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Abstract

Despite the impressive capabilities of multi-
modal large language models (MLLMs) in vision-
language tasks, they are prone to hallucinations in
real-world scenarios. This paper investigates the
hallucination phenomenon in MLLMs from the
perspective of modality conflict. Unlike existing
works focusing on the conflicts between model
responses and inputs, we study the inherent con-
flicts in inputs from different modalities that place
MLLMs in a dilemma and directly lead to hallu-
cinations. We formally define the modality con-
flict and construct a dataset named Multimodal
Modality Conflict (MMMC) to simulate this phe-
nomenon in vision-language tasks. Three meth-
ods based on prompt engineering, supervised fine-
tuning, and reinforcement learning are proposed
to alleviate the hallucination caused by modality
conflict. Extensive experiments are conducted on
the MMMC dataset to analyze the merits and de-
merits of these methods. Our results show that
the reinforcement learning method achieves the
best performance in mitigating the hallucination
under modality conflict, while the supervised fine-
tuning method shows promising and stable per-
formance. Our work sheds light on the unno-
ticed modality conflict that leads to hallucinations
and provides more insights into the robustness
of MLLMs. The code and dataset are available
at https://github.com/zmzhang2000/
MMMC.
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Figure 1. An example of modality conflict in vision-language tasks.
Given an image describing a dog surfing on the sea, the user
may ask the question “What color is the ball?”. The model may
hallucinate a response “The ball in the image is green”, while there
is no ball in the image. We expect the model to recognize the
conflict between the visual input and the textual input and give a
response like “The image does not contain a ball”.

1. Introduction
The recent success of multimodal large language models
(MLLMs) has advanced the development of artificial intelli-
gence in vision-language tasks (Dai et al., 2023; Liu et al.,
2023; 2024b; Bai et al., 2023; Wang et al., 2024). These
models enable the joint reasoning over visual and textual
inputs, and have achieved state-of-the-art performance in
various vision-language tasks that require multimodal rea-
soning (Fu et al., 2024; Yue et al., 2024; Yu et al., 2024c; Lu
et al., 2024; Liu et al., 2025). The powerful capabilities of
these MLLMs are typically achieved by pretraining separate
language and vision models on large-scale datasets, and then
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aligning their features to enable multimodal reasoning (Liu
et al., 2023; 2024b).

Despite the impressive performance of MLLMs, they are
prone to hallucinations in real-world scenarios (Huang et al.,
2024; Yu et al., 2024b). Hallucinations refer to the phe-
nomenon where MLLMs generate incorrect or misleading
information not supported by the input data (Ji et al., 2023).
Existing works have proposed various methods to alleviate
hallucinations in MLLMs, such as improving the quality
of training data (Liu et al., 2024a; Yu et al., 2024a), adjust-
ing the decoding strategies (Leng et al., 2024; Huang et al.,
2024), and align the model with human preference (Zhao
et al., 2024; Yu et al., 2024b). These methods mainly target
more precise alignment between the features of different
modalities to reduce hallucinations.

However, existing works on alleviating hallucinations in
MLLMs mainly focus on the conflicts between the model
responses and the inputs, neglecting a possible source of hal-
lucinations: the conflicts between the inputs from different
modalities, which we call modality conflict. For instance,
as shown in Figure 1, given an image describing a dog surf-
ing on the sea, the user may ask the question “What color is
the ball?”. In this case, the question supposes a ball exists in
the image, and the model may hallucinate a response “The
ball in the image is green”, while there is no ball in the im-
age. We expect the model to recognize the conflict between
the visual input and the textual input and give a response
like “The image does not contain a ball”. Even with the
capability of perfectly aligning features of different modali-
ties, MLLMs may still fall into a dilemma when facing such
intrinsically conflicted information between inputs. To this
end, we aim to investigate such hallucination phenomenon
in MLLMs from the perspective of modality conflict.

In this paper, we first give a formal definition of modality
conflict in vision-language tasks in terms of objects, at-
tributes, and relationships in the visual and textual inputs.
Based on the definition, we construct a dataset named Multi-
Modal Modality Conflict (MMMC) to simulate the modality
conflict in vision-language tasks. We evaluate various preva-
lent MLLMs (Dai et al., 2023; Liu et al., 2024b; Bai et al.,
2023; Wang et al., 2024) on the MMMC dataset and find
that most of them lack the ability to recognize the modality
conflict and are prone to hallucinations.

To alleviate the hallucination caused by the modality conflict
and work towards more robust MLLMs, we investigate the
effectiveness of three methods: prompt engineering, super-
vised fine-tuning, and reinforcement learning. We conduct
extensive experiments on the MMMC dataset to analyze
the merits and demerits of these methods. Our results show
that the reinforcement learning method achieves the best
performance in mitigating the hallucination under modal-
ity conflict, while the supervised fine-tuning method shows

promising and stable performance. Our work sheds light on
the unnoticed modality conflict that causes hallucinations
and provides more insights into the robustness of MLLMs.

To summarize, the contributions of this paper are as follows:

• This paper reveals an unnoticed source of hallucina-
tions in MLLMs: modality conflict. The formal defi-
nition of modality conflict is presented in the level of
objects, attributes, and relationships.

• We construct a dataset called Multimodal Modality
Conflict (MMMC) to simulate the modality conflict
in vision-language tasks and evaluate various preva-
lent MLLMs on the dataset. Results show that most
MLLMs are prone to hallucinations under modality
conflict.

• We propose three methods, prompt engineering, su-
pervised fine-tuning, and reinforcement learning, to
alleviate the hallucination caused by the modality con-
flict. Extensive experiments are conducted to analyze
the merits and demerits of these methods.

2. Problem Formulation
In this section, we formally define modality conflict in
vision-language tasks and detail the data construction pro-
cess of MMMC. The pipeline of the data construction pro-
cess and proposed methods are illustrated in Figure 2.

2.1. Modality Conflict

General Form Given a vision-language task consisting
of a visual input V and a textual input T , the task is to
predict an answer A. We define the modality conflict as
the situation where the information contained in V and T is
inconsistent with each other, leading to a dilemma for the
model to predict the answer A. We define the general form
of modality conflict as

Info(V) ̸= Info(T ). (1)

Concretely, we instantiate the Info(·) function from objects,
attributes, and relationships in the visual and textual inputs
following Shu et al. (2025). We define these three types of
modality conflict as follows.

Object Conflict The object conflict occurs when the tex-
tual input involves objects not present in the visual input.
For example, the textual input supposes a cat in the image,
while the image only contains a dog rather than a cat. We
define the object conflict in ⟨V, T ⟩ as

Obj(T ) ̸⊆ Obj(V), (2)

where Obj(·) denotes the set of objects in the input.
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Data Construction

Object Conflict Attribute Conflict Relation Conflict

How many wings does the
bird have?

How many fins does the fish have?

The image does not contain any fish or
fins.

What is behind the orange
trolley?

