Theoretical result. The computational workload of the MBUD algorithm is characterized by a228

constant per-round operation, leading to a total time complexity of O(T ), where T represents the229

number of rounds. Regarding space complexity, the MBUD algorithm necessitates the storage230

of merely two arms in memory at any given time. Additionally, the space requirements for the231

GENERATECUBE and CROSSCUBE subroutines are minimal, each consuming O(1) units of space232

in terms of arm storage. Consequently, the overall space complexity of the algorithm is O(1).233

We provide the theoretical result below and provide the details of the theoretical analysis in Appendix234

B. The result recovers the worst case regret in previous work and recovers the lower bound up to a235

logarithmic factor (Kleinberg, 2004).236

Theorem 1. For the stochastic Lipschitz bandits problem with metric (X ,D) and time horizon T ,237

where X = [0, 1]d and D is a known metric function. Algorithm 1 uses O(1) stored arms and238

achieves regret239

RX (T ) ≤ Õ(T
d+1
d+2 ),

where d is the covering dimension of space X .240

The theoretical analysis is mainly based on the ‘clean event’, which holds that the observed mean241

average is a good estimator for the expectation with high probability. At a high level, the analysis242

shows that the deviation between the mean estimator of the best-estimated arm y and the optimal243

expected reward µ∗
X is small enough when p ≥ 1. Then the sub-optimal arms could be discarded244

quickly, which helps us to bound the incurred regret of sub-optimal arms and the exploitation phase.245

We bound the expected regret during all time horizons by considering the discretization error, the246

incurred regret of all sub-optimal arms during the exploration, and the sub-optimality of the selected247

arm before the exploitation together.248

4 Adaptive Discretization Algorithm249

This section provides the main idea, specification, and theoretical analysis of the Memory Bounded250

Adaptive Discretization (MBAD) algorithm (shown in Algorithm 5).251
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Algorithm 5 Memory Bounded Adaptive Discretization (MBAD)
Input: time horizon T , constant c.

1: y ← 0, r̄y ← 0, ny ← 0, B1 ←
√
T .

2: for p = 1, 2, . . . do

3: x← 0, r̄x ← 0, nx ← 0, bp ← Bp ·
(

log T
T

)1/(d+2)

.
4: ADAPTIVECUBE(4, 1).
5: Bp+1 ← Bp log T .
6: end for

Algorithm 6 ADAPTIVECUBE

Input: parameters m, q, edge-length ϵ = 2−m.
1: κ← maxk∈N{kd ≤ ⌊ϵ−d⌋}.
2: node← ϵGd (q, κ), then the cube C could be determined by node and ϵ.
3: Select a arm x from C.
4: if q + 1 ≤ 2m and the output of COMPARE(c,x,y, r̄y, ny, 20ϵ

−2) is arm y then
5: check the next cube with parameters m and q + 1.
6: else if 20ϵ−2 ≤ bp then
7: (y, r̄y, ny)← COMPARE(c,x,y, r̄y, ny, 20ϵ

−2).
8: Equally partition the cube C into 2d subcubes and check the first subcube.
9: end if

Algorithm overview. We begin with some intuitions. The MBUD algorithm achieves near-optimal252

regret in the worst case but fails to leverage the beneficial structure of ‘nice’ problem instances.253

To address this, we present the MBAD algorithm, which is based on adaptive discretization, and254

establish a near-optimal instance-dependent upper bound. The idea behind adaptive discretization is255

straightforward: the algorithm should focus more on promising regions. For instance, the zooming256

algorithm approximates the expected rewards over the action space and explores more in regions257

with a high probability of yielding high rewards. However, due to memory constraints, the algorithm258

cannot obtain a comprehensive picture of the action space over time. To overcome this obstacle, the259

MBAD algorithm employs a “round robin” strategy, storing the best-estimated arm as the next read260

arm in memory. Unlike the MBUD method, which chooses predetermined steps, the MBAD algorithm261

selects the next read arm based on the confidence radius of the arms in memory. Consequently, steps262

are smaller and probes (newly picked arms) are more numerous in promising regions.263

Exploration strategies. The ADAPTIVECUBE subroutine is the cornerstone of the MBAD algo-264

rithm, functioning as a recursive mechanism to navigate and leverage a cubic region within the265

decision space. This procedure dynamically adjusts the exploration granularity based on observed266

rewards and predetermined sampling constraints. Initially, the algorithm selects a cube C for ex-267

ploration. If this cube is deemed sub-optimal compared to the optimal estimated arm stored in268

memory (denoted as arm y), the algorithm discards this cube in favor of exploring a subsequent269

cube, following the generation rules outlined in the GENERATECUBE subroutine described in the270

MBUD algorithm (Section 3). Conversely, if the cube shows promise, the algorithm proceeds to271

explore within it, subdividing it into smaller subcubes for more detailed exploration. Each exploration272

phase is governed by a specific sample budget, which regulates the granularity of exploration to273

prevent excessive sampling of sub-optimal arms in the early stages. This adaptive exploration process274

continues until the entire action space has been thoroughly explored. The decision-making process275

is inherently dynamic, constantly evolving based on past actions to enhance the efficiency of future276

exploration and exploitation efforts.277

To prevent the MBAD algorithm from “over-zooming”, we implement two stop conditions. The first278

condition discards the current cube in favor of a new one once we are highly confident that the current279

cube is inferior to the best cube we’ve explored (see lines 4-5 of Algorithm 6). The second condition280

sets a lower bound on the edge length of the cube to be explored in each round, which gradually281

decreases as exploration progresses (see line 6 of Algorithm 6). These conditions together ensure the282

algorithm avoids over-zooming. In the initial learning phase, our knowledge of the optimal cube is283

limited, making it challenging to effectively distinguish suboptimal cubes using only the first stop284
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condition. However, the second condition, with a larger initial lower bound on cube edge length,285

prevents over-zooming. As the learning process advances, the algorithm can more reliably eliminate286

suboptimal cubes, thus avoiding over-zooming on them.287

Flowchart and algorithm description. Due to page limitations, Appendix A.2 contains a flowchart288

illustrating the operation of the algorithm along with its description.289

Theoretical result. Analyzing the space complexity of the MBAD algorithm and its ADAPTIVE-290

