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Abstract

Extracting semantic topics from short texts001
presents a significant challenge in the field of002
data mining. While efforts have been made to003
mitigate data sparsity issue, the limited length004
of short documents also results in the absence005
of semantically relevant words, causing biased006
evidence lower bound and incomplete labels007
for likelihood maximization. We refer to this008
issue as the label sparsity problem. To com-009
bat this problem, we propose kNNTM, a neu-010
ral short text topic model that incorporates a011
k-Nearest-Neighbor-based label completion al-012
gorithm by augmenting the reconstruction la-013
bel with k nearest documents to complement014
these relevant but unobserved words. Further-015
more, seeking a precise reflection of distances016
between documents, we propose a fused multi-017
view distances metric that takes both local word018
similarities and global topic semantics into con-019
sideration. Extensive experiments on multiple020
public short-text datasets show that kNNTM021
model outperforms the state-of-the-art baseline022
models and can derive both high-quality topics023
and document representations.024

1 Introduction025

Depiste the success of topic models in numer-026

ous NLP tasks (Boyd-Graber et al., 2017) for un-027

covering the underlying semantic concepts (Blei028

et al., 2003), traditional topic models often suf-029

fer from poor performances when applied to short030

text contents, e.g., social media posts and news031

headlines (Yan et al., 2013). This deficiency can032

be attributed to the lack of word co-occurrence in-033

formation due to the limited length for a single034

short document, known as the data sparsity prob-035

lem (Murshed et al., 2022).036

Many topic models have been developed to over-037

come the data sparsity issue. The Dirichlet Multino-038

mial Mixture (DMM) model (Yin and Wang, 2014;039

Li et al., 2016, 2017) constraints that each short040

text is generated by a single topic. Biterm Topic041
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Figure 1: A motivating example of label sparsity issue
in short text topic modeling and kNN-based label com-
pletion of the unobserved words.

Model (Yan et al., 2013; Cheng et al., 2014) utilizes 042

the rich corpus-level word co-occurrence patterns 043

for inferring topics. And some works (Mehrotra 044

et al., 2013; Quan et al., 2015; Zuo et al., 2016) ag- 045

gregate semantically similar texts into long pseudo- 046

documents. Recently, with the developments of 047

neural topic models (NTMs) (Srivastava and Sut- 048

ton, 2017), there are also attempts to mitigate the 049

data sparsity issue by utilizing biterm graph (Zhu 050

et al., 2018) and topic quantization techniques (Wu 051

et al., 2020, 2022). 052

Though these above works have achieved good 053

performances and mitigated the data sparsity issue 054

to some extent, there are still problems that they 055

ignore. Under the variational autoencoding frame- 056

work, current mainstream NTMs are optimized 057

by the maximum likelihood objective, which is 058

achieved by maximizing the evidence lower bound 059

(ELBO). However, the limited length of short texts 060

results that only a few words get described in a 061

document, while many other semantically relevant 062

words remain unobserved (Zhang and Lauw, 2022). 063

As shown in the motivating example in Figure 1, 064

the document in the center talks about CPU chips 065

and contains words like ’chip’ and ’intel’. How- 066

ever, many semantically related words like ’core’, 067

’processor’, and ’cpu’ remain uncovered. Such ’in- 068

complete’ short documents will lead to a biased 069
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evidence lower bound as the possibilities of those070