What is behind the blue trolley?

The image does not contain a blue
trolley.

What is growing outside
of the shed?

What is growing inside of the shed?

The image does not show anything
growing inside of the shed.

Key Components 
Detection

Components 
Substitution

Answer 
Generation

Methods

Prompt Engineering

Prompt

MLLM

Text InputImage Input

Model Response

Reinforcement Learning

Ground Truth Answer

Model Response

Reward

Parameter         
Update

Text InputImage Input

MLLM

Supervised Fine-tuning

Parameter 
UpdateGround Truth Answer

log 𝑝𝑝(·)
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Figure 2. The pipeline of the data construction process and proposed methods. The data construction process mainly consists of key
components detection, components substitution, and answer generation. Prompt engineering, supervised fine-tuning, and reinforcement
learning are proposed to alleviate the hallucination caused by the modality conflict. The snowflake icon denotes that the MLLM is frozen,
while the flame icon indicates it is fine-tuned.

Attribute Conflict Sometimes the visual and textual in-
puts may describe the same objects but with different at-
tributes. For example, the textual input describes a red
apple, while the image shows a green apple. We deem
attribute conflict arises in ⟨V, T ⟩ if


Obj(T ) ⊆ Obj(V)
{Oi}mi=1 = Obj(T ) ∩ Obj(V)

Attr(OT
i ) ̸= Attr(OV

i ), i = 1, 2, ...,m

, (3)

where {Oi}mi=1 is the set of objects contained in both the
image and text inputs. OV

i and OT
i indicate the objects

in image and text inputs, respectively. Attr(·) denotes the
attributes of an object.

Relationship Conflict The relationship conflict occurs
when the visual and textual inputs describe the same objects
with different relationships. For example, the textual input
describes a cat on the table, while the image shows a cat on
the floor. We formulate the relationship conflict in ⟨V, T ⟩

as a situation where
Obj(T ) ⊆ Obj(V)
{Oi}mi=1 = Obj(T ) ∩ Obj(V)

Rel(OT
i ,OT

j ) ̸= Rel(OV
i ,OV

j ), i, j = 1, 2, ...,m

, (4)

where Rel(·) denotes the relationships between two objects.

2.2. Data Construction

To simulate the modality conflict in vision-language tasks,
we construct a dataset Multimodal Modality Conflict
(MMMC) that contains all the three types of conflicts dis-
cussed above. Specifically, we collect images from the
widely-used vision-language datasets, Visual Genome (Kr-
ishna et al., 2017), and construct natural language questions
conflicting with the image content and corresponding an-
swers. Given the clear definition of modality conflict, we
resort to the large language models1 to construct the dataset
for modality conflict. The construction process is elaborated
as follows.

1We use GPT-4o-mini, a powerful and fast model for data
construction.
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Base Question Sampling To align the format and style
of questions to the original dataset, we adopt a substitu-
tion framework to simulate the modality conflict, inspired
by Longpre et al. (2021). We first randomly sample a base
question T from the original dataset for each image V . Key
information in the base question will then be substituted
with conflicting ones to construct a new question as dis-
cussed in the following.

Key Components Detection Questions in vision-
language tasks usually involve a series of components, in-
cluding objects, attributes, and relationships. These com-
ponents should be displayed in the image to ensure the
question is answerable. However, in the modality conflict
scenario, the components in the question may not be present
in the image. We adopt the large language model to de-
tect the objects in the image and extract the attributes and
relationships of the objects.

Components Substitution We substitute the objects, at-
tributes, and relationships in the base question with conflict-
ing information detected from the image. The substitution
process is conducted by directly prompting a large language
model to generate a counterfactual question according to
the original question and the key components to be sub-
stituted. Additionally, we input all the objects, attributes,
and relationships in the image, from the annotation of the
original dataset to the model to ensure the conflict between
the question and the image content.

Answer Generation After obtaining the conflicting ques-
tion T ′, we generate a paired answer A′ for the question.
Unlike existing works that generate multiple-choice an-
swers (Zhu et al., 2024), we collect model response directly
to improve the model robustness in free-form generation. It
is worth noting that, to avoid the impact of hallucinations
in the widely-used large vision-language models, we do
not directly generate the answer by inputting the image V
and the question T ′ to them. Instead, we impose that the
substituted components in the question are not present in the
image on the large language model, and require the model to
generate the answer A′ based on the conflicting information.
The large language model demonstrates the capability of
generating answers based barely on textual information, as
shown in Figure 2.

Postprocessing These generated questions and answers
are then verified by human annotators to ensure the quality
of the dataset. The language fluency, the conflict between
the question and the image, and the correctness of the answer
are all considered in the verification process. Finally, we
obtain 20K image-question-answer triples in the MMMC
dataset and randomly split them into 18K training samples
and 2K testing samples. Visualizations for the statistics of

MMMC is provided in Appendix A.

3. Method
We propose three methods, i.e. prompt engineering, super-
vised fine-tuning, and reinforcement learning, to alleviate
the hallucination caused by the modality conflict. We first
formulate the vision-language task as a conditional genera-
tion problem:

A ∼ πθ(A|V, T ) =

T∑
t=1

πθ(at|V, T , a<t), (5)

where the model πθ is required to sequentially generate the
answer A given the visual input V and the textual input
T , and T is the length of answer A. We then introduce
the three methods to improve the robustness of the model
against modality conflict in this section.

3.1. Prompt Engineering

Instruction following (Dai et al., 2023; Liu et al., 2023;
2024b) is a fundamental capability of MLLMs. Questions
are directly inputted to the model to guide the generation
of the answer in Equation (5). We propose to instruct the
model to check if the objects, attributes, and relationships in
the question are present in the image before generating the
answer with a simple but effective prompt template p(T ):

Please check if the image contains mentioned in-
formation and answer the question: T

The prompt engineering method is easy to implement and
does not require additional data or computational resources,
formulated as

A ∼ πθ(A|V, p(T )). (6)

However, the prompt engineering method may not be effec-
tive in all cases. The performance of the method is heavily
dependent on the foundation model and the quality of the
prompt. Besides, the potential of training data is not ex-
ploited in the prompt engineering method. Therefore, we
explore methods with additional training to fully leverage
the data and improve the robustness of the model against
modality conflict.

3.2. Supervised Fine-Tuning

Supervised fine-tuning aims to learn a mapping from the
input to the output by minimizing the discrepancy between
the model predictions and the ground-truth labels. Existing
works have shown the superiority of supervised fine-tuning
in conquering knowledge conflict in LLMs (Longpre et al.,
2021).
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We propose to fine-tune the model on the MMMC dataset
with the language modeling objective, formulated as

π∗
θ = argmin

θ
E⟨V,T ,A⟩∼D [− log πθ(A|V, T )] , (7)

where ⟨V, T ,A⟩ is a triplet of image, question, and answer
in the MMMC dataset D. With this objective, the model is
optimized by gradient descent to align the model predictions
with the ground-truth labels, which is expected to improve
the robustness of the model against modality conflict.

