
Under review as a conference paper at ICLR 2021

SPARSE BINARY NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantized neural networks are gaining popularity thanks to their ability to solve
complex tasks with comparable accuracy as full-precision Deep Neural Networks
(DNNs), while also reducing computational power and storage requirements and
increasing the processing speed. These properties make them an attractive alterna-
tive for the development and deployment of DNN-based applications in Internet-
Of-Things (IoT) devices. Among quantized networks, Binary Neural Networks
(BNNs) have reported the largest speed-up. However, they suffer from a fixed and
limited compression factor that may result insufficient for certain devices with
very limited resources. In this work, we propose Sparse Binary Neural Networks,
a novel model and training scheme that allows to introduce sparsity in BNNs by
using positive 0/1 binary weights, instead of the -1/+1 weights used by state-of-
the-art binary networks. As a result, our method is able to achieve a high compres-
sion factor and reduces the number of operations and parameters at inference time.
We study the properties of our method through experiments on linear and convo-
lutional networks over MNIST and CIFAR-10 datasets. Experiments confirm that
SBNNs can achieve high compression rates and good generalization, while further
reducing the operations of BNNs, making it a viable option for deploying DNNs
in very cheap and low-cost IoT devices and sensors.

Keywords : Binary Neural Networks; Sparsity; Deep Neural Network Compression

1 INTRODUCTION

The term Internet-Of-Things (IoT) became notable in the late 2000s under the idea of enabling
internet access to electrical and electronic devices (Miraz et al., 2015), thus allowing them to collect
and exchange data. Since its introduction, the number of connected devices has managed to surpass
the number of humans connected to the internet (Evans, 2011). The increasing number of both
mobile and embedded IoT devices has led to a sensors-rich world, capable of addressing a various
number of real-time applications, such as security systems, healthcare monitoring, environmental
meters, factory automation, autonomous vehicles and many others, where both accuracy and time
matter (Al-Fuqaha et al., 2015).

At the same time, Deep Neural Networks (DNNs) have reached and surpassed state-of-the-art re-
sults for multiple tasks involving images and video (Krizhevsky et al., 2012), speech (Hinton et al.,
2012) or language processing (Collobert & Weston, 2008). Thanks to their ability to process large
and complex multiple heterogeneous data and extract patterns needed to take autonomous decisions
with high reliability (LeCun et al., 2015), DNNs have the potential of enabling a myriad of new IoT
applications. DNNs, however, suffer from high resource consumption, in terms of required compu-
tational power, memory and energy consumption (Canziani et al., 2016). Instead, most IoT devices
are characterized by their limited resources. They have limited processing power, small storage ca-
pabilities, they are not GPU-enabled and they are powered with batteries of limited capacity, which
are expected to last over 10 years without being replaced or recharged (Global System for Mobile
Communications, 2018). All these important constraints remain an important bottleneck towards
deploying DNN models in IoT applications (Yao et al., 2018).

Achieving deployment of DNNs in IoT devices requires to compress deep neural networks to fit
on IoT devices, while enabling real-time “intelligent” interactions with the environment (Yao et al.,
2018) and without degrading their accuracy. Sparsity, compression and quantization, i.e. replacing

1

Under review as a conference paper at ICLR 2021

32 bit full-precision operations and values with fixed-point ones, can reduce inference time, storage
size and power consumption of DNNs. This under the constraint of keeping high accuracy.

Different studies (Denil et al., 2013; Frankle & Carbin, 2019) have demonstrated that deep models
contain optimal subnetworks, which can perform the same task of their related super-network with
less memory and computational burden. Among the various techniques used to extract these subnet-
works, pruning and quantization have shown promising results. The first one is based on removing
parameters to obtain a sparser network, whereas the second focuses on reducing the bit-width to rep-
resent the parameters. Under this principle, Binary Neural Networks (BNNs) (Courbariaux et al.,
2015) and Ternary Neural Networks (TNNs) (Hwang & Sung, 2014) are two recently proposed
quantized neural networks with weights and activation functions using one and two bits, respectively.
This approach avoids multiplication operations in the forward propagation, which are well-known
to be computationally expensive, and replaces them with low-cost bitwise operations. This allows
to speed-up the resulting networks and to compress them. For instance, BNNs with binary weights
{−1,+1} can reach a compression factor w.r.t. full-precision models of up to approximately 32
times (Rastegari et al., 2016). Despite this improvement the compression factor is upper bounded to
32, which is the result of representing the network’s weights with 1-bit instead of the full-precision
32-bits, and may result insufficient for certain limited size and low power embedded devices.

To address this limitation, we introduce a novel quantized model denoted Sparse Binary Neural Net-
work (SBNN). It shares the advantages of BNNs as it performs quantization using only one bit, while
also introducing sparsity. Our SBNN uses 0s and 1s as weights, instead of +1s and -1s (Courbariaux
et al., 2015; Rastegari et al., 2016), allowing to reduce the total number of required operations, and
to achieve higher network compression rates and lower energy consumption at inference time. To
achieve this, we propose a training scheme that starts from a “nearly-empty” model, rather than from
fully connected models that prune their connections, as most state-of-the-art works do.