unobserved but relevant words are completely ig-071

nored, resulting in a sub-optima optimization of072

the maximum likelihood. To be more specific, the073

absence of these relevant words leads to an incom-074

plete target for the reconstruction objective during075

variational autoencoding, which makes the prob-076

abilities of the absent words get inappropriately077

suppressed and results in biased training signals.078

This problem, different from the data sparsity prob-079

lem of the input data, is referred to as the label080

sparsity problem in this paper.081

Inspired by the above observation, we propose082

to explicitly augment the reconstruction target083

in short text NTM with semantically related words084

to provide unbiased training signals. One direct085

approach to derive these words is to leverage the086

similarities between pre-trained word embeddings.087

However, word embeddings trained with general088

corpora may not capture the word co-occurrence089

patterns from a specific domain. Moreover, simply090

relying on word similarities ignores the context in-091

formation on the document level. In this paper, we092

propose kNNTM, a short text topic modeling frame-093

work, which incorporates a k-Nearest-Neighbor-094

based label completion algorithm by aggregat-095

ing k documents semantically closest to the tar-096

get document to augment its reconstruction label.097

As illustrated in Figure 1, documents with seman-098

tically relevant words are retrieved by k-nearest099

neighbor searching, and the label distribution gets100

augmented by complementing the probabilities of101

originally unobserved words. The kNN approach102

is shown to be effective in multiple fields for in-103

formation supplementation and data completion,104

like machine translation (Khandelwal et al., 2021),105

healthcare prediction (Zhang et al., 2021), and com-106

puter vision (Yu et al., 2021). In our scenario of107

short text topic modeling, aggregating k nearest108

documents for label completion helps to make full109

use of the word co-occurrence information and doc-110

ument relations from the original dataset.111

However, one remaining challenge of the kNN-112

based label completion is to seek a proper dis-113

tance metric that could precisely reflect the similar-114

ities between short documents with scarce context.115

A good metric should reflect both the word-level116

similarities and the global semantic resemblance.117

Therefore, we propose a multi-view distance metric118

by fusing the distances from the input space and the119

semantic space to leverage both local and global120

similarities information. The distance metric in121

the input space depicts the local word similarity, 122

which is defined with the optimal transport distance 123

between bag-of-words distributions, with cost func- 124

tions built upon word similarities from both general 125

corpora and the specific dataset. And the metric 126

in the hidden space reflects the global semantic 127

resemblance, which is defined through the lens 128

of topic semantics with the similarities between 129

document-topic distributions. With the fused multi- 130

view distance metric, we can take various factors 131

into account when evaluating the distances between 132

documents, and provide a reasonable distance met- 133

ric for the kNN algorithm. 134

Our contributions are summarized as follows: 135

• We identify the label sparsity problem in short 136

text neural topic modeling, and propose a novel 137

topic modeling framework, kNNTM, to combat 138

this issue by a kNN-based label completion algo- 139

rithm with similar document aggregation. 140

• We propose a fused multi-view distance metric 141

that takes both global and local semantic similar- 142

ities into consideration to support the kNN label 143

completion algorithm. 144

• Extensive experiments are conducted on three 145

short text datasets, and both quantitative and qual- 146

itative results demonstrate that kNNTM outper- 147

forms state-of-the-art baselines, and could gener- 148

ate high-quality topics and meaningful document 149

representations. 150

2 Related Works 151

Neural Topic Modeling With the recent develop- 152

ments of neural variational inference (Kingma and 153

Welling, 2014; Rezende et al., 2014), many neu- 154

ral topic models (NTMs) are proposed for higher 155

scalability and easier inference. NVDM (Miao 156

et al., 2016) and ProdLDA (Srivastava and Sutton, 157

2017) are two representative works, which lever- 158

age Gaussian and logistic normal distribution as 159

approximations of the Dirichlet prior. And many 160

subsequent NTMs have been investigated. Some 161

focus on improving the encoder network, e.g., 162

recurrent networks (Rezaee and Ferraro, 2020), 163

graph neural networks (Yang et al., 2020; Xie 164

et al., 2021). Some works aim for a better ap- 165

proximation of the Dirichlet prior, e.g., Wasser- 166

stein autoencoders (Nan et al., 2019), reject sam- 167

pling (Burkhardt and Kramer, 2019), and Weibull 168

distribution (Zhang et al., 2018). Some works at- 169

tempt to find new training paradigms, e.g., adver- 170

sarial training (Wang et al., 2019, 2020; Hu et al., 171
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2020), and optimal transport (Zhao et al., 2021;172

Wang et al., 2022). The most recent work of NTM173

to the best of our knowledge is ECRTM (Wu et al.,174

2023), which incorporates an embedding clustering175

regularization on the topic and word embeddings.176

Despite their success in modeling topics on normal177

long texts, these works still suffer from the sparsity178

issue of short texts.179

Topic Models for Short Text Conventional short180

text topic models can be mainly categorized into181

three classes. The Dirichlet Multinomial Mixture182

(DMM) models (Yin and Wang, 2014; Li et al.,183

2016, 2017) assume that each short text is gen-184

erated by a single topic, thus reducing the com-185

plexity for topic inference. Biterm Topic Model186

(BTM) (Yan et al., 2013; Cheng et al., 2014) uti-187

lizes the rich corpus-level word co-occurrence pat-188

terns and splits the entire dataset into numerous189

biterms. Self-aggregation models (Mehrotra et al.,190

2013; Quan et al., 2015; Zuo et al., 2016) tend to191

aggregate semantically similar short text into long192

pseudo-documents to infer topics.193

Another line of research focuses on neural194

topic modeling for short texts. GraphBTM (Zhu195

et al., 2018) generalizes the BTM model and per-196

forms variation autoencoding on biterm graph from197

randomly-sampled mini-corpus. NQTM (Wu et al.,198

2020) shares similar insights with DMM and quan-199

tizes document-topic distributions to obtain peakier200

distributions. And the TSCTM model (Wu et al.,201

2022) further improves upon NQTM by introduc-202

ing a contrastive loss on quantized distributions.203

MCTM (Zhang and Lauw, 2022) focuses on short204

texts in the variable-length corpus and learns a se-205

mantics predictor based on long documents within206

the corpus. However, current neural topic models207

for short text mainly focus on mitigating the data208

sparsity problem from the input side, yet ignore the209

insufficient training signals for the reconstruction210

objective, namely the label sparsity issue, brought211

by the limited length of a single document.212

3 Methodology213

3.1 Problem Formulation214

Consider a corpus D with ND documents,215

where each document d contains Nd words216

{xd1 , . . . , xdNd
} belonging to a vocabulary of size217

V . The target is to discover K topics from the218

corpus. Each topic is defined as a distribution219

βk ∈ ∆V over the words in the vocabulary, namely220

the topic-word distribution. Meanwhile, for each221

input document, the model should also infer a dis- 222

tribution over the topics, i.e., the document-topic 223

distribution, denoted as θ ∈ ∆K . 224

3.2 Model Architecture 225

We choose the Quantization Topic Model 226

(QTM) (Wu et al., 2020, 2022), as the basic model 227

architecture for kNNTM. QTM is a VAE-based 228

neural topic model that quantizes topic represen- 229

tations for peakier topic distributions. Here we 230

briefly introduce the model architecture. For more 231

detailed implementations, please refer to the origi- 232

nal paper (Wu et al., 2020). 233

3.2.1 Text encoder 234

The text encoder takes document d in the form of 235

bag-of-words as the input xd, and produces cor- 236

responding hidden topic representation hd ∈ RK , 237

and the topic representation is further normalized 238

into a probability simplex to obtain the document- 239

topic distribution θd ∈ ∆K by a softmax function 240

θd = softmax
(
hd

)
. 241

3.2.2 Topic Quantization 242

The document-topic distributions is further quan- 243

tized to alleviate the data sparsity problem, The 244

quantized distribution is defined as 245

θdq = ek, where k = argminj

∥∥∥θd − ej

∥∥∥
2
, (1) 246

where e = (e1, e2, ..., eK) ∈ RK×K are K pre- 247

set quantization prototypes. These prototypes are 248

initialized as different one-hot vectors and get opti- 249

mized during training. 250

3.2.3 Decoder and Objective Function 251

The decoder network consists of topic-word dis- 252

tributions β, and tries to reconstruct the observed 253

texts with the quantized distributions Let xd denote 254

the bag-of-words form of a document d, then the 255

reconstruction objective for topic models is 256

LRECON

(
xd

)
= −xd⊤ log

(
softmax

(
βθdq

))
.