Despite its effectiveness, supervised fine-tuning mainly em-
phasizes adapting the style of the model to the target do-
main (Zhou et al., 2023), while the performance improve-
ment on the unseen data may be limited.

3.3. Reinforcement Learning

Inspired by the success of reinforcement learning in align-
ment with human preference (Ouyang et al., 2022; Stiennon
et al., 2020; Yu et al., 2024b) and improving the robustness
of large language models (Zhang et al., 2024), we resort to
reinforcement learning to further improve the robustness of
the model against modality conflict. Specifically, the condi-
tional generation problem in Equation (5) can be formulated
as a Markov Decision Process (MDP):

A ∼ πθ(A|V, T ) ⇔ ⟨S,A, r, P, ρ0, γ⟩, (8)

with the state st = (V, T , a<t), the action at, the reward
rt, the transition probability P (st+1|st, at), the initial state
distribution ρ0(s0) : ⟨V, T ⟩ ∼ D, and the discount factor
γ. We propose to optimize the model with reinforcement
learning by maximizing the expected reward, formulated as

π∗
θ = argmax

θ
Es0∼ρ0

Eat∼πθ(at|st)

[
T∑

t=1

γtrt

]
. (9)

To realize the goal of alleviating the hallucination caused
by the modality conflict, we assign a reward function that
encourages the model to generate answers semantically con-
sistent with the one in the MMMC dataset and penalizes the
model for generating hallucinated responses. The reward
function is defined as

rt =


+1, if t = T ∧ a≤t is consistent with A
−1, if t = T ∧ a≤t is not consistent with A
0, otherwise

,

(10)
where a≤t denotes the generated answer at time step t and
A is the ground-truth answer in the MMMC dataset. We
prompt a pretrained large language model to judge the se-
mantic consistency between the generated and ground-truth
answer and assign the reward based on the judgment. De-
tailed prompts are listed in Appendix B.

With these base components, we can optimize the model
with arbitrary reinforcement learning algorithms, such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and REINFORCE (Williams, 1992). We adopt an optimized
version of REINFORCE algorithm, REINFORCE++ (Hu,
2025), for light computation and good performance.

In the reinforcement learning method, the model is opti-
mized by interacting with the environment and receiving
rewards based on the quality of the generated answers. Due
to the nature of sampling data from the model itself, the
reinforcement learning method is expected to learn more
diverse and robust answers that share similar semantics with
the ground-truth answers.

4. Experiments
4.1. Setup

Models We evaluate several types of prevalent MLLMs,
InstructBLIP (Dai et al., 2023), LlaVA-v1.5 (Liu et al.,
2023), LLaVA-NeXT (Liu et al., 2024b), and Qwen2-VL-
Instruct (Wang et al., 2024) series, on the MMMC dataset.
InstructBLIP adopts Q-former (Li et al., 2023) to compress
the image into 32 tokens and bridge the vision and language
features, while LLaVA-v1.5, LLaVA-NeXT and Qwen2-
VL-Instruct separately encode the image and text with trans-
former architecture and conduct multimodal reasoning with
additional adapter modules. We use 7B version for each
model in the evaluation. Besides, to investigate the impact
of model size, we also evaluate the 2B version of Qwen2-
VL-Instruct. Additionally, we include the widely-used large
language model GPT-4o as a baseline.

Implementation Details We implement all proposed
method using Hugging Face Transformers and OpenRLHF
library (Hu et al., 2024). For the supervised fine-tuning, we
use the Adam optimizer with a learning rate of 5 × 10−6

and a batch size of 8. We train the model for 1 epochs on
the MMMC dataset with 10000 training samples except for
the ablation study. For the reinforcement learning, we use
the Adam optimizer with a learning rate of 9.65× 10−6 and
a batch size of 8. We train the model on the MMMC dataset
with only 1000 training samples since longer reinforcement
learning will cause the model collapse. We set the KL co-
efficient to 0.01 and the max response length to 128. Both
the supervised fine-tuning and reinforcement learning meth-
ods are trained with LoRA (Hu et al., 2021). We use the
Llama-3.3-70B-Instruct for reward model.

Evaluation Protocol Given the reference responses in
the MMMC dataset, we adopt the widely-used ROUGE-
L (Lin, 2004) F-measure to evaluate the longest common
subsequences overlap between the model responses and the
reference responses. However, this traditional metric do not
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Table 1. Explanation for each level of overall quality scores in the
LLM-as-a-Judge evaluation.

Score Quality Detailed Description

0 Not Valid Unnatural, incoherent or unreadable

1 Terrible Irrelevant to the question asked

2 Wrong Different from the reference answer,
but still relevant to the question

3 Right Has the same meaning as the reference,
but may be phrased differently

4 Excellent Same as the reference or more naturally

consider the semantic similarity in language precisely.

To present a more intuitive evaluation, we adopt the LLM-
as-a-Judge (Zheng et al., 2023), a large language model
that is pretrained on a large-scale dataset and fine-tuned
on human preference data, to evaluate the quality of the
model responses. Concretely, to evaluate the robustness of
the model against modality conflict, we calculate the hal-
lucination rate (Hallu-Rate), defined as the percentage of
hallucinated responses in the model responses. A response
is considered hallucinated if it erroneously assumes the exis-
tence of objects, attributes, or relationships that not present
in the image, presenting plausible but incorrect information.

Additionally, we require LLM-judge to evaluate the over-
all quality of the model responses concerning fluency, rel-
evance, and correctness, represented by a score ranging
from 0 to 4. We list the criteria for these scores in Ta-
ble 1. The average scores of the LLM-judge are reported
as LLM-Judge. To obtain more robust results, we adopt
strong closed-source model GPT-4o series and open-source
model Llama-3.3-70B to perform evaluations of Hallu-Rate
and LLM-Judge. All prompts we used in the evaluation are
listed in Appendix B.

4.2. Main Results

Robustness of Prevalent Foundation Models Against
modality conflict As the “Base” results in Section 4.2
show, the prevalent MLLMs, InstructBLIP-7B, LLaVA-
v1.5-7B, LLaVA-NeXT-7B, Qwen2-VL-Instruct-7B and
even GPT-4o, perform poorly on the MMMC dataset. All
models exhibit Hallu-Rate over 40%, indicating that they
are prone to hallucinations under modality conflict. The
LLM-Judge scores are lower than 2.5, showing that most
of their responses are judged as wrong or of lower quality.
The ROUGE-L scores are also relatively low, suggesting
that the model responses are not sufficiently aligned with
the reference responses.

