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Abstract

Reinforcement learning (RL) offers a promising paradigm for optimizing treatment
strategies that adapt over time to patient responses. However, the deployment of RL
in clinical settings is hindered by the lack of generalization guarantees, an especially
critical concern given the high-stakes nature of this domain. Existing generalization
bounds for sequence data are either vacuous or rely on relaxations of the indepen-
dence condition, which often produce non-sharp bounds and limit their applicability
to RL. In this work, we derive a novel PAC-Bayesian generalization bound for
RL that explicitly accounts for temporal dependencies arising from Markovian
data. Our key technical contribution integrates a bounded-differences condition on
the negative empirical return to establish the applicability of a McDiarmid-style
concentration inequality tailored to dependent sequences such as Markov Decision
Processes. This leads to a PAC-Bayes bound with explicit dependence on the
Markov chain’s mixing time. We show that our bound can be directly applied to
off-policy RL algorithms in continuous control settings, such as Soft Actor-Critic.
Empirically, we demonstrate that our bound yields meaningful confidence cer-
tificates for treatment policies in simulated healthcare environments, providing
high-probability guarantees on policy performance. Our framework equips practi-
tioners with a tool to assess whether an RL-based intervention meets predefined
safety thresholds. Furthermore, by closing the gap between learning theory and
clinical applicability, this work advances the development of reliable RL systems
for sensitive domains such as personalized healthcare.

1 Introduction

Reinforcement learning (RL) is increasingly being explored for high-stakes decisions in healthcare,
where the promise is to tailor treatments to individual patients based on treatment history and improve
outcomes over time [1} 2]]. Unlike traditional static models, RL agents are capable of learning from
the clinician’s observation—action cycle: observe a patient’s state (e.g., vital signs, symptom scores),
select an intervention (e.g., medication adjustment, therapy session), then observe the outcome and
update the model accordingly. This sequential framework has spurred applications ranging from
critical care management of sepsis [2} 3] to precision drug dosing [3l.

The RL paradigm applied to healthcare offers a principled framework for optimizing sequential
decisions based on patient responses. For instance, a recent study [1]] introduced the notion of medical
dead-ends, meaning critical states from which all future trajectories lead to adverse outcomes, and
utilized RL to proactively recognize treatment paths associated with these dangerous declines. These
kinds of applications illustrate the potential of RL to enhance decision-making in safety-critical
domains such as medical care. However, the medical setting also underscores the paramount need for
reliability—an RL policy’s recommendations can literally be life-saving or life-threatening.
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There is a widely unmet demand for rigorous, high-confidence guarantees on the generalization
capabilities of machine learning models [4]], particularly RL for healthcare to ensure that algo-
rithm performance on patients’ data meets acceptable standards. Without formal generalization
assurances, clinicians might rightly question the reliability and robustness of RL-derived treatment
recommendations for unseen patient populations, limiting broader adoption in practice.

A core challenge in providing guarantees that could drive trust in RL for healthcare applications is the
sequential, dependent nature of RL data. Most standard generalization bounds [\5] and concentration
inequalities [6l [7] rely on the assumption that samples are independent and identically distributed
(i.i.d.). However, this assumption is violated when learning from trajectories generated by a Markov
decision process. In this work, we address this challenge using the PAC-Bayesian framework
(8, 19,110} [11], which yields data-dependent generalization guarantees that are often tighter, naturally
incorporate prior knowledge, and are straightforward to optimize. By balancing empirical risk against
model complexity via a prior—posterior divergence, PAC-Bayes offers a principled way to quantify
uncertainty and reason about generalization [4].

Previous efforts to bring PAC-Bayes to RL include [12, [13]], who derived bounds for batch RL
with implicit constants that dependent on the mixing-time which can limit practical utility, and
more recently [14], who extended the analysis to the context of actor-critic learning to encourage
exploration. While conceptually exciting, the bounds in these previous works remained largely
vacuous, reflecting a focus on learning-theoretic algorithm development rather than on deriving tight
performance guarantees. These results of these previous works thus underscore the promise of PAC-
Bayesian analysis for RL but also highlight the need for bounds that better capture the dependency
structure of clinical trajectories: existing results either rely on stringent mixing assumptions or yield
overly loose guarantees, leaving a significant gap in providing tight confidence certificates for RL
algorithms.

In this work, we bridge this gap by deriving a novel PAC-Bayesian generalization bound for re-
inforcement learning that explicitly handles Markov dependencies in the data. The core technical
contribution is the integration of concentration inequalities suited for dependent sequences into the
PAC-Bayes analysis. In particular, we leverage the Marton coupling and Markov chain partitioning
[L5] to establish a McDiarmid-type bounded differences inequality for Markov chains. Our resulting
PAC-Bayesian bound retains an explicit dependence on mixing time, thus preserving the interpretabil-
ity and theoretical grounding of classical approaches while achieving tighter constant factors that
render the bound non-vacuous for realistic trajectory lengths.

Beyond its theoretical contribution, our bound has direct practical implications for safe and reliable
RL in healthcare. By providing a high-probability certificate on a policy’s true return, practitioners
can assess, before deployment, whether an RL-based treatment strategy meets predefined safety and
efficacy standards. For example, in adaptive dosing for chronic conditions, our bound can guarantee
with high confidence that the expected patient health score will not fall below a critical threshold.
Looking forward, we envision applying this framework to mental health interventions, where data
scarcity and patient vulnerability amplify the need for trustworthy RL policies [16].

In summary, by integrating mixing-time explicit bounds with advanced coupling methods, we deliver
a PAC-Bayesian guarantee that is rigorously grounded and we demonstrate in experiments that it is
practically meaningful, paving the way for reinforcement learning algorithms that are provably safe
and effective in real-world healthcare settings.

The remainder of this paper is organized as follows. Section |2| reviews necessary preliminar-
ies—reinforcement learning, PAC-Bayesian learning, and related work—and summarizes our contri-
butions. In Section [3]we develop the theoretical core by deriving a new PAC-Bayesian generalization
bound for RL that explicitly accounts for Markovian dependence via a McDiarmid-type concentration
inequality. Section [3.1]introduces PB-SAC, a practical actor—critic algorithm that operationalizes
this bound. Section 4] describes our experimental setup on an ICU-Sepsis simulator and standard
continuous-control benchmarks, and presents empirical results demonstrating that PB-SAC delivers
meaningful confidence certificates without sacrificing performance. Finally, Section [5] concludes
with a discussion of implications, limitations, and directions for future work in PAC-Bayesian
reinforcement learning.
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2 Preliminaries

We briefly recall the reinforcement learning and statistical learning theory concepts we rely on
throughout the paper. The exposition is intentionally concise—the goal is to fix notation and state the
learning theory principles that underpin our results. We adpot the notation from [17].