(2) 257

Besides the reconstruction loss, the QTM lever- 258

ages a regularizer constraining the distances be- 259

tween original and quantized distributions, 260

LREG(θ
d) =

∥∥∥sg(θd)− θdq

∥∥∥
2
+ λ

∥∥∥sg(θdq )− θd
∥∥∥
2
,

(3) 261
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Figure 2: The overall structure of kNNTM. The left side is the model architecture including encoding, quantization,
and decoding. The right side is the kNN-based label completion module with a fused multi-view distance metric.

where sg(·) is a stop gradient operation, and λ is262

set to 0.1 following (Wu et al., 2020, 2022). The263

final objective function for the model is264

LTM(xd) = LRECON(x
d) + LREG(θ

d) (4)265

3.3 kNN-based Label Completion266

The core difference between kNNTM and other267

neural topic models is the kNN-based label com-268

pletion module. As discussed in the Introduction269

and Figure 1, short text modeling faces the la-270

bel sparsity problem. The limited length of short271

texts makes some semantically related words un-272

observed in the short document. The probabilities273

of these words are ignored and lead to a biased274

evidence lower bound during optimization. When275

optimizing the neural topic model with LTM, the276

probabilities of the observed words get encouraged,277

while the probabilities of those unobserved but278

relevant words get discouraged as the predicted279

probability vector get normalized by the softmax280

function, leading to biased training signal and sub-281

optimal optimization. Therefore, a label comple-282

tion module is needed to derive the hidden relevant283

words and construct an unbiased label for the re-284

construction objective.285

Motivated by the above thoughts, we propose the286

kNN-based label completion algorithm. Given a287

document xd, we find its nk nearest neighbors with288

a distance metric, dist(·, ·) (we leave the design of289

the metric to the next section). The set of nk nearest290

neighbors is denoted asNxd , and the reconstruction291

label is augmented with a coefficient α as292

x̃d = xd + α ∗ 1

nk

∑
xj∈Nxd

xj . (5)293

3.4 Fused Multi-View Distance Metric294

To perform an effective kNN algorithm, a reliable295

distance metric is required to precisely measure296

the similarities between short documents. Here we 297

propose a fused multi-view distance, which fuses 298

distances from both the input BoW space and hid- 299

den topical semantic space and takes information 300

from both local word-level relations and global 301

topic-level similarities. 302

3.4.1 Distance from the Input Space 303

As the original form of the input document, the bag- 304

of-word vectors naturally contain the information 305

for evaluating the distances between documents. 306

However, directly comparing the bag-of-word vec- 307

tors would result in a bad distance metric, as the 308

hidden semantic relations between words are not 309

explored. Documents with different but highly rele- 310

vant word sets would be considered dissimilar with- 311

out considering the hidden relation between words. 312

Therefore, we propose to evaluate the distance 313

between two bag-of-words vectors with a word 314

semantic-based optimal transport (OT) distance. 315

Firstly we introduce the OT distance between two 316

probability vectors a ∈ ∆Da
and b ∈ ∆Db

, which 317

is defined as: 318

distOT
M (a, b) := min

γ∈U(a,b)
⟨γ,M⟩, (6) 319

where ⟨·, ·⟩ denotes the Frobenius dot-product, 320

U(a, b) denotes the transport polytope of a and b, 321

U(a, b) := {γ ∈ RDa×Db

+ | γ1 = a, γ⊤1 = b}, 322

and M ∈ RDa×Db

≥0 is a cost matrix indicating the 323

transportation cost between probability vectors. 324

Therefore, with an appropriate cost matrix M ∈ 325

RV×V
≥0 depicting the semantic similarities between 326

words, the OT distances will become a suitable dis- 327

tance metric for gauging the distance between two 328

bag-of-words vectors, namely distOT
M (x̂di , x̂dj ), 329

where x̂d is the normalized bag-of-words vector. 330

We propose two perspectives to build cost matrix 331

M. The first aspect is to leverage the word embed- 332

dings pre-trained with general corpora. The cosine 333
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similarities between pre-trained word embeddings334

have been proven to be highly effective in reflect-335

ing the semantic similarities between words. The336

cost matrix is built as337

Mcos
i,j = (1.0− scos (wi, wj)) ∗ 0.5, (7)338

where scos(·) is the cosine similarity function, and339

wi is the i-th word in the vocabulary.340

Though effective, word embeddings pre-trained341

with general corpora may not be able to capture the342

co-occurrence patterns in a specific domain. Hence,343

we propose another way to build the cost matrix M344

with the word co-occurrences of the current corpus.345

Concretely, the cost matrix is built as346

Mcoo
i,j = 1.0− (p(wi|wj) + p(wj |wi)) /2, (8)347

where p(wi|wj) is the conditional probability of348

word wi given wj , and is calculated as p(wi|wj) =349

df(wi, wj)/df(wj), where df(wi, wj) is the fre-350

quency that the word wi and wj co-occur.351

Finally, to leverage both the rich information352

from general corpora and specific patterns from the353

current dataset, we fuse the two OT distances to354

formulate the distance from input space as:355

distBoW(xdi , xdj ) = ρ ∗ distOT
Mcos(x̂di , x̂dj )

+ (1.0− ρ) ∗ distOT
Mcoo(x̂di , x̂dj ).