The remaining parts of this work is organized as follows. Section 2 discusses previous works to
achieve sparsity and quantization in DNNs. The core of our contribution is described in Section 3.
In Section 4, we study the properties of the proposed method and assess its performance, in terms
of accuracy and compression results, through a set of experiments using MNIST and CIFAR-10
datasets. Finally, a discussion on the results and main conclusions are drawn in Section 5.

2 RELATED WORK

We review different approaches to address sparsity and quantization in quantized networks.

Sparsity. The concept of sparsity has been well studied beyond quantized neural networks as it
reduces computational and storage requirements of the networks and it prevents overfitting. Meth-
ods to achieve sparsity either explicitly induce it during learning through regularization, such as
L0 (Louizos et al., 2018) or L1 (Han et al., 2015) regularization; do it incrementally by gradually
augmenting small networks (Bello, 1992); or by post hoc pruning (Srivastava et al., 2014; Srinivas
et al., 2017; Gomez et al., 2019). In the context of quantized networks, Han et al. (2016) proposed
magnitude-pruning of the nearly-zero parameters from the trained full-precision dense model fol-
lowed by a quantization step of the remaining weights. The method achieved high compression rates
of ∼35-49× and inference speed-up on well-known DNN topologies, without incurring in accuracy
losses. However it has a time-consuming train-pruning stage and a relatively limited speed-up,
which is model-dependent. Tung & Mori (2018) tried to optimize the scheme in Han et al. (2016)
reporting an improvement in accuracy. However, their method encountered a smaller compression
factor. Regarding TNNs, this type of networks naturally performs magnitude-based pruning thanks
to their quantization function which maps real-valued weights to {−1, 0,+1}. Nevertheless, some
works (Faraone et al., 2017; Marban et al., 2020) have achieved larger compression rates by explic-
itly inducing sparsity through regularization. Current BNN implementations do not address sparsity
explicitly and focus on compression improvement through quantization (Rastegari et al., 2016). To
account for sparsity, our work proposes to map real-valued weights to the positive {0, 1} values,
instead of the standard mapping of real weights to {−1,+1}.

Quantization. Network quantization allows the use of fixed-point arithmetic and a smaller bit-
width to represent network parameters w.r.t the full-precision counterpart. As such, it has been

2

Under review as a conference paper at ICLR 2021

widely applied in graphs and neural networks since it reduces the power consumption and storage
requirements of the network, while increasing the processing speed. Representing the values using
only a finite set requires a quantization function that maps the original elements to the finite set.
The quantization can be done either after training the model, using parameter sharing techniques
(Han et al., 2016); or by directly quantizing the weights in the forward pass, as TNNs (Hwang &
Sung, 2014), BNNs (Courbariaux et al., 2015) and other quantized networks (Hubara et al., 2017), in
general. Similar to previous BNNs, our model also performs quantization during the training phase,
while also introducing sparsity.

3 METHOD

We formulate the optimization problem addressed by SBNNs in section 3.1, then we present the
algorithm to train our model and the proposed quantization functions (section 3.2). The sparse
initialization is introduced in section 3.3. Finally, we describe implementation details and how
SBNNs are more efficient in this aspect (section 3.4).

3.1 PROBLEM FORMULATION

Given a dataset of input-output pairs D = {(x, y)}, the standard training of a full-precision neural
network can be seen as a loss minimization problem:

argmin
w

L(y, ŷw) (1)

where L(·) is a loss function between true labels y and the predicted values ŷw. The predicted values
are a function of the data inputs and the networks’ weights w ∈ RN , i.e. ŷw = f(x;w).

Let us define a Sparse Binary Neural Network (SBNN) as a network with positive binary weights
w ∈ {0, 1}N and a sparsity constraint imposing a maximum number M of non-zero weights in the
final network such that

∑
i wi ≤ M < N , with N the total number of weights .The loss mini-

mization problem from eq. (1) thus becomes a mixed discrete-continuous constrained optimization
problem:

argmin
w

L(y, ŷw)

s.t. wi ∈ {0, 1} ∀ i,∑
i

wi ≤M < N.

(2)

To simplify the mixed optimization problem, we first relax the discrete constraint imposed to the
binary nature of the weights to deal with continuous variables. We thus allow for w ∈ [0, 1]N

and we introduce a non-negative function f1(w), which penalizes values w far from 0 and 1, while
favouring the two extreme positive discrete values, i.e f1(0) = f1(1) = 0. Possible functions f1(w)
are shown in fig. 1.

Furthermore, we relax the sparsity constraint,
∑

i wi ≤ M , by introducing a non-negative function
f2(w) which penalizes non-zero weights. This can be achieved through L1 or L2 penalization. In
this way, f1(w) pushes the real-valued weights towards 0 or 1, while f2(w) seeks to minimize the
number of weights equal to 1. The effect of f1(w) and f2(w) is controlled using hyperparameters λ1
and λ2, respectively. Following (Murray & Ng, 2010; Srinivas et al., 2017), the relaxed optimization
problem for a Sparse Binary Network can be expressed as:

argmin
w

L(y, ŷw) + λ1
∑
i

f1(wi) + λ2
∑
i

f2(wi)

s.t. wi ∈ [0, 1] ∀ i.
(3)

3.2 NETWORK TRAINING AND QUANTIZATION

The optimization problem from eq. (3) can be solved using the training algorithm proposed by
Courbariaux et al. (2016) for standard BNNs with antipodal weights w ∈ {−1,+1}. Although

3

Under review as a conference paper at ICLR 2021

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: Possible regularization functions f1(·). From left to right, triangular, L2-inspired,
piece-wise parabola and a 4th degree polynomial.

the adaptation to positive weight constraints, i.e. w ∈ {0, 1} is straightforward, the quantization
function used to set the final weights to {0, 1} requires reformulation. In the following paragraph, we
first briefly describe the training procedure, followed by the formulation of the SBNN quantization
function.

