

000 H1: BOOTSTRAPPING LLMS TO REASON OVER 001 LONGER HORIZONS VIA REINFORCEMENT LEARNING 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Large language models excel at short-horizon reasoning tasks, but performance
012 drops as reasoning horizon lengths increase. Existing approaches to combat
013 this rely on inference-time scaffolding or costly step-level supervision, neither of
014 which is scalable. In this work, we introduce a scalable method to bootstrap long-
015 horizon reasoning capabilities using only existing, abundant short-horizon data.
016 Our approach synthetically composes simple problems into complex, multi-step
017 dependency chains of arbitrary length. We then train models on this data using
018 outcome-only rewards under a curriculum that automatically increases in com-
019 plexity, allowing RL training to be scaled much further without saturating. Empir-
020 ically, our method generalizes remarkably well: curriculum training on composed
021 6th-grade level math problems (GSM8K) boosts accuracy on unseen, Olympiad-
022 level benchmarks (GSM-Symbolic, MATH-500, AIME) by up to 2.65 \times . It also
023 transfers significantly to diverse out-of-distribution ReasoningGym domains and
024 long-context benchmarks, indicating broader generalization. Importantly, our
025 long-horizon improvements are significantly higher than baselines even at high
026 *pass@k*, showing that models can learn entirely new reasoning paths under RL.
027 Theoretically, we show that curriculum-based RL with outcome rewards could
028 achieve an exponential improvement in sample complexity over full-horizon train-
029 ing, comparable to the gains from dense supervision, while providing strong train-
030 ing signal without additional human-annotations. *h1* therefore introduces an effi-
031 cient path towards scaling RL for longer horizons using existing data.

032 1 INTRODUCTION 033

034 Large language models (LLMs) have improved remarkably in many domains, but they often strug-
035 gle with long-horizon reasoning (LHR). This involves carrying out a correct, multi-step reasoning
036 process that involves decomposing goals into intermediate steps and executing them successfully in
037 a chain of thought (CoT). Such tasks require reasoning over a sequence of dependent steps where
038 errors can compound across the horizon (Li et al., 2024; Malek et al., 2025; Zhou et al., 2025a;
039 Sinha et al., 2025). For many tasks of interest, such as performing research-level mathematics,
040 debugging complex code, and assisting with scientific discovery, an LLM must be able to correctly
041 solve intermediate problems, carry forward results, and determine what state is important to track
042 and use. Broadly, any hard tasks that are of importance require solving several difficult steps, which
043 motivates the development of training methods directly aimed at improving capabilities on such long
044 sequences of problems.

045 Reinforcement learning (RL) has shown substantial benefits when it comes to improving the reason-
046 ing capabilities of LLMs (OpenAI-01 et al., 2025; DeepSeek-AI et al., 2025). However, RL depends
047 heavily on the availability of verifiable data and is therefore limited in terms of the complexity of
048 the training data and long-horizon reasoning paths afforded by this data. Moreover, the lack of
049 increasing problem complexity and diversity in RL datasets for LLMs leads to rapidly saturating
050 improvements after a limited number of training steps (Cui et al., 2025; Wu et al., 2025). Obtaining
051 long-horizon training data is expensive and sample inefficient to directly train on (as we discuss in
052 Section 4 and Appendix B). Improving performance on such tasks often requires step-level supervi-
053 sion that is costly, domain specific, and unavailable for most reasoning tasks. Existing approaches
(Zhang et al., 2025; Liu et al., 2025b) do not adequately address the problem of improving long-
054 horizon reliability when only short-horizon data is abundant (as is the case in real-world scenarios).

054 This raises a natural question: **Can we improve long-horizon reasoning capabilities by scaling**
 055 **reinforcement learning using only existing short-horizon or single-step training data?**

056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107

Figure 1: Our approach improves long horizon reasoning by composing existing short-horizon problems into a curriculum for scaling RL training. We observe significant OOD improvements.

In this work, we show that the answer is yes. We introduce a method for chained problem construction, which composes short-horizon problems (e.g. GSM8K problems (Cobbe et al., 2021)) into arbitrarily long chains of dependent reasoning steps. This provides scalable synthetic long-horizon data, with explicit control over the horizon length and complexity without the need for new annotations. We then train language models on this data using reinforcement learning with outcome-only rewards, coupled with a curriculum over horizons. Obtaining useful data that is of just the right complexity for models to learn from has always been a major bottleneck (Wu et al., 2025). We show how existing tasks can be grouped adaptively into increasingly harder problems that provide useful training signal and prevent RL improvements from quickly saturating (Cui et al., 2025). Our approach requires neither step-level labels nor auxiliary models (as in PRMs), and avoids inference-time search, instead directly training the model to internalize long-horizon reasoning structures.

Our results in Sections 4 and 5 show that not only does this synthetic curriculum generalize to other in-domain multi-hop problems, but also transfers to harder benchmarks such as MATH-500 and AIME that implicitly require LHR. Importantly, we show that long-horizon reasoning depends on more than just improving single step accuracy, and provide a breakdown of the capabilities needed for improved performance in Section 3. We evaluate our long-horizon trained models versus other strong baselines up to *pass@128* and show that while improvements obtained from RLVR on standard data is bounded by the base model's capabilities (Yue et al., 2025), our method performs significantly better. This reflects genuinely new skills learnt via curriculum based training on compositional tasks, and we provide an in depth empirical exploration in Section 4 along with robust theoretical results in Appendix B. In Section 6, we further analyze compute–data tradeoffs, showing how scaling compute can substitute for scarce long-horizon data in real-world scenarios.

Our main contributions are:

1. A general method for constructing long-horizon reasoning data by chaining existing short-horizon problems with no additional **human**-annotations.
2. A reinforcement learning framework with curriculum training and outcome-only rewards that significantly improves horizon generalization and teaches new reasoning paths not elicited otherwise even at very high *pass@k*.
3. Empirical evidence of transfer to significantly harder benchmarks (MATH-500, AIME, GSM Symbolic, LongBench-v2, Hash-hop) while training on compositional GSM8K data.

108

109

110

111

112

113

114

2 RELATED WORK

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

LLM Reasoning and RL. Initial reasoning literature (Zelikman et al., 2022) bootstrapped performance using model generated reasoning traces. More recently, (OpenAI-o1 et al., 2025; DeepSeek-AI et al., 2025) demonstrated substantial improvements in reasoning capabilities via RL training. These advances have enabled effective scaling of inference-time compute (Snell et al., 2024; Brown et al., 2024; Muennighoff et al., 2025). However, as reasoning chains grow longer, models exhibit several limitations, often struggling with simple multi-step problems (Malek et al., 2025; Shojaee et al., 2025; Song et al., 2025). Moreover, RL-based approaches face their own challenges: diversity degradation during training (Song et al., 2025), questions about whether models truly acquire new capabilities versus better sampling existing ones (Yue et al., 2025), and maintaining stability over long horizons (Xiang et al., 2025). Recent efforts toward addressing these challenges include Setlur et al. (2025), which improves in-context exploration via an RL curricula with steps such as verification and refinement and work on adaptive difficulty scheduling for efficient training (Shi et al., 2025; Parashar et al., 2025; Liu et al., 2025b). *Xi et al. (2024)* collect a dataset that requires step-level demonstrations and RL post-train on this fixed dataset by following a curriculum. In contrast, our work systematically composes existing short-horizon problems into chains of increasing length, producing new data to scale an RL curriculum to train models to internalize long-horizon reasoning capabilities that they otherwise lack. This enables reliable multi-step problem solving and improvements on significantly harder (unseen) settings, providing a foundation for training long-horizon agents (Zhou et al., 2025b; Kwa et al., 2025) that can track complex state and execute dependent reasoning steps over extended sequences.

135

136

137

138

3 METHOD

139

140

141

142

143

Long-horizon reasoning refers to the capability of carrying out a coherent, multi-step reasoning process and executing steps reliably in a CoT to solve long horizon tasks.

144

145

146

147

148

What counts as a long-horizon task? We use two notions. *Explicit-horizon* tasks have a known number of dependent sub-problems h because we construct them by chaining atomic problems (used for training and in-domain evaluation). *Implicit-horizon* tasks require multiple dependent reasoning steps but do not come with an explicit decomposition (e.g., MATH-500, AIME); they have a latent horizon h^* that is not annotated. Our training targets explicit horizons for clean analysis, and shows a strong transfer to implicit-horizon benchmarks.

149

150

151

152

153

154

155

Our goal is to *bootstrap* long-horizon reasoning (LHR) using only existing short-horizon data. We (i) compose atomic problems into longer chains of problems with dependent steps to synthesize LHR data, (ii) scale RL training with outcome-only GRPO following a curriculum learning approach, and (iii) evaluate both in-domain (explicit chains) and on harder out-of-domain tasks that implicitly require many reasoning steps. Here, we describe what we mean by a long-horizon tasks, formalize our data construction process, and provide details about our RL training objective.

156

157

158

Atomic tasks and serial composition. We begin with *atomic tasks* f_j : short, self-contained problems (e.g., single GSM8K questions) with verifiable answers that the base model solves with non-trivial accuracy. Each task takes an input x_j and produces an answer y_j .

159

160

161

To form long-horizon examples, we chain h atomic tasks so later sub-problems depend on earlier results. A lightweight *adapter* ϕ_j maps y_j to the next input:

$$y_j = f_j(x_j), \quad x_{j+1} = \phi_j(y_j), \quad j = 1, \dots, h-1,$$

162 yielding the final answer
 163
 164

$$y_h = f_h(\phi_h(\dots \phi_1(f_1(x_1)))).$$

165
 166 Adapters may be identity or simple deterministic transforms (e.g., scaling, unit conversion). Each
 167 chain of length h is rendered as a single prompt listing the h sub-problems in order. The model
 168 is instructed to solve them sequentially but is supervised only on the final answer y_h (outcome-
 169 only RL). We apply basic well-posedness checks (type/range consistency, unit compatibility, de-
 170 duplication).

171 Example explicit-horizon chain

- 172 1. Weng earns \$12 an hour for babysitting. Yesterday, she babysat for 50 minutes. How
 173 much did she earn? (#1)
- 174 2. Betty is saving money for a new wallet which costs $\$10 \times \#1$. Betty has only half of
 175 the money she needs. Her parents give her \$15, and her grandparents give her twice as much
 176 as her parents. How much more money does Betty need to buy the wallet? (#2)
- 177 3. James writes a $\{\#2\}$ -page letter to 2 different friends twice a week. How many pages
 178 does he write a year? (#3)

181 This construction exposes models to dependency chains that require carrying, transforming, and
 182 reusing intermediate values, while keeping supervision outcome-only. We vary chain length h to
 183 implement the stagewise curriculum described later in this section. In Appendix A.1, we analyze
 184 our composition method through computational graphs to explain its effectiveness during training.