(9)356

where ρ is a fusing hyper-parameter.357

3.4.2 Distance from the Semantic Space358

Besides the bag-of-words vector, the topic distri-359

bution for each document is also an effective se-360

mantic representation of documents. The metric361

defined on the bag-of-words vectors mainly utilizes362

local word-level similarities, whereas the metric363

defined on the topic distributions can depict se-364

mantic distances between documents from a global365

view, since the topics reveal the hidden semantic366

structures of the entire corpus. Incorporating the367

metric defined on topic distributions would encour-368

age topically similar documents to fall into the369

neighborhood of the target document.370

However, one important problem is that the371

document-topic distributions keep evolving during372

training and cannot be pre-computed beforehand. It373

is also impractical to go through the entire dataset374

to compute the distributions whenever the near-375

est neighbors are needed due to excessively high376

time costs. Therefore, we maintain a memory bank377

{m1, ...mND
}, to store the most recent document-378

topic distributions. Entries within the memory bank379

get updated every time the document-topic distri- 380

bution are computed during training, 381

md = θdt , (10) 382

where θdt is the document-topic distribution for doc- 383

ument d computed in the t-th iteration during train- 384

ing. And the distance from the topical semantic 385

space is defined as 386

distTopic(xdi , xdj ) = ∥θdi −mdj∥2. (11) 387

3.4.3 Multi-View Distance Fusion 388

To get a balanced distance metric considering 389

both similarities in the BoW and the topic spaces, 390

we fuse the above two distances with a hyper- 391

parameter η as 392

distFuse(xdi , xdj ) = η ∗ distTopic(xdi , xdj )
+ (1.0− η) ∗ distBoW(xdi , xdj ).

(12) 393

3.5 Training Procedure and Objective 394

To stabilize the training process, we adopt a two- 395

phase training strategy. We first pre-train the topic 396

model with the objective in Eq.4 without label 397

augmentation for P epochs to get more accurate 398

document-topic distributions for distance calcula- 399

tion. After pre-training, we use the augmented 400

label from Eq.5 for the reconstruction loss, 401

LkNN(x
d) = −x̃d⊤ log

(
softmax(βθdq )

)
. (13) 402

and the final training objective is 403

LkNNTM(xd) = LkNN(x
d) + LREG(θ

d). (14) 404

The overall structure of kNNTM is shown in 405

Fig.2, and we provide the detailed training proce- 406

dure in the Algorithm 1 in Appendix A. 407

4 Experiment Settings 408

4.1 Datasets 409

In the experiments, we use three public benchmark 410

short text datasets: 1) GoogleNews with titles of 411

over 10,000 news articles categorized into 152 clus- 412

ters, 2) Snippet consisting of over 10,000 web 413

search results across 8 domains, 3) StackOverflow 414

with 20,000 question titles from 20 different tags. 415

We utilized the aforementioned datasets pro- 416

vided by the STTM library1 (Qiang et al., 2020). 417

Additionally, we further filter out words with a fre- 418

quency below 3 and documents with a length less 419

than 2. Please refer to Appendix B.1 for the de- 420

tailed statistics for each dataset after preprocessing. 421

1https://github.com/qiang2100/STTM
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4.2 Baseline Methods422