Binary Network Training. The binary network training algorithm (Courbariaux et al., 2016) re-
lies on Stochastic Gradient Descent (SGD) and it binarizes the network’s weights during the forward
propagation. To quantize the full-precision weights and back propagate their gradients, the sign
function is used in the forward pass. Due to non-differentiability, the Straight-Through Estimator
(STE) (Bengio et al., 2013) is used in the backward pass. During parameter update, no binarization
is performed, as full-precision values are required for SGD to work. The magnitude of the real-
valued weights beyond the binary values range does not influence the binarization operation in the
forward pass. For this reason, after every parameter update those values are mapped to their nearest
binary value. This is done through a clip operation in (Courbariaux et al., 2016). Finally, to reduce
the effects of binary weight scaling, a batch-normalization layer (Ioffe & Szegedy, 2015) is always
placed after a binary layer.

Quantization Functions. As the optimization problem from eq. (3) allows for the networks
weights to have continuous positive values in [0, 1], we define a quantization function to map real-
valued positive weights into binary positive values {0, 1} during the training’s forward pass and
parameter update. Let us so define the weight quantization function Qw : [0, 1]→ {0, 1} as:

Qw(x) =

{
0, if x ≤ 1

2
1, otherwise (4)

Due to the introduction of positive weights, we modify the activation function used by each neuron,
since networks with positive-valued weights in combination with the standard non-negative ReLU
activation function, may lead to drop in the accuracy performance. Instead, the activation function
used in our networks is the antipodal sign function, which can span both the negative and the positive
realms, as in (Courbariaux et al., 2016). This function quantizes the outputs of each neuron in the
antipodal binary domain {−1,+1}, and it is expressed by the quantization function Qa : R →
{−1,+1} as:

Qa(x) =

{
−1, if x < 0
+1, otherwise (5)

The activation function follows the batch-normalization layers. The effect of the batch-
normalization with its learnable parameters can be seen as the effect of moving the threshold 0
(eq. (5)) of the activation function to a new threshold value γ (Umuroglu et al., 2017). This effect
is needed by the network to reduce the quantization error ε = x − Q(x), i.e. the incurred error
when mapping full-precision values to the quantized binary domain. Although this results in that
batch-normalization introduces more parameters and extra-computations during training (e.g. mean
and variance of inputs over the mini-batch), when the trained model is deployed, the new threshold
γ can be stored using only one integer parameter (Umuroglu et al., 2017), thus requiring only a
comparison and no further computations.

4

Under review as a conference paper at ICLR 2021

3.3 SPARSE INITIALIZATION

Differently from standard network initialization, in SBNNs every weight follows a Bernoulli distri-
bution of parameter p:

P (wi = 1) ∼ B(p).
The sparsity parameter p controls the number of initial connections in the network. A fully connected
network is achieved with p = 1, whereas an initial empty network is obtained with p = 0. Our
proposed training scheme works under the hypothesis that training is faster starting from a sparse
initialization p close to zero, and adds only the necessary connections, rather than starting from
a fully connected network and removing most of its connections. At the same time, a too sparse
initialization p ≈ 0 may induce large gradient errors, forcing the network to add a great number
of connections. A Bernoulli distribution to remove connections is exploited also in Ardakani et al.
(2016), with the idea of creating a mask for binary and ternary weight networks that selects only a
percentage p of weight parameters to control the sparsity level. Their proposed approach is really
effective using VLSI technology, but due to the transformation from binary weight networks with
w ∈ {−1,+1} to ternary values w ∈ {−1, 0,+1}, the sign of the non-zero connections needs to
be encoded in normal processors, adding overheads in the encoder and decoder, while limiting the
compression factor.

3.4 IMPLEMENTATION

BNNs replace the multiplication and accumulation operations in the forward pass of full-precision
networks by two bitwise operations. Multiplication is replaced by a XNOR operation between
binary weights at a given layer and the binary inputs from previous layers, and accumulation by a
popcount operation.

Connections in the SBNN formulation will always have the same weight of 1. As such, XNOR
operations are not required allowing SNNs to further simplify the computations of the network.
The only operation needed by SBNNs during the forward pass is the popcount. Furthermore, it is
performed only among the connected input bits through the 1s weights rather than the full input.
The implementation gain of SBNNs w.r.t. BNNs is illustrated in fig. 2.