CUBE subroutine requires careful consideration due to the subroutine’s recursive nature. Specifically,291

the conditional logic that triggers further recursion or partitioning into 2d subcubes adds layers of292

complexity. Within the ADAPTIVECUBE subroutine, each recursive invocation contributes to the call293

stack, with space consumption directly proportional to the recursion depth. The space required to294

sustain the state of each cube, alongside the recursive call stack within ADAPTIVECUBE, implies295

a complexity that scales linearly with recursion depth, complemented by constant overheads for296

variables preserved at each recursion level. Nonetheless, the algorithm’s design allows for the direct297

computation of all parent and neighboring cube information from the current cube’s coordinates and298

edge length, obviating the need for multiple cube storage in memory. Consequently, only a single299

cube needs to be maintained at any time during the ADAPTIVECUBE process, affirming a space300

complexity of O(1) for the MBAD algorithm. This space complexity analysis directly informs the301

algorithm’s time complexity. Similar to the MBUD algorithm, the overall time complexity of the302

MBAD algorithm remains linear with respect to the total number of rounds.303

As a by-product of the MBAD algorithm, we introduce a simpler, more practical algorithm for304

scenarios where dz ≤ 1. Detailed descriptions and theoretical analyses of this algorithm can be305

found in Appendix D. We provide the theoretical result below and elaborate on the details of the306

theoretical analysis in Appendix C. The result establishes the optimal instance-dependent upper307

bound, up to a logarithmic factor, for the stochastic Lipschitz bandits problem. Previous works308

(Slivkins, 2014; Kleinberg et al., 2019) have already established related lower bounds, indicating that309

our work achieves near-optimal regret. While there are other forms of results, such as those presented310

in work (Magureanu et al., 2014), we believe that adopting one form is sufficient to demonstrate the311

near-optimal performance of our algorithm.312

Theorem 2. For Lipschitz bandits with time horizon T and Lipschitz constant L, Algorithm 5 with313

c ≥ 5 achieves regret314

RX (T ) ≤ Õ(T
dz+1
dz+2 ),

using O(1) stored arms, where dz is the zooming dimension of space X .315

We also mainly consider the clean event. The algorithm plays in a ‘round-robin’ manner. There are at316

most O(log T ) phases because of the delicate design of the budget for each phase. For each phase,317

we show that the deviation between the mean reward of the best-estimated arm and optimal expected318

per-round reward µ∗
X is small. Then the algorithm could approximately adjust the sub-optimality of319

arms and set more probes in more promising regions. Then we prove that the incurred regret could be320

bounded by O(T
z+1
z+2 (log T )

2
z+2 ) by bounding the pulls of bad arms according to the definition of321

zooming dimension.322

5 Numerical Evaluations323

In this section, we show the efficiency of our algorithms through a series of numerical simulations.324

The baseline consists of three algorithms: the uniform discretization with UCB1 algorithm (UD) and325

the zooming algorithm. For the uniform discretization, we pick a fixed ϵ-mesh of the action space326

and run the UCB1 algorithm only considering the finite uniform discretization action space. The327

UCB1 algorithm is a popular algorithm for achieving near-optimal regret with finite action space.328

Kleinberg (2004) prove that the uniform achieves optimal worst-case regret up to logarithm factors.329

The zooming algorithm (Kleinberg et al., 2019) is an implementation of the adaptive discretization330

strategy, which deploys more probes in regions deemed more ‘promising’. Theoretical analysis shows331

that the zooming algorithm both achieves optimal worst-case regret and instance-dependent regret up332

to logarithm factors.333
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Figure 1: The results obtained with different time horizons.

We set X = [0, 1] and choose the reward function f(x) = 0.5 − |x − 0.5|. In each round t, the334

algorithm plays one arm xt and receives a stochastic reward y satisfying335

y =


f(x) + ξ, 0 ≤ f(x) + ξ ≤ 1

1, f(x) + ξ > 1

0, f(x) + ξ < 0

.

Specifically, ξ ∼ N (0, 0.12) is the Gaussian noise. The MBAD algorithm are only allowed to store336

two arms in memory, while there is no memory constraint for the UD+UCB1 algorithm and the337

zooming algorithm. All results are averages over 50 runs. Figure 1 displays the results obtained338

across varying time horizons, where the horizontal axis denotes the time horizon and the vertical axis339

measures regret. From the figure, we have that MBAD algorithm significantly outperforms the UD340

strategy. Additional numerical results are detailed in Appendix E.341

6 Conclusion and Discussion342

We consider the Lipschitz bandits with limited memory problem. We introduce two novel algorithms:343

the Memory Bounded Uniform Discretization (MBUD) algorithm and the Memory Bounded Adaptive344

Discretization (MBAD) algorithm, which are predicated on the principles of uniform and adaptive345

discretization, respectively. Theoretical analyses reveal that the MBAD algorithm achieves near-346

optimal performance with O(1) stored arms and O(T ) time complexity, highlighting its efficiency347

and practical applicability. Moreover, numerical results show the efficiency of our algorithms.348

The Lipschitz bandit problem in higher dimensions is often perceived as a ‘needle in a haystack’349

problem. Intuitively, finding the optimal solution in such high-dimensional spaces seems extremely350

challenging, but this perception does not always hold in practice. Many scenarios reveal beneficial351

structures within Lipschitz bandits, which is why our research emphasizes not only worst-case regret352

but also instance-dependent regret. Our proposed algorithm achieves nearly optimal time and space353

complexity for both worst-case and instance-dependent regrets.354

In practical applications, Lipschitz bandit problems are found in areas such as non-parametric355

estimation, model selection in machine learning tasks, and decision-making processes in robotics and356

games. Furthermore, research on Lipschitz bandits has inspired algorithmic advancements in other357

domains, such as decision trees and tree-based methods, where the principles from Lipschitz bandit358

algorithms guide the splitting and growth of trees. Despite these advancements, certain limitations359

remain. High-dimensional Lipschitz bandits can still pose significant computational challenges,360

especially in cases where the underlying structure is less apparent or more complex. Additionally, the361

requirement for sufficient exploration to accurately estimate the optimal arm can lead to increased362

computational overhead in large action spaces.363

Our algorithm introduces a novel framework that efficiently addresses online decision-making and364

balances exploration and exploitation in Lipschitz action spaces. This framework leverages beneficial365

structures in the problem space to enhance performance while maintaining computational efficiency.366