Performance Improvements with Proposed Methods
We then evaluate the effectiveness of the proposed meth-

ods, prompt engineering, supervised fine-tuning, and re-
inforcement learning, on the MMMC dataset. As shown
in Section 4.2, these three methods significantly improve the
robustness of the prevalent MLLMs on the MMMC dataset.
The Hallu-Rate is reduced by 10% to 50% with the proposed
methods. The LLM-Judge scores are improved by 0.4 to 0.9,
indicating that the overall quality of the model responses
is enhanced. The consistent conclusions provided by the
LLM judge, which is based on GPT-4o and Llama-3.3-70B,
further validate the reliability of our evaluation results. The
ROUGE-L scores are also improved with several methods,
showing that the model responses are more aligned with the
reference responses. We will further analyze the merits and
demerits of these methods in the following section.

4.3. Analysis

Further Analysis on Proposed Methods Prompt engi-
neering is a basic method that may improve the robustness
of the model responses against modality conflict, bring re-
duced Hallu-Rate, and improve LLM-Judge scores in most
cases. It is easy to implement and does not require additional
data or computational resources. However, as shown in Sec-
tion 4.2, the improvement of prompt engineering is heavily
dependent on the foundation model, and the performance
may be unstable. Prompt engineering brings significant
improvement to Qwen2-VL-Instruct-7B and LLaVA series,
but increases the Hallu-Rate of smaller Qwen2-VL-Instruct-
2B model. The performance on InstructBLIP is nearly the
same as the base model. We inspect the generated responses
of InstructBLIP and find that the model tends to generate
short and simple responses whatever the prompt is, which
may lead to the limited improvement of prompt engineering.
The effectiveness of prompt engineering is also limited on
GPT-4o due to the over-robustness of the model, with which
the model tends to generate similar responses for different
expressions of the same instruction.

Supervised fine-tuning (SFT) is a more advanced method
that can further improve the robustness of the model re-
sponses. It requires additional data and computational re-
sources for fine-tuning, but it can achieve better performance
than prompt engineering. As shown in Section 4.2, SFT re-
duces the Hallu-Rate and improves the LLM-Judge scores
of LLaVA-v1.5, LlaVA-NeXT and Qwen2-VL-Instruct se-
ries. However, InstructBLIP suffers from performance loss
after SFT. We speculate that the pre-training of InstructBLIP
does not inject the capability of recognizing the conflicts
between modalities and the fine-tuning data in MMMC is
also not enough to teach this new skill.

Besides, SFT restricts the model behavior to the fine-tuning
data, which may lead to overfitting and limited generaliza-
tion. Reinforcement learning (RL) samples the responses
from the model itself and provides more diverse and infor-
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Table 2. Performance comparison of different methods on the MMMC dataset. We conduct the experiments on Prompt Engineering (PE),
Supervised Fine-Tuning (SFT), and Reinforcement Learning (RL). The performance of GPT-4o is also reported for comparison. The
results of SFT and RL are averaged across three runs with different seeds, and the standard deviations are reported in parentheses. ↑
denotes the higher the better, while ↓ denotes the lower the better. The best performance for each model is highlighted in bold.

Model Method ROUGE-L (%) ↑ Hallu-Rate (%) ↓
(Llama)

Hallu-Rate (%) ↓
(GPT)

LLM-Judge ↑
(Llama)

LLM-Judge ↑
(GPT)

GPT-4o Base 23.76 59.40 57.00 2.12 2.39
PE 23.98 60.10 56.95 2.13 2.42

InstructBLIP-7B

Base 13.89 82.10 70.55 1.81 1.85
PE 13.89 82.30 69.50 1.79 1.86

SFT 8.86 (0.43) 85.48 (0.37) 70.33 (0.74) 1.81 (0.01) 1.76 (0.05)
RL 5.65 (3.08) 57.62 (18.58) 57.18 (18.07) 1.01 (0.69) 1.48 (0.96)

LLaVA-v1.5-7B

Base 28.54 93.25 83.60 1.73 1.81
PE 25.83 86.95 84.70 1.94 1.93

SFT 16.90 (0.52) 59.37 (1.02) 52.28 (0.92) 2.27 (0.02) 2.27 (0.02)
RL 23.53 (3.49) 33.87 (2.53) 29.78 (2.04) 2.58 (0.04) 2.74 (0.04)

LLaVA-NeXT-7B

Base 18.08 69.65 67.00 1.92 2.24
PE 20.91 50.50 50.00 2.43 2.69

SFT 22.25 (0.07) 45.93 (0.47) 42.83 (0.78) 2.48 (0.01) 2.44 (0.04)
RL 25.52 (1.66) 33.83 (1.99) 31.27 (2.03) 2.65 (0.02) 2.86 (0.05)

Qwen2-VL-Instruct-2B

Base 25.20 46.55 40.55 2.07 2.26
PE 30.12 62.10 59.95 2.26 2.40

SFT 29.32 (0.25) 26.85 (0.60) 32.78 (0.74) 2.71 (0.02) 2.76 (0.02)
RL 22.65 (1.65) 18.00 (5.19) 16.78 (4.30) 2.73 (0.06) 2.97 (0.08)

Qwen2-VL-Instruct-7B

Base 24.73 52.35 47.95 2.25 2.47
PE 28.65 40.10 37.35 2.52 2.80

SFT 28.60 (0.10) 28.58 (0.34) 32.02 (0.69) 2.71 (0.01) 2.74 (0.02)
RL 18.89 (0.82) 23.52 (5.63) 20.45 (5.09) 2.66 (0.07) 2.86 (0.10)

mative data for training. It requires more computational
resources but may achieve better performance than SFT. As
shown in Section 4.2, RL dramatically reduces the Hallu-
Rate and improves the LLM-Judge scores of all models, es-
pecially on Qwen2-VL-Instruct series. The main reason for
the best performance of RL is that it explores more diverse
responses in the training process than SFT, which helps the
model to recognize the conflicts between modalities and
enhance its robustness.

Performance Breakdowns for Different Conflict Types
In order to gain a deeper understanding of how each ap-
proach tackles various conflict types, we provide a detailed
performance analysis for each category of conflict in Ap-
pendix C. The analyses indicate that the conclusions drawn
from individual subsets of conflict types align closely with
those derived from the entire dataset. Particularly note-
worthy is the finding that MLLMs exhibit superior perfor-
mance on object-conflict types. On the other hand, attribute-
conflict scenarios present a moderate level of difficulty, and
relationship-conflict types pose a significant challenge for
MLLMs. The performance on these conflicts is notably
poorer when compared to object and attribute conflicts. This
drop in performance can be attributed to the intricate rela-

tional dynamics that the models struggle to accurately in-
terpret and predict. These observations suggest that while
substantial advancements have been made in processing
simpler conflict types such as object-conflicts, there remains
a critical need for enhancement in managing relationship-
focused conflicts.