2.1 Reinforcement Learning & Related Works

Reinforcement Learning (RL) studies how an agent learns to make sequential decisions through
interaction with an environment. Formally, the environment is modeled as a (possibly unknown)
Markov Decision Process (MDP) M = (S, A, P, R, ), where S is the state space, .A the action
space, P(s’ | s,a) the transition kernel, R(s,a) the reward function bounded in [0, Ryax], and
v € (0,1) the discount factor. At each time ¢, the agent observes a state S; € S, chooses an action
Ay € A according to a policy m(als), receives a reward Ry = R(St, A¢), and transitions to
St+1 ~ P( | St,At>.

The agent’s objective is to maximise the expected discounted return
o0
Gy = ZVIC Ritkt1, Vi(s) = Ew,P[Gt | St = 5]7 ()
k=0

where V; is the state—value function. The optimal value function V*(s) = sup, Vi (s) satisfies the
Bellman optimality equation

VH(s) = maX{R(s, a) + 7By [V*(s') | 5,4 } @)

acA

RL algorithms learn either directly a policy (policy—gradient and actor—critic methods [[18} 19, [20])
or an action—value function Q (s, a) (value-based methods such as Q-learning and its deep variants
[21]). Model—free approaches dispense with an explicit model of P, while model-based methods
leverage or learn a transition model to plan.

PAC-Bayesian analysis for sequential data. Classical PAC-Bayesian theory [8} 22} (9] 23] 24 [10]
17, [11]] assumes i.i.d. samples, but several authors have extended it to dependent data. Ralaivola et al.
introduced a chromatic PAC-Bayes bound for -mixing sequences, recasting temporal dependence
as a graph—coloring problem that preserves a PAC-style risk certificate [25]]. Seldin ez al. pioneered
a martingale-based PAC-Bayes approach, showing how to integrate concentration inequalities for
dependent observations (e.g. Hoeffding-Azuma for martingales) with PAC-Bayes bounds [26) 27]].
Further generalizations to weakly dependent series were obtained by Alquier & Wintenburger via
oracle inequalities for time-series forecasting [28]]. These contributions established that PAC-Bayes
remains applicable when observations are correlated, provided one can quantify the dependence.

PAC-Bayes in reinforcement learning. Early applications to RL include Fard et al., who derived
a batch RL bound relying on Samson’s inequality for uniformly ergodic Markov chains [12} [13].
They demonstrated empirically that PAC-Bayesian model selection can indeed improve policy value
estimation by taking the prior when it is informative and discarding it when missleading. Although
insightful, the constants scale poorly with the horizon, often making the bound vacuous in practice.
More recently, Tasdighi et al. embedded a PAC-Bayesian critic ensemble inside an actor—critic
algorithm to encourage deep exploration, but did not compute a certified return gap [14]]. Zhang
et al. used task-adaptive PAC-Bayes priors for lifelong RL [29]. Despite these advances, prior work
has not produced a sharp PAC-Bayes bound that is simultaneously translated into non-vacuous and
tight certificates for modern off-policy methods such as Soft Actor-Critic, and depends on explicit
constants making it easy to compute in practice.

Our contribution in context. We close this gap by deriving a PAC-Bayesian value-error bound
whose leading constant is proportional to the Markov chain’s mixing time. Compared with previous
PAC-Bayes works, our result (i) obtains tighter scaling for discount factors typical in RL. (ii) embed
the new bound in a Soft Actor—Critic framework and show empirically that the resulting PB-SAC
algorithm can monitor and minimize its certified return gap throughout training. To our knowledge,
this is the first demonstration that PAC-Bayesian guarantees with explicit temporal-dependence
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constants can inform the hyper-parameter choices of deep off-policy RL while remaining non-vacuous
in realistic continuous-control domains.

2.2 PAC-Bayes Learning

Let (X,), D) be a supervised learning task, the domain is taken to be the product Z = X x ),
where X C R is the feature space and ) the label space () C N for classification problems, or
Y C R for regression ones). We assume an unknown data distribution D over Z, with Dy denoting
the marginal distribution on X'. We observe a training sample S = {(z;, y;) }/*,, where each pair
(x;,y;) € Z is drawn independently and identically distributed (i.i.d.) from D, that is, S ~ D™.
This sample is provided to the learning algorithm. Given a sample .S, the learning algorithm returns a
measurable prediction function fy : X — ), also referred to as a hypothesis, parametrized by 6 € O,
where © denotes the set of all admissible parameter vectors (i.e., the hypothesis class). The “quality”
of a hypothesis fj is typically assessed through a measurable loss function £ : )) x ) — R, which
quantifies the discrepancy between predicted and true outputs. The performance of a hypothesis is
measured by its true risk, and its empirical risk on the training sample .9,

. 1 &
L:O: E E@Jj, ’LSOZ— Eexi7ia
©)= B, (@), Ls6) = 23 tlho(wi).w)
In supervised machine learning, the goal is to learn a hypothesis fy that accurately predicts a label
y € Y for anew input x € X, based on a training dataset S = {(z;, ;) }7%,. A central question is:
how can we ensure that the learned function fy will perform well on unseen data?

SNDrm{ﬁ(B) < Ls(0)+ e} > 1.

Concrete PAC bounds specify how large m must be (or how large the gap € can be) in terms of prop-
erties of the hypothesis class—e.g. VC-dimension, Rademacher complexity, stability, compression,
etc. All of those treat fy as a deterministic output of the algorithm.