We compare our model with the following state-of-423

the-art baselines: prodLDA (Srivastava and Sutton,424

2017), a prominent work of NTM with black-box425

neural variational inference; WLDA (Nan et al.,426

2019), a NTM with the Wasserstein autoencoder427

framework; ECRTM (Wu et al., 2023), a NTM428

with an topic embedding clustering regularization,429

which is the state-of-the-art NTM for normal long430

documents; NQTM (Wu et al., 2020), a neural431

short text topic model with topic distribution quanti-432

zation and negative sampling; MCTM (Zhang and433

Lauw, 2022), a NTM that predicts missing seman-434

tics for short documents based on other long doc-435

uments in variable-length corpora; TSCTM (Wu436

et al., 2022), a state-of-the-art short text neural437

topic model based on NQTM with a contrastive438

objective on quantized distributions.439

4.3 Implementation Datails440

We follow the settings for hyper-parameters shared441

with (Wu et al., 2022), including learning rate,442

batch size, epoch number, etc. And for hyper-443

parameters exclusive to our method, we conduct444

grid search to determine the optimal values. Please445

refer to Appendix B.3 for detailed settings.446

5 Experimental Results447

We evaluate the topic models from two perspec-448

tives: topic-word distribution and document-topic449

distribution. For the former, we assess the quality450

of topics based on coherence and diversity. Re-451

garding the latter, we utilize the performances from452

the clustering task as previous studies (Zhao et al.,453

2021; Wang et al., 2022). To verify models’ effec-454

tiveness under different topic numbers, following455

previous work (Wu et al., 2022), we conducted456

experiments under 50 and 100 topics, respectively.457

5.1 Topic Quality458

Metric Following previous work in topic mod-459

eling (Dieng et al., 2020; Wu et al., 2022), we460

evaluate the quality of learned topics from two per-461

spectives, Topic Coherence and Topic Diversity.462

For topic coherence, we adopt a widely-used463

coherence metric, CV (Röder et al., 2015), which is464

shown to be better than other coherence metrics like465

UMASS (Mimno et al., 2011) and NPMI (Aletras466

and Stevenson, 2013) and have been adopted by467

many works in short text topic modeling (Wu et al.,468

2020; Wang et al., 2021; Wu et al., 2022). We use469

the well-adopted library Palmetto2 to compute CV 470

with Wikipedia texts as the reference corpus. For 471

topic diversity, we employ the Topic Uniqueness 472

(TU ) for evaluation (Nan et al., 2019; Dieng et al., 473

2020). which is defined as the proportion of unique 474

words among all the topical words. 475

Moreover, as pointed out in (Wu et al., 2020), 476

there exists a trade-off relation between the coher- 477

ence and diversity metrics. Higher TU scores tend 478

to cause lower CV scores and vice versa. To pro- 479

vide a more comprehensive metric for topic quality, 480

following previous work (Dieng et al., 2020), we 481

adopt the Topic Quality (TQ) metric as the product 482

of the topic diversity and coherence score, 483

TQ = CV ∗ TU. (15) 484

We take the top 15 words with the highest proba- 485

bilities of each topic for the aforementioned metrics 486

following (Wu et al., 2022). 487

Results The results are shown in Table 1. From 488

the results, we could find that our kNNTM model 489

outperforms or achieves compatible performances 490

with the start-of-the-art baselines, which proves 491

the existence of the label sparsity problem and the 492

effectiveness of our solution. We can find the kN- 493

NTM achieves high TU scores under many set- 494

tings, which indicates that labels augmented by 495

multiple documents bring more diverse information 496

for topic optimization. Furthermore, in terms of 497

the comprehensive evaluation metric, Topic Quality 498

(TQ), kNNTM outperforms the baseline models in 499

four distinct settings and attains comparable results 500

in the remaining two scenarios. This underscores 501

the capability of our model to effectively strike a 502

balance between topic coherence and diversity, re- 503

sulting in the extraction of high-quality topics that 504

exhibit both coherence and diversity. 505

It is worth noting that MCTM model achieves 506

the highest CV scores under almost every setting, 507

whereas its TU scores are notably diminished. This 508

indicates that a set of coherent words frequently 509

repeats across MCTM’s topics. Therefore, in spite 510

of some coherent topics being discovered, many 511

of those are repetitive and uninformative, hence 512

making its TU and TQ scores hardly comparable 513

with other methods. 514

5.2 Text Clustering 515

Metric To evaluate the quality of document-topic 516

distributions, we leverage the short text clustering 517

2https://github.com/dice-group/Palmetto
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Model prodLDA WLDA ECRTM NQTM MCTM TSCTM kNNTM

GoogleNews

K = 50

CV 0.313±0.008 0.305±0.008 0.302±0.003 0.300±0.002 0.361±0.011 0.313±0.002 0.312±0.004
TU 0.936±0.022 0.882±0.012 0.876±0.050 0.972±0.003 0.556±0.026 0.996±0.003 0.995±0.004
TQ 0.294±0.013 0.269±0.008 0.265±0.016 0.312±0.004 0.201±0.004 0.312±0.004 0.311±0.002

top-Purity 0.333±0.016 0.388±0.023 0.521±0.032 0.393±0.015 0.262±0.019 0.570±0.019 0.581±0.008
top-NMI 0.372±0.007 0.621±0.013 0.773±0.017 0.634±0.008 0.486±0.010 0.773±0.013 0.799±0.004

K = 100

CV 0.322±0.006 0.308±0.007 0.304±0.005 0.302±0.003 0.356±0.002 0.302±0.006 0.305±0.007
TU 0.786±0.019 0.662±0.012 0.923±0.036 0.943±0.018 0.614±0.081 0.971±0.003 0.980±0.004
TQ 0.252±0.009 0.204±0.004 0.280±0.009 0.285±0.006 0.219±0.030 0.293±0.005 0.299±0.006

top-Purity 0.366±0.007 0.484±0.011 0.333±0.083 0.567±0.030 0.180±0.049 0.766±0.007 0.786±0.007
top-NMI 0.382±0.003 0.676±0.007 0.547±0.067 0.712±0.012 0.397±0.059 0.842±0.004 0.868±0.002

Snippet

K = 50

CV 0.349±0.003 0.329±0.008 0.322±0.003 0.339±0.011 0.352±0.026 0.348±0.007 0.366±0.004
TU 0.987±0.003 0.848±0.033 0.981±0.005 0.974±0.007 0.750±0.028 0.994±0.002 0.998±0.002
TQ 0.345±0.003 0.279±0.004 0.316±0.004 0.331±0.012 0.264±0.019 0.346±0.006 0.365±0.004

top-Purity 0.503±0.017 0.586±0.026 0.751±0.015 0.630±0.026 0.443±0.008 0.712±0.009 0.762±0.007
top-NMI 0.172±0.008 0.273±0.010 0.444±0.008 0.302±0.016 0.177±0.015 0.381±0.010 0.427±0.006

K = 100

CV 0.327±0.007 0.326±0.006 0.320±0.011 0.309±0.006 0.355±0.013 0.329±0.004 0.341±0.006
TU 0.950±0.001 0.669±0.006 0.981±0.017 0.928±0.005 0.581±0.045 0.948±0.003 0.979±0.002
TQ 0.310±0.006 0.218±0.004 0.314±0.010 0.286±0.007 0.206±0.009 0.312±0.003 0.334±0.006

top-Purity 0.477±0.005 0.635±0.005 0.392±0.092 0.682±0.005 0.421±0.026 0.759±0.009 0.819±0.005
top-NMI 0.132±0.002 0.298±0.003 0.241±0.076 0.325±0.004 0.157±0.013 0.387±0.005 0.436±0.001

StackOverflow

K = 50

CV 0.259±0.001 0.279±0.005 0.284±0.016 0.268±0.004 0.320±0.003 0.284±0.002 0.284±0.006
TU 0.865±0.009 0.804±0.025 0.924±0.023 0.915±0.003 0.492±0.009 0.952±0.004 0.950±0.007
TQ 0.224±0.002 0.224±0.003 0.262±0.009 0.245±0.003 0.158±0.004 0.271±0.003 0.269±0.006

top-Purity 0.227±0.003 0.443±0.003 0.319±0.024 0.433±0.035 0.290±0.019 0.576±0.007 0.607±0.010
top-NMI 0.074±0.002 0.296±0.001 0.258±0.014 0.298±0.029 0.280±0.013 0.423±0.007 0.463±0.004

K = 100

CV 0.253±0.002 0.283±0.008 0.266±0.002 0.276±0.004 0.307±0.012 0.273±0.005 0.264±0.002
TU 0.672±0.011 0.615±0.033 0.801±0.033 0.795±0.007 0.586±0.003 0.808±0.012 0.833±0.002
TQ 0.170±0.004 0.174±0.001 0.216±0.010 0.210±0.003 0.180±0.006 0.220±0.007 0.220±0.002

top-Purity 0.167±0.005 0.406±0.008 0.099±0.002 0.467±0.038 0.281±0.008 0.571±0.010 0.616±0.014
top-NMI 0.046±0.003 0.267±0.006 0.086±0.004 0.308±0.029 0.273±0.001 0.393±0.003 0.440±0.010