Alignment Tax Both the SFT and RL methods require
parameter updates to align the model with the training data,
and thus introduce the alignment tax, which is defined as the
performance loss of the model on the original task after the
fine-tuning (Ouyang et al., 2022). To analyze the alignment
tax of our methods, we test the performance changes of the
models on a wide range of vision-language tasks after the
fine-tuning, including HallusionBench (Guan et al., 2024),
MMBench (Liu et al., 2025), MMStar (Chen et al., 2024),
MMMU (Yue et al., 2024), MathVista (Lu et al., 2024),
OCRBench (Liu et al., 2024d), AI2D (Kembhavi et al.,
2016), MMVet (Yu et al., 2024c) and MME (Fu et al., 2024).

We visualize the performance change of the SFT and RL
methods in Figure 3. As the figure shows, the alignment
tax is also heavily dependent on the foundation model. For
example, InstructBLIP suffers a lot from the alignment tax,
showing half of the performance loss on MMBench with
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Figure 3. Visualization of the alignment tax for supervised fine-tuning (SFT) and reinforcement learning (RL). We plot the performance of
the base model (Base) with blue dashed regular polygon, and the performance of the SFT and RL models with orange and green solid
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Figure 4. Training curves of supervised fine-tuning (SFT) and reinforcement learning (RL) on the MMMC dataset. The training loss
of SFT, reward, response length and mean KL divergence of RL are plotted. We plot the average training curves over three runs with
different seeds. The solid lines and shaded areas represent the mean values and standard deviations, respectively. All curves are smoothed
with exponential moving average for better visualization.

SFT and three-quarters of the performance loss on AI2D
and MMVet with RL. By contrast, Qwen2-VL-Instruct-7B
series shows negligible performance change on most tasks
after the fine-tuning, indicating that the model is more ro-
bust to the alignment tax. Surprisingly, the performance
of LLaVA-NeXT on HallusionBench is even improved af-
ter SFT and RL, and Qwen2-VL-Instruct-2B shows similar
changes on MMVet with SFT. LLaVA-v1.5-7B is the most
stable model, demonstrating consistent performance across
multiple benchmarks without much variation. These results
are also strong evidences that the capability of recognizing
the conflicts between modalities is beneficial for the model
to reduce other types of hallucinations.

Training Stability We further analyze the training stabil-
ity of the SFT and RL methods on the MMMC dataset. As
shown in Figure 4, in general, the training loss of SFT is
relatively stable, while the reward of RL fluctuates a lot. The
response length of RL is also unstable, indicating that the
model may generate responses with different lengths during
the training process. This clearly shows that although RL
can potentially reach higher performance, it is less stable
than SFT.

The most noticeable phenomenon is that InstructBLIP-7B’s
response length experiences a jump at around 300 episodes
to the maximum length we set. Meanwhile, it is also the

time when the reward of RL reaches the valley bottom and
the mean Kullback-Leibler (KL) divergence reaches a peak.
To further investigate the reason for this phenomenon, we
analyze the generated responses of InstructBLIP-7B and
find that, at this time, the model begins to generate longer
responses with tedious, repeated, and irrelevant information.
We deem that the model may fall into the local optimum
but is completely collapsed at that time. Some responses
generated by the model are shown in Appendix D for a better
understanding of the phenomenon. RL training curves of
other models are more stable, showing that the model is well-
trained with the reward signal. The fluctuation of the reward
and response length may be caused by the exploration of
the model in the training process, which helps the model
to recognize the conflicts between different modalities and
enhance its robustness.

Impact of Training Episodes Number on RL As the
training of RL is unstable and prone to model collapse, we
delve into a fundamental aspect of RL training: the impact
of training episode number on the model performance. We
conduct experiments on the LLaVA-NeXT-7B model with
different training episodes and report the Hallu-Rate and
LLM-Judge scores in Table 3. As the table shows, the
Hallu-Rate is reduced by 20% with the increase of training
episodes from 2000 to 10000, and the LLM-Judge scores
are improved by 0.5. However, the performance is not

8



Robust Multimodal Large Language Models Against Modality Conflict

Table 3. Hallu-Rate and LLM-Judge of the LLaVA-NeXT-7B
model with different training episodes on the MMMC dataset.
Both Hullu-Rate and LLM-Judge are evaluate by GPT-4o series.

Training Episodes Hallu-Rate ↓ LLM-Judge ↑
2000 63.90 2.31
5000 40.30 2.71

10000 28.50 2.86
20000 30.95 2.78

100000 25.55 2.81

further improved with more training episodes, indicating
that the model may fall into the local optimum after 10000
episodes. We speculate that the model may need more
diverse and informative data for training to further improve
the robustness against modality conflict.

5. Related Work
5.1. Multimodal Large Language Models

With the significant progress of large language models, mul-
timodal large language models (MLLMs) have been devel-
oped based on the language capabilities of large language
models and the visual understanding of large vision models.
Given the pretrained language and vision models, training
of most MLLMs involves a pretraining stage to align the
features of different modalities (Bai et al., 2023; Li et al.,
2023; Alayrac et al., 2022), and a fine-tuning stage to in-
ject the instruction following abilities into the model (Dai
et al., 2023; Liu et al., 2024b; Guan et al., 2024; Liu et al.,
2023). Despite their success in various vision-language
tasks, MLLMs are prone to hallucinations (Ji et al., 2023),
where the model generates content contradicting the input.

5.2. Hallucinations in MLLMs

Plenty of works have been proposed to alleviate hallucina-
tions in MLLMs from the perspective of training data (Liu
et al., 2024a; Yu et al., 2024a), decoding strategies (Leng
et al., 2024; Huang et al., 2024), and human preference align-
ment (Zhao et al., 2024; Yu et al., 2024b). However, these
efforts mainly focus on the conflicts between the model
responses and the inputs, neglecting a possible source of
hallucinations: the conflicts between the inputs from dif-
ferent modalities. Even with the capability of perfectly
aligning features, MLLMs will fall into a dilemma when
facing intrinsically conflicted information. This paper aims
to investigate the hallucination phenomenon in MLLMs
from the perspective of modality conflict.

5.3. Knowledge Conflict

Knowledge conflict (Xu et al., 2024; Longpre et al., 2021;
Chen et al., 2022; Xie et al., 2024) is a long-discussed topic

in the area of large language models. Longpre et al. (2021)
formalizes the problem of knowledge conflicts between the
contextual and the learned information. Chen et al. (2022)
extends the problem to multiple source context scenarios
and proposes a calibration model to detect the phenomenon.
Analogically, conflicts emerge when inconsistent informa-
tion is presented in multimodal tasks, leading to hallucina-
tions in most MLLMs. Zhu et al. (2024) defines the problem
of cross-modality parametric knowledge conflict, detects
the problem with multiple-choice question answering, and
proposes a dynamic contrastive decoding method to miti-
gate the impact of the conflicts. Liu et al. (2024c) specifies
the contradiction between visual information and common-
sense knowledge in the language model. These efforts in
MLLMs neglect the impact of intrinsic conflict between
modalities that lead MLLMs to hallucination. By contrast,
we formalize the concept of modality conflict and collect a
dataset to simulate this situation and evaluate the robustness
of prevalent MLLMs against it.