+1 +1 -1 +1 +1

+1 -1 +1 -1 -1

-1 -1 +1 -1 +1

+1 +1 -1 -1 +1

+1 -1 +1 +1 1 1 0 1 1

0 1 0 1 1

0 0 1 0 1

1 1 0 0 1

2 3 1 2 4

XNOR popcount

1 0 1 1

1 1 0 1 1

1 0 1 0 0

0 0 1 0 1

1 1 0 0 1

≥ ≥ ≥ ≥ ≥

2 2 2 2 2

threshold
comparison

1 1 0 1 1

2 3 1 2 4

1 0 0 1 0

0 0 0 0 1

0 0 1 1 0

0 1 0 0 0

+1 -1 +1 +1

1 1 1 2 0

select input
popcount

1 0 1 1

≥ ≥ ≥ ≥ ≥

1 1 1 1 1

threshold
comparison

1 1 1 1 0

1 1 1 2 0

2

0 3 2 0 1

1

1 1 1 1 0

input

encoded input

input

encoded input

weigths

weigths

encoded weights
via index encoder

encoded weights

Binary Neural Network

Sparse Binary Neural Network

Figure 2: Example of implementation of Binary Neural Networks and Sparse Binary Neural Net-
works. The threshold in Binary Neural Networks is dninputs

2 e, with ninputs the dimension of each
input sample at a given layer. In Sparse Binary Neural Networks, this accounts to dn1s

2 e, with n1s
the number of connected inputs at each output neuron.

4 EXPERIMENTS AND RESULTS

We trained and tested the proposed SBNN on classification problems from two different datasets
widely used to understand the generalization of BNNs, using similar network topologies (Cour-
bariaux et al., 2015; 2016; Hubara et al., 2017; Kim & Smaragdis, 2015): 1) the MNIST dataset
(LeCun & Cortes, 2010), consisting of 28×28 black and white images of handwritten digits; and 2)
CIFAR-10 (Krizhevsky et al.), consisting of 32×32 RGB images of natural scenes. Both datasets
have 10K images for testing and 10 different classes, while they have 60K and 50K images for
training, respectively.

5

Under review as a conference paper at ICLR 2021

In the following section we report experimental results obtained on each dataset, where we study the
properties of the proposed SBNN. Concretely, we use MNIST to study SBNNs using linear layers,
whereas CIFAR-10 is used to study the behaviour of SBNNs with convolutional layers.

4.1 MNIST

This section first describes the setup used to train our SBNNs over MNIST dataset. Then we study
how the sparsity parameter p, the learning rate, and the use of regularizers f1 and f2 affect the
SBNNs sparsity and generalization capacity. Lastly, we compare our SBNNs with state-of-the-art
BNNs in terms of accuracy and compression.

Setup. We use the linear topology proposed by Courbariaux et al. (2016), consisting of 3 hidden
layers with 1024 neurons each, followed by batch-normalization layers with learnable parameters
and the sign function. We denote our sparse architecture as 3L-SBNN and provide further details
about it and its implementation in appendix A.1.

Effects of sparsity parameter p. In this first experiment, we study the sparsity and the general-
ization properties of our SBNN as a function of the initial number of connections, controlled by p.
Sparsity, quantified by the number of effective connections, EC = |W 6= 0|/|W | (Marban et al.,
2020), and generalization, measured in terms of test accuracy, over training time (epochs) for differ-
ent values of p are reported in fig. 3. The learning rate was fixed to 1. A sparse network will have
an EC close to zero, whereas a fully connected network has EC = 100%.

Results show that a very low number of initial connections (e.g. p < 1%) seems to induce large
gradient errors, leading to a large increment of connections, clearly visible after the first epoch.
Conversely, larger values of p induce smaller variations in the number of connections over time. Re-
garding training time, low values of p (e.g. p ≤ 1%) allow for a faster training, which is manifested
through the fact that these achieve smaller generalization errors faster than higher values of p (fig. 3
right).

0 2 4 6 8 10

epochs

0

2

4

6

8

10

E
C

 [
%

]

0 2 4 6 8 10

epochs

50

60

70

80

90

100

E
C

 [
%

]

2 4 6 8 10

epochs

0

20

40

60

80

100

te
s
t

a
c
c
u

ra
c
y
 [

%
]

1 2 3 4 5 6 7 8 9 10

epochs

0

10

20

30

40

50

60

70

80

90

100

te
s
t
a
c
c
u
ra

c
y
 [
%

]

0.1 % initial connections

1.0 % initial connections

10.0 % initial connections

50.0 % initial connections

100.0 % initial connections

Figure 3: Effective Connections (EC) as a function of the initial number of connections (p) in a
Sparse Binary Neural Network with 3 feed-forward hidden linear layers with 1024 neurons each,
trained on MNIST dataset. Left. p = 0.1 % (O), p = 1.0 % (�), p = 10.0 % (4). Center. p = 50.0 %
(*) and p = 100.0 % (×). Right. Corresponding test accuracy.

Effects of the learning rate. Here we study the sparsity and generalization of SBNNs as function
of the learning rate. Using a fixed p = 1.0%, which resulted in previous experiment in a good trade-
off between sparsity and generalization, fig. 4 reports how the number of connections varies over
training time along with test accuracy.