We hope our approach could make a substantial contribution to the community, especially in areas367

that require efficient and effective decision-making under uncertainty.368
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A Algorithm Flowchart487

A.1 Flowchart for the MBUD Algorithm488

The flowchart illustrates the process of the Memory Bounded Uniform Discretization (MBUD)489

algorithm, showcasing its core steps and transitions. The algorithm begins by dividing the exploration490

phase into ⌈log log T ⌉ phases, further segmented into cross exploration phases and the summarize491

phase.492

At the start of the algorithm, the arm space X = [0, 1]d, time horizon T , and parameter c are493

initialized. The initial values for variables such as the best-estimated arm y, its average reward494

r̄y, and the number of pulls ny are set to zero. The budget parameter B−1 is initialized to 1, and495

the discretization parameter ϵ is calculated. Rather than covering the entire space continuously, the496

MBUD algorithm treats subcubes as a stream, selecting cubes for pairwise comparisons and gradually497

converging to the optimal region.498

Figure 2: Flowchart for the MBUD algorithm

During the cross exploration phases, which encompass the first ⌈log log T ⌉ − 1 phases, the algorithm499

iterates over arms within the discretized action space. In each phase p, the budget parameter Bp is500

updated to
√
TBp−1. For each q from 1 to ⌊ϕϵ−d⌋, the CROSSCUBE function generates a new cube501

C by calculating parameters κ1 and κ2 and determining the cube’s position using the edge-length ϵ.502

An arm x is then selected from the cube C. The COMPARE function evaluates the selected arm against503

the current best-estimated arm y, updating y if necessary based on the comparison of their upper and504

lower confidence bounds. In the final phase, known as the summarize phase, the algorithm revisits505

all arms within the uniform discretization space. For each q from 1 to ⌊ϵ−d⌋, the GENERATECUBE506

function generates a new cube C without considering the phases, using a parameter κ to determine the507

cube’s position. An arm x is selected from this cube and compared against the current best-estimated508

arm y using the COMPARE function, ensuring thorough evaluation. The algorithm culminates by509

selecting the best-estimated arm y and playing it for the remaining rounds until the end of the time510

horizon.511
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A.2 Flowchart for the MBAD Algorithm512

The MBAD algorithm dynamically adapts its discretization of the action space, focusing more513

on promising regions to identify the optimal arm with high probability. The flowchart effectively514

demonstrates how the algorithm narrows down the search space through adaptive discretization.515

Initially, the algorithm sets up the necessary parameters and variables. During the cross-exploration516

phases, the ADAPTIVECUBE function generates and selects arms from cubes. Arrows indicate the517

process of moving to the next cube if y remains the best arm, and the selection and evaluation of518

subcubes when the comparison budget condition is met.519

Figure 3: Flowchart for the MBAD algorithm

We present the pseudocode. The algorithm begins by initializing key parameters: the time horizon T520

and a constant c. Initial values for essential variables include the best-estimated arm y, its average521

reward r̄y, and the number of pulls ny, all set to zero. The initial budget B1 is set to
√
T . In each522

phase p, the algorithm initializes a new arm x with zero values for its index, average reward r̄x, and523

the number of pulls nx. The budget for the current phase bp is calculated as Bp ·
(

log T
T

)1/(d+2)

. The524

ADAPTIVECUBE function is then called with parameters m = 4 and q = 1, and the budget for the525

next phase Bp+1 is updated to Bp log T .526

The ADAPTIVECUBE function is crucial for refining the discretization of the action space and527

selecting promising arms. It begins by setting the edge-length ϵ = 2−m. The function calculates the528

parameter κ as the largest integer such that kd ≤ ⌊ϵ−d⌋. A node is generated using the geometric529

sequence Gd(q, κ), and the cube C is defined by this node and ϵ. An arm x is selected from the cube530

C. If q + 1 ≤ 2m and the COMPARE function indicates that y remains the best arm after comparison,531

the algorithm proceeds to the next cube with parameters m and q + 1. If the comparison budget532

20ϵ−2 does not exceed bp, the algorithm updates y using the COMPARE function, partitions the cube533

C into 2d subcubes, and checks the first subcube.534
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B Proof of Theorem 1535

Let S denote the ϵ-mesh of the action space where ϵ =
(

log T
T

)1/(d+2)

. Similarly, the discretization536

error is the gap of the best fixed arm benchmarks between two spaces:537

DX (S) = T · sup
x∈X

µ(x)− T · sup
x∈S

µ(x).

Then the regret could be rewrote as538

RX (T ) = RX (T ) + DX (S).

We call DX (S) the discretization error and it could be bounded by539

DX (S) ≤ Tϵ ≤ T
d+1
d+2 (log T )

1
d+2 .

In the rest of this subsection, we shall prove540

RS(T ) ≤ Õ
(
T

d+1
d+2

)
.

For any fixed arm x ∈ S, with probability 1− T−c:541

|µ(x)− r̄x| ≤
√

c log T

nx
. (1)

By a union bound for all arms and all rounds, (1) holds for all arm xt ∈ S, t ∈ [T ] with probability at542

least 1− T 4−c. To ease the reading, we assume c = 5. We call this ‘clean event’ and let E denote543

it. Then we analyze the regret based on the clean event. Let Rp
S denote the regret for the p-th phase.544

Consider R0
S , because the number of pulls of all arms in phase 0 is bounded by ϵB0, we have545

R0
S ≤ 2

√
T/ log log T.

Then we consider Rp
S , p ∈ [ϕ− 1]. Let µ∗

S := supx∈S µ(x) denote the expected per-round reward of546

the optimal arm in space S. Let x∗
p and µ∗

p denote the optimal selected arm during phase p and its547

expected per-round reward, respectively. From the definition of uniform discretization and Lipschitz548

condition, we have549

µ∗
S − µ∗

p ≤
(
log T

T

)1/(d+2)

log log T. (2)

for all phase p ∈ [ϕ− 1]. To ease the reading, define550

Φ :=

(
log T

T

)1/(d+2)

log log T.