185
 186 **Why horizons are hard: beyond multiplicative errors.** In *explicit-horizon* tasks, let h be
 187 the number of dependent sub-problems whose intermediate values are reused downstream. An
 188 independent-errors view gives $P(\text{final correct}) = p^h$, suggesting that raising atomic step accuracy
 189 p suffices. This is *overly optimistic* because it ignores *context management*: as transcripts grow,
 190 models can lose or corrupt intermediate values even when each step is easy. We model long-horizon
 191 accuracy via *atomic reliability* p and *context management* σ_j (the chance the required information is
 192 correctly retrieved at step j). Writing s_j for the probability that the reasoning state remains correct
 193 after step j , we have

$$s_j = p \sigma_j s_{j-1}, \quad s_0 = 1,$$

194 so if σ_j decays with horizon length, accuracy can collapse even when $p \approx 1$.

195 This explains the weakness of naive outcome-only training at horizon h : when $\sigma_j \ll 1$, few roll-
 196 outs earn reward, gradients have low signal-to-noise ratio, and samples scale exponentially in h .
 197 Curriculum training mitigates this by starting with short chains where s_j is large, yielding high-
 198 SNR updates; early stages raise p , while later stages reinforce write/read behaviours that stabilise
 199 σ_j . Empirically (Section 4), performance depends on capabilities beyond p , and our approach im-
 200 proves both p and σ_j , delivering large gains on *explicit-horizon* tasks and generalising to harder
 201 *implicit-horizon* tasks (Section 5); Appendix Section B develops the theoretical implications.

202
 203 **Algorithm 1 h1: Stagewise curriculum RL over explicit-horizons**

204
 205 **Require:** Pretrained model M_0 ; atomic task bank \mathcal{A} ; adapters $\{\phi_j\}$; max horizon H_{\max} ; per-stage counts
 206 M_h, S_h

- 207 1: **for** $h = 1$ to H_{\max} **do** ▷ stagewise curriculum over explicit horizons
- 208 2: $\mathcal{D}_h \leftarrow \emptyset$
- 209 3: **for** $m = 1$ to M_h **do** ▷ construct horizon- h chains
- 210 4: sample $(f_{1:h}, x_1)$ from \mathcal{A} ; $y_1 \leftarrow f_1(x_1)$
- 211 5: **for** $j = 1$ to $h - 1$ **do**
- 212 6: $x_{j+1} \leftarrow \phi_j(y_j)$; $y_{j+1} \leftarrow f_{j+1}(x_{j+1})$
- 213 7: $p \leftarrow \text{FORMATPROMPT}((f_j, x_j)_{j=1}^h)$ ▷ format prompt from the task sequence
- 214 8: $\mathcal{D}_h \leftarrow \mathcal{D}_h \cup \{(p_{1:h}, y_h)\}$
- 215 9: $M_h \leftarrow \text{TRAINWITHDRGRPO}(M_{h-1}, \mathcal{D}_h, S_h)$

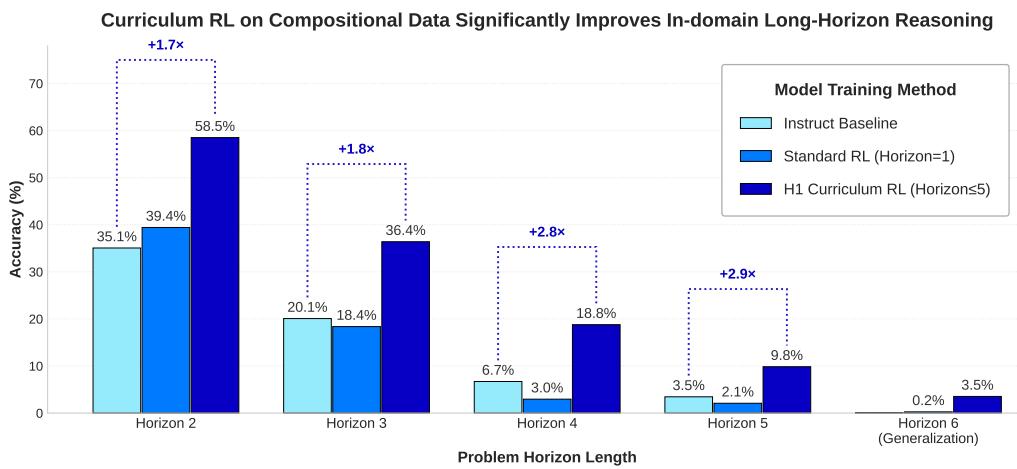


Figure 2: Curriculum RL training on compositional data offers significant in-domain long horizon reasoning gains (**up to 2.9 \times**). This prevents RL training from saturating and uses no new data.

Scaling RL with a curriculum over horizons. Let \mathcal{D}_h be the dataset of synthesized chains of explicit horizon h . Our curriculum is stagewise:

for $h = 1, 2, \dots, H_{\max}$: run DrGRPO (Liu et al., 2025c) on \mathcal{D}_h for S_h optimization steps.

We initialize from π_{θ_0} and carry the parameters forward between stages. Algorithm 1 describes the entire training process. By focusing optimization on a single horizon per stage, the model first acquires reliable short-horizon primitives (increasing p_1), then learns to reuse and repair them under longer dependency (increasing p_j and r_j for $j > 1$). We contrast the curriculum with three baseline horizon-sampling policies:

- Only-L1:** $q(\ell) = \mathbb{I}[\ell = 1]$. If direct problem-solving were sufficient, this would match curriculum; empirically it does not.
- Uniform-Mix:** $q(\ell) \propto \mathbb{I}[1 \leq \ell \leq H_{\max}]$, i.e., randomly pick from the LHR dataset.
- Only-Long:** $q(\ell) = \mathbb{I}[\ell = H_{\max}]$, i.e., train solely on the hardest chains. This suffers from extreme sparsity and unstable gradients.

Generally, RL with verifiable rewards (RLVR) requires the creation of a clean labeled dataset. What models can learn from is potentially limited by the complexity expressed in these problems. We see this bound due to a fixed RL dataset both empirically (Section 3) and theoretically (Appendix B), which leads to performance quickly saturating during training. Our goal with a synthetic curriculum is to optimally utilize limited existing data for scaling RL. At each stage, tasks can be composed to be right at the edge of what a model can solve, making RLVR more scalable (see Tables 1 and 2).

Training and evaluations. We use the Qwen-2.5-3B Instruct model (Qwen et al., 2025) for our core experiments. Improving an Instruct model with RL is generally considered more difficult (Wang et al., 2025) and gains signify performance improvements beyond just instruction tuning (which cannot be directly inferred for improvements on base models (Shao et al., 2025)). Therefore, we aim to show all improvements on Instruct models for the purpose of robustness. Our *explicit-horizon* training and evaluations are done on composed GSM8K questions (Cobbe et al., 2021), and our *implicit-horizon* evaluations are on AIME 2024, AIME 2025, MMLU Pro Math (Wang et al., 2024), GSM Symbolic (Mirzadeh et al., 2025), and MATH-500 (Hendrycks et al., 2021).

4 IN-DOMAIN RESULTS AND THE IMPORTANCE OF CURRICULUM

We evaluate our curriculum-based RL training method using explicit-horizon GSM8K problems and demonstrate that (1) curriculum learning is essential for long-horizon reasoning, (2) LHR performance depends on capabilities beyond single step accuracy, and (3) our method teaches genuinely new capabilities that are otherwise absent in the model. We use **Qwen-2.5-3B Instruct**

Model / setting	Accuracy on GSM8K Problems of Horizon L- <i>n</i>							
	L-1	L-2	L-3	L-4	L-5	L-6	L-7	L-8
Instruct model	82.79	35.06	20.07	6.70	3.57	0.00	0.79	0.00
<i>Equal compute training baselines</i>								
Only-L1	86.80	37.14	21.43	6.70	3.87	0.25	0.00	0.00
Uniform-Mix	82.80	12.66	2.04	0.54	0.00	0.00	0.00	0.00
Only-Long	82.71	43.36	20.41	3.22	1.49	0.25	0.25	0.00
<i>Increased Inference Compute Baseline</i>								
Tree of Thought	83.30	39.40	13.30	2.00	0.00	0.00	0.00	0.00
<i>Curriculum training (trained up to Len-<i>n</i>)</i>								
RLVR	83.20	39.42	18.37	2.95	2.08	0.25	0.79	0.00
Len-2	85.92	56.22	28.57	12.06	6.25	1.26	0.79	0.49
Len-3	84.91	56.22	37.76	15.55	8.63	3.27	3.17	0.25
Len-4	85.48	57.05	40.14	18.23	9.23	3.53	3.17	1.72
Len-5 (H1)	85.97	58.51	36.39	18.77	9.82	3.53	3.17	2.22
	(+3.8%)	(+66.9%)	(+81.3%)	(+180.1%)	(+175.1%)	(++)	(+301.3%)	(++)

Table 1: GSM8K accuracy by horizon length. Curriculum based RL training **significantly improves** in-domain performance compared to the Instruct model and all other equal compute baselines. We also provide a **Tree-of-Thought** (Yao et al., 2023) baseline using Qwen-2.5-3B-Instruct.

for our experiments, with GRPO over a curriculum of chained GSM8K problems with horizons $h \in \{1, 2, 3, 4, 5\}$. Each stage trains for 200 steps with 200 samples per horizon. We compute the following baselines: **Only-L1** (standard RL on $h=1$), **Only-Long** ($h=5$), and **Uniform-Mix** (uniform over $h \in [1, 5]$). Compute matched baselines are trained using up to the same number of training tokens seen under our method, and the best checkpoints are chosen based on val-set accuracy. The data comes from the same training distribution (where Only-L1 refers to simply training on horizon 1 problems, Only-Long refers to training only on composed horizon 5 problems, and Uniform-Mix refers to training on the same problems as our method but shuffled uniformly without a curriculum). In Appendix D, we provide results on *Qwen-2.5-7B Instruct* using composed MATH and *Llama-3.2-3B Instruct* using composed GSM8K data, both showing improvements.