As it would be expected results show that higher learning rates lead to a faster convergence, mani-
fested by a faster increase in test accuracy. Regarding the number of network connections, however,
smaller learning rates favour sparsity: the smaller the learning rate, the smaller the increase in the
number of connections over time. Large learning rates (lr = 10) are catastrophic for sparsity (fig. 4
left). Overall, results indicate it is possible to find a compromise between learning rates that can
achieve high accuracy within reasonable training times, while preserving sparsity.

Effects of the regularizers. In this last experiment, we study the role of the regularizers (eq. (3))
in the SBNN’s performance in terms of sparsity and accuracy. We compare EC and test accuracy

6

Under review as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8 9 10

epochs

0

1

2

3

4

5

6

7

E
C

 [
%

]

1 2 3 4 5 6 7 8 9 10

epochs

0

10

20

30

40

50

60

70

80

90

100

te
s
t
a
c
c
u
ra

c
y
 [
%

]

1 2 3 4 5 6 7 8 9 10

epochs

0

10

20

30

40

50

60

70

80

90

100

te
s
t

a
c
c
u

ra
c
y
 [

%
]

learning rate = 0.01

learning rate = 0.1

learning rate = 1.0

learning rate = 10.0

Figure 4: Left. Effective Connections (EC) as a function of the learning rate (lr) in a Sparse Binary
Neural Network with 3 feed-forward hidden linear layers with 1024 neurons each, trained on MNIST
dataset. Each curve represents a different learning rate, lr = 0.01 (O), lr = 0.1 (�), lr = 1.0 (4), and
lr=10.0 (∗). Right. Corresponding test accuracy.

Table 1: Effects of f1 and f2 in test accuracy (ACC) and effective connections (EC).

f2
f1 L2 L1

ACC [%] EC [%] ACC [%] EC [%]
triangular 97.48(±0.05) 1.27(±0.07) 96.96(±0.12) 1.21(±0.01)
L2-inspired 97.38(±0.16) 1.17(±0.03) 97.31(±0.09) 1.01(±0.03)
piecewise-parabola 96.99(±0.10) 1.33(±0.02) 97.27(±0.12) 1.17(±0.03)
4th degree polynomial 97.51(±0.02) 1.44(±0.20) 97.69(±0.08) 1.66(±0.03)
no regularizers ACC [%]: 97.78(±0.07) EC [%] : 2.03(±0.03)

results with no regularization, versus the case of using different f1 regularizers: triangular, L2-
inspired, piece-wise parabola and a 4th degree polynomial (fig. 1); and an L1 and L2 penalization
for f2. The models are trained for 40 epochs, with initial learning rate of 2, decreased by 10 times
every 15 epochs. λ1 = λ2 = 1e−5, except for the triangular function where λ1 = 1e−6.

Results in table 1 show that regularizers achieve higher sparsity levels (less final connections), al-
though they tend to have a slight drop in accuracy. The latter could be explained by the fact that the
minimization problem does not involve only the loss function, but a sum of the loss with f1 and f2.
Increasing the learning rate or the number of epochs should compensate for the accuracy loss.

Method Comparison. Finally, we compare the accuracy, effective connections (EC) and compres-
sion performance of the proposed SBNN with state-of-the-art BNN formulations. The compression
performance is measured in terms of the compression rate, which is computed as the total number of
bits to represent each network parameter at full-precision, over the number of bits of full-precision
parameters and binary parameters of the network. We use, for this purpose, three different encoders:
the index encoder (IE), run-length encoder (RLE) and huffman encoder (HE); and we compare them
with the case with no encoder (NE). Details on the compression procedure are found in appendix B.

We assess the SBNNs using two topologies: the 3L-SBNN and a 2 hidden layers variant of it,
2L-SBNN. We compare our results with the following BNNs: 1) 3L-BNN, the 3 layer BNN from
Courbariaux et al. (2016); 2) 2L-BNN, the 2 layer variant of 3L-BNN; and 3) Bitwise (Kim &
Smaragdis, 2015). The networks are trained for 40 epochs, starting with a learning rate = 2 and
decreasing it by a factor of 10 every 15 epochs. For SBNNs, p = 1% and λ1 and λ2 are set to 0. As
we could not reproduce the results of Bitwise, we report those in Kim & Smaragdis (2015).

The results obtained for the different models are reported in table 2. As it can be seen, SBNNs
achieve the best compression rates among all methods both with 3L-SBNN and 2L-SBNN topology,
incurring in a loss of less than 1% w.r.t Bitwise, which is the Binary Neural Network reporting the
highest accuracy. In particular, SBNNs outperform other BNNs by over 4 times in compression
when using a Huffman encoder. This result is of high practical interest. It suggests that SBNNs for
simple tasks can be implemented in very cheap and severely memory limited IoT devices, ensuring
at the same time low consumption and fast inference, therefore opening the possibility to automate
various simple tasks at low cost. For instance, the process of recognizing handwritten ZIP codes

7

Under review as a conference paper at ICLR 2021

Table 2: Method comparison on MNIST dataset. Values in parentheses report standard deviation.