For phase p, we consider the best estimate arm y at the start of the p-th phase. If x∗
p−1 is discarded in551

phase p− 1, according to the stop condition of compare strategy, we have552

r̄y ≥ µ∗
p−1 −

√
5 log T

ny
−
√

5 log T

nx∗
p−1

≥ µ∗
p−1 − 2

√
5 log T

ϵBp−1
. (3)

For arbitrary discarded arm x, let Rp
x and Np

x denote the accumulated reward and total number of553

pulls during phase p, respectively. Notice that the value of r̄y −
√

(5 log T )/ny is non-decreasing, so554

we have555

Rp
x

Np
x − 1

+

√
5 log T

Np
x − 1

≥ µ∗
p−1 − 2

√
5 log T

ϵBp−1
.

Combine (2) and (3) together, we get556

Rp
x ≥ 2Np

x

(
µ∗
p−1 −

√
5 log T

Np
x − 1

−

√
5 log T

ϵBp−1

)
.
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Let Rp
x denote the cumulative regret of playing arm x during phase p, we have557

Rp
x ≤ 2Np

x

(√
5 log T

Np
x − 1

+

√
5 log T

ϵBp−1
+Φ

)

≤ 2

(√
6Np

x log T +Np
x

√
5 log T

ϵBp−1
+Np

xΦ

)
.

The first term from the gap between the expected reward of best estimated arm and the selected558

sub-optimal arm. The second term from the deviation between the best estimated arm and optimal559

expected per-round reward of the (p − 1)-th phase. And the last is the discretization error during560

phase p− 1. Let Sp denote the set of arms in phase p. According to Jensen’s inequality561

1

|Sp|
∑
x∈Sp

√
Np

x ≤

√√√√ 1

|Sp|
∑
x∈Sp

Np
x ≤

√
ϵBp.

Then we obtain562 ∑
x∈Sp

√
Np

x ≤ |Sp|
√
ϵBp ≤

√
Bp

ϵ log log T
.

Consider all selected arms during phase p and the stop condition of the compare strategy, we have563

Rp
S ≤ 2

∑
x∈Sp

(√
6Np

x log T +Np
x

√
5 log T

ϵBp−1
+Np

xΦ

)

≤ 3Bp

log log T

(√
5 log T

ϵBp−1
+Φ

)
+ 2
√

6 log T
∑
x∈Sp

√
Np

x

≤ 3Bp

log log T

(√
5 log T

ϵBp−1
+Φ

)
+ 3

√
6Bp log T

ϵ log log T
.

For the incurred regret by the deviation between the expected reward of best estimated arm and the564

selected sub-optimal arm, we have565

ϕ−1∑
p=1

3

√
6Bp log T

ϵ log log T
≤ 6

√
6Bϕ−1 log T

ϵ log log T
≤ 6

√
6T log T

ϵ log log T
≤ Õ

(
T

d+1
d+2

)
.

For the incurred regret the deviation between the best estimated arm and optimal expected per-round566

reward, we have567

ϕ−1∑
p=1

3Bp

log log T

√
5 log T

ϵBp−1
≤ 6Bϕ−1

√
5 log T

ϵBϕ−2
≤ 6
√
T

√
5 log T

ϵ
.

For the incurred regret of the discretization error during one phase, we obtain568

ϕ−1∑
p=1

3BpΦ

log log T
≤ 6Bϕ−1Φ

log log T
≤ Õ

(
T

d+1
d+2

)
.

Combine them together, we get569
ϕ−1∑
p=1

Rp
S ≤ Õ

(
T

d+1
d+2

)
.

Then we consider the total cumulative regret during the exploration part. Let Rϕ
S denote the regret570

incurred in the last part. According to that the value of r̄y −
√
(5 log T )/ny is non-decreasing and571

the relationship between Bϕ and Bϕ−1, we have572

Rϕ
S ≤ Rϕ−1

S .
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Then the regret incurred by the exploration is573

ϕ∑
p=0

Rp
S ≤ 2

ϕ−1∑
p=0

Rp
S ≤ Õ

(
T

d+1
d+2

)
.

Consider the selected arm y after the exploration and let Ry
S denote the regret due to selecting it.574

According to the stop condition of compare strategy, we have575

r̄y ≥ µ∗
S − 2

√
5 log T

ϵBϕ−1
.

Then for the regret576

Ry
S ≤ 2T

√
5 log T

ϵBϕ−1
≤ Õ

(
T

d+1
d+2

)
.

Based on the clean event, we have577

E[RS(T )|E ] = Ry
S +

ϕ∑
p=0

Rp
S ≤ Õ

(
T

d+1
d+2

)
.

Then the regret is578

RS(T ) = E[RS(T )|E ] · P(E) + E[RS(T )|¬E ] · P(¬E)

≤ [Õ
(
T

d+1
d+2

)
](1− 1/T ) + 1

≤ Õ
(
T

d+1
d+2

)
.

Combine it with the discretization error, then we complete the proof.579

C Proof of Theorem 2580

To ease the reading, let c = 5. For all arms xt ∈ X and all rounds t ∈ [T ], the gap between the mean581

reward and the expectation could be bounded with probability 1− T−1:582

|µ(xt)− r̄xt
| ≤

√
5 log T

nxt

,∀t ∈ [T ].

We call this ‘clean event’ E and mainly analyze the regret based on E . Assume the MBAD algorithm583

consume all time horizons during the ϕ-th phase. For the stochastic Lipschitz instance, we always584

have ϕ ≤ O
(

log T
log log T

)
. Let Rp

S denote the regret for the p-th phase. For the first phase, we have585

R1
X ≤ N1 ≤ B1 ≤

√
T . Then we consider Rp

S , 1 < p ≤ ϕ. For phase p, we consider the best586

estimate arm y at the start of the p-th phase. If x∗
p−1 is discarded in phase p − 1, according to the587

stop condition of compare strategy, we have588

r̄y ≥ µ∗
p−1 −

√
5 log T

ny
−
√

5 log T

nx∗
p−1

≥ µ∗
p−1 − 2

√
5 log T

bp−1
.

For arbitrary discarded arm x, let Rp
x and Np

x denote the accumulated reward and total number of589

pulls during phase p, respectively. Notice that the value of r̄y −
√

(5 log T )/ny is non-decreasing, so590

we have591

Rp
x

Np
x − 1

+

√
5 log T

Np
x − 1

≥ µ∗
p−1 − 2

√
5 log T

bp−1
.