In-domain results. In Table 1, our in-domain results on composed LHR GSM8K problems from the test set show that the curriculum-based approach yields substantial monotonic improvements in accuracy as the training horizon increases. At $h=2$ the instruct model achieves 35.06%, which increases to only 39.42% with RL on standard GSM8K problems but jumps to 56.22% when training up to a horizon of 2 and 58.51% when trained up to a horizon of 5. Similarly, at $h=3$ the instruct model achieves 20.07%, which lifts to 37.76% with a curriculum up to $h=3$. For longer horizons (harder problems), the effect of curriculum is even more visible, increasing accuracy by about 3× at $h=4$ (6.70% → 18.77%) and $h=5$ (3.57% → 9.82%). We present these improvements in Figure 2.

In Table 1, the **Only-L1** baseline improves $h=1$ but shows no improvements on longer horizons. Similarly, **Uniform-Mix** even at an equal training compute baseline shows no improvements. **Only-Long** also leads to no long-horizon improvements due to the lack of useful training signal at longer lengths discussed in Section 3. Furthermore, Cui et al. (2025) show that the entropy of a policy undergoing RL training collapses quickly, which causes improvements from RL to saturate quickly. While this is true for our baselines, our curriculum training repeatedly introduces new levels of difficulty (exploration), which allows *scaling RL for up to 5x more steps* to keep improving capabilities. We leave a deeper investigation into the scaling properties of our method to future work.

Curriculum RL bootstraps long-horizon reasoning

Training up to horizon h extends usable learning signal on $h+1$ and shifts probability mass into the long-sequence tail monotonically. For e.g. training to $h=3$ lifts $h=4$ from 6.70%

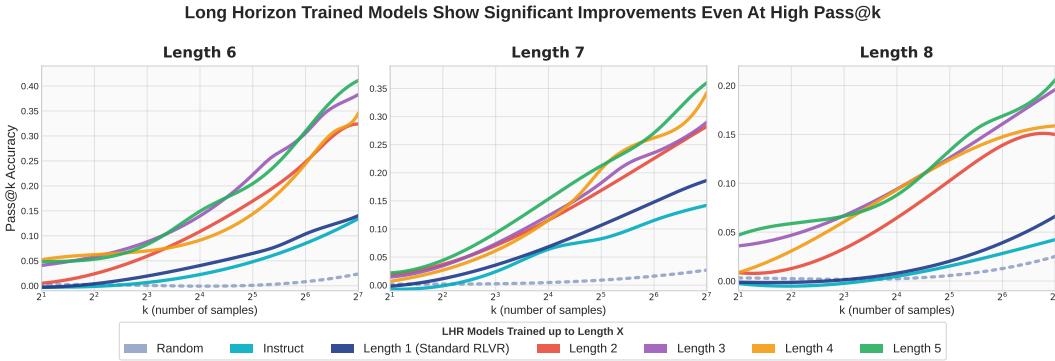


Figure 3: Our curriculum based RL training using composed synthetic data outperforms RLVR on standard data from the same set even at ***pass@128, teaching new capabilities that did not previously exist in the base model***. LHR requires going beyond improving single-step performance.

to 15.55%; training to $h=4$ lifts $h=5$ from 3.57% to 9.23%. This provides enough training signal for the next stage, allowing curriculum learning to be extremely effective. We examine this theoretically in Appendix B.

Why single-step accuracy is not enough. In Section 3, we claim that LHR depends on more than just single step accuracy. Prior to RL training, single-step accuracy of the model is 82.79%. If errors were independent, we would expect 68.54% at $h=2$ and 56.75% at $h=3$ by multiplicative compounding, yet we observe 35.06% and 20.07% (Table 1). Even after RL training (**Only-L1**) for 200 steps, (despite a slight increase at $h=1$) performance drops to 39.42% at $h=2$ and 18.37% at $h=3$ rather than 69.28% and 57.67% expected under the independent error assumption.

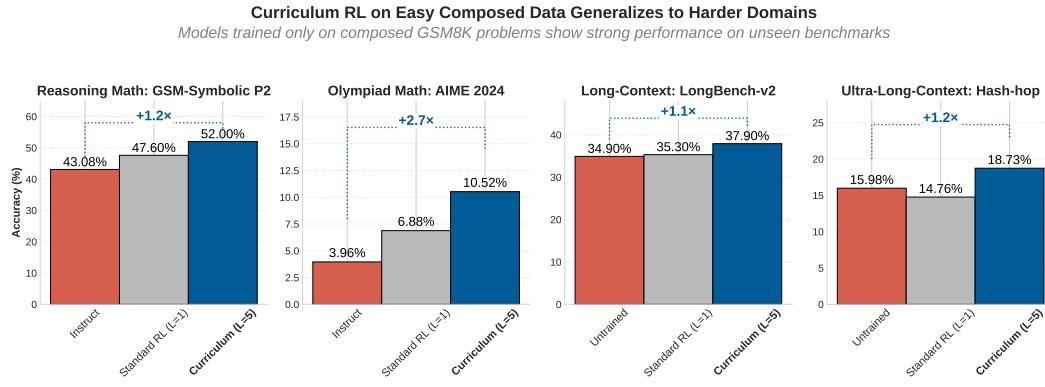
Learning new capabilities with RL. We now discuss the second part of our claim in Section 3. LHR depends on additional capabilities such as state tracking and repair that can be improved using RL training over a curriculum. (Yue et al., 2025) show an important result that RLVR on LLMs only improves the sample efficiency of reasoning capabilities already present in the base model, and no new capabilities are learnt. They show that at a high $\text{pass}@k$ (such as 128), capabilities of these RL trained models originate from and are bounded by the base model (with the $\text{pass}@k$ performance quickly converging). Therefore, only when an RL model is not bounded by the base model at high $\text{pass}@k$ can one empirically show new capabilities are learnt.

Our *explicit-horizon* training and testing setting allows us to isolate out these capability improvements that go beyond the base model with only RL. Importantly, proving one of the central claims in our paper, we evaluate our final model on unseen longer horizons ($h = 6, 7$, and 8) up to a very high sampling budget (*pass@128*). Our results in Figure 3 show that while RL on standard GSM8K is bounded by instruct model capabilities (and converges very quickly), our long horizon trained models perform significantly better even at high $k = 128$. This shows our method unlocks new, correct reasoning paths that were previously inaccessible to the model, providing genuinely new LHR capabilities. This is a significant finding compared to common RLVR training paradigms studied in (Yue et al., 2025), showing that our RL method can indeed teach new reasoning skills when training.

LHR Training can teach new capabilities

We demonstrate for the first time that **Curriculum RL can teach new capabilities that go significantly beyond the base model even at $pass@128$** . Our curriculum based training on compositional synthetic data is therefore crucial.

In this section, we show significant improvements on explicit-horizon in-domain tasks and that our model learns new reasoning capabilities with our curriculum based training. Our explicit-horizon GSM8K setting, while very useful in allowing us to isolate these capabilities and understand the



391 Figure 4: Long-horizon training on GSM8K generalizes to significantly harder tasks. **Performance**
 392 **on AIME 2024 improves by $2.65 \times$ and ultra-long-context capabilities improve by $1.2 \times$.**

393
 394 differences in all training methods, is still relatively artificial. In Section 5, we therefore test our
 395 GSM8K trained LHR models on significantly harder (unseen) problems.

398 5 GENERALIZATION TO HARDER BENCHMARKS

400 Having established that our curriculum-based training imparts new, in-domain capabilities, we now
 401 investigate whether these learned skills generalize to challenging, out-of-domain benchmarks that
 402 implicitly require long-horizon reasoning. Our results (Figure 4) demonstrate that the skills acquired
 403 from solving synthetically chained problems transfer remarkably well to harder problems.

405 **Transfer to Olympiad level math.** In Table 2, we evaluate our GSM8K long horizon trained
 406 models on MATH-500, GSM-Symbolic P1, GSM-Symbolic P2, MMLU Pro Math, and AIME.
 407 These tasks can be categorized as *implicit-horizon* and benefit significantly from LHR training on
 408 much easier *explicit-horizon* tasks. For instance, performance on GSM-Symbolic P1 goes from
 409 $67.06 \rightarrow 73.28$, P2: $43.08 \rightarrow 52.00$, and strikingly AIME 2024 from $3.96 \rightarrow 10.52$, a $2.65 \times$
 410 increase. These improvements show a transfer of the capabilities targeted in Section 4.

412 Model/setting	Generalization to Significantly Harder Math Problems					
	MATH-500	Symbolic P1	Symbolic P2	MMLU-Pro	AIME 2025	AIME 2024
414 Instruct model	64.20	67.06	43.08	58.47	1.77	3.96
<i>415 Standard RLVR on GSM8K</i>						
417 GSM8K RLVR	66.20	71.40	47.60	60.62	2.71	6.88
<i>418 Equal compute training baselines</i>						
419 Only-L1	48.40	71.32	42.24	59.84	3.12	5.31
420 Uniform-Mix	64.40	64.48	39.16	60.22	2.50	5.28
421 Only-Long	65.60	72.18	47.52	60.71	1.72	6.46
<i>422 Curriculum RL on Composed GSM8K Problems</i>						
423 Len-2 GSM8K	67.00	72.86	50.80	59.73	1.25	4.69
424 Len-3 GSM8K	66.80	70.70	49.48	61.21	1.67	3.85
425 Len-4 GSM8K	68.40	72.22	51.92	60.91	2.60	7.60
426 Len-5 GSM8K	69.20	73.28	52.00	61.21	3.02	10.52
	(+7.8%)	(+9.3%)	(+20.7%)	(+4.7%)	(+70.6%)	(+165.7%)

427 Table 2: Performance on harder math benchmarks improves significantly with GSM8K RL curricu-
 428 lum training stages. Bootstrapping simple existing data can be used for scaling RL. AIME avg@32.