Model ACC [%] Compression rate EC [%]
NE IE RLE HE

2L-SBNN [our] 97.83(±0.07) 32 101 111 131 2.65(±0.03)
2L-BNN 98.30(±0.08) 32 - - - 100
Full-precision 98.72(±0.07) 1 - - - 100
3L-SBNN [our] 97.78(±0.07) 32 128 144 173 2.03(±0.03)
3L-BNN 98.15(±0.07) 32 - - - 100
3L-Bitwise 98.67 32 - - - 100
Full-precision 98.65(±0.04) 1 - - - 100

0 2 4 6 8 10

epochs

0

5

10

15

20

25

30

E
C

 [
%

]

2 4 6 8 10

epochs

0

10

20

30

40

50

60

70

te
s
t

a
c
c
u

ra
c
y
 [

%
]

2 4 6 8 10

epochs

0

10

20

30

40

50

60

70

te
s
t

a
c
c
u

ra
c
y
 [

%
]

no regularizers

triangular

piece-wise parabola

4
th

 degree polynomial

L2-inspired

Figure 5: Effects of f1 and f2 in sparsity and test accuracy of a SBNN with convolutional topology
trained on CIFAR-10. Left. Effective Connections (EC). Right. Corresponding test accuracy.

in post offices or measurement reading from screens of non internet-enabled meters sending them
through an IoT network to a central office to process for rapid anomaly detection and localization.

In the final experiment, we make a comparison between SBNNs and 3L-BNN with dropout (Srivas-
tava et al., 2014) as this combination could lead to a final sparser BNN. Over 40 training epochs on
MNIST, SBNN outperforms 3L-BNN with dropout by a large margin both in sparsity and accuracy.
For this reason, the results are not included but, for the sake of completeness, we report them in
appendix C.

4.2 CIFAR-10

This section first describes the setup used to train our convolutional SBNNs over the CIFAR-10
dataset. Then we propose an experiment to study the relation between sparsity of convolutional
SBNNs and the use of regularizers f1 and f2. Lastly, we compare our SBNNs with state-of-the-art
BNNs in terms of accuracy and compression.

Setup. We use a convolutional topology inspired on the VGG network (Simonyan & Zisserman,
2015). We use an L2-inspired for f1, and the L2 norm for f2 regularizers, with hyperparameters
λ1 = 7e−6 and λ2 = 3e−6. The training set was augmented through the use of different random
rotations, crop and flips at every epoch and for each image. A detailed description of the network
architecture and the training procedure is provided in appendix A.2.

Effects of the regularizers. We study the sparsity and the generalization properties of SBNNs on
convolutional networks, when regularizers are used. We assess sparsity with EC and generalization
in terms of test accuracy, over training time (epochs) for the different f1 (see fig. 1) and f2 (L1 and
L2) regularizers . Results in fig. 5 are obtained over 10 training epochs with a learning rate of 0.01.
As Courbariaux et al. (2015), we use an Adamax optimizer, since it shows faster generalization of
BNNs. The use of regularizers in convolutional SBNNs, as with linear topologies, leads to higher
sparsity levels at the cost of a slower convergence. However, differently from linear networks, their
presence is clearly needed to preserve sparsity.

8

Under review as a conference paper at ICLR 2021

Table 3: Method comparison on CIFAR-10 dataset. Values in parentheses report standard deviation.

Model ACC [%] Compression rate EC [%]
NE IE RLE HE

SBNN [our] 78.59(±0.47) 32 108 119 145 3.10(±0.01)
BNN 88.18(±0.33) 32 - - - 100
Full-precision 88.94(±0.77) 1 - - - 100

Method Comparison. We compare the proposed SBNN with the state-of-the-art BNN formula-
tions proposed in (Courbariaux et al., 2016) in terms of accuracy, effective connections (EC) and
compression performance. We use the same compression techniques and performance measure-
ments used for MNIST. Both networks are trained for 300 epochs, starting with a learning rate of
0.05, decreased by a factor 2 firstly after 100 epochs, and then every 50 epochs. For SBNNs, p is
set to 1.0%, while λ1 and λ2 are set to 7e−6 and 3e−6, respectively. The results for the different
models reported in table 3 confirm the SBNNs superiority in terms of EC and compression rates.
However, differently from the linear topology, the convolutional SBNN incurs in an higher accuracy
loss of ∼ 10% w.r.t. BNNs.

5 CONCLUSIONS

We propose Sparse Binary Neural Network (SBNN), a method to further compress Binary Neural
Networks (BNNs) by introducing sparsity, while reducing their required computations. Our ap-
proach is based on quantization of weights in the 0/1 binary domain and a highly sparse initialization
of the network. It is formulated as a mixed optimization problem and solved using a modified ver-
sion of the BNN training algorithm with -1/+1 weights (Courbariaux et al., 2016). The method has
been evaluated on feed-forward linear and convolutional network on MNIST and CIFAR-10 data
sets, respectively. The achievable compression rate of SBNN is much higher than simple BNNs,
making it a feasible alternative for IoT devices and sensors. For instance, 2L-SBNN with a model
size of 70 kB (with index encoder) and 97.83 % accuracy on MNIST, can be entirely stored, not
only in the flash memory, but also in the SRAM memory of very low-power hardware modules like
the Intel R© CurieTM Module, which has 384kB of flash memory and only 80kB of SRAM.