Then we get592

Rp
x ≥ 2Np

x

(
µ∗
p−1 −

√
5 log T

Np
x − 1

−

√
5 log T

bp−1

)
.
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Let Rp
x denote the cumulative regret of playing arm x during phase p, we have593

Rp
x ≤ 2Np

x

(√
5 log T

Np
x − 1

+

√
5 log T

bp−1

)
.

Similarly, the first term from the gap between the expected reward of best estimated arm and the594

selected sub-optimal arm. The second term from the deviation between the best estimated arm and595

optimal expected per-round reward of the (p− 1)-th phase. Recall the set596

Yi = {x ∈ X : 2−i ≤ ∆(x) < 21−i, i ∈ N},

and the definition of zooming dimension597

dz = inf
β≥0

{
|Sj | ≤ O(ϵβ), ϵ = O(2−j),∀j ∈ N

}
.

Pick δ =
(

log2 T
T

) 1
dz+2

, if
√

5 log T
Np

x−1
+
√

5 log T
bp−1

≤ O(δ), then Rp
x ≤ O(δNp

x ). If
√

5 log T
bp−1

> Ω(δ),598

then bp−1 = O(log T )∆−2(x). If
√

5 log T
Np

x−1
> Ω(δ), then Np

x = O(log T )∆−2(x). According the599

stop condition of the compare strategy and the definition of zooming dimension, we have600

Rp
X ≤ δNp +

∑
i:2−i>δ

∑
x∈Yi

Rp
x

≤ δNp +O((log T )2)δdz+1 ≤ δT +O((log T )2)δdz+1

≤ O(T
dz+1
dz+2 (log T )

2
dz+2 ).

Then we have601
ϕ∑

p=1

Rp
X ≤

ϕ∑
p=1

O(T
dz+1
dz+2 (log T )

2
dz+2 ) ≤ Õ(T

dz+1
dz+2 ).

Based on the clean event, we have602

E[RX (T )|E ] ≤
ϕ∑

p=1

Rp
X ≤ Õ(T

dz+1
dz+2 ).

The regret is603

RX (T ) ≤ Õ(T
dz+1
dz+2 )(1− 1/T ) + 1 ≤ Õ(T

dz+1
dz+2 ).

Then we complete the proof.604

D A Simple Algorithm605

We present the pseudocode. The algorithm also maintains the index x, the mean reward estimator606

r̄x, and the number of pulls nx for one arm in memory. The constants c and η are two parameters607

to balance the exploration and exploitation. For each phase p, the algorithm determines the budget608

bp of samples for each probe, the number of total pulls Np during the phase, and the usage factor609

λp obtained after the phase. Once the arm x is discarded, the algorithm chooses the next probe by610

adding η
√
(c log T )/(nxL2), which is the step size and has the same order as the confidence radius611

of arm x.612

We have the following theoretical result.613

Theorem 3. For Lipschitz bandits with time horizon T and Lipschitz constant L, Algorithm 7 with614

c ≥ 5 and η = 1/3 achieves regret615

RX (T ) ≤ Õ(T
dz+1
dz+2 ),

using O(1) stored arms, where dz ≤ 1 is the zooming dimension of space X .616
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Algorithm 7 A Simple Algorithm
Input: rounds T , Lipschitz constant L, constant c and η

1: y ← 0, r̄y ← 0, ny ← 0, B1 ←
√
T .

2: for p = 1, 2, · · · do
3: x← 0, Np ← 0.
4: while x ≤ 1 do
5: r̄x ← 0, nx ← 0, bp ← (Bp/3)

2/3(c log T )1/3L−2/3.
6: while nx ≤ bp or ny ≤ bp do
7: Np ← Np + 1.
8: Pull the least played arm between x and y, and select a random arm if there not exists a

least played arm.
9: Update r̄x, nx, r̄y , ny .

10: if min{r̄x +
√
(c log T )/nx, 1} < max{r̄y −

√
(c log T )/ny, 0} then

11: Break.
12: else if max{r̄x −

√
(c log T )/nx, 0} > max{r̄y −

√
(c log T )/ny, 0} then

13: y ← x, r̄y ← r̄x, ny ← nx.
14: Break.
15: end if
16: end while
17: x← x+ η

√
(c log T )/(nxL2).

18: end while
19: Bp+1 ← Bp log T .
20: end for

D.1 Proof of Theorem 3617

The proof closely mirrors that of Theorem 2. To ease the reading, let c = 5 and η = 1/3. For all618

arms xt ∈ X and all rounds t ∈ [T ], the gap between the mean reward and the expectation could be619

bounded with probability 1− T−1:620

|µ(xt)− r̄xt | ≤

√
5 log T

nxt

,∀t ∈ [T ].

We call this ‘clean event’ E and mainly analyze the regret based on E . For the number of phases ϕ,621

we always have ϕ ≤ O
(

log T
log log T

)
. Notice that the number of total pulls during the phase p,622

Np ≤ 3bpL

√
bp

5 log T
≤ 3(Bp/3)

2/3(5 log T )1/3

√
(Bp/3)2/3(5 log T )1/3

5 log T
= Bp.

Let Rp
S denote the regret for the p-th phase. For the first phase, we have R1

X ≤ N1 ≤ B1 ≤
√
T .623

Then we consider Rp
S , 1 < p ≤ ϕ. For phase p, we consider the best estimate arm y at the start of the624

p-th phase. If x∗
p−1 is discarded in phase p− 1, according to the stop condition of compare strategy,625

we have626

r̄y ≥ µ∗
p−1 −

√
5 log T

ny
−
√

5 log T

nx∗
p−1

≥ µ∗
p−1 − 2

√
5 log T

bp−1
.

For arbitrary discarded arm x, let Rp
x and Np

x denote the accumulated reward and total number of627

pulls during phase p, respectively. Notice that the value of r̄y −
√

(5 log T )/ny is non-decreasing, so628

we have629

Rp
x

Np
x − 1

+

√
5 log T

Np
x − 1

≥ µ∗
p−1 − 2

√
5 log T

bp−1
.