The PAC-Bayesian framework [8, 9, [10} 17, [11] extends the PAC learning paradigm to analyze the
generalization performance of stochastic learning algorithms. Instead of selecting a single hypothesis,
this approach considers a distribution over a set of candidate models. Let © denote the set of
parameters defining a family of prediction functions { fy : X — Y}eco. Prior to observing data, a
prior distribution 1 € P(O) is specified over ©. Upon receiving a training sample S ~ D™, the
learning algorithm selects a posterior distribution p € P(0), potentially dependent on S. PAC-
Bayesian theory provides high-probability bounds on the population Gibbs risk E,~,[£(6)] in terms

of the empirical Gibbs risk Ef, ., [ﬁs (6)] and an additional term that measures the dependence of
the posterior distribution p. This additional term involves an information measure—typically the
Kullback-Leibler divergence KL(p||+)—between the data-dependent posterior p € P(O) and a prior
1 € P(©), chosen independently of the data. Formally, for any A > 0 and with probability at least
1 — 4 over the choice of the training sample .9, the following inequality holds:

E [£6)] < E [£5(60)] +  (KL(plln) +Ink+ W3 m) 3

for~p for~p

Uy, (A,m)=In E [GXP()\ (5(0) - ﬁs(e))}

for~p

Compared with classical PAC guarantees, PAC-Bayes offers two advantages that are critical for
reinforcement learning; Data-dependent priors [30]-when p can itself depend on previous data (e.g.
earlier tasks or behavioural trajectories) [[29], the bound adapts to the knowledge already acquired,
tightening KL (p||1); Fine-grained control via U-by tailoring the concentration inequality used to
upper-bound ¥ one can incorporate dependence structures such as martingales [27] 26], 5-mixing
[25 31] sequences or Markov chains [13], [14]—exactly the scenario in which RL trajectories are
collected.
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3 PAC-Bayes Framework for RL

As outlined earlier, our objective is to establish a high-probability PAC-Bayes value-error bound
for a policy operating in a Markov decision process (MDP) when the training data are dependent
trajectories—possibly gathered under an off-policy behaviour strategy. In this section, we begin by
fixing notation, then present the main results; all proofs are deferred to Appendix

Let M = (S, A, P, R,~) be a discounted Markov Decision Process (MDP), where S and A are
the state and action spaces, P is the transition kernel, R is the reward function such that R; €
[0, Rimax], and v € (0,1) is the discount factor. A policy mg induces a (not necessarily time-
homogeneous) Markov chain £ = (Sy, Ay, Ry, S5s,...,5r) ~ v,P,m, R, where v denotes the
initial state distribution and H < oo is the trajectory horizon (finite or infinite). Our analysis naturally
extends to the infinite-horizon case (H = 00).

We assume access to a dataset ® = {5(1), . ,§(T)} of T trajectories (i.e., N = HT transitions in
total), collected using a behavior policy 7y, parameterized by 6 € ©. The parameters 6 are drawn
from a distribution p € P(0©), where Il = {my : § € ©} denotes the policy class. Henceforth, we

write & ~ M (resp. © ~ M(T)) to denote sampling a trajectory (resp. a set ® of T trajectories)
under the environment dynamics PP, initial state distribution v, policy 7y, and reward function R, in
order to avoid notational overload.

We define the discounted return of a trajectory and its expected value under policy 7y as:

_ k _

=Y V" Rin and Vi, = Ecom[G(E))- “)
We now define the expected (true) loss and its empirical counterpart:

T
L(9) = _ - ; where ; G(£W) (5)

D~ M(T)

Prior and posterior over policies. Following the PAC-Bayesian paradigm we endow © with
a prior distribution 1 € P(O), selected independently of the data, and a posterior distribution
p € P(0©), chosen after observing the sample ©. This PAC-Bayesian formalism allows us to reason
about the generalization properties of randomized policies drawn from p, with theoretical guarantees
based on their divergence from the prior .

A bounded-differences property for the empirical loss. The following lemma shows that chang-
ing one transition in the data results in quantitative bounded effect of the empirical loss defined in

).

Lemma 3.1 (Bounded differences) Let © be a set of trajectories and 6 € © be fixed policy param-
eters. Suppose we form © by changing one transition, say the transition at time step h € [H| of

trajectory j € [T, where 5(3) (s,a,r,s") is replaced with f(j) (8,a,7,5). Then, there exists
¢ € IR such that

H T
L£2(0) — Lo(0 ZZcuw 1lef”) = &) (©)
=1 ':1

Intuitively, c(; ;) quantifies the transition-level influence of altering the (h, j)-th state—action-reward
tuple on the average return. A complete derivation—including a justification of why this bound
covers propagation of the perturbed transition to future steps—is given in Appendix The result
yields the explicit vector ¢ used in the main Theorem 3.2}

R2

h—1
Rmax max

Y 2 2H
= L mex = max__ (] _ 2H)
C(ht) 7 el i _72)( ) (7
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Combining these with McDiarmid’s inequality for Markov chains gives a trajectory-dependent tail

bound on the deviation £(#) — Lo (0). With standard PAC-Bayes bound derivation we obtain our
primary result, a PAC-Bayesian value-error bound for MDPs in Theorem 3.2}

Theorem 3.2 Let the reward function be bounded in [0, R4, and let M be a (not necessarily
time-homogeneous) Markov Decision Process (MDP) induced by any policy my such that it satisfies
Tmin < 00. For any prior u over 11, any posterior p chosen after interacting with the environment,
and any § € (0,1), with probability at least 1 — 0 over the sample © of T trajectories with time
horizon H:

A 2 in (1 — 72H
E [£0) - Lo(0)] < \/ Rma’;m“vz)” (KL (ol) +102). ®)

where T 1S the mixing time of the chain, the smallest number of steps after which the distribution
of the chain’s state is, in a statistical sense, nearly indistinguishable from its long-run or stationary
distribution in Total Variation distance, no matter where the chain started. In other words, it measures
how quickly the chain “forgets” its initial state and becomes well mixed.

The bound in[3.2]can be straightforwardly converted to a PAC-Bayes bound on the error of a value
function V;, for a policy g, using the fact that £(0) = =V, (B):

_ ~2H

E Va) 2 — & [£2(0)] - ¢ Rma’;}‘?}“(_}f LKLl +1w2). o

One may notice that it has a structure remarkably similar to Upper Confidence Bounds (UCB) [32]
used in bandit algorithms Q(a) < Q(a) + Uy(a), where the true value is bounded by an empirical
estimate plus an uncertainty term. In our case, the uncertainty term accounts for three key factors:
(1) the statistical challenge of working with limited trajectory data, addressed by the % term; (2) the
temporal correlation structure of the MDP, captured by 7,,,;, and the discount-related terms; and (3)
the complexity of the policy class, represented by the KL divergence.