A current weakness of SBNNs is that sparsity, speed-up and high compression rates come at the
cost of reduced performance accuracy. While the generalization error in linear architectures remains
competitive, this has a larger drop in convolutional networks. The problem of generalization is not
exclusive of SBNNs, and it is common also to +1/-1 BNNs. As discussed in Qin et al. (2020), it
is still unclear what kind of network structure is suitable for binarization, so that the information
passing through the network can be preserved, even after the binarization itself. As a result, multiple
methods have been proposed to mitigate generalization losses by reducing the gradient (Rastegari
et al., 2016; Yin et al., 2018; Darabi et al., 2019) and the quantization error (Kim & Smaragdis,
2015; Liu et al., 2018). Future works should continue in this direction with a specific focus on
the 0/1 binary domain. Another interesting direction could be to extend the learning capabilities of
SBNNs by investigating how to extract them from sparse ternary networks.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash.
Internet of things: A survey on enabling technologies, protocols, and applications. IEEE commu-
nications surveys & tutorials, 17(4):2347–2376, 2015.

Arash Ardakani, Carlo Condo, and Warren J Gross. Sparsely-connected neural networks: towards
efficient vlsi implementation of deep neural networks. arXiv preprint arXiv:1611.01427, 2016.

Martin G. Bello. Enhanced training algorithms, and integrated training/architecture selection for
multilayer perceptron networks. IEEE Transactions on Neural Networks, 3(6):864–875, 1992.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pp. 160–167, 2008.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems, pp. 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016.

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia. Bnn+: Improved
binary network training. In NeurIPS19 Workshop on Energy Efficient Machine Learning and
Cognitive Computing, 2019. URL arXiv:1812.11800.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Pre-
dicting parameters in deep learning. In Advances in Neural Information Processing Systems, pp.
2148–2156, 2013.

Dave Evans. The internet of things: How the next evolution of the internet is changing everything.
CISCO white paper, 1(2011):1–11, 2011.

Julian Faraone, Nicholas Fraser, Giulio Gambardella, Michaela Blott, and Philip HW Leong. Com-
pressing low precision deep neural networks using sparsity-induced regularization in ternary net-
works. In International Conference on Neural Information Processing, pp. 393–404, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. 2019.

Global System for Mobile Communications. 3GPP low power wide area technologies (white paper).
Technical report, GSMA, 2018.

Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton. Learning sparse
networks using targeted dropout. ArXiv, abs/1905.13678, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR) 2016, 2016.

10

arXiv:1812.11800

Under review as a conference paper at ICLR 2021

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Jour-
nal of Machine Learning Research, 18(1):6869–6898, 2017.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1. In 2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6,
2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Minje Kim and Paris Smaragdis. Bitwise neural networks. In Proceedings of the 31st International
Conference on Machine Learning JMLR: W&CP, volume 37, 2015.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). Technical report. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105,
2012.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European Conference on Computer Vision, pp. 722–737,
2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on Learning Representations (ICLR), 2018.

Arturo Marban, Daniel Becking, Simon Wiedemann, and Wojciech Samek. Learning sparse &
ternary neural networks with entropy-constrained trained ternarization (ec2t). In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 722–723,
2020.

Mahdi H. Miraz, Maaruf Ali, Peter S. Excell, and Rich Picking. A review on internet of things (iot),
internet of everything (ioe) and internet of nano things (iont). In 2015 Internet Technologies and
Applications (ITA), pp. 219–224, 2015.

Walter Murray and Kien-Ming Ng. An algorithm for nonlinear optimization problems with binary
variables. Computational Optimization and Applications, 47(2):257–288, 2010.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, pp. 107281, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Proceedings of the European Con-
ference on Computer Vision, pp. 525–542. Springer, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, Confer-
ence Track Proceedings, 2015.

11

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2021

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 138–145, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Frederick Tung and Greg Mori. Clip-q: Deep network compression learning by in-parallel pruning-
quantization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 7873–7882, 2018.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 65–74, 2017.

Shuochao Yao, Yiran Zhao, Aston Zhang, Shaohan Hu, Huajie Shao, Chao Zhang, Lu Su, and Tarek
Abdelzaher. Deep learning for the internet of things. Computer, 51(5):32–41, 2018.

Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin. Bina-
ryrelax: A relaxation approach for training deep neural networks with quantized weights. SIAM
Journal on Imaging Sciences, 11(4):2205–2223, 2018.

12

Under review as a conference paper at ICLR 2021

APPENDIX

A LINEAR AND CONVOLUTIONAL TOPOLOGIES SETUPS

This section provides details about the network configurations used in the experiments. We provide
details on the linear architecture used for experiments with the MNIST dataset and the convolutional
topology used with CIFAR-10.

A.1 LINEAR ARCHITECTURE

For experiments with MNIST, we use the linear topology proposed by Courbariaux et al. (2016). The
network consists of 3 hidden layers with 1024 neurons each, followed by batch-normalization layers
with learnable parameters and the sign function. The LogSoftMax activation function replaces the
sign after the output layer, which contains 10 neurons. The loss used is the Negative Log-Likelihood
and the optimizer is Stochastic Gradient Descent (SGD) with Nesterov momentum µ = 0.9. We
denote this architecture 3L-SBNN (i.e. SBNN with 3 hidden linear layers). To speed up the training
we used a mini-batch of 200 samples.