Then we get630

Rp
x ≥ 2Np

x

(
µ∗
p−1 −

√
5 log T

Np
x − 1

−

√
5 log T

bp−1

)
.
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Let Rp
x denote the cumulative regret of playing arm x during phase p, we have631

Rp
x ≤ 2Np

x

(√
5 log T

Np
x − 1

+

√
5 log T

bp−1

)
.

Similarly, the first term from the gap between the expected reward of best estimated arm and the632

selected sub-optimal arm. The second term from the deviation between the best estimated arm and633

optimal expected per-round reward of the (p− 1)-th phase. Recall the set634

Yi = {x ∈ X : 2−i ≤ ∆(x) < 21−i, i ∈ N},

and the definition of zooming dimension635

dz = inf
β≥0

{
|Sj | ≤ O(ϵβ), ϵ = O(2−j),∀j ∈ N

}
.

Pick δ =
(

log2 T
T

) 1
dz+2

, if
√

5 log T
Np

x−1
+
√

5 log T
bp−1

≤ O(δ), then Rp
x ≤ O(δNp

x ). If
√

5 log T
bp−1

> Ω(δ),636

then bp−1 = O(log T )∆−2(x). If
√

5 log T
Np

x−1
> Ω(δ), then Np

x = O(log T )∆−2(x). According the637

stop condition of the compare strategy and the definition of zooming dimension, we have638

Rp
X ≤ δNp +

∑
i:2−i>δ

∑
x∈Yi

Rp
x

≤ δNp +O((log T )2)δdz+1 ≤ δT +O((log T )2)δdz+1

≤ O(T
dz+1
dz+2 (log T )

2
dz+2 ).

Then we have639
ϕ∑

p=1

Rp
X ≤

ϕ∑
p=1

O(T
dz+1
dz+2 (log T )

2
dz+2 ) ≤ Õ(T

dz+1
dz+2 ).

Based on the clean event, we have640

E[RX (T )|E ] ≤
ϕ∑

p=1

Rp
X ≤ Õ(T

dz+1
dz+2 ).

The regret is641

RX (T ) ≤ Õ(T
dz+1
dz+2 )(1− 1/T ) + 1 ≤ Õ(T

dz+1
dz+2 ).

Then we complete the proof.642

E Numerical Results643

Different variances. Keeping other setting of Figure 1(b) unchanged, Figure 4(a-b) present the644

results with different variances. For ξ ∼ N (0, 0.052) (Figure 4(a)), the MBAD algorithm achieves645

140.2% regret of the zooming algorithm. For ξ ∼ N (0, 0.22) (Figure 4(b)), the MBAD algorithm646

achieves 149.5% regret of the zooming algorithm. Overall, our algorithm performs better when the647

variance is small. Note that the algorithm is based on the ‘successive elimination-style’ strategy and648

smaller variances make the algorithm select better arms during comparisons with higher probability.649

Uniform noise distribution. Keeping other setting of Figure 1(b) unchanged, Figure 5(a) presents650

the results with uniform noise distribution. For ξ ∼ U(−0.2, 0.2) (Figure 5(a)), the MBAD algorithm651

achieves 118.1% regret of the zooming algorithm. The results show that our algorithms work robustly652

for different noise distributions.653

Quadratic reward function. We also provide the numerical results for different reward functions.654

Keeping other setting of Figure 1(b) unchanged, Figure 5(b) presents the results with uniform noise655

distribution. For f(x) = 1− 4× (0.5− x)2 (Figure 5(b)), the MBAD algorithm achieves 132.3%656

regret of the zooming algorithm. The results show that our algorithms work robustly for different657

reward functions.658
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Figure 4: Performance comparisons for Gaussian distribution with different variances.
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Figure 5: Performance comparisons for (a) Uniform distribution; (b) Quadratic reward function.

NeurIPS Paper Checklist659

1. Claims660

Question: Do the main claims made in the abstract and introduction accurately reflect the661

paper’s contributions and scope?662

Answer: [Yes]663

Justification: The main claims in the abstract and introduction accurately reflect the paper’s664

contributions and scope as they succinctly outline the problem addressed, the approach taken,665

and the novel insights or advancements achieved within the specified research domain.666

Guidelines:667

• The answer NA means that the abstract and introduction do not include the claims668

made in the paper.669

• The abstract and/or introduction should clearly state the claims made, including the670

contributions made in the paper and important assumptions and limitations. A No or671

NA answer to this question will not be perceived well by the reviewers.672

• The claims made should match theoretical and experimental results, and reflect how673

much the results can be expected to generalize to other settings.674

• It is fine to include aspirational goals as motivation as long as it is clear that these goals675

are not attained by the paper.676

2. Limitations677

Question: Does the paper discuss the limitations of the work performed by the authors?678

21



Answer: [Yes]679

Justification: The paper discusses the limitations of the work in the Conclusion and Discus-680

sion section.681

Guidelines:682

• The answer NA means that the paper has no limitation while the answer No means that683

the paper has limitations, but those are not discussed in the paper.684

• The authors are encouraged to create a separate "Limitations" section in their paper.685

• The paper should point out any strong assumptions and how robust the results are to686

violations of these assumptions (e.g., independence assumptions, noiseless settings,687

model well-specification, asymptotic approximations only holding locally). The authors688

should reflect on how these assumptions might be violated in practice and what the689

implications would be.690

• The authors should reflect on the scope of the claims made, e.g., if the approach was691

only tested on a few datasets or with a few runs. In general, empirical results often692

depend on implicit assumptions, which should be articulated.693

• The authors should reflect on the factors that influence the performance of the approach.694

For example, a facial recognition algorithm may perform poorly when image resolution695

is low or images are taken in low lighting. Or a speech-to-text system might not be696

used reliably to provide closed captions for online lectures because it fails to handle697

technical jargon.698

• The authors should discuss the computational efficiency of the proposed algorithms699

and how they scale with dataset size.700

• If applicable, the authors should discuss possible limitations of their approach to701

address problems of privacy and fairness.702

• While the authors might fear that complete honesty about limitations might be used by703

reviewers as grounds for rejection, a worse outcome might be that reviewers discover704

limitations that aren’t acknowledged in the paper. The authors should use their best705

judgment and recognize that individual actions in favor of transparency play an impor-706

tant role in developing norms that preserve the integrity of the community. Reviewers707

will be specifically instructed to not penalize honesty concerning limitations.708