This UCB-like interpretation suggests a natural approach to policy optimization: select the posterior
p that maximizes this lower bound. Such a strategy would automatically balance exploitation
(maximizing the empirical value) and theoretically-justified exploration (accounting for uncertainty).
This is precisely the approach implemented in the PB-SAC algorithm, where we periodically optimize
the posterior distribution and inject its knowledge back into the policy to guide learning.

From theory to practice. Theorem [3.2]provides a high-confidence guarantee on the difference
between empirical and true returns for stochastic policies, using three key components: the poste-
rior—prior KL divergence, the squared coefficient vector ||c||? from (7), and the mixing time Tyin-
The central question becomes how to leverage this certificate to enhance learning. In Section[3.1]
we demonstrate that this bound can be actively optimized during training by integrating it within
a modern actor—critic framework. The resulting procedure, PB-SAC, transforms our theoretical
guarantee into a principled approach for balancing exploration and exploitation while maintaining
formal certificates on policy performance.

3.1 A Practical Algorithm based on PAC-Bayes RL

Our algorithm, PAC-Bayes-Certified Soft Actor-Critic (PB-SAC), operationalizes the PAC-Bayes
value-error bound of Theorem [3.2] within a Soft Actor-Critic (SAC) training loop. Building upon
the periodic update cycle described earlier, PB-SAC maintains a posterior distribution over policy
parameters and injects sampled knowledge to guide exploration. While it shares the "distribution-
over-policies" principle with EPICG and EPICG-SAC [29], our approach differs in three fundamental
ways: (i) It focuses on single-task optimization rather than task streams, though the framework
naturally extends to Lifelong RL scenarios. (ii) It explicitly optimizes the exact value-error bound
from Theorem 3.2]during training and monitors the bound value at each update cycle, providing
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continuous performance guarantees. (iii) It applies the posterior distribution directly to actor
parameters 6 rather than relying on critic ensembles or Bellman-error surrogates as in PBAC,
resulting in a more streamlined and computationally efficient implementation. Additionally, PBAC
[14] trains critics via a Catoni-type Bellman-error bound but never reports the bound value; it is used
only as a loss. EPICG/EPICG-SAC of [29] regularizes the KL between posterior and running prior
yet does not compute or log the PAC-Bayes bound either.

Posterior, prior, and sampling. Let 6 denote the flattened parameters of the actor network. The
posterior p is a diagonal Gaussian, § ~ N (v, diag(c?)), where both the mean v and standard
deviation o are learnable, gradient-tracked variables. The prior w is simply a copy of the posterior at
initialization, or after a PAC-Bayes update cycle; this choice maintains meaningful guarantees by
preventing KL (p||x) from exploding while ensuring that the core SAC algorithm can continue learn-
ing. Additionally, without this resetting mechanism, the KL (p|| ) regularization would permanently
penalize deviations from the initial actor parameters, significantly hindering the learning process.

PAC-Bayes update cycle. Our algorithm performs periodic PAC-Bayes updates using completely
new data batches to maintain theoretical guarantees. At each update point, we freeze the current policy
and collect a fresh batch of T trajectories, which are used exclusively for the current PAC-Bayes
analysis. Using this batch, we fit a posterior distribution p by optimizing £, = Eg.,[—Q(s, ms(s))] +
BKL(p||), balancing critic values against divergence from the prior. We estimate the mixing time
Tmin from trajectory autocorrelations and compute the PAC-Bayes bound according to Theorem [3.2]
Crucially, we then set the prior for the next update cycle to the current posterior, fipey := p, Creating a
"checkpoint" that preserves the bound’s validity while allowing continued learning. Before resuming
training, we inject knowledge from the posterior by sampling parameters fsampled ~ p and mixing
them with the current policy: fnew = Asampled + (1 — A)Bcurrent. Each update’s data is then discarded,
ensuring that no data point influences multiple bounds, thereby maintaining the theoretical guarantees
of our approach. The pseudo-code[I|bellow shows the full training loop which interleaves standard
SAC updates with these PAC-Bayes updates.

Why the bound is practically non-vacuous. For typical values of v (=~ 0.99), the classical bound
of Fard et al. [[13] suffers from the constraint on the number of samples needed /7 > R* /(1 — )%,
while The bound of Tasdighi et al. [14] requires the same amount to beat triviality—a number that

themselves flag as “rarely fulfilled in practice”. Our transition-level analysis shrinks the bound to

T > h;“# (for long trajectories (1 — v2H) ~ 1). Although this might appear costly due

to the dependence on the number of trajectories, it is in fact substantially more tractable than the
classical bound (the power of 2 is only on «y not 1 — ). In practice, the bound can be reduced even
further: by obtaining a rough estimate of the mixing time 7,,;,, one can choose H to be just above
this threshold. This keeps the term (1 — «2#) in the numerator below one, tightening the bound. As a
result, rather than requiring long trajectories, it suffices to collect many short ones. Further discussion
can be found in Appendix [B.6|

4 Experimental Setup

To evaluate our PAC-Bayesian reinforcement learning approach, we utilize the ICU-Sepsis envi-
ronment [33]], a benchmark MDP built from real medical data that simulates sepsis treatment in
intensive care units. This environment represents an important real-world sequential decision-making
problem with significant healthcare implications. ICU-Sepsis is a tabular MDP with 716 discrete
states representing different patient conditions and 25 possible actions corresponding to various
combinations of medical interventions, primarily focusing on intravenous fluid and vasopressor
dosages. Each episode simulates a patient’s treatment journey, where the agent (representing the
clinician) observes the patient’s state, selects appropriate interventions, and then observes how the
patient’s condition evolves in response to treatment. The environment uses a reward structure where
survival results in a terminal reward of 41, while death corresponds to a reward of 0. All intermediate
rewards are also 0, making the expected return equivalent to the probability of patient survival.
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Algorithms and Implementation. We compare our PAC-Bayes-certified Soft Actor-Critic (PB-
SAC)|against standard baselines. PB-SAC extends SAC with the PAC-Bayesian framework from
Section 3} maintaining a posterior over policy parameters to provide high-probability performance
guarantees. Our baselines include SAC (off-policy maximum entropy), DQN (value-based), and
PPO (on-policy). All implementations use tabular representations for ICU-Sepsis, appropriate for its
discrete state-action space. Additionally We also evaluate on continuous control MuJoCo benchmarks
34, (Walker2d-v5, Humanoid-v5, HalfCheetah-v5) to assess scalability to continuous domains,
sample efficiency, and generalization of performance guarantees. Our protocol consists of running
each algorithm for 300,000 episodes across 5-10 random seeds. For PB-SAC, we perform periodic
PAC-Bayes updates every 20,000 steps to maintain the posterior distribution and compute certified
bounds. We evaluate the algorithms using two primary metrics. The first is certified performance,
defined as a high-probability lower bound on return, holding with probability 1 — §. The second is
average return, which corresponds to the expected survival probability. This evaluation framework
allows for a rigorous and comprehensive comparison across both clinical and standard continuous-
control benchmarks.
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Bayes bound