429
 430 LHR training allows us to bootstrap capabilities from significantly easier tasks to gains on much
 431 harder ones without using any extra labels or supervision. We see a scaling trend, where continued

432 RL training on longer *explicit-horizons* leads to improvements on *harder implicit-horizon* tasks.
 433 Bootstrapping composed LHR data can allow more RL compute to be spent on the same dataset.
 434

435 **Generalization to Olympiad Level Problems**

436 Training on composed 6th grade problems with our RL curriculum generalizes to signifi-
 437 cantly harder benchmarks. Notably, we achieve a **2.65× improvement on AIME 2024**.
 438

439
 440 **Transfer to long-context benchmarks.** We now evaluate our GSM8K LHR models on OOD
 441 long-context benchmarks to see if the state tracking capabilities (σ_j) from Section 3 improve. We
 442 test two main long-context benchmarks: LongBench-v2 (Bai et al., 2025) and Hash-hop (Magic,
 443 2024). LongBench-v2 measures understanding and reasoning over QA documents, long-dialogue,
 444 repositories, etc. (with 8k–2M words). Hash-hop tests ultra-long-context storage, retrieval, and
 445 multi-hop variable tracing by making models follow shuffled chains of random hash → hash pairs.
 446 Table 6 summarizes our results, with a 35.00% → 37.90% improvement on LongBench-v2 and a
 447 15.98% → 18.73% improvement on Hash-hop, both completely unrelated to GSM8K.
 448

449
 450 **Transfer to non-mathematical reasoning benchmarks.** We also test our long-horizon trained
 451 models on ReasoningGym (Stojanovski et al., 2025) domains to evaluate whether the *horizon-*
 452 *dependent reliability* improvements generalize to non-mathematical but verifiable reasoning tasks.
 453 ReasoningGym consists of a diverse set of reasoning environments that allow us to evaluate cross-
 454 domain transfer and skill generalization. Specifically, we test across logic (propositional logic),
 455 graphs (largest island), algorithmic problems (sentence reordering and matrix manipulation), arithmetic
 456 (decimal arithmetic), and geometry. These problems require working memory, graph traversal,
 457 multi-step rule following, and correct final answers. On ReasoningGym, long-horizon training on
 458 composed GSM8K significantly outperforms both the Instruct model and RLVR trained on nor-
 459 mal GSM8K. *h1* generalizes from 22.90% → 47.10% on propositional logic, 15.00% → 22.50%
 460 on graph problems (largest island), 9.60% → 18.80% on algorithmic sentence reordering, and
 461 2.70% → 4.20% on algorithmic matrix manipulation. Performance on geometry drops from
 462 3.70% → 2.60% and on games (game of life) from 76.20% → 74.90%. Overall, skills learnt
 463 from long-horizon training generalize well to out-of-distribution reasoning problems. See Table 3.
 464

Model / setting	Generalization to ReasoningGym domains				Long-Context Benchmarks	
	Propositional logic	Graphs (largest island)	Algorithmic (sentence reorder)	Algorithmic (matrix)	LongBench-v2	Hash-hop
Instruct	22.90	15.00	9.60	2.70	35.00	15.98
Standard RLVR	12.40	17.00	9.80	3.90	35.30	14.76
Long-horizon RL	47.10	22.50	18.80	4.20	37.90	18.73

465
 466 Table 3: Long-horizon training on composed GSM8K problems generalizes remarkably well to
 467 OOD ReasoningGym domains and Long-Context Benchmarks, outperforming length-1 (standard)
 468 RLVR and the Instruct model. We use default ReasoningGym configurations for our evaluations.
 469

470
 471 **Analysis.** This transfer patterns aligns with our *pass@k* capability improvement results from Sec-
 472 tion 4 and our theoretical framing. Tasks requiring sequential dependent reasoning, such as AIME
 473 or GSM-Symbolic problems, benefit from improved long-horizon reasoning capabilities that were
 474 learned on much simpler composed tasks. Crucially, improvements in aspects such as state-tracking
 475 (σ_j) are also observable from our long-context evals. Our results indicate that a curriculum of simple
 476 explicit-horizon tasks can bootstrap advanced reasoning, providing a scalable path where composing
 477 problems at the edge of what can be solved would push capabilities further without new annotations.
 478

479 **6 DESIGNING A COST EFFICIENT CURRICULUM**
 480

481 In most real-world scenarios, there is an abundance of short-horizon data, and long-horizon data is
 482 expensive to obtain (Kwa et al., 2025). In this section, we ask whether long-horizon performance
 483 can be obtained from training data distributions that are “cheaper” than a uniform one. Namely,

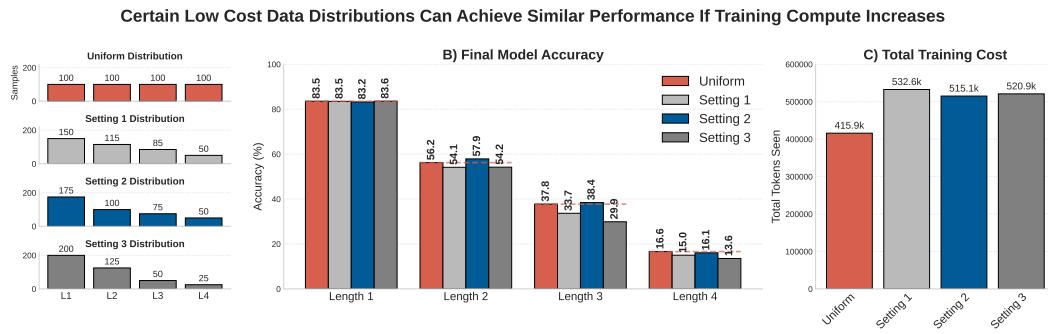


Figure 5: **Left:** Sample count distributions for four settings. **Middle:** Comparing accuracy at each stage across sample count settings. Under mild skew towards shorter samples like Setting 1 and 2, the model can perform as well as the uniform sample baseline. **Right:** Comparing the training compute across settings. The settings skewed towards shorter samples have more training cost in terms of training tokens seen. Overall, low-cost data distributions can achieve near-optimal performance.

whether we can train on more short data and less long data and still achieve the same performance. We also evaluate how much this changes the training compute required.

Our experiments follow the same curriculum RL method described in Sections 4 and 3. During training, we train up to saturation for each stage, spending as much training compute as needed until there are no further improvements in accuracy. We track the total number of tokens seen by the model. We create three different curricula with the same total number of samples, and different proportions of short- and long-horizon data (Figure 5 left).

The results in Figure 5 (middle and right) show that high long-horizon performance can be achieved even in data-constrained scenarios with training data distributions skewed towards shorter examples, but the trade-off is that we need to spend more training compute overall. However, as seen in the case of Setting 3 (Figure 5, left), a reasonable amount of long horizon data is still needed, otherwise optimal performance may be unreachable. Therefore, to further study this trade-off, we simplify our experimental setup to the SFT setting on a simpler task (multiplication), and scale up the search space for comprehensive evaluations. In Appendix C we provide results that show, for a target accuracy, a similar trade-off exists between (1) training cost and (2) training compute budget.

7 DISCUSSION

In this paper, we introduced a novel framework for improving long-horizon reasoning in large language models. Our method leverages existing short-horizon data by constructing new, multi-step problems through a chaining process. This approach allows us to scale reinforcement learning training, yielding substantial performance gains on multi-step reasoning tasks. An important result of our work is that the skills learned through this curriculum transfer to new challenging reasoning and long-context tasks. Furthermore, our results show that the model learns genuinely new reasoning capabilities, rather than just refining existing ones. We demonstrate that comparable performance can be achieved even when there is abundant short-horizon data but limited long-horizon data, thus providing a scalable and data-efficient path for improving frontier models.

While the goal of our paper was to introduce an early method for improving long-horizon reasoning, we see two promising directions for extensions. One is incorporating new sources of atomic skills beyond GSM8K. The other is creating new chaining methods that expands the serial dependency structure in our current method. We believe these two paths would offer useful extensions to the method we introduce in this paper and further improve long-horizon reasoning.

540 REFERENCES
541

542 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
543 brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
544 in large language models. *Advances in Neural Information Processing Systems*, 35:38546–38556,
545 2022.

546 Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
547 Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
548 and reasoning on realistic long-context multitasks, 2025. URL <https://arxiv.org/abs/2412.15204>.

549 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
550 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
551 2024. URL <https://arxiv.org/abs/2407.21787>.

552 William Brown. Verifiers: Environments for llm reinforcement learning. <https://github.com/willccbb/verifiers>, 2025. Commit 07b8a3a accessed 05/07/2025.

553 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
554 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
555 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

556 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
557 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
558 Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
559 language models, 2025. URL <https://arxiv.org/abs/2505.22617>.

560 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
561 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
562 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, and Bingxuan Wang.
563 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
564 <https://arxiv.org/abs/2501.12948>.

565 Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation
566 to longer sequences. *arXiv preprint arXiv:1911.03872*, 2019.

567 John C. Duchi. Introductory lectures on stochastic optimization. *IAS/Park City Mathematics Series*,
568 2018. URL <https://api.semanticscholar.org/CorpusID:4793094>.

569 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
570 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
571 URL <https://arxiv.org/abs/2103.03874>.

572 Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
573 How do neural networks generalise? *Journal of Artificial Intelligence Research*, 67:757–795,
574 2020.

575 Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
576 Megan Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du,
577 Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David
578 Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and Lawrence
579 Chan. Measuring ai ability to complete long tasks, 2025. URL <https://arxiv.org/abs/2503.14499>.

580 Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
581 improving transformers overcome easy-to-hard and length generalization challenges, 2025. URL
582 <https://arxiv.org/abs/2502.01612>.

583 Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhui Chen. Long-context llms struggle with
584 long in-context learning, 2024. URL <https://arxiv.org/abs/2404.02060>.

594 Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
 595 Chenchen Zhang, Ge Zhang, Jiebin Zhang, Yuanxing Zhang, Zhuo Chen, Hangyu Guo, Shilong
 596 Li, Ziqiang Liu, Yong Shan, Yifan Song, Jiayi Tian, Wenhao Wu, Zhejian Zhou, Ruijie Zhu,
 597 Junlan Feng, Yang Gao, Shizhu He, Zhoujun Li, Tianyu Liu, Fanyu Meng, Wenbo Su, Yingshui
 598 Tan, Zili Wang, Jian Yang, Wei Ye, Bo Zheng, Wangchunshu Zhou, Wenhao Huang, Sujian Li,
 599 and Zhaoxiang Zhang. A comprehensive survey on long context language modeling, 2025a. URL
 600 <https://arxiv.org/abs/2503.17407>.

601 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 602 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
 603 2025b. URL <https://arxiv.org/abs/2505.24864>.

604

605 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 606 Min Lin. Understanding r1-zero-like training: A critical perspective, 2025c. URL <https://arxiv.org/abs/2503.20783>.