6. Conclusion
In this paper, we investigate the hallucination phenomenon
in multimodal large language models (MLLMs) from the
perspective of modality conflict. We first give a formal defi-
nition of knowledge conflicts in vision-language tasks and
construct a dataset, named MMMC. We then propose three
methods, i.e. prompt engineering, supervised fine-tuning,
and reinforcement learning, to alleviate the hallucination
caused by the modality conflict. We evaluate the proposed
methods on the MMMC dataset and analyze the results
concerning the overlap with the reference responses, the hal-
lucination rate, and the overall response quality. The results
show that the proposed methods significantly improve the
robustness of the prevalent MLLMs on the MMMC dataset.
We further analyze the merits and demerits of these methods
and provide more insights for future research.
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A. Visualization of MMMC

Figure 5. Distribution of conflict types.

Questions of conflict type "object" Answers of conflict type "object"

Questions of conflict type "attribute" Answers of conflict type "attribute"

Questions of conflict type "relation" Answers of conflict type "relation"

Figure 6. Word cloud visualization of MMMC. We separately visualize distribution of words in questions and answers from different
conflict types.
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B. Prompts
B.1. Prompts for Data Construction

B.1.1. KEY COMPONENT DETECTION

Extract the subject components from the following interrogative sentences. Do not extract pronouns or
prepositions.
Question: {question}
You should include the modified components in the response. Do not include any other information.
Directly respond with the extracted components.

Please extract the words from the following text that are in the list of candidate words. Neither the text nor
the candidate words are case-sensitive.
Text: {text}
Candidate words: {candidate words}
Directly respond with the extracted words, separated by commas. If the text does not contain any of the
candidate words, response with ‘None’.

B.1.2. COMPONENTS SUBSTITUTION

Please generate a counterfactual question based on the following question:
Question: {origin question}
You should generate a question that is similar to the original question but with the object
‘{objects to modify}’ replaced by another object. Note that you should not use objects in the list below.
Objects: {objects excluded}
Directly respond with the generated question.

Please generate a counterfactual question based on the following question:
Question: {origin question}
You should generate a question that is similar to the original question but with the attribute
‘{attributes to modify}’ replaced by different attribute.
Directly respond with the generated question.

Please generate a counterfactual question based on the following question:
Question: {origin question}
You should generate a question that is similar to the original question but with the relationship
‘{relationships to modify}’ replaced by another type of relationship.
Directly respond with the generated question.

B.1.3. ANSWER GENERATION

If someone gives an image and asks the following question:
Question: {question}
But the question has conflicted {conflict type} with the image. The image actually contains

“{key component}”. That is, they might want to ask the question “{origin question}”, which, according to
the image, can be answered with “{origin answer}”.
Please provide a response for him/her based on the above information, pointing out what not contained in
the image.
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B.2. Prompts for Method

B.2.1. PROMPT FOR PROMPT ENGINEERING

Please check if the image contains mentioned information and answer the question: {question}

B.2.2. PROMPT FOR REWARD MODEL IN RL

I will give you two responses for question “{question}”.
Please type “yes” if the two sentences have the same meaning, and “no” otherwise. Type “no” if any of
the sentences is empty.
Response 1: “{reference response}”
Response 2: “{model response}”

B.3. Prompts for Evaluation

B.3.1. HALLUCINATION RATE

You will be given a user question and a system answer.
The question is actually paired with an image. However, the image does not contain the the mentioned
object, or the attributes of the object are not correct, or the relations between the objects are not correct.
Your task is to judge whether the system answer hallucinates the object in the image, i.e., the system
pretends to see the object in the image and provides an answer that is not supported by the image.
If you think the system answer hallucinates the object in the image, please type ‘yes’. Otherwise, please
type ‘no’.

Provide your feedback as follows:
Feedback:::
Evaluation: (your concise rationale for the judge, as a text)
Hallucination: (your answer, either ‘yes’ or ‘no’)

You MUST provide values for ‘Evaluation:’ and ‘Hallucination:’ in your answer.

Now here are the question and system answer.

Question: {question}
System Answer: {answer}

Provide your feedback. If you give a correct judge, I’ll give you 100 H100 GPUs to start your
AI company.
Feedback:::
Evaluation:
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B.3.2. LLM JUDGE

You will be given a user question, a reference answer, and a system answer. Your task is to provide a
‘total rating’ according to the reference answer, scoring how well the system answer answers the user
concerns expressed in the user question.
Give your answer on a scale of 0 to 3, where 0 means that the system answer is wrong at all, and 4 means
that the system answer totally agrees with the reference answer.

Here is the scale you should use to build your answer:
0: The system answer is not valid: unnatural, incoherent or unreadable
1: The system answer is terrible: completely irrelevant to the question asked
2: The system answer is wrong: different from the reference answer, but still relevant to the question
3: The system answer is right: has the same meaning as the reference answer, but is phrased differently
4: The system answer is excellent: the same as the reference answer or more naturally

Provide your feedback as follows:
Feedback:::
Evaluation: (your rationale for the rating, as a text)
Total rating: (your rating, as a number between 1 and 4)

You MUST provide values for ‘Evaluation:’ and ‘Total rating:’ in your answer.

Now here are the question, answer, and reference answer.

Question: {question}
Answer: {answer}
Reference Answer: {reference}

Provide your feedback. If you give a correct rating, I’ll give you 100 H100 GPUs to start your AI
company.
Feedback:::
Evaluation:
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C. Performance on Separate Conflict Types

Table 4. Performance comparison of different methods on the object-conflict subset of the MMMC dataset.

Model Method ROUGE-L (%) ↑ Hallu-Rate (%) ↓
(Llama)

Hallu-Rate (%) ↓
(GPT)

LLM-Judge ↑
(Llama)

LLM-Judge ↑
(GPT)

GPT-4o Base 22.98 51.03 49.89 2.19 2.49
PE 23.17 52.40 49.50 2.19 2.50

InstructBLIP-7B

Base 12.64 79.86 66.06 1.82 1.86
PE 12.64 79.02 65.37 1.82 1.86

SFT 8.41 (0.38) 83.17 (0.10) 66.72 (0.80) 1.82 (0.01) 1.75 (0.06)
RL 4.98 (2.82) 53.57 (21.38) 53.39 (20.77) 1.01 (0.69) 1.50 (0.97)

LLaVA-v1.5-7B

Base 26.38 91.38 81.16 1.72 1.80
PE 23.64 83.30 81.31 1.95 1.93

SFT 19.13 (0.59) 50.88 (0.88) 44.37 (1.34) 2.40 (0.02) 2.38 (0.02)
RL 20.76 (4.11) 24.54 (2.33) 21.56 (1.75) 2.69 (0.05) 2.85 (0.04)