Table 1: The results for metrics of topic quality and text clustering on three datasets under 50 and 100 topics. The
best-performing method is highlighted in bold and the second best method is underlined. We run each model 3
times with different random seeds and report the mean the standard deviation.

task following (Wang et al., 2022; Wu et al., 2022),518

and report the Purity and Normalized Mutual Infor-519

mation (NMI) (Schütze et al., 2008), where docu-520

ment labels are used during evaluation. Specifically,521

to compute Purity and NMI, following previous522

works (Zhao et al., 2021; Wu et al., 2022), we di-523

rectly take the most significant topic as the cluster524

assignment for each document, and the metrics are525

denoted as top-Purity and top-NMI. Moreover,526

we also calculate the results with the cluster assign-527

ments from K-Means algorithm, which could be528

found in Appendix D.529

Results We report the results of text clustering530

Table 1. From the results, we can find out that531

the kNNTM model consistently outperforms all532

baseline models under almost every setting. The533

performances indicate that kNNTM can infer high-534

quality document-topic distributions which accu-535

rately reflect the semantics of documents.536

5.3 Ablation Studies537

To analyze the effects of different modules of kN-538

NTM, we compare kNNTM with its following539

variants: 1) kNNTM-w/o-kNN: kNNTM without540

Methods CV TU TQ top-Purity top-NMI

kNNTM 0.341 0.979 0.334 0.819 0.436

w/o-kNN 0.323 0.947 0.306 0.753 0.385
w/o-Topic 0.340 0.967 0.328 0.809 0.427
w/o-BoW 0.320 0.986 0.315 0.799 0.420
w/-sim 0.343 0.969 0.332 0.793 0.413

Table 2: Ablation Studies on Snippet Dataset.

kNN label completion module, degenerating to the 541

basic QTM model. 2) kNNTM-w/o-Topic: kN- 542

NTM with a distance metric without considering 543

distances from the hidden topic space. 3) kNNTM- 544

w/o-BoW: kNNTM with a distance metric with- 545

out considering the distances from the input BoW 546

space. 4) kNNTM-w/-sim: kNNTM without kNN 547

algorithm, and complementing labels directly with 548

words based on pre-trained word embeddings. 549

The ablation studies are conducted on the Snip- 550

pet dataset under 100 topics. The results are re- 551

ported in Table 2, and the standard deviations are 552

shown in Appendix Table 7 due to space limit. The 553

effectiveness of the kNN label completion mod- 554

ule is proved by the improvement from kNNTM- 555

w/o-kNN to the original kNNTM. The decreases 556

in kNNTM-w/o-Topic and kNNTM-w/o-BoW in- 557
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Figure 3: Sensitivity analysis on neighbor number nk.
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Figure 4: Sensitivity analysis on the coefficient α.

dicate the importance of both views in the fused558

distance metric. Moreover, while CV sightly in-559

creases on kNNTM-w/-sim, the decreases of the560

performances on TU , TQ, and text clustering met-561

rics indicate the kNN-based completion method562

would lead to higher topic quality and better topic563

distributions as it can better utilize the word pat-564

terns from current dataset.565

5.4 Sensitivity Analysis566

We conduct sensitivity analysis on two important567

hyper-parameters of kNNTM, the number of aggre-568

gated neighbors nk, and the coefficient α balancing569

the original label and the augmented label.570

As shown in Figure 3, as nk gradually increases,571

the coherence score CV and the overall topic qual-572

ity TQ increase initially and then decline when nk573

gets too large. A similar phenomenon can be found574

on those metrics about text clustering, but the TU575

score keeps increasing. The reason might be that576

increasing nk will bring more diverse documents577

during label completion and further increase the578

diversity of learned topics. But more diverse doc-579

uments will introduce more noisy words that are580

unrelated to the current document, and finally de-581

grades the overall performance of the topic model.582

For the coefficient α, a similar phenomenon583

could be found in Figure 4. As α increases, the584

training objective of the model puts more atten-585

tion on the retrieved neighbor documents, whereas586

it can dominate the probabilities of the original587

documents once α gets too large, which can also588

degrade the model performance.589

Models Topic Word Examples

prodLDA

pentium amd intel chip athlon core processors processor
disney walt newsgroups drama graduation quotations usenet time
hiv aids boxing prevention horse racing goalkeeper epidemic
academy nuclear oscar awards weapons weapon military award

WLDA

medical treatment hospital care surgery health mental patient
wikipedia wiki encyclopedia psychological commercial natural simple law
wikipedia wiki encyclopedia disambiguation participants retrieved article literally
tickets paris french tennis inventory roland garros france

ECRTM

wikipedia wiki retrieved encyclopedia real-time simple aesthetics meanings
hiv prevention cdc aids respiratory nida resp nanotechnology
duo pentium athlon amd processor itanium cores cpu
naval commander navy weapons nuclear carlisle force fleet

NQTM

memory upgrade upgrades virtual ddr machine ram cache
income tax salary interview effective monster skills mobile
force navy air mil military units fleet personnel
film producer encyclopedia wiki wikipedia rugby consisting states

MCTM

ucsd physicist physics mathematics sociology astrophysics anthropology
physics aesthetics sociology anthropology mathematics physicist astrophysics
astrophysics physicist predicting predictions discoveries eia gsfc geophysics
physics economics movies pentium ucsd aesthetics bollywood astrophysics

TSCTM

academy awards oscar winners nominees annual oscars award
duo processor anandtech core intel imac xeon chips
navy commander force mil fleet military naval air
physics theoretical quantum particle solid mechanics reasoning quant

kNNTM

intel duo itanium chip imac xeon core processor
navy mil commander force corps naval nuclear fleet
hiv aids unaids prevention ucsf aidsinfo influenza epidemic
academy winners nominees annual awards oscar nominee oscars

Table 3: Visualization of topics learned by different
methods on Snippet dataset.