Smoothed Q-value / PAC

Training step (£)

(a) Sepsis

3 500 o 0
3 T
y o o T 2
i, ] L

] 4"

(b) HalfCheetah (b) HalfCheetah

— ()
Q@ bound

(c) Humanoid (c) Humanoid

Figure 1: PAC-Bayes bounds (green bars) vs. Q-
values (orange bars), along with the running av-
erage of the empirical Q-values (green line). A
tight and desirable lower bound is one that closely
approaches the Q-function.

Figure 2: Running average of episodic returns: A
comparison between our PB-SAC (shown in pink
in (b) and (c), and in green in (a)) and its base
algorithm (SAC alone).

'The code can be found here |https ://anonymous . 4open.science/r/BenchRL-72B7
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4.1 Empirical Analysis

Figures|[I]and 2] demonstrate PB-SAC’s performance compared to standard SAC across three envi-
ronments. Figure E] (left column) illustrates the evolution of PAC-Bayes certificates (green) relative
to learned ()-values (orange), while Figure [2] traces episodic returns throughout training. Three
distinct patterns emerge from these results. First, certificates tighten at environment-dependent
rates; In the Sepsis environment, guarantees become informative almost immediately after training
begins and remain closely coupled to the critic thereafter. This rapid tightening stems primarily
from the simulator’s quick mixing dynamics, which benefit our PAC-Bayes bound, additional data
rapidly sharpens the certificate. For HalfCheetah, the bound improves more gradually, reflecting
the environment’s longer effective horizon where states remain correlated over extended periods.
Finally, Humanoid represents the most challenging scenario with its numerous degrees of freedom
and complex dynamics. Although guarantees become comparatively looser in this environment, they
consistently remain informative, never deteriorating to the trivial bound of zero.

Guided exploration without sacrificing reward. Turning to Fig. 2} PB-SAC matches the baselines
on Sepsis, keeps pace on HalfCheetah, and modestly outperforms SAC on Humanoid. As the
algorithm injects posterior samples selected by the bound, it explores in directions that carry provable
upside—yet the additional regularization never derails learning. The results suggest that safety
certificates and competitive return need not be at odds. Across tasks we observe a clear narrative:
the faster the environment mixes, the faster the PAC-Bayes certificate closes the gap to the critic.
This empirical pattern echoes the explicit mixing-time factor in Theorem [3.2]and underscores why
reporting an estimate of 7,;, can contextualize confidence results. We therefore recommend including
mixing-time diagnostics in future evaluations of safe RL methods.

In summary, PB-SAC converts a theoretically principled bound into a live learning signal: it produces
meaningful confidence certificates early, preserves or improves return, and exhibits behavior that
aligns with the qualitative dependence on Markov mixing predicted by our analysis.

5 Conclusion and Limitations

In this work, we introduced PB-SAC, a PAC-Bayesian actor—critic algorithm that advances the
intersection of reinforcement learning and Bayesian guarantees. If adapted to the EPICG/EPICG-SAC
framework [29], we believe PB-SAC holds the potential to address the well-known plasticity—stability
dilemma, a prominent research challenge in lifelong and continual reinforcement learning. This
extension would allow the agent to balance the retention of useful prior knowledge (stability) with the
acquisition of new information (plasticity), using PAC-Bayesian guarantees as a principled mechanism
for managing uncertainty. Empirically, PB-SAC matches or surpasses SAC on both clinical and
continuous-control benchmarks, while yielding confidence bounds that tighten predictably with
the environment’s mixing time. This marks a step forward toward certified reinforcement learning
algorithms suitable for real-world deployment, particularly in high-stakes domains where reliable
performance guarantees are essential.

Limitations. Our current framework uses a Kullback—Leibler (KL) divergence penalty between
prior and posterior over policy parameters. Although KL is analytically convenient, it does not respect
the intrinsic geometry of the parameter space and can exhibit unstable behavior when distributions
diverge significantly [36]. In high-dimensional settings, computing KL gradients is computationally
intensive and may force the posterior to collapse onto the prior—resulting in overly constrained
updates that hinder meaningful learning progress [37]].

An appealing alternative is to employ a Wasserstein distance within the PAC-Bayes bound. Recent
work has developed high-probability PAC-Bayesian inequalities based on Wasserstein metrics, which
naturally capture distributional geometry and avoid degenerate update regimes even when supports are
disjoint [38, |39} 36]. Moreover, entropic (Sinkhorn) smoothing enables scalable stochastic variational
inference under Wasserstein regularization, making posterior updates tractable in high dimensions
[40]]. Incorporating a Wasserstein-based PAC-Bayes bound and a corresponding Sinkhorn-SVI
scheme is a key direction for future research, with the potential to yield tighter certificates and more
robust policy learning.
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A Mathematical Tools

Lemma A.1 (Markov’s Inequality) For any random variable X such that E[|X|] = u, for any
a > 0, we have

P{|IX|>a} < £
a

Lemma A.2 (Change of measure) For any measurable function f : © — R and distributions

t,p € P(O):
Eo~plf(0)] < KL(pllp) + InEgplexp(f(6))] (10)
where KL(p||p) is the Kullback-Leibler divergence between p and .