LLaVA-NeXT-7B

Base 17.14 62.62 60.87 1.98 2.33
PE 20.27 41.27 41.72 2.51 2.81

SFT 24.99 (0.06) 36.59 (0.41) 34.02 (0.53) 2.62 (0.01) 2.56 (0.05)
RL 23.88 (2.01) 23.90 (1.53) 22.20 (1.80) 2.79 (0.01) 3.02 (0.06)

Qwen2-VL-Instruct-2B

Base 22.78 39.59 34.40 2.15 2.35
PE 27.52 54.69 52.71 2.33 2.50

SFT 29.87 (0.17) 21.66 (0.72) 26.49 (0.79) 2.81 (0.02) 2.84 (0.02)
RL 21.45 (1.12) 11.87 (4.09) 11.14 (3.24) 2.81 (0.05) 3.08 (0.07)

Qwen2-VL-Instruct-7B

Base 22.73 45.31 42.26 2.31 2.54
PE 26.77 33.49 31.50 2.58 2.89

SFT 29.68 (0.09) 23.37 (0.47) 25.04 (0.47) 2.80 (0.01) 2.81 (0.02)
RL 19.68 (0.68) 15.94 (4.16) 13.63 (3.91) 2.76 (0.05) 3.00 (0.08)

17



Robust Multimodal Large Language Models Against Modality Conflict

Table 5. Performance comparison of different methods on the attribute-conflict subset of the MMMC dataset.

Model Method ROUGE-L (%) ↑ Hallu-Rate (%) ↓
(Llama)

Hallu-Rate (%) ↓
(GPT)

LLM-Judge ↑
(Llama)

LLM-Judge ↑
(GPT)

GPT-4o Base 24.96 69.50 66.04 2.02 2.24
PE 24.87 70.13 66.98 2.04 2.31

InstructBLIP-7B

Base 12.96 85.22 77.04 1.77 1.81
PE 12.96 84.91 76.73 1.71 1.82

SFT 10.26 (0.49) 89.20 (0.30) 76.94 (1.55) 1.77 (0.01) 1.73 (0.04)
RL 6.28 (3.37) 59.22 (16.62) 59.01 (18.12) 0.94 (0.67) 1.41 (0.95)

LLaVA-v1.5-7B

Base 33.07 97.17 88.05 1.75 1.80
PE 28.81 93.08 91.51 1.92 1.90

SFT 16.14 (0.74) 69.92 (1.71) 62.79 (0.90) 2.12 (0.01) 2.11 (0.01)
RL 26.76 (3.79) 39.10 (4.77) 33.44 (2.98) 2.53 (0.08) 2.69 (0.09)

LLaVA-NeXT-7B

Base 20.03 78.62 76.10 1.80 2.14
PE 21.53 59.43 55.03 2.34 2.58

SFT 20.56 (0.12) 58.07 (0.90) 53.88 (1.65) 2.31 (0.01) 2.27 (0.03)
RL 28.55 (1.70) 44.13 (2.53) 39.73 (2.75) 2.55 (0.01) 2.69 (0.07)

Qwen2-VL-Instruct-2B

Base 29.89 55.66 49.37 2.00 2.20
PE 34.83 72.01 68.87 2.16 2.28

SFT 31.06 (0.09) 28.09 (0.15) 33.12 (2.24) 2.75 (0.02) 2.77 (0.01)
RL 25.50 (2.09) 21.91 (5.10) 20.55 (4.52) 2.66 (0.09) 2.88 (0.07)

Qwen2-VL-Instruct-7B

Base 28.61 59.43 54.09 2.26 2.48
PE 31.47 45.60 44.34 2.51 2.76

SFT 30.25 (0.05) 27.04 (0.77) 31.13 (0.68) 2.74 (0.01) 2.77 (0.00)
RL 18.96 (1.42) 31.03 (7.55) 26.31 (6.46) 2.56 (0.11) 2.70 (0.16)

Table 6. Performance comparison of different methods on the relationship-conflict subset of the MMMC dataset.

Model Method ROUGE-L (%) ↑ Hallu-Rate (%) ↓
(Llama)

Hallu-Rate (%) ↓
(GPT)

LLM-Judge ↑
(Llama)

LLM-Judge ↑
(GPT)

GPT-4o Base 25.46 80.32 74.39 1.98 2.19
PE 26.11 78.71 74.66 2.01 2.23

InstructBLIP-7B

Base 19.10 87.33 80.86 1.79 1.85
PE 19.10 91.64 77.90 1.78 1.87

SFT 9.27 (0.61) 90.48 (1.47) 77.45 (0.55) 1.81 (0.02) 1.83 (0.03)
RL 7.47 (3.77) 70.53 (12.39) 69.00 (10.27) 1.05 (0.69) 1.46 (0.92)

LLaVA-v1.5-7B

Base 32.28 96.50 88.41 1.74 1.83
PE 31.01 94.61 90.84 1.89 1.92

SFT 9.68 (0.11) 80.32 (1.01) 71.25 (1.59) 1.96 (0.02) 2.02 (0.00)
RL 30.57 (1.70) 62.35 (1.78) 55.71 (2.45) 2.24 (0.03) 2.39 (0.01)

LLaVA-NeXT-7B

Base 19.74 86.79 80.86 1.81 2.03
PE 22.65 75.47 74.93 2.20 2.36

SFT 14.01 (0.37) 68.55 (1.04) 64.51 (0.99) 2.12 (0.01) 2.14 (0.05)
RL 28.71 (0.68) 60.11 (3.32) 56.06 (2.38) 2.27 (0.04) 2.45 (0.05)

Qwen2-VL-Instruct-2B

Base 29.75 63.34 54.72 1.85 1.99
PE 35.25 79.78 77.90 2.10 2.12

SFT 25.89 (0.66) 44.12 (0.71) 54.72 (1.01) 2.35 (0.04) 2.49 (0.04)
RL 24.44 (3.26) 36.30 (9.21) 33.51 (8.02) 2.49 (0.09) 2.66 (0.15)

Qwen2-VL-Instruct-7B

Base 28.50 71.16 62.80 2.05 2.21
PE 32.90 58.76 52.02 2.33 2.52

SFT 23.37 (0.23) 48.34 (0.25) 57.41 (3.24) 2.36 (0.01) 2.47 (0.03)
RL 16.06 (0.96) 43.85 (9.27) 39.53 (8.14) 2.39 (0.09) 2.52 (0.14)

18



Robust Multimodal Large Language Models Against Modality Conflict

D. Examples
D.1. Object Conflict

Question How many fins does the fish have?

Answer The image does not contain any fish or fins.

GPT-4o, Base The image does not show a fish. It shows a hummingbird feeding on some flowers.

GPT-4o, PE The image shows a hummingbird, not a fish. Therefore, it does not have any fins. Birds have wings, which
are visible in the image.