5.5 Topic Visualization 590

For qualitative evaluations of topics, we show the 591

examples of topic words yielded by different base- 592

lines and our kNNTM model on the Snippet dataset 593

in Table 3. We can observe that baseline models 594

with lower TU , such as WLDA and MCTM, gen- 595

erate some repetitive topics with repeated words, 596

such as "wikipedia", "encyclopedia", "physics", 597

"physicist" and "astrophysics". Such repetitive sets 598

of coherent words will lead to abnormally high re- 599

sults on CV scores, making it unfair to compare 600

with other methods. However, we can see that kN- 601

NTM only generates a single coherent topic for 602

each corresponding topic and its topic quality is 603

apparently higher. 604

6 Conclusions 605

In this paper, we identify the label sparsity prob- 606

lem in short text topic modeling, resulting from the 607

inherently limited document length. Subsequently, 608

we design an novel neural short text topic modeling 609

framework dubbed kNNTM, which mitigates the 610

label sparsity problem with a kNN label comple- 611

tion module that aggregates semantically similar 612

documents to augment the reconstruction labels. To 613

effectively find similar documents, a fused multi- 614

view distance metric is proposed considering both 615

local word similarities and global document seman- 616

tics. Extensive experiments show that kNNTM 617

outperforms the baselines and can generate high- 618

quality topic and document representations. 619
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Limitations620

One limitation of the proposed kNNTM model is621

the time complexity of computing the OT distances.622

The original OT distance metric is known to have623

high complexity, and computing distances between624

each pair of documents also increases the time over-625

head. The inherent small text lengths and the accel-626

erated algorithms for OT metric can help alleviate627

this issue, and the computations of the distances be-628

tween different text pairs can be easily parallelized,629

but when dealing with excessively large datasets,630

kNNTM still faces high time cost. For future work,631

we hope to design a sampling strategy for kNNTM ,632

aiming to restrict the nearest neighbor searching to633

a limited number of candidate documents instead634

of the entire dataset, and thus lowering the time635

cost of our model.636

Ethics Statement637

We comply with the ACL Code of Ethics. Our638

method is proposed to enhance short text topic mod-639

elling, and we believe our model would not cause640

significant social risks if applied appropriately.641
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A kNNTM Algorithm Framework839

Algorithm 1 The training procedure of kNNTM
framework.

1: Input: the input corpus D, topic number K,
pre-training epoch number P , total epoch num-
ber T , the number of nearest neighbors nk,
hyperparameters α, η, ρ.

2: Output: K topic-word distributions βk, ND

document-topic distribution θd

3: for epoch from 1 to T do
4: for a random batch of B documents do
5: Lbatch ← 0;
6: for each document d in the batch do
7: compute the topic distribution θd;
8: if epoch ≤ P then
9: Lbatch ← Lbatch + LTM by Eq.4;

10: else
11: get augmented reconstruction label

x̃d by Eq.5 with distance in Eq.12;
12: Lbatch ← Lbatch + LkNNTM by

Eq.14;
13: end if
14: update md with θd by Eq.10;
15: end for
16: update model parameters with∇Lbatch
17: end for
18: end for

B Experimental Details840

B.1 Dataset Statistics841

We conduct our experiments on the following pub-842

lic short text datasets:843

GoogleNews: The GoogleNews dataset is from844

the Google News site and includes the titles of over845

10,000 news articles categorized into 152 clusters.846

Snippet: The Snippet dataset consists of over847

10,000 search results from web across 8 different848

domains, obtained using predefined phrases.849

StackOverflow: The StackOverflow dataset is850

sourced from the challenge data released by Kaggle.851

The dataset we use is a subset of 20,000 question852

titles randomly selected from 20 different tags from853

the original dataset.854

We present the detailed statistics of the above 855

three datasets after preprocessing in Table 4. 856

Datasets Number of
documents

Average
length

Number of
categories

Vocabulary
size

GoogleNews 11019 5.75 152 3476
Snippet 12294 14.42 8 4720
StackOverflow 16392 5.02 20 2300

Table 4: Statistics of 3 datasets after preprocessing.

Datasets nk α η ρ

GoogleNews 20 1.0 0.5 0.5
Snippet 30 1.0 0.2 0.6
StackOverflow 30 0.5 0.4 0.4

Table 5: Hyper-parameters for different datasets.

B.2 Baselines 857

Here we provide brief introductions to the baseline 858

methods compared in this paper. 859

prodLDA: prodLDA (Srivastava and Sutton, 860

2017) is a prominent work in neural topic models. 861

It employs black-box neural variational inference 862

and approximates the Dirichlet prior via a logistic 863

normal distribution. 864

WLDA: WLDA (Nan et al., 2019) utilizes the 865

Wasserstein autoencoder framework for neural 866

topic modeling and directly enforces the Dirich- 867

let prior through Maximum Mean Discrepancy. 868

ECRTM: To the best of our knowledge, 869

ECRTM (Wu et al., 2023) is the current state- 870

of-the-art neural topic model for normal long doc- 871

uments. It incorporates an embedding clustering 872

regularization that encourages word embeddings to 873

cluster around topic embeddings. 874

NQTM: NQTM (Wu et al., 2020) proposes 875

learning peakier topic distributions and discovering 876

better topics through topic distribution quantization 877

and negative sampling. 878

MCTM: MCTM (Zhang and Lauw, 2022) fo- 879

cuses on variable-length corpora and utilizes meta- 880

learning to train a missing semantics predictor for 881

short documents based on other long documents. 882

TSCTM: TSCTM (Wu et al., 2022) is a state- 883

of-the-art short text neural topic model. It builds 884

upon NQTM and introduces a contrastive objective 885

on quantized distributions. 886

B.3 Implementation Details 887

Regarding the training environment, our method 888

is implemented using PyTorch 1.12.1 with Python 889
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Model prodLDA WLDA ECRTM NQTM MCTM TSCTM kNNTM

GoogleNews
K = 50

km-Purity 0.333±0.016 0.447±0.022 0.535±0.030 0.494±0.018 0.542±0.025 0.595±0.017 0.612±0.006
km-NMI 0.372±0.007 0.664±0.012 0.789±0.019 0.706±0.007 0.705±0.008 0.793±0.009 0.825±0.004