A.1 Concentration for Markov chains via Marton coupling

We use Paulin [[15]’s extension of McDiarmid’s bounded-difference inequality to Markov chains.
This extension provides concentration inequalities for functions of dependent random variables, with
constants that depend on the mixing properties of the chain.

A.1.1 Marton coupling and mixing time

The key insight in Paulin’s [[15] approach is to use a coupling structure known as Marton coupling,
which quantifies the dependency between random variables in a Markov chain. For a Markov chain
X = (Xy,...,XnN) onstate space A = Ay X ... x Ay, a Marton coupling provides a way to couple
the distributions of future states conditioned on different past states.

Let 7(¢) denote the mixing time of the chain X in total variation distance, defined as the minimal ¢
such that forevery 1 <i < N —tand z,y € A;:

drv (L(Xipe| Xi = 2), L(X; 4| Xi = y)) < € (11)

We define the normalized mixing time parameter Ty, as:

Tmin = _inf T(s)(?ii)z (12)

0<e<1
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A.1.2 McDiarmid’s inequality for Markov chains

For a function f(X) satisfying the bounded-differences property: for any =,y € A,

N
fl@) = fy) < Z cidl[z; # yil (13)

where ¢ € RY and I[condition] is the indicator function, Paulin’s theorem gives:

Pr(|f(X) —Ef(X)| >t) < 2exp(—2t*/|/c||*Tmin)- (14)

The norm ||¢||2 is defined as Y7 | ¢2.

A.1.3 Application to bounded differences in MDPs

For Markov decision processes, this inequality is particularly useful when analyzing the difference
between value functions. If perturbing a single transition can change the value by at most c;, then the
total effect on a function of trajectories is bounded by the above concentration inequality, with the
mixing time of the MDP properly accounting for the propagation of the perturbation through future
states.

B Derivation of PAC-Bayes Value-Error Bound for RL

B.1 Bounded-differences property for MDP trajectories

We begin by recalling the definitions of discounted return for a trajectory £ and the corresponding
value function from Section 3

H-1

GE) =Y 7 Rin
k=0

Vi = EfNM[G(g)]

As defined in equation (3], our empirical and expected losses are:

. 1 <& .
Lo(0) =~ Z G(EW)
L(0) = —E¢m[G(£)] = =V,

To apply McDiarmid’s inequality for Markov chains, we must establish the bounded-differences
condition for our empirical loss. Specifically, we need to show that replacing one transition in a

trajectory affects Lo (6) by at most Zle Z?:l e[ }(Lj) # E_}(Lj)], where ¢ € REXT and I is the
indicator function.

B.2 Quantifying the impact of perturbed transitions

Suppose we replace a single transition at position % in trajectory j. The change in the discounted
return of this trajectory is bounded by:

1G(EW) — G(ED)| = |v"Y(Ry, — Ry) + effects on future rewards|

< ’yh ! Rinax + effects on future rewards

Crucially, this perturbation affects not only the immediate reward but potentially all subsequent
transitions and rewards in that trajectory. The change in our empirical loss is therefore bounded by:

h—1
A A v Rmax
Lo(0) - £o(6)] < T =

13
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B.3 Derivation of ||c||? for the PAC-Bayes bound

To apply McDiarmid’s inequality for Markov chains as developed by [15]], we need to compute ||c||?:

T H
el = 33" h)

j=1h=1
H
Ry s 2(h-1)
T2
h=1
H-1
_ Rr2nax ,72h
T
h=0
——

R12nax 1- ’YQH

T 1-42

For infinite-horizon settings where H — oo and v < 1, the series converges to 1/(1 — ~?2), this
simplifies to

R2

max

2 _
||CH - T(]. _A/Q)'

B.4 Full accounting of perturbation propagation effects

A critical question is whether our derivation of ||c||? fully accounts for the propagation of perturbations
through the trajectory. Since a perturbation at step A in trajectory j affects all subsequent transitions
in that trajectory, the bounded-differences indicator is 1 for every (h’, j) with ' > h.

For a perturbation at step h in trajectory j, the sum of corresponding coefficients is:

H H—h

Z o Rmax Z h—1+4+k _ Rmax'yh_1 . 1- ’VH_}H_l
‘W T T T 1-
h'=h k=0 v

The actual maximum change in discounted return from this perturbation (worst case: reward changes
from 0 to Rynay) is:

v
1—7

‘ o H-h 1 _ 4H—Rh+1
G(ED) = G(EYV)] < Ry D 4" = Runan?™ - ———
k=0

When divided by T (because L () averages over T trajectories), we get exactly the same quantity
as the sum of coefficients above. Therefore, the bounded-differences condition holds with equality,
confirming that our derivation of ||c||? fully accounts for all propagation effects without requiring
additional constants.

This careful accounting of propagation effects allows us to apply McDiarmid’s inequality for Markov
chains to obtain the PAC-Bayes bound in Theorem [3.2] with the correct constants.

B.5 Derivation of the PAC-Bayes Bound
Having established the bounded-differences property and quantified the impact of perturbations via

|lc/|?, we now derive the PAC-Bayes bound on the expected difference between empirical and true
losses.
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B.5.1 From McDiarmid to moment generating function

McDiarmid’s inequality for Markov chains (Equation (T4))) provides a concentration inequality on the
deviation between empirical and expected losses. From this, we can derive a bound on the moment
generating function (MGF) as shown by [15]]:

Lemma B.1 (MGF bound for Markov chains) For any A > 0 and policy parameters 6 € O:

Bowuim [oxp (AZa(0) - £0))] < exp (142

where Tmin is the mixing time of the Markov chain induced by policy my.