3. Theory Assumptions and Proofs709

Question: For each theoretical result, does the paper provide the full set of assumptions and710

a complete (and correct) proof?711

Answer: [Yes]712

Justification: Yes, the paper provides the full set of assumptions and delivers complete and713

correct proofs for each theoretical result, ensuring rigor and thoroughness in the presentation714

of mathematical or theoretical findings.715

Guidelines:716

• The answer NA means that the paper does not include theoretical results.717

• All the theorems, formulas, and proofs in the paper should be numbered and cross-718

referenced.719

• All assumptions should be clearly stated or referenced in the statement of any theorems.720

• The proofs can either appear in the main paper or the supplemental material, but if721

they appear in the supplemental material, the authors are encouraged to provide a short722

proof sketch to provide intuition.723

• Inversely, any informal proof provided in the core of the paper should be complemented724

by formal proofs provided in appendix or supplemental material.725

• Theorems and Lemmas that the proof relies upon should be properly referenced.726

4. Experimental Result Reproducibility727

Question: Does the paper fully disclose all the information needed to reproduce the main ex-728

perimental results of the paper to the extent that it affects the main claims and/or conclusions729

of the paper (regardless of whether the code and data are provided or not)?730

Answer: [Yes]731

22



Justification: Yes, the paper provides all the necessary details for anyone to reproduce the732

main experimental results, ensuring transparency and allowing others to validate the claims733

and conclusions independently.734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• If the paper includes experiments, a No answer to this question will not be perceived737

well by the reviewers: Making the paper reproducible is important, regardless of738

whether the code and data are provided or not.739

• If the contribution is a dataset and/or model, the authors should describe the steps taken740

to make their results reproducible or verifiable.741

• Depending on the contribution, reproducibility can be accomplished in various ways.742

For example, if the contribution is a novel architecture, describing the architecture fully743

might suffice, or if the contribution is a specific model and empirical evaluation, it may744

be necessary to either make it possible for others to replicate the model with the same745

dataset, or provide access to the model. In general. releasing code and data is often746

one good way to accomplish this, but reproducibility can also be provided via detailed747

instructions for how to replicate the results, access to a hosted model (e.g., in the case748

of a large language model), releasing of a model checkpoint, or other means that are749

appropriate to the research performed.750

• While NeurIPS does not require releasing code, the conference does require all submis-751

sions to provide some reasonable avenue for reproducibility, which may depend on the752

nature of the contribution. For example753

(a) If the contribution is primarily a new algorithm, the paper should make it clear how754

to reproduce that algorithm.755

(b) If the contribution is primarily a new model architecture, the paper should describe756

the architecture clearly and fully.757

(c) If the contribution is a new model (e.g., a large language model), then there should758

either be a way to access this model for reproducing the results or a way to reproduce759

the model (e.g., with an open-source dataset or instructions for how to construct760

the dataset).761

(d) We recognize that reproducibility may be tricky in some cases, in which case762

authors are welcome to describe the particular way they provide for reproducibility.763

In the case of closed-source models, it may be that access to the model is limited in764

some way (e.g., to registered users), but it should be possible for other researchers765

to have some path to reproducing or verifying the results.766

5. Open access to data and code767

Question: Does the paper provide open access to the data and code, with sufficient instruc-768

tions to faithfully reproduce the main experimental results, as described in supplemental769

material?770

Answer: [No]771

Justification: We plan to release this information after the paper’s publication.772

Guidelines:773

• The answer NA means that paper does not include experiments requiring code.774

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/775

public/guides/CodeSubmissionPolicy) for more details.776

• While we encourage the release of code and data, we understand that this might not be777

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not778

including code, unless this is central to the contribution (e.g., for a new open-source779

benchmark).780

• The instructions should contain the exact command and environment needed to run to781

reproduce the results. See the NeurIPS code and data submission guidelines (https:782

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.783

• The authors should provide instructions on data access and preparation, including how784

to access the raw data, preprocessed data, intermediate data, and generated data, etc.785

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide scripts to reproduce all experimental results for the new786

proposed method and baselines. If only a subset of experiments are reproducible, they787

should state which ones are omitted from the script and why.788

• At submission time, to preserve anonymity, the authors should release anonymized789

versions (if applicable).790

• Providing as much information as possible in supplemental material (appended to the791

paper) is recommended, but including URLs to data and code is permitted.792

6. Experimental Setting/Details793

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-794

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the795

results?796

Answer: [Yes]797

Justification: The paper clearly outlines essential information needed to understand the798

results.799

Guidelines:800

• The answer NA means that the paper does not include experiments.801

• The experimental setting should be presented in the core of the paper to a level of detail802

that is necessary to appreciate the results and make sense of them.803

• The full details can be provided either with the code, in appendix, or as supplemental804

material.805

7. Experiment Statistical Significance806

Question: Does the paper report error bars suitably and correctly defined or other appropriate807

information about the statistical significance of the experiments?808

Answer: [Yes]809

Justification: Yes, the paper appropriately reports error bars and provides correct definitions810

or other relevant information about the statistical significance of the experiments, ensuring811

clarity and accuracy in the interpretation of results.812

Guidelines:813

• The answer NA means that the paper does not include experiments.814

• The authors should answer "Yes" if the results are accompanied by error bars, confi-815

dence intervals, or statistical significance tests, at least for the experiments that support816

the main claims of the paper.817

• The factors of variability that the error bars are capturing should be clearly stated (for818

example, train/test split, initialization, random drawing of some parameter, or overall819

run with given experimental conditions).820

• The method for calculating the error bars should be explained (closed form formula,821

call to a library function, bootstrap, etc.)822

• The assumptions made should be given (e.g., Normally distributed errors).823

• It should be clear whether the error bar is the standard deviation or the standard error824

of the mean.825

• It is OK to report 1-sigma error bars, but one should state it. The authors should826

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis827

of Normality of errors is not verified.828

• For asymmetric distributions, the authors should be careful not to show in tables or829

figures symmetric error bars that would yield results that are out of range (e.g. negative830

error rates).831

• If error bars are reported in tables or plots, The authors should explain in the text how832

they were calculated and reference the corresponding figures or tables in the text.833