607

608 Magic. Hashhop: Long context evaluation. <https://github.com/magicproduct/hash-hop>, 2024.

609

610

611 Alan Malek, Jiawei Ge, Nevena Lazić, Chi Jin, András György, and Csaba Szepesvári. Frontier llms
 612 still struggle with simple reasoning tasks, 2025. URL <https://arxiv.org/abs/2507.07313>.

613

614

615 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
 616 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
 617 language models, 2025. URL <https://arxiv.org/abs/2410.05229>.

618

619 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 620 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 621 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

622

623 Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and
 624 length extrapolation. *arXiv preprint arXiv:2010.07174*, 2020.

625

626 OpenAI-o1, Ahmed El-Kishky, Daniel Selsam, Francis Song, Giambattista Parascandolo, Hongyu
 627 Ren, Hunter Lightman, Hyung Won Chung, Ilge Akkaya, Ilya Sutskever, Jason Wei,
 628 and OpenAI Team. Openai o1 contributions, 2025. URL <https://openai.com/openai-o1-contributions/>. Web page.

629

630 Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
 631 Yu Zhang, James Caverlee, Dileep Kalathil, and Shuiwang Ji. Curriculum reinforcement learning
 632 from easy to hard tasks improves llm reasoning, 2025. URL <https://arxiv.org/abs/2506.06632>.

633

634 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 635 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 636 Jianxin Yang, and Jiaxi Yang. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

637

638 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 639 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 640 mark. In *First Conference on Language Modeling*, 2024.

641

642 Mahdi Sabbaghi, George Pappas, Hamed Hassani, and Surbhi Goel. Explicitly encoding structural
 643 symmetry is key to length generalization in arithmetic tasks. *arXiv preprint arXiv:2406.01895*,
 644 2024.

645

646 Amrit Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max Sim-
 647 chowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
 for llms, 2025. URL <https://arxiv.org/abs/2506.09026>.

648 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
 649 Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
 650 Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. URL
 651 <https://arxiv.org/abs/2506.10947>.

652 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement fine-
 653 tuning via adaptive curriculum learning, 2025. URL <https://arxiv.org/abs/2504.05520>.

654 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 655 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 656 models via the lens of problem complexity, 2025. URL <https://arxiv.org/abs/2506.06941>.

657 Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The illusion of
 658 diminishing returns: Measuring long horizon execution in llms, 2025. URL <https://arxiv.org/abs/2509.09677>.

659 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 660 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>.

661 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning, 2025.
 662 URL <https://arxiv.org/abs/2509.06941>.

663 Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
 664 dour, and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning
 665 with verifiable rewards, 2025. URL <https://arxiv.org/abs/2505.24760>.

666 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 667 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 668 Shen. Reinforcement learning for reasoning in large language models with one training example,
 669 2025. URL <https://arxiv.org/abs/2504.20571>.

670 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 671 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
 672 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024.

673 Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
 674 may not escape its origin, 2025. URL <https://arxiv.org/abs/2507.14843>.

675 Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
 676 Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
 677 Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large
 678 language models for reasoning through reverse curriculum reinforcement learning, 2024. URL
 679 <https://arxiv.org/abs/2402.05808>.

680 Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
 681 Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Franken, Nick
 682 Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning how to think with meta
 683 chain-of-thought, 2025. URL <https://arxiv.org/abs/2501.04682>.

684 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 685 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
 686 URL <https://arxiv.org/abs/2305.10601>.

687 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 688 Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
 689 base model?, 2025. URL <https://arxiv.org/abs/2504.13837>.

690 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
 691 reasoning, 2022. URL <https://arxiv.org/abs/2203.14465>.

702 Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
703 Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, and Sihang Zeng. A survey of
704 reinforcement learning for large reasoning models, 2025. URL <https://arxiv.org/abs/2509.08827>.

705

706 Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
707 do your llms behave over infinitely increasing context length and reasoning complexity?, 2025a.
708 URL <https://arxiv.org/abs/2502.05252>.

709

710 Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
711 formers can achieve length generalization but not robustly. *arXiv preprint arXiv:2402.09371*,
712 2024.

713

714 Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
715 Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
716 for efficient long-horizon agents, 2025b. URL <https://arxiv.org/abs/2506.15841>.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ADDITIONAL RELATED WORK.
757758 **Length Generalization.** Length generalization is concerned with extrapolating to longer sequence
759 lengths than those seen during training (Dubois et al., 2019; Hupkes et al., 2020; Newman et al.,
760 2020; Anil et al., 2022). Length generalization settings mostly focus on small scale tasks (Sabbaghi
761 et al., 2024; Zhou et al., 2024) but do not address RL training of reasoning models. A close example
762 (Lee et al., 2025) uses curriculum construction and SFT to train small transformers on progressively
763 harder algorithmic tasks. In this work, we not only show progressive length generalization gains
764 through curriculum based RL, but also cross-task generalization on much harder tasks.
765766 **Long Context Models.** Another related thread is extending LLM context length to handle very
767 large inputs. Recent models feature context windows of tens or hundreds of thousands of tokens
768 (Liu et al., 2025a) and benchmarks like LongBench-v2 (Bai et al., 2025) evaluate performance on
769 extremely long inputs such as documents and code. Frontier models with state-of-the-art context
770 windows still suffer performance degradation when required to infer against distant pieces of infor-
771 mation or a series of dependent tasks (Li et al., 2024; Malek et al., 2025; Zhou et al., 2025a). These
772 works show that simply having larger context windows does not guarantee that models can perform
773 deep, dependent reasoning over several steps. Our work aims to address this gap by focusing on
774 training for improved long-horizon output generation rather than just long input handling.
775776 A.1 COMPOSITION AND COMPUTATIONAL GRAPHS.
777778 **Synthetic LHR data construction.** Let $\mathcal{D}_1 = \{(x, y = f_a(x))\}$ be solved atomic problems (e.g.,
779 GSM8K). We build horizon- h examples $(p_{1:h}, y_h)$ in two interchangeable ways:
780781 1. **Transformation chaining.** Given (x_j, y_j) , define $x_{j+1} = \phi_j(y_j)$ via a typed, determinis-
782 tic transformation (e.g., unit conversion, affine reparameterization, substitution into a tem-
783 plate). This yields $x_1 \mapsto y_1 \mapsto \dots \mapsto y_h$ with y_h computed exactly by composition.
784 2. **Recompute chaining.** Draw an independent atomic instance \tilde{x}_{j+1} and re-compute its key
785 parameters as functions of y_j (e.g., replace a placeholder with y_j), producing $x_{j+1} =$
786 $\psi_j(\tilde{x}_{j+1}, y_j)$ while preserving the solver $f_{a_{j+1}}$.
787

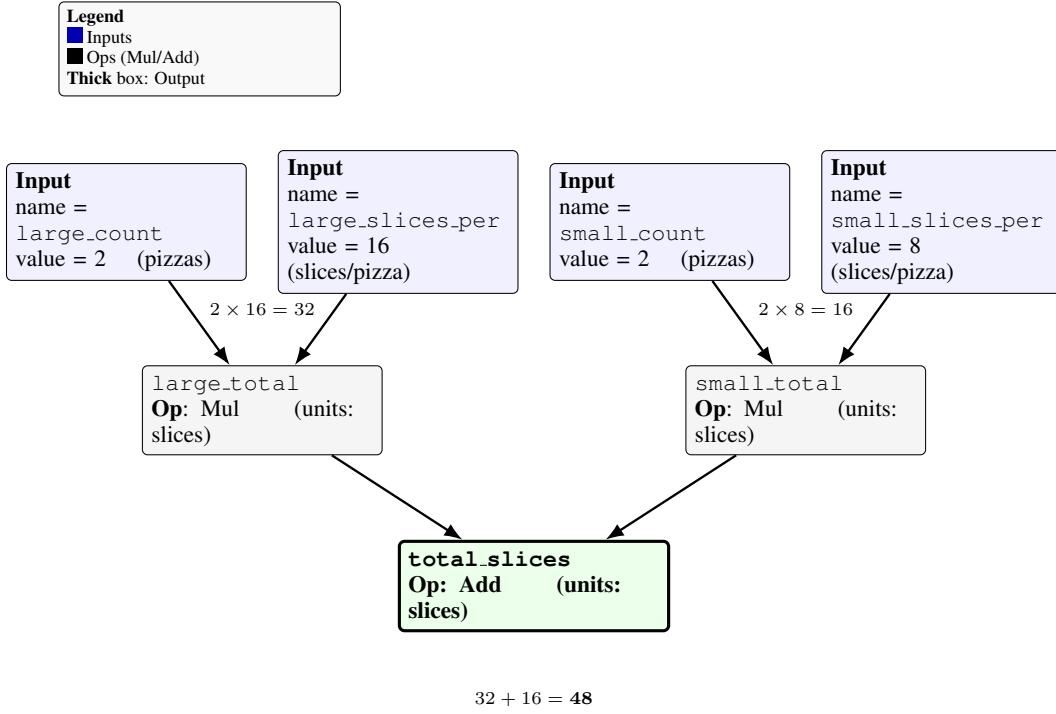
788 We render the chain as a single prompt

789
$$p_{1:h} = R_{a_1}(x_1) \parallel R_{a_2}(x_2) \parallel \dots \parallel R_{a_h}(x_h),$$

790 instructing the model to solve the h dependent sub-problems sequentially and return the final answer
791 y_h .¹
792

793 We can analyze our method from the perspective of computational graphs (Zhou et al., 2025a).
794 Each verifiable problem, such as in GSM8k dataset, forms a single-sink directional acyclic graph
795 where each node represents an operator consuming the value from previous nodes and producing
796 the value for the next node(s) or as an output of the graph as shown in Figure 6 for an example
797 GSM8k problem. The height of the graph then can represent the number of steps that must be
798 crafted and accurately carried out while the width of the graph represents the state that must be
799 maintained at each step and accurately manipulated. This framing enables us to visualize various
800 possible compositions of a given set of problems. The sequential composition presented in this paper
801 forms a simple composition technique that enables models to learn through a curriculum crafting and
802 evaluating of larger and larger number of the steps that a problem may require.
803804 We generated the computational graphs for all of the problems in GSM8k and AIME24 datasets
805 to examine the patterns of computation and compositions for these problems. While the graphs for
806 these two datasets are not equivalent as they use different operators, they give some insights into why
807 our method is able to show generalization across different datasets. For GSM8k problems, we found
808 the computational graphs have average width and height of 4.1 and 4.0 respectively, while AIME
809 graphs have average width and height of 6.6 and 7.1 respectively. We then compare the statistics
810 for the graphs of AIME problems solved before and after our procedure as shown in table 4. We
811 observe that our procedure enables models to learn creating and evaluating longer computational
812 graphs through sequential composition and curriculum learning.
813814 ¹We apply standard well-posedness filters: type checks, numeric range clipping, and de-duplication.