15)

B.5.2 PAC-Bayes change of measure

Now we can follow the standard PAC-Bayes derivation. Let © be our parameter space and let
1 € P(O) be a prior distribution over © chosen independently of the data. For any posterior
distribution p € P(0O) (which may depend on D), we apply the change-of-measure inequality
(Donsker—Varadhan [41]] variational formula)

Let f(0) = A(Lo () — L£(6)). Applying Lemma

Eonp[A(Lo () — L(0))] < KL(p[|p) + InEg-pu[exp(A(Lo (0) — L(6)))] (16)
B.5.3 Combining with the MGF bound

Taking the expectation with respect to © ~ M(T) on both sides:

EsEon,A(Ls(6) — £(6))] < KL(pll) + En I Egop exp(A (Lo (6) — £6)))]  (17)

By Jensen’s inequality, since In is concave:

EoEo,[MZo(8) — £(0))] < KL(p|) + InEoEoofexp(MLo (@) — £@&)]  (18)

By Fubini’s theorem (exchanging the order of expectations) and Lemma [B.T}

EsEs,[\(Lo(0) — £(9))] < KL(p|n) + InEgoEnlexp(A(Lo(0) — LO)]  (19)

)\2 2 min
<KL(p[|n) + nEgp [exp <”C8T>] (20)
>\2 c 27—min
= KL(p|lp) + % @1
Dividing by A > 0:
~ KL Alle 27-min
EoFs-,fo(0) — £(0)] < (pllp)  Allell 22)

- A 8
B.5.4 High-probability bound via Markov’s inequality

Now, we convert this expectation bound into a high-probability bound. By Markov’s inequality [A.T}
for any non-negative random variable X and 6 > 0:

With probability at least 1 — §:

A KL +In2 M2
Eop[Lo(0) — L(0)] < (PH,l;) 5, Al ||8

(23)
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B.5.5 Optimizing the bound

To tighten the bound, we minimize the right-hand side with respect to A > 0. Taking the derivative
and setting it to zero:

0 (KL(plp) +1n % Ne|*Tmin
9 = 24
a ( Vring Al 0 (24)
KL(pllp) +1n 3 |lc]|*Tain
_ = 25
2 +3 0 (25)
Solving for the optimal \*:
8(KL +1n2
. ¢ (KL(pl) +1n ) 6
l[€l[* Tmin
Substituting A\* back into our bound:
A KL p M +1n2 A* & 2Tmin
Eop[Lo(0) — L(0)] < (ol AZ o 4 | |z|3 (27)
_ el Tmin (KL(p|| ) +1n ) ]| Tenin (KL (p||) +1n 3)
= + (28)
8 8
2 min KL 1 2
_ ] lelPTmin (KL(p| 1) + In §) 29)
2
B.5.6 Final bound
Finally, substituting the expression for ||c||? from Equation (7):
Fhax 102 (KL 2
. — min pllp) +1n
Egmp[Lo(0) — L(6)] g\/ r 7 5 (KLiple) +1n5) (30)
RZ Tmin(]- - "YQH) 2
= | [ max KL ) 1
\/ ) (KL(pllw) +1n 5 31

Recalling that £(0) = —V/, from Equation (3], we obtain the PAC-Bayes value-error bound stated
in Theorem 3.2}

R?namein(l - 'YZH)
21(1 —~?)

Egp[Viy) > Eonl~Lo (6)] - \/ (KLeln) +13) @2

This bound provides a high-probability lower bound on the expected value of policies sampled from
the posterior distribution p, accounting for the statistical dependencies inherent in MDP trajectories
through the mixing time Tyip,.

B.6 A discussion on Tasdighi et al.’s assumption

An assumption that is worth noting in the work of Tasdighi et al. [14] is that the sequence of Bellman
errors forms a Markov chain. Here, we provide a simple counter-example that demonstrates why this
assumption does not hold in general.

Consider a simple MDP with four states { A, B, C, D} and the following transition dynamics with
discount factor v = 0:
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 State A transitions to state C' with reward r = 0
e State B transitions to state D with reward r = 0
* State C has a self-loop with reward r = +1

 State D has a self-loop with reward r = —1

Let us use a value function V' = 0 that assigns zero value to all states. We can then compute the
Bellman errors for each state:

d:(A)
6:(B)

r(A) + *ym(?XIE[V(S’Hs =A,al-V(A)=040-V(C)-0=0 (33)
r(B) + ’ymgXE[V(s')\s =B,a]-V(B)=04+0-V(D)—-0=0 (34)

Thus, both states A and B produce the same Bellman error §; = 0 at time ¢. However, the subsequent
Bellman errors at time ¢ + 1 are:

5:41(C) =7(C) + vmng[V(s’ﬂs =C,a] - V(C)=4140-V(C)—-0=+1 (35)
511(D) = r(D) + ymaxE[V(s))|s = D,a] - V(D) = ~140- V(D) ~0=~1  (36)

This simple example demonstrates that knowing the current Bellman error §; = 0 is insufficient to
determine the distribution of the next Bellman error §;41, which can be either 41 or —1 depending
on the state that produced the current error.

For a sequence to be Markovian, the conditional distribution of future states must depend only on
the current state, not on the sequence of events that preceded it. In this case, the distribution of §;41
depends on which state (A or B) produced d; = 0, not just on the value of d; itself.

Therefore, the sequence of Bellman errors {d;} cannot be modeled as a Markov chain in general,
invalidating a key assumption in the theoretical analysis of Tasdighi et al. [[14].
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sse0 C Pseudo Code

Algorithm 1: PAC-Bayes Soft Actor-Critic (PB-SAC)

Input: MDP M = (S, A, P, R, ), discount ~, failure probability ¢, KL coefficient 3, mixing
coefficient A
Output: Policy my with PAC-Bayes guarantees

/* Initialize */

1 Initialize SAC components (actor my, critics Q4, , @4, replay buffer D)
2 Initialize posterior p(#) = N (v, diag(c?)) where v are the initial actor parameters
3 Initialize prior ;1(0) = N (v, diag(o?))
4 Initialize PAC-Bayes rollout sizes (horizon H, trajectories T')
5 Imax < Initial_estimate; 75, < 1
6 for t = 1 to total_timesteps do
7 a; < mo(st) // Standard action selection
8 St41,T¢,done; «— env.step(a;)
9 Store (8¢, as, rt, St4+1,done) in D
10 Tmax < MaX(Tmax, 't)
/* Standard SAC update */
11 Update actor and critic networks using SAC
soc? Bcurrent < _flatten_policy_params(my) /* PAC-Bayes updates (infrequent) */
13 if ¢ mod pb_update_freq = 0 then
14 D < collect_rollouts(7’, H) // Collect trajectories
/* Update posterior */
15 Sample states {s(")} from D
16 Optimize Q]E {ﬁ@ (9)} + BKL
~p
/* Compute PAC-Bayes bound */
17 Tmin < estimate_mixing_time(D)
2 . _~2H
18 bound ¢+ \/%:Q;)(KL(;)HM) +In2)
/* Reset prior and inject posterior knowledge to the actor */
19 wp // Reset prior to match posterior
20 onew — A esampled + (1 - >\) : chrrent
21 _load_policy_params(6yey ) // load into actor network
22 A < )\ - decay_rate // Ensure the actor converges to a stable policy
23 clear_rollouts(D) // To start fresh in the next update
24 end
25 end

26 return 7y, p, and bound

st D Hyperparameter Selection

602 We carefully selected hyperparameters for our PAC-Bayes Soft Actor-Critic (PB-SAC) implementa-
603 tion to balance performance, sample efficiency, and theoretical guarantees. Our approach involves two
604 sets of hyperparameters: those for the base SAC algorithm and those specifically for the PAC-Bayesian
605 mechanisms.