8. Experiments Compute Resources834

Question: For each experiment, does the paper provide sufficient information on the com-835

puter resources (type of compute workers, memory, time of execution) needed to reproduce836

the experiments?837

24



Answer: [Yes]838

Justification: The paper gives clear details on the computer resources needed for each839

experiment.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,843

or cloud provider, including relevant memory and storage.844

• The paper should provide the amount of compute required for each of the individual845

experimental runs as well as estimate the total compute.846

• The paper should disclose whether the full research project required more compute847

than the experiments reported in the paper (e.g., preliminary or failed experiments that848

didn’t make it into the paper).849

9. Code Of Ethics850

Question: Does the research conducted in the paper conform, in every respect, with the851

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?852

Answer: [Yes]853

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics in854

all respects, ensuring ethical standards are met throughout the research process.855

Guidelines:856

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.857

• If the authors answer No, they should explain the special circumstances that require a858

deviation from the Code of Ethics.859

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-860

eration due to laws or regulations in their jurisdiction).861

10. Broader Impacts862

Question: Does the paper discuss both potential positive societal impacts and negative863

societal impacts of the work performed?864

Answer: [Yes]865

Justification: The paper discusses societal impacts of the work in the Conclusion and866

Discussion section.867

Guidelines:868

• The answer NA means that there is no societal impact of the work performed.869

• If the authors answer NA or No, they should explain why their work has no societal870

impact or why the paper does not address societal impact.871

• Examples of negative societal impacts include potential malicious or unintended uses872

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations873

(e.g., deployment of technologies that could make decisions that unfairly impact specific874

groups), privacy considerations, and security considerations.875

• The conference expects that many papers will be foundational research and not tied876

to particular applications, let alone deployments. However, if there is a direct path to877

any negative applications, the authors should point it out. For example, it is legitimate878

to point out that an improvement in the quality of generative models could be used to879

generate deepfakes for disinformation. On the other hand, it is not needed to point out880

that a generic algorithm for optimizing neural networks could enable people to train881

models that generate Deepfakes faster.882

• The authors should consider possible harms that could arise when the technology is883

being used as intended and functioning correctly, harms that could arise when the884

technology is being used as intended but gives incorrect results, and harms following885

from (intentional or unintentional) misuse of the technology.886

• If there are negative societal impacts, the authors could also discuss possible mitigation887

strategies (e.g., gated release of models, providing defenses in addition to attacks,888

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from889

feedback over time, improving the efficiency and accessibility of ML).890
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11. Safeguards891

Question: Does the paper describe safeguards that have been put in place for responsible892

release of data or models that have a high risk for misuse (e.g., pretrained language models,893

image generators, or scraped datasets)?894

Answer: [NA]895

Justification: The paper is a theoretical paper and poses no such risks.896

Guidelines:897

• The answer NA means that the paper poses no such risks.898

• Released models that have a high risk for misuse or dual-use should be released with899

necessary safeguards to allow for controlled use of the model, for example by requiring900

that users adhere to usage guidelines or restrictions to access the model or implementing901

safety filters.902

• Datasets that have been scraped from the Internet could pose safety risks. The authors903

should describe how they avoided releasing unsafe images.904

• We recognize that providing effective safeguards is challenging, and many papers do905

not require this, but we encourage authors to take this into account and make a best906

faith effort.907

12. Licenses for existing assets908

Question: Are the creators or original owners of assets (e.g., code, data, models), used in909

the paper, properly credited and are the license and terms of use explicitly mentioned and910

properly respected?911

Answer: [NA]912

Justification: The paper does not use existing assets.913

Guidelines:914

• The answer NA means that the paper does not use existing assets.915

• The authors should cite the original paper that produced the code package or dataset.916

• The authors should state which version of the asset is used and, if possible, include a917

URL.918

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.919

• For scraped data from a particular source (e.g., website), the copyright and terms of920

service of that source should be provided.921

• If assets are released, the license, copyright information, and terms of use in the922

package should be provided. For popular datasets, paperswithcode.com/datasets923

has curated licenses for some datasets. Their licensing guide can help determine the924

license of a dataset.925

• For existing datasets that are re-packaged, both the original license and the license of926

the derived asset (if it has changed) should be provided.927

• If this information is not available online, the authors are encouraged to reach out to928

the asset’s creators.929

13. New Assets930

Question: Are new assets introduced in the paper well documented and is the documentation931

provided alongside the assets?932

Answer: [NA]933

Justification: The paper does not release new assets.934

Guidelines:935

• The answer NA means that the paper does not release new assets.936

• Researchers should communicate the details of the dataset/code/model as part of their937

submissions via structured templates. This includes details about training, license,938

limitations, etc.939

• The paper should discuss whether and how consent was obtained from people whose940

asset is used.941
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• At submission time, remember to anonymize your assets (if applicable). You can either942

create an anonymized URL or include an anonymized zip file.943

14. Crowdsourcing and Research with Human Subjects944

Question: For crowdsourcing experiments and research with human subjects, does the paper945

include the full text of instructions given to participants and screenshots, if applicable, as946

well as details about compensation (if any)?947

Answer: [NA]948

Justification: The paper does not involve crowdsourcing nor research with human subjects.949

Guidelines:950

• The answer NA means that the paper does not involve crowdsourcing nor research with951

human subjects.952

• Including this information in the supplemental material is fine, but if the main contribu-953

tion of the paper involves human subjects, then as much detail as possible should be954

included in the main paper.955

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,956

or other labor should be paid at least the minimum wage in the country of the data957

collector.958

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human959

Subjects960

Question: Does the paper describe potential risks incurred by study participants, whether961

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)962

approvals (or an equivalent approval/review based on the requirements of your country or963

institution) were obtained?964

Answer: [NA]965

Justification: The paper does not involve crowdsourcing nor research with human subjects.966

Guidelines:967

• The answer NA means that the paper does not involve crowdsourcing nor research with968

human subjects.969

• Depending on the country in which research is conducted, IRB approval (or equivalent)970

may be required for any human subjects research. If you obtained IRB approval, you971

should clearly state this in the paper.972

• We recognize that the procedures for this may vary significantly between institutions973

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the974

guidelines for their institution.975

• For initial submissions, do not include any information that would break anonymity (if976

applicable), such as the institution conducting the review.977
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