A.2 CONVOLUTIONAL NEURAL NETWORK

For the experiments with CIFAR-10, we use a convolutional topology inspired on the VGG network
(Simonyan & Zisserman, 2015). The 32×32 RGB images (3 channels) pass through 6 convolutional
layers with 3×3 kernels, stride = 1 and zero padding = 1. Each layer is followed by a batch-
normalization layer and the sign activation function. Every 2 layers, we add a max-pooling layer
with a 2×2 kernel and stride = 2, before the batch-normalization layer. The first 2 convolutional
layers have 128 channels, the following 2 have 256 channels, while the last ones 512 channels. The
output of the last convolutional layer is flattened and followed by a linear layer with 10 neurons (one
per class) followed by a batch-normalization layer and LogSoftMax activation function. Similarly to
MNIST, the loss used is the Negative Log-Likelihood. We use Adamax as optimizer and a scheduler
which halves the learning rate after 100 epochs and then halves it every 50 epochs. The models
are trained for 300 epochs in total. As regularizers, we use an L2-inspired for f1, and the L2 norm
for f2. The hyperparameters λ1 and λ2 are set to 7e−6 and 3e−6, respectively. To speed up the
training, we used a mini-batch of 200 samples.

Finally, to enlarge the training set, this was augmented through the use of different random rotations,
crop and flips at every epoch and for each image.

B COMPRESSION TECHNIQUES

Well-known methods from source coding theory can be exploited for the compression of sparse
vectors and matrices. An SBNN can be seen as a set of sparse binary matrices. To evaluate the
compression potential of SBNNs, we have used three different encoders in our experiments: index
encoder, run-length and Huffman.

An illustration of the index encoder and the run-length encoders is depicted in fig. 6. The first
encodes only the column (or row) indexes of the 1s elements, the latter encodes the length of the
run-length of zeros. Since the distribution of the run-lengths of zeros in the matrices of SBNNs
varies, the length in bits to represent each run-length, as shown in fig. 6, is chosen with a full search
of all possible lengths in bits from 1 to log2(maximum run-length).

The third approach, the Huffman encoder (Huffman, 1952), maps elements, in our case indexes of
1s elements, to bit-symbols of variable length, depending on the frequency of each element: more
frequent elements are encoded using less amount of bits, while less frequent elements are mapped
to larger in bit symbols.

The reported compression rates (table 2 and table 3) are obtained as a ratio of the equivalent full
model size over the SBNN one. The full model size is computed considering each weight stored
with 32-bit plus 32-bits for each scaling factor introduced by batch-normalization layers. The SBNN

13

Under review as a conference paper at ICLR 2021

(1st index)2

log2 (Ncol) bits

… (N2)2(N1
th index)2

log2 (Ncol) +1 bits

…index encoder :

run-length encoder :

Ncol : number of columns in the matrix

Nrun : best length in bits for compressing the run-lengths of zeros

1st row of the matrix 2nd row of the matrix …

(1st index)2

…

(N1)2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 …

run-length : 5 zeros

Nrun = 3

Ncols

Nrows

(Nrows)2 (Ncol)2

16 bits 16 bits

(5)2 101 1

run-length : 10 zeros (10)2 001 010

Nrun bits

001 0 010 1

1 bit :

(Nrun)2

16 bits

1 , if end run-length
0 , otherwise

(Ncol)2

16 bits

Nrows : number of rows in the matrix

(Nrows)2

16 bits

Figure 6: Schematics of the index encoder and of the run-length encoder used to compress the sparse
binary weigth matrices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
drop

0

20

40

60

80

100

te
s
t

a
c
c
u

ra
c
y
 [

%
]

Dropout 3L-SBNN

Figure 7: The blue curve shows the test accuracy as a function of dropout probability (pdrop) in the
3L-BNN with dropout, trained on MNIST dataset. The red curve represents the accuracy of a Sparse
Binary Neural Network with same topology, no dropout.

size is computed compressing the binary matrices with the three different encoders, while the integer
thresholds γ of the sign activation function are stored with 16 bits each.

C DROPOUT

This section provides further details on the comparison of the 3L-SBNN with a 3L-BNN in combi-
nation of dropout (Srivastava et al., 2014) for different values of pdrop, the dropout probability for
each neuron. Larger pdrop means less neurons. A pdrop of 0 corresponds to nearly a full-connected
network, while a pdrop of 1 to a nearly empty network. For consistency, the 3L-BNN with dropout
and SBNN are trained for 40 epochs with learning rate = 1.0, and decreasing it of 10 times every
15 epochs. No regularizers were used for the SBNN. We report the results, in terms of accuracy for
different values of pdrop, in fig. 7.

Results show that SBNN outperforms the use of BNN with dropout, both in accuracy and in final
sparsity of a large margin, suggesting that, in their current setup, BNNs are not suited for introducing
sparsity.

14

	Introduction
	Related Work
	Method
	Problem Formulation
	Network Training and Quantization
	Sparse Initialization
	Implementation

	Experiments and Results
	MNIST
	CIFAR-10

	Conclusions
	Linear and Convolutional topologies setups
	Linear architecture
	Convolutional Neural Network

	Compression techniques
	Dropout