60s D.1 SAC Hyperparameters

607 For the base SAC algorithm, we used standard hyperparameters that have proven effective across
608 continuous control tasks:

609 * Discount factor v = 0.99
610 * Target network smoothing coefficient 7 = 0.005
611 * Batch size of 256 samples
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612

613

614

615

616

617
618
619

620

621

622

624

625

627

628

629
630
631
632

633
634
635
636

637
638
639

640
641
642

* Learning starts after 5,000 environment steps

* Policy learning rate o, = 3 x 10~*

* Q-function learning rate ag = 1 x 1073

* Policy updates delayed by factor of 2 compared to critic updates

* Automatic entropy tuning enabled with initial temperature o = 0.2
These parameters were chosen based on previous work by [18], with slight adjustments for our

environments. The automatic entropy tuning is particularly important as it allows the algorithm to
adapt the exploration-exploitation trade-off according to the complexity of the environment.

D.2 PAC-Bayes Specific Hyperparameters

The PAC-Bayesian framework introduces several additional hyperparameters:

* PAC-Bayes update frequency of 20,000 environment steps
» KL regularization coefficient 5 = 1.0

* Posterior knowledge injection coefficient A = 0.01

* Failure probability § = 0.05 (95% confidence level)

e Initial maximum reward estimate R, ., = 1.0

10,000 rollout trajectories for bound computation
* 75 steps per rollout trajectory

The infrequent PAC-Bayes updates (every 20,000 steps) are a critical design choice that balances
computational efficiency with the need to maintain accurate performance guarantees. This allows
the base SAC algorithm to make rapid progress between bound computations while ensuring the
posterior distribution properly tracks policy improvements.

We deliberately set the posterior knowledge injection coefficient A to a small value (0.01) to ensure
that the standard SAC optimization process dominates learning, while the PAC-Bayesian posterior
provides a stabilizing influence and theoretical guarantees. This proved more effective than larger
values, which tended to slow convergence by disrupting the actor’s learning dynamics.

For bound computation, we found that 10,000 rollout trajectories of 75 steps each provides sufficiently
accurate estimates of the mixing time and expected returns for our environments. These rollouts are
performed with deterministic policies to accurately reflect the posterior’s expected performance.

The PAC-Bayes updates maintain a posterior distribution over policy parameters, optimize it using
a combination of critic values and KL regularization, and periodically inject information from this
posterior into the actor network. This process allows us to derive high-probability bounds on policy
performance without significantly hampering the learning capabilities of the base SAC algorithm.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Yes, the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. We have clearly articulated our research objectives, methodological
approach, and key findings in both the abstract and introduction sections.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the paper thoroughly discusses the limitations of our work. We have
specifically created a dedicated "Conclusion and Limitations" section to address this impor-
tant aspect of scientific transparency. In this section, we carefully outline the boundaries of
our approach, potential shortcomings, and scenarios where our methods may underperform.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: , for each theoretical result in the paper, we provide the full set of assumptions
and complete, correct proofs. All theorems, propositions, lemmas, and other mathematical
statements are carefully formulated with their precise conditions clearly stated in the main
text. The corresponding detailed proofs are thoroughly presented in the appendix, ensuring
mathematical rigor and allowing readers to verify our theoretical contributions.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all information needed to reproduce our main
experimental results. We have made our code available on an anonymous GitHub repository
for complete transparency. Additionally, we have provided detailed pseudocode in the paper
that clearly outlines our algorithms and implementation details, enabling readers to indepen-
dently reproduce our work even without accessing the GitHub repository. This dual approach
ensures that all methodology, parameters, experimental setups, and evaluation protocols are
thoroughly documented, supporting the verification of our claims and conclusions.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper provides open access to our anonymous GitHub repository
which contains all the necessary single-file implementations, to ease reproducibility.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: Yes, the paper provides open access to the data and code, with comprehensive
instructions to faithfully reproduce the main experimental results, as described in our
supplemental material. Our anonymous GitHub repository contains all the necessary code,
while our supplemental material includes detailed step-by-step instructions for setting up
the environment, running the experiments, and reproducing our results. These instructions
cover all implementation details, parameter settings, and evaluation protocols.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] Yes, the paper reports error bars suitably and correctly defines statistical
significance of our experiments. We have included statistical bar plots with appropriate
error bars to visualize the variability in our experimental results. Additionally, we have
provided PAC-Bayes bounds for our findings, which offer rigorous theoretical guarantees on
the statistical significance of our results.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: the paper provides sufficient information on the computer resources needed to
reproduce the experiments. We have specifically detailed the hardware specifications used
for all experiments, including the type of compute workers (CPU/GPU models).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have taken these ethical considerations seriously throughout our research
process.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
There is no societal impact of the work performed.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of assets used in the paper are properly
credited. We are the original creators of the code developed for this research. For all
external resources (such as libraries or datasets) that we utilized, we have explicitly cited

their original sources, creators, and included their respective licenses and terms of use in our
documentation. This information is clearly provided in the paper and in the accompanying
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14.
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16.

GitHub repository to ensure proper attribution and compliance with all licensing require-
ments. Our approach respects the intellectual property rights of all contributors whose work
informed or supported our research

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets are well documented. Documentation is provided through
multiple channels: in the paper’s appendix (containing experimental protocols), on GitHub
(with code and models), and through structured templates following NeurIPS guidelines
(covering training details, licensing, limitations, etc.). This comprehensive approach ensures
reproducibility and proper understanding of all assets introduced in the research.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The methods developed in this research do not involve LLMs as important,
original or non-standard elements.
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