K = 100
km-Purity 0.364±0.003 0.607±0.007 0.502±0.008 0.660±0.011 0.433±0.079 0.769±0.003 0.788±0.005
km-NMI 0.381±0.003 0.731±0.004 0.690±0.012 0.756±0.003 0.581±0.056 0.845±0.004 0.871±0.003

Snippet
K = 50

km-Purity 0.503±0.017 0.617±0.028 0.761±0.015 0.667±0.017 0.673±0.003 0.723±0.012 0.775±0.004
km-NMI 0.172±0.008 0.298±0.012 0.440±0.009 0.332±0.013 0.328±0.008 0.390±0.011 0.438±0.006

K = 100
km-Purity 0.476±0.004 0.677±0.014 0.805±0.010 0.699±0.006 0.683±0.026 0.761±0.010 0.821±0.007
km-NMI 0.132±0.002 0.322±0.003 0.437±0.008 0.339±0.003 0.331±0.015 0.390±0.005 0.436±0.001

StackOverflow
K = 50

km-Purity 0.227±0.003 0.465±0.007 0.404±0.042 0.452±0.041 0.428±0.017 0.586±0.005 0.613±0.009
km-NMI 0.074±0.005 0.323±0.003 0.290±0.033 0.315±0.033 0.320±0.012 0.433±0.007 0.468±0.003

K = 100
km-Purity 0.166±0.005 0.440±0.005 0.451±0.026 0.480±0.038 0.401±0.006 0.574±0.009 0.615±0.011
km-NMI 0.046±0.003 0.296±0.004 0.350±0.018 0.317±0.029 0.300±0.007 0.397±0.002 0.443±0.008

Table 6: The results for metrics of text clustering on three datasets under 50 and 100 topics. The best-performing
method is highlighted in bold and the second best method is underlined. We run each model 3 times with different
random seeds and report the mean the standard deviation.

Methods CV TU TQ top-Purity top-NMI

kNNTM 0.341±0.006 0.979±0.002 0.334±0.006 0.819±0.005 0.436±0.001

w/o-kNN 0.323±0.008 0.947±0.009 0.306±0.010 0.753±0.001 0.385±0.005
w/o-Topic 0.340±0.008 0.967±0.002 0.328±0.008 0.809±0.009 0.427±0.003
w/o-BoW 0.320±0.006 0.986±0.002 0.315±0.006 0.799±0.007 0.420±0.002
w/-sim 0.343±0.008 0.969±0.005 0.332±0.009 0.793±0.013 0.413±0.006

Table 7: Ablation Studies on Snippet Dataset with 100 topics. We run each model 3 times with different random
seeds and report the mean the standard deviation.

3.9.16, and the experiments are conducted on four890

GeForce RTX 2080Ti GPUs. Regarding the model891

architecture, the encoder network consists of a 3-892

layer MLP, and we set the hidden layer’s dimension893

to 128. Training is performed using the Adam op-894

timizer (Kingma and Ba, 2014) with a learning895

rate of 0.002. We use a batch size (B) of 200, 20896

pre-training epochs (P ), and a total of 200 epochs897

(T ). For other hyper-parameters, please refer to898

Table 5. We use grid search to determine the value899

of the above hyperparameters. And for all base-900

lines, we follow the hyperparameter settings re-901

ported in their original papers. Additionally, we902

employ 300-dimensional GloVe embeddings as pre-903

trained word embeddings for all the methods that904

require word embeddings.905

C Metrics for Topic-Word Distribution906

C.1 Topic Coherence907

We use CV as the topic coherence metric in908

our experiments. For a topic z with T words909

{x1, x2, ..., xT }, the definition of CV is910

CV (z) =
1

T

T∑
i=1

scos (vNPMI (xi) ,vNPMI (x1:T )) ,

(C.1)911

where scos(·) is the cosine similarity between two 912

vectors, and the vNPMI vector is defined as 913

vNPMI (xi) = {NPMI (xi, xj)}j=1,...,T

vNPMI (x1:T ) =

{
T∑
i=1

NPMI (xi, xj)

}
j=1,...,T

.

(C.2) 914

And the NPMI indicates the Normalized Pointwise 915

Mutual Information between words and is calcu- 916

lated as 917

NPMI (xi, xj) =
log

p(xi,xj)+ϵ
p(xi)p(xj)

− log (p (xi, xj) + ϵ)
, (C.3) 918

where p(xi, xj) is the co-occurrence probability 919

within a reference corpus. 920

C.2 Topic Diversity 921

We use Topic Uniqueness (TU ) as the met- 922

ric for topic diversity. The TU of K topics 923

{z1, z2, ..., zK} could be calculated as: 924

TU =
1

K

K∑
i=1

1

T

T∑
j=1

1

cnt
(
xzij

) , (C.4) 925

where cnt(xi) indicates number of times that the 926

word xi appears in all topics. 927
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D More Results on Text Clustering928

Metrics To evaluated the models on text cluster-929

ing method, besides top-Purity and top-NMI, we930

also apply the K-Means algorithm to assign clus-931

ters to different documents. We set cluster number932

set as the topic number K and apply the KMeans933

algorithm on all the document-topic distribution934

vectors. The metrics are denoted as km-Purity and935

km-NMI.936

Results We show the results in Table 6. From937

the results, we could draw the same conclusions938

as in section 5.2. Our kNNTM model outperforms939

all baseline models under almost every setting,940

and achieves compatible results in a few scenar-941

ios. That indicates kNNTM possesses the ability942

to obtain high quality document-topic distributions943

and derive the hidden semantics for each document.944

E More Results of Ablation Studies945

Due to space limit, the standard deviations of the946

results in the Ablation Studies section are not re-947

ported in the main paper. Here we provide the main948

and the standard deviation of the results in Table 7,949

corresponding to Table 2.950
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