810
 811 Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A
 812 large pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that
 813 day?



837 Figure 6: Question and computational graph for a GSM8K problem (final answer: **48**).
 838

840 Table 4: AIME24 solved problems comparison. N+E denotes Nodes + Edges.
 841

842

	N+E	Width	Height
Baseline: Instruct-model solved problems	47.25	8	6.75
Ours: Additional newly solved problems	54.3	4.7	10.3

848 B THEORETICAL ANALYSIS

849
 850 Intuitively, under our long-horizon skill model in Section 3, attempting to train directly on long-
 851 horizon data with outcome rewards results in vanishing gradient signal, as very few rollouts achieve
 852 any reward. Curriculum training overcomes this by initially training at short horizons, where this
 853 signal is stronger. Raising the success rate in achieving a reward at horizon j also raises the success
 854 rate for horizons $> j$, and so when we come to train at $j + 1$, the signal is no longer vanishing. In
 855 the analysis below, we prove that this is the case in our simplified long-horizon skills model, and
 856 demonstrate an exponential decrease (with respect to the horizon length H) in the sample complexity
 857 for curriculum training vs direct outcome reward-only horizon H training, along with an equivalence
 858 between curriculum training and training at horizon H with dense, per-step rewards.
 859
 860

861 B.1 SETUP AND NOTATION

862 We study our simplified model of skill acquisition described in Section 3 to analyze the benefits of
 863 curriculum learning for LHR. We consider a finite-horizon episodic problem with maximum horizon

864 H , where the probability of being correct up to depth i is
 865

$$866 \quad s_i = \prod_{j=1}^i q_j, \quad q_j = p(\theta_0) \sigma_j(\theta_j) \in (0, 1), \quad s_0 = 1,$$

868 with depth- j parameters θ_j . $p \in (0, 1]$ represents homogeneous *atomic task reliability*, while
 869 $\sigma_j \in [0, 1]$ represents heterogeneous *context length dependent reliability* (we assume $\sigma_1 = 1$).
 870 At initialization, we assume $q_j \in [\delta, 1 - \delta]$ for some constant $\delta > 0$.
 871

872 Note that our model does not allow for the possibility of self-correction or error cancellation, and so
 873 can be viewed as a simplified analysis of the worst-case average sample complexity for all training
 874 regimes. Incorporating these factors into our model would reduce sample complexity in all scenarios,
 875 but is likely to leave the exponential separation intact.
 876

877 We use unbiased advantage-based policy gradient with a leave-one-out (LOO) baseline. For depth
 878 i , we draw N i.i.d. trajectories $\{y_g\}_{g=1}^N$ with terminal reward $R_i(y_g) \in \{0, 1\}$ and advantage
 879

$$880 \quad A_g = R_i(y_g) - \frac{1}{N-1} \sum_{h \neq g} R_i(y_h).$$

881 For a block $k \leq i$ the (blockwise) score and estimator are
 882

$$883 \quad Z_{k,g} = I_{k-1}(y_g) \nabla_{\theta_k} \log \pi_k(y_g) = I_{k-1}(y_g) \frac{B_k(y_g) - q_k}{q_k(1 - q_k)} \nabla_{\theta^{(k)}} q_k,$$

$$884 \quad \bar{g}_k = \frac{1}{N} \sum_{g=1}^N A_g Z_{k,g},$$

885 where I_{k-1} is the reach indicator for step k and $B_k \sim \text{Bernoulli}(q_k)$ is the step- k success. We
 886 abbreviate
 887

$$888 \quad s := s_{k-1}, \quad q := q_k, \quad T := T_{k+1:i} := \prod_{j=k+1}^i q_j.$$

889 B.2 SIGNAL-TO-NOISE RATIO

890 Define the SNR at horizon i with respect to θ_k ($k \leq i$) as
 891

$$892 \quad \text{SNR}_i(\theta_k) = \frac{\|\mathbb{E}\bar{g}_k\|^2}{\mathbb{E}\|\bar{g}_k - \mathbb{E}\bar{g}_k\|^2}.$$

893 To calculate this, we determine the mean and variance of \bar{g}_k .
 894

901 **Mean.** For all $k \leq i$,

$$902 \quad \mathbb{E}[\bar{g}_k] = g_k = \frac{s_i}{q_k} \nabla_{\theta^{(k)}} q_k = s T \nabla_{\theta^{(k)}} q_k. \quad (1)$$

904 **Variance identity (LOO).** Let $\mu := \mathbb{E}[R_i] = s q T$. The LOO variance decomposition gives
 905

$$906 \quad \text{Var}(\bar{g}_k) = \frac{1}{N} \mathbb{E}[(R_i - \mu)^2 Z_k Z_k^\top] - \alpha_N g_k g_k^\top, \quad \alpha_N = \frac{N-2}{N(N-1)}. \quad (2)$$

908 **Upstream $k < i$.** Conditioning on $I_{k-1} = 1$ and decoupling the tail as $\tilde{C} \sim \text{Bernoulli}(T)$
 909 independent of B_k , a direct enumeration yields
 910

$$911 \quad \mathbb{E}[(R_i - \mu)^2 \|Z_k\|^2] = s \frac{T}{q(1-q)} \left[(1-q) - 2sTq + 2sTq^2 + s^2Tq^2 \right] \|\nabla q\|^2, \quad (3)$$

$$913 \quad \Rightarrow \quad \mathbb{E}\|\bar{g}_k - \mathbb{E}\bar{g}_k\|^2 = \frac{s}{N} \frac{T}{q(1-q)} \left[(1-q) - 2sTq + 2sTq^2 + s^2Tq^2 \right] \|\nabla q\|^2 - \alpha_N s^2 T^2 \|\nabla q\|^2. \quad (4)$$

915 In particular, as $T \downarrow 0$,

$$917 \quad \mathbb{E}\|\bar{g}_k - \mathbb{E}\bar{g}_k\|^2 = \frac{sT}{N} \frac{\|\nabla q\|^2}{q} + O\left(\frac{sT^2}{N} \|\nabla q\|^2\right) - \alpha_N s^2 T^2 \|\nabla q\|^2. \quad (5)$$

918 **Frontier** $k = i$. Here $T \equiv 1$ and $R_i = I_{i-1}B_i$:

$$920 \quad \mathbb{E}[(R_i - \mu)^2 \|Z_i\|^2] = s \left[\frac{(1-sq)^2}{q} + \frac{s^2 q^2}{1-q} \right] \|\nabla q\|^2, \quad (6)$$

$$922 \quad \Rightarrow \quad \mathbb{E}\|\bar{g}_i - \mathbb{E}\bar{g}_i\|^2 = \frac{s}{N} \left[\frac{(1-sq)^2}{q} + \frac{s^2 q^2}{1-q} \right] \|\nabla q\|^2 - \alpha_N s^2 \|\nabla q\|^2. \quad (7)$$

925 Define

$$927 \quad F(s, q, T) := (1-q) - 2sTq + 2sTq^2 + s^2Tq^2 = (1-q)(1-2sTq) + s^2Tq^2.$$

929 We obtain the exact formula

$$930 \quad \text{SNR}_i(\theta_k) = \frac{N s T q (1-q)}{F(s, q, T)} \cdot \frac{1}{1 - \frac{N-2}{N-1} \cdot \frac{s T q (1-q)}{F(s, q, T)}}. \quad (8)$$

933 In the upstream regime with a small tail $T \ll 1$ (the typical long-horizon situation),

$$935 \quad \text{SNR}_i(\theta_k) = N s T q \cdot \left(1 + O\left(\frac{T}{1-q}\right)\right) \times \left(1 + O(sT)\right) = \Theta_{s,T}(N s T q) = \Theta(N s_i). \quad (9)$$

937 At the frontier $k = i$ one recovers the familiar form $\text{SNR}_i(\theta_i) = \Theta_{s_{i-1}}(N s_{i-1} q_i (1 - q_i))$.

938 Therefore, when training at horizon i , the SNR for θ_k (with $k \leq i$) scales in one of two ways:

$$940 \quad \text{Upstream } (k < i) : \quad \text{SNR}_i(\theta_k) = \Theta(N s_i), \quad (10)$$

$$941 \quad \text{Frontier } (k = i) : \quad \text{SNR}_i(\theta_i) = \Theta(N s_{i-1} q_i (1 - q_i)). \quad (11)$$

943 B.3 PER-UPDATE IMPROVEMENT AND BATCH SIZE

945 Under the assumption that $s_i(\theta)$ is L -smooth, taking an update $\theta_k^+ = \theta_k + \eta \bar{g}_k$ (holding all $\theta_{j \neq k}$ fixed) results in expected improvement

$$948 \quad \mathbb{E}[s_i(\theta^+) - s_i(\theta)] \geq \eta \left(\frac{s_i}{q_k} \right)^2 \|\nabla_{\theta_k} q_k\|^2 \left(1 - \frac{L\eta}{2} \left(1 + \frac{1}{\text{SNR}_i(\theta_k)} \right) \right).$$

950 This follows from standard analysis of SGD on smooth functions (Duchi, 2018). It is maximised
951 when $\eta = 1/(L(1 + 1/\text{SNR}_i(\theta_k)))$, giving
952

$$953 \quad \mathbb{E}[s_i(\theta^+) - s_i(\theta)] \geq \underbrace{\frac{s_{i-1}^2 \|\nabla_{\theta_k} g_k\|^2}{2 q_k^2 L}}_{:= \Delta_{i,k}^{(0)}} \cdot \frac{1}{1 + 1/\text{SNR}_i(\theta_k)}. \quad (12)$$

958 We call $\Delta_{i,k}^{(0)}$ the noiseless improvement. To achieve a constant $\beta \in (0, 1)$ fraction of the noiseless
959 gain requires
960

$$961 \quad \text{SNR}_i(\theta_k) \geq \frac{\beta}{1 - \beta}. \quad (13)$$

963 We now instantiate equation 8–equation 13 to compare training regimes in Appendix B.4.

965 B.4 REGIMES AND CONSEQUENCES

967 **Single-step only (train only at $i = 1$)**. When training only at $i = 1$, the required batch size
968 and per-update noiseless improvement clearly do not depend on H . This method can only raise
969 the atomic reliability p (as $\sigma_1 = 1$), so even as $p \rightarrow 1$ long-horizon success remains bounded by
970 $\prod_{j=2}^H \sigma_j$. However, given some target success probability $c \in (0, 1)$, increasing p does increase the
971 horizon h at which $s_h \geq c$, with $h = (\ln c - \ln \prod_{j=2}^h \sigma_j) / \ln p$ given $c \leq \prod_{j=2}^h \sigma_j$.