InstructBLIP-7B, Base 0

InstructBLIP-7B, PE 0

InstructBLIP-7B, SFT 0

InstructBLIP-7B, RL was: Picture of a Bird and a Fish This photo does not show a fish, so there are no fish fins in this photo. This
photo only shows a bird, and it does not show any fish. This photo does not show any fish, so there are no
fish fins in this photo. This photo does not show any fish, so there are no fish fins in this photo. This photo
does not show any fish, so there are no fish fins in this photo. This photo does not show any fish, so there are
no fish fins in this photo. This photo does not show any fish, so there are no fish

LLaVA-NeXT-7B, Base The image you’ve provided appears to show a hummingbird feeding on a flower. Hummingbirds do not have
fins like fish do. They have a unique set of wings that allow them to hover and fly in a way that is distinct
from other birds.

LLaVA-NeXT-7B, PE The image you’ve provided appears to show a hummingbird feeding on a flower. Hummingbirds do not have
fins like fish do. They are small birds known for their ability to hover in mid-air and fly backward.

LLaVA-NeXT-7B, SFT The image does not contain a fish.

LLaVA-NeXT-7B, RL No fish.

Qwen2-VL-Instruct-2B, Base There is no existence of a fish in the image description.

Qwen2-VL-Instruct-2B, PE There is no existence of a fish in the image, so asking about the number of fins for a fish is misleading.

Qwen2-VL-Instruct-2B, SFT The image does not contain a fish.

Qwen2-VL-Instruct-2B, RL There is no existence of a fish or fins in the image description.

Qwen2-VL-Instruct-7B, Base There is no existence of a fish in the image description.

Qwen2-VL-Instruct-7B, PE There is no existence of a fish in the image.

Qwen2-VL-Instruct-7B, SFT The image does not contain a fish.

Qwen2-VL-Instruct-7B, RL There is no existence of a fish in the image description.
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D.2. Attribute Conflict

Question What is behind the blue trolley?

Answer The image does not contain a blue trolley.

GPT-4o, Base Behind the blue trolley, there are several cyclists riding on the street. Additionally, there is an orange trolley,
some trees, street signs, and the facades of various buildings.

GPT-4o, PE Behind the blue trolley, there is a building with a distinctive sloped roof located across the intersection, and
a few cyclists riding on the street. Additionally, tram tracks and cyclists are visible on the road, and some
signage indicating a ”PARK” can be seen on the left side of the image.

InstructBLIP-7B, Base a bus

InstructBLIP-7B, PE a bus

InstructBLIP-7B, SFT A building.

InstructBLIP-7B, RL was: Picture of People Biking and Trolley This photo does not show what is behind the blue trolley. This
photo only shows what is in front of the blue trolley. There is no information about what is behind the blue
trolley. This photo does not show what is behind the blue trolley. This photo only shows what is in front of
the blue trolley. There is no information about what is behind the blue trolley. This photo does not show
what is behind the blue trolley. This photo only shows what is in front of the blue trolley.

LLaVA-NeXT-7B, Base Behind the blue trolley, there is a group of cyclists riding on the street. The cyclists are wearing helmets and
appear to be in motion, following the trolley. The scene suggests a busy urban environment with various
modes of transportation sharing the road.

LLaVA-NeXT-7B, PE The image shows a group of cyclists riding on a street with a blue trolley in the background. The trolley is
not directly behind the cyclists; it is further down the street, and the cyclists are closer to the camera. The
cyclists are wearing helmets and appear to be in motion, suggesting they are actively riding their bicycles.
The street has various markings and signs, indicating it is a busy urban area with traffic regulations.

LLaVA-NeXT-7B, SFT Buildings.

LLaVA-NeXT-7B, RL There is no blue trolley in the image.

Qwen2-VL-Instruct-2B, Base behind the blue trolley.(143,297),(448,530)

Qwen2-VL-Instruct-2B, PE There is a bus behind the blue trolley in the image.

Qwen2-VL-Instruct-2B, SFT The image does not contain a blue trolley.

Qwen2-VL-Instruct-2B, RL There is no existence of a blue trolley in the image description.

Qwen2-VL-Instruct-7B, Base There is no existence of a blue trolley in the image.

Qwen2-VL-Instruct-7B, PE There is no existence of a blue trolley in the image.

Qwen2-VL-Instruct-7B, SFT The image does not contain a blue trolley.

Qwen2-VL-Instruct-7B, RL There is no existence of a blue trolley in the image description.

20



Robust Multimodal Large Language Models Against Modality Conflict

D.3. Relationship Conflict

Question What is growing inside of the shed?

Answer The image does not show anything growing inside of the shed.

GPT-4o, Base I’m sorry, but I can’t determine what’s growing inside the shed from this image.

GPT-4o, PE I’m sorry, but I can’t determine what is growing inside the shed from the image provided.

InstructBLIP-7B, Base There is no shed in the picture.

InstructBLIP-7B, PE There is no shed in the picture.

InstructBLIP-7B, SFT Nothing.

InstructBLIP-7B, RL was: Picture of a Shed with a Fire Hydrant Nearby This picture does not show any growth inside of the shed.
There is no growth inside of the shed. This picture only shows the shed and the fire hydrant. There is no
growth inside of the shed. This picture does not show any growth inside of the shed. This picture only shows
the shed and the fire hydrant. There is no growth inside of the shed. This picture does not show any growth
inside of the shed. This picture only shows the shed and the fire hydrant. There is no growth inside of the
shed. This picture does not

LLaVA-NeXT-7B, Base Inside the shed, there appears to be a plant with long, slender leaves that could be a type of grass or sedge.
The plant is growing in the corner of the shed, where the wall meets the floor. It’s not clear from the image
whether the plant is indigenous to the area or if it was intentionally planted there.

LLaVA-NeXT-7B, PE The image shows a shed with a corrugated metal roof and a wooden structure. There is a fire hydrant in the
foreground, and the shed appears to be in a natural setting with vegetation around it. There is no visible
growth inside the shed, as it is an inanimate structure.

LLaVA-NeXT-7B, SFT Buildings.

LLaVA-NeXT-7B, RL There doesn’t appear to be anything growing inside the shed. It looks like a typical shed with no plants or
vegetation inside.

Qwen2-VL-Instruct-2B, Base There is no existence of any plants or vegetation inside the shed in the image description.

Qwen2-VL-Instruct-2B, PE There is no existence of any plants or vegetation growing inside the shed in the image.

Qwen2-VL-Instruct-2B, SFT The image does not contain any information about what is growing inside the shed.

Qwen2-VL-Instruct-2B, RL There is no existence of any plants or growth inside the shed in the image description.

Qwen2-VL-Instruct-7B, Base It is ambiguous what is growing inside of the shed. It could be grass, weeds, or plants.

Qwen2-VL-Instruct-7B, PE There is no existence of any plants or growth inside the shed in the image.

Qwen2-VL-Instruct-7B, SFT Weeds.

Qwen2-VL-Instruct-7B, RL There is no existence of any plants or growth inside the shed in the given image information.
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