972 **Direct full horizon (train only at $i = H$).** If we train directly at horizon H , equation 10 gives
 973 for all $\theta_{k \neq 0}$ $\text{SNR}_H(\theta_k) = \Theta(N s_H)$. Under the assumption that at initialization $q_j \in [\delta, 1 - \delta]$,
 974 $s_H = \Theta(e^{-H})$. We therefore have that
 975

$$977 \quad N = \Theta(e^H), \quad \Delta_{H,k}^{(0)} = \Theta(e^{-2H} \|\nabla_{\theta^{(k)}} q_k\|^2).$$

979 The required batch size to achieve a constant fraction of the noiseless improvement is exponential,
 980 while the noiseless improvement decays exponentially, making training directly at large H effec-
 981 tively impossible. In fact, direct training at horizon H is worse than single-step training, as the
 982 signal is too small to effectively raise p ($\text{SNR}_H(\theta_0) = \Theta(N H e^{-H})$).
 983

984 **Curriculum over depths.** Given a target success probability $s_H \geq c \in (0, 1)$, we can ensure
 985 that curriculum training achieves this by only progressing the horizon i when $q_i \geq 1 - \epsilon$, such that
 986 $(1 - \epsilon)^H \geq c$, and therefore $\epsilon \sim (-\ln c)/H$. If we assume that the earlier stages have been learned
 987 so $s_{i-1} \geq (1 - \epsilon)^{i-1} \geq c$, then equation 11 gives us that
 988

$$989 \quad N = \Theta\left(\frac{1}{\epsilon}\right) = \Theta(H), \quad \Delta_{i,i}^{(0)} = \Theta(\|\nabla_{\theta^{(i)}} q_i\|^2).$$

990 N depends on ϵ as $q_i \rightarrow 1 - \epsilon$, giving us a batch size that scales linearly with H . The noiseless
 991 improvement is independent of H and i , and so under mild conditions on $\|\nabla_{\theta^{(i)}} q_i\|^2$, such that it
 992 shrinks at most polynomially in H as $q_i \rightarrow 1 - \epsilon$, we achieve overall polynomial sample complexity
 993 for curriculum training.
 994

995 **Uniform mixture over lengths.** Sample $I \sim \text{Unif}\{1:H\}$ and run the depth- I estimator; for a
 996 fixed block i , the per-iteration SNR obtained for its update averages to
 997

$$1000 \quad \mathbb{E}_I[\text{SNR}_i] = \Theta\left(\frac{N}{H} s_{i-1} q_i \sum_{t=0}^{H-i} T_{i+1:i+t}\right), \quad T_{a:b} := \prod_{\ell=a}^b q_\ell (T_{a:a-1} := 1).$$

1003 **Frontier phase.** We say horizon i is at the frontier when earlier skills are sufficiently reliable while
 1004 deeper ones are not yet learnt, namely
 1005

$$1006 \quad s_{i-1} \geq c \quad \text{for some fixed } c \in (0, 1) \quad \text{and} \quad \sum_{t=0}^{H-i} T_{i+1:i+t} = \Theta(1).$$

1009 During this frontier phase,

$$1010 \quad \mathbb{E}_I[\text{SNR}_i] = \Theta\left(\frac{N}{H} s_{i-1} q_i\right).$$

1012 Whenever we sample a batch with $I = i$, we obtain the same noiseless improvement and batch size
 1013 scaling as curriculum training, with
 1014

$$1016 \quad N = \Theta\left(\frac{1}{\epsilon}\right) = \Theta(H), \quad \Delta_{i,i}^{(0)} = \Theta(\|\nabla_{\theta^{(i)}} q_i\|^2).$$

1019 Whenever we sample $I \neq i$, we see negligible change as samples with $h < i$ cannot improve q_i , and
 1020 samples with $h > i$ have per-iteration gain that scales with s_{h-1}^3 .
 1021

$$1022 \quad \mathbb{E}_I[\Delta_h \text{ per iter}] = \Theta\left(\frac{N}{H} s_{h-1}^3 \|\nabla_{\theta_i} q_h\|^2\right).$$

1024 Therefore, it takes $\sim H$ times longer to train with uniform sampling than with curriculum, due to
 1025 only a fraction $1/H$ of the updates being “useful” at each frontier $i \in \{1, \dots, H\}$.
 1026

1026 B.5 DENSE REWARDS (REWARD-TO-GO WITH STATE-VALUE BASELINE)
10271028 We replace the terminal-only objective at depth i with dense stepwise rewards $r_t := \mathbf{1}\{I_{t-1}B_t = 1\}$
1029 and train with reward-to-go at horizon i . Fix a block $k \leq i$. Define
1030

1031
$$\Sigma_{k,i} := \sum_{t=k}^i \prod_{j=k+1}^t B_j, \quad S_{k,i} := \mathbb{E}[\Sigma_{k,i}] = \sum_{d=0}^{i-k} T_{k+1:k+d}, \quad S_{k,i}^{(2)} := \mathbb{E}[\Sigma_{k,i}^2] = \sum_{d=0}^{i-k} (2d+1) T_{k+1:k+d},$$

1032
1033

1034 with $T_{a:b} := \prod_{\ell=a}^b q_\ell$ and $T_{a:a-1} := 1$. Let $s := s_{k-1}$ and $q := q_k$. The per-sample score is
1035

1036
$$Z_k = I_{k-1} \frac{B_k - q}{q(1-q)} \nabla_{\theta^{(k)}} q_k,$$

1037
1038

1039 and we use the *state-value* (per-sample, action-independent) baseline
1040

1041
$$b = \mathbb{E}[R | I_{k-1}, \Sigma_{k,i}] = I_{k-1} q \Sigma_{k,i},$$

1042

1043 so each summand is $X := (R - b)Z_k$ and $\bar{g}_k = \frac{1}{N} \sum_{g=1}^N X_g$ with i.i.d. terms.
10441045 **Mean (signal).** Since $(R - b) = I_{k-1} \Sigma_{k,i} (B_k - q)$ and $Z_k = I_{k-1} \frac{(B_k - q)}{q(1-q)} \nabla q$,
1046

1047
$$\mathbb{E}[\bar{g}_k] = \mathbb{E}[X] = \mathbb{E}\left[I_{k-1} \Sigma_{k,i} \frac{(B_k - q)^2}{q(1-q)}\right] \nabla q = s S_{k,i} \nabla_{\theta^{(k)}} q_k.$$

1048
1049

1050 **Variance decomposition and exact MSE.** Because we use a per-sample baseline, there is no LOO
1051 cross-term and
1052

1053
$$\text{Var}(\bar{g}_k) = \frac{1}{N} \text{Var}(X) = \frac{1}{N} \left(\mathbb{E}[(R - b)^2 \|Z_k\|^2] - \|\mathbb{E}[(R - b)Z_k]\|^2 \right).$$

1054
1055

1056 A one-step Bernoulli calculation yields
1057

1058
$$\mathbb{E}[(R - b)^2 \|Z_k\|^2] = s S_{k,i}^{(2)} \frac{1 - 3q(1-q)}{q(1-q)} \|\nabla_{\theta^{(k)}} q_k\|^2, \quad \|\mathbb{E}[(R - b)Z_k]\|^2 = s^2 S_{k,i}^2 \|\nabla_{\theta^{(k)}} q_k\|^2.$$

1059

1060 Hence the exact mean-squared error (MSE) is
1061

1062
$$\mathbb{E}\|\bar{g}_k - \mathbb{E}\bar{g}_k\|^2 = \frac{s}{N} \left(\frac{1 - 3q(1-q)}{q(1-q)} S_{k,i}^{(2)} - s S_{k,i}^2 \right) \|\nabla_{\theta^{(k)}} q_k\|^2. \quad (14)$$

1063
1064

1065 **SNR** Using $\|\mathbb{E}\bar{g}_k\|^2 = s^2 S_{k,i}^2 \|\nabla q\|^2$ and equation 14,
1066

1067
$$\text{SNR}_i(\theta_k) = \frac{N s S_{k,i}^2}{\frac{1-3q(1-q)}{q(1-q)} S_{k,i}^{(2)} - s S_{k,i}^2}. \quad (15)$$

1068
1069

1070 Since $1 - 3q(1-q) \in [1/4, 1]$, we obtain the MSE bounds
1071

1072
$$\frac{s}{N} \left(\frac{S_{k,i}^{(2)}}{4q(1-q)} - s S_{k,i}^2 \right) \|\nabla q\|^2 \leq \mathbb{E}\|\bar{g}_k - \mathbb{E}\bar{g}_k\|^2 \leq \frac{s}{N} \cdot \frac{S_{k,i}^{(2)}}{q(1-q)} \|\nabla q\|^2,$$

1073
1074

1075 and therefore (whenever the positive term dominates the $s S_{k,i}^2$ subtraction, e.g. away from extremely
1076 large s)
1077

1078
$$\text{SNR}_i(\theta_k) = \Theta\left(N s q(1-q) \cdot \frac{S_{k,i}^2}{S_{k,i}^{(2)}}\right).$$

1079

1080
 1081 **Tail regularity and equivalence with curriculum.** If the tail reliabilities are bounded away from
 1082 the boundary, $q_{k+1}, \dots, q_i \in [\delta, 1 - \delta]$ for some $\delta \in (0, \frac{1}{2}]$, then
 1083

1084
$$S_{k,i}^{(2)} = \Theta(S_{k,i}^2) \quad (\text{constants depend only on } \delta),$$

 1085

1086
 1087 yielding
 1088

1089
$$\text{SNR}_i(\theta_k) = \Theta(N s_{k-1} q_k (1 - q_k)).$$

 1090

1091 This *removes* the tail-reach penalty $T_{k+1:i}$ that appears with terminal-only rewards and exactly
 1092 matches the curriculum-frontier scaling at stage i (where curriculum also yields $\Theta(N s_{i-1} q_i (1 - q_i))$). Consequently, the batch size needed to attain a β -fraction of the noiseless improvement in
 1093 equation 12 is the same order as under curriculum:

1094
$$N_i = \Theta\left(\frac{1}{s_{i-1} q_i (1 - q_i)} \cdot \frac{\beta}{1 - \beta}\right),$$

 1095

1096 and with the standard curriculum gate $q_i \geq 1 - \epsilon$ and $s_{i-1} \geq c$ (so $\epsilon \sim (-\ln c)/H$), this is
 1097 $N_i = \Theta\left(\frac{H}{c(-\ln c)} \cdot \frac{\beta}{1 - \beta}\right).$
 1098

1108 C DECREASING SAMPLE COMPLEXITY FOR LONGER TRAINING DATA

1111 In Section 6, we train with the following sample count settings skewed towards shorter samples.

1112
 1113 • Baseline: L1 100, L2 100, L3 100, L4 100
 1114
 1115 • Setting 1: L1 150, L2 115, L3 85, L4 50
 1116
 1117 • Setting 2: L1 175, L2 100, L3 75, L4 50
 1118
 1119 • Setting 3: L1 200, L2 125, L3 50, L4 25
 1120

1121 And we concluded that we can recover the baseline performance with a skewed trianing distribution,
 1122 as long as well spend more compute. However, this is a small search space.
 1123

1124 To support section 6 better, we scale up the search space by simplifying our experimental setting. In
 1125 particular, we consider training a 135M-parameter model on integer multiplication problems through
 1126 SFT. We generate the multiplication problems by sampling two operands, and writing out the chain
 1127 of computations. We define **length** as the sum of number of digits of both operands, analogous to the
 1128 number of chained GSM problems in our primary setting. Then we can separate the training dataset
 1129 into bins grouped by distinct lengths. We vary the length distribution of training dataset by varying
 1130 the samples in each length bins. Finally we associate a **cost** to each data length, which represents
 1131 the cost of generating the data. This metric mirrors the real-world concern that longer data is harder
 1132 to collect. For multiplication, the cost of each length is equal to the length.
 1133

1134 C.1 TRADE-OFF BETWEEN DATA COST AND COMPUTE
1135

1136

1137

1138

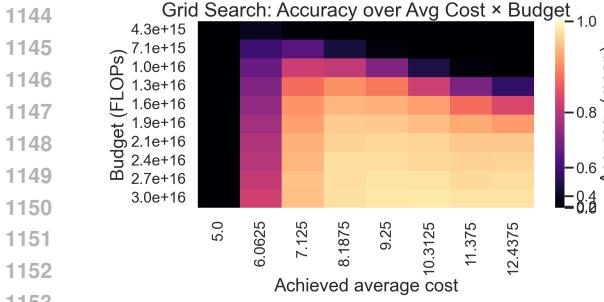
1139

1140

1141

1142

1143

1144 Figure 7: Right: We parameterize different training distribution using a single cost scalar. Left:
1145 Sweeping different choices of training budget and distribution costs
1146

1147

1148 Using the multiplication task, we study the trade-off between (1) skewedness towards shorter lengths
1149 in the training distribution and (2) total training budget. Figure 7 sweeps over many choices of
1150 budget and cost. A first observation is that for the same target accuracy, a training run can either
1151 have a lower cost data distribution and use more budget, or vice versa. Figure 7 also shows other
1152 relationships. For example, the rate of learning seems to slowly decrease as we increase cost. We
1153 believe this is because as we shift more weight to longer examples, the multiplication becomes
1154 harder to learn overall.

1155 C.2 SEARCHING FOR THE MINIMUM COST DISTRIBUTION UNDER THE SAME BUDGET
1156

1157 By principally testing different data mixtures we show that longer horizon training requires less
1158 samples. Here, we create 3 length bins, which evenly divides the data length in the dataset. We
1159 keep the training budget the same, and vary the data mixture of the length bins to find the mixture
1160 distribution with the least average cost but still keeps high performance after training. We visualize
1161 this search procedure in Figure 8, which shows a distinct feasible region for the 3-bin probability
1162 distribution where training runs are successful.

1163 D ADDITIONAL EXPERIMENTAL DETAILS.
1164

1165 We trained the Qwen 2.5 3B Instruct model using the hyperparameters outlined in Table 5. The
1166 training was conducted for 200 optimization steps for each problem length in our curriculum, where
1167 each step processed a single sample, for a total of 200 samples per horizon. We utilized the Group-
1168 Relative Policy Optimization (GRPO) training objective. For each problem length, we evaluated
1169 the model every 50 steps and selected the best checkpoint based on validation performance. This
1170 checkpoint was then used as the initialization for training on the subsequent, longer-horizon problem
1171 length.

1172 The maximum completion length was dynamically adjusted based on the number of sub-problems
1173 to accommodate the increasing reasoning horizon. Specifically, we used a maximum completion
1174 length of 768 for 1-subproblem tasks, 1024 for 2-subproblem tasks, 1280 for 3-subproblem tasks,
1175 and 1536 for both 4- and 5-subproblem tasks. Dynamically increasing the completion length was an
1176 important factor to achieve good performance, as it allowed the model enough token space to solve
1177 the problem while also constraining it to the minimum length required to complete the task.

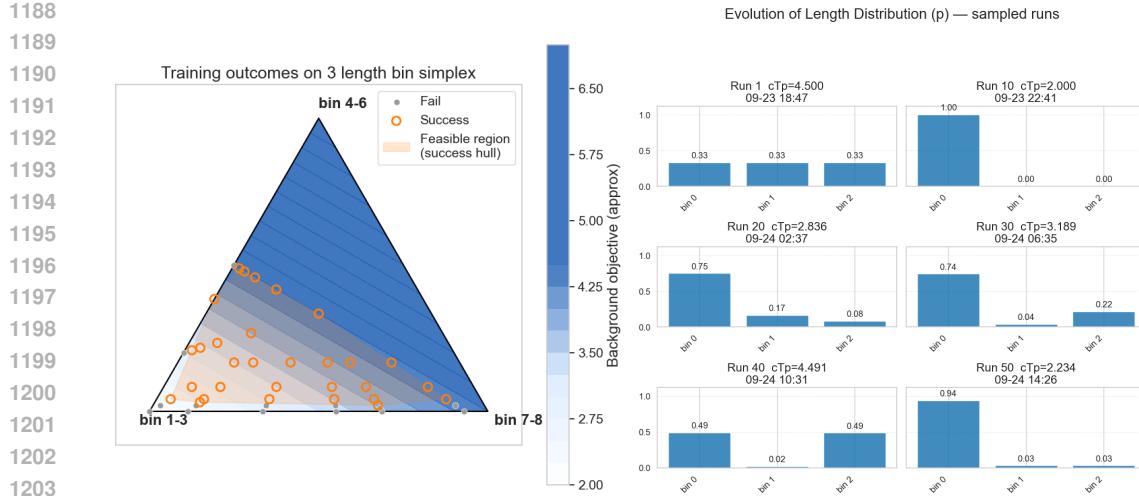


Figure 8: Left: Training trails with 3 length bin data distribution, plotted over the probability simplex. The blue gradient is the "cost" of the distribution, as defined in C.1. Each dot on the simplex is a training run with the specific data distribution. We start from the uniform distribution (middle point) and send 8 rays to the cheaper half of the simplex boundary (we did not explore the more expensive half). Then we bisect each rays to find the feasibility boundary along this ray. Overall, there is a convex feasible region that forms close to the simplex boundaries, and we are able to find data distributions much cheaper. Right: Examples of different 3-bin training distributions during the search.

Parameter	Qwen 2.5 3B Instruct	Qwen 2.5 7B Instruct	Llama 3.2 3B Instruct
Training Steps per Horizon	200	200	200
Samples per Horizon	200	200	200
Number of Generations per Prompt	16	16	16
Learning Rate	5×10^{-6}	2×10^{-6}	5×10^{-6}
Learning Rate Scheduler	Cosine	Cosine	Cosine
Warmup Steps	30	30	20
Max Gradient Norm	0.1	0.1	0.1
Loss Type	Dr. GRPO	Dr. GRPO	Dr. GRPO

Table 5: Hyperparameters used for the curriculum-based RL training stages across different models.

We implemented GRPO training using the Verifiers library(Brown, 2025).

System prompt for RL training

Respond in the following format, with only the numerical answer between the <answer> tags:
 <reasoning>
 ...
 </reasoning>
 <answer>
 ...
 </answer>

Example of chained GSM8K problem

Step 1: Solve the following math problem step by step:

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

Ralph watches TV for 4 hours a day from Monday to Friday, and 6 hours a day on Saturday and Sunday. How many hours does Ralph spend watching TV in one week?

Step 2: Take your final answer from Step 1 and substitute it for Z in the following problem:

Sonny received Z boxes of cookies from his friend yesterday. He gave 12 to his brother, 9 to his sister, and he gave 7 to his cousin. How many boxes of cookies were left for him?

Write out the updated version of the problem with the number from Step 1 in place of Z.

Step 3: Solve the updated problem from Step 2 step by step.

Step 4: Take your final answer from Step 3 and substitute it for U in the following problem:

In a restaurant, the chef prepared 17 meals to sell for lunch. During lunch, he sold 12 meals. After lunch, the chef prepared another U meals for dinner. How many meals does the chef have for dinner, assuming he can use the remaining lunch meals as well?

Write out the updated version of the problem with the number from Step 3 in place of U.

Step 5: Solve the updated problem from Step 4 step by step. In the end, provide only the final numerical answer.

—
Answer: 9

The same hyperparameters were applied to our baselines in Table 1. For these baselines, we trained up to an equal amount of compute as our main experiments and selected the best checkpoint from each run based on validation performance.

To evaluate our model’s generalization capabilities, we performed a series of zero-shot evaluations (sampling temperature 0.1) on a variety of benchmarks, including AIME 2024, AIME 2025, MMLU Pro Math (Wang et al., 2024), GSM Symbolic (Mirzadeh et al., 2025), MATH-500 (Hendrycks et al., 2021), LongBench-v2 (Bai et al., 2025), Hash-hop (Magic, 2024), and GPQA (Rein et al., 2024) (Tables 2, 6). For the Hash-hop benchmark, we computed the average accuracy across multiple settings, including context lengths of 10k, 20k, and 30k characters, and 1, 2, 3, and 4 hops.

Besides harder math benchmarks, our curriculum-based training generalizes to benchmarks that require long-context and complex reasoning, even though our models were only trained on composed mathematical problems. The results on LongBench-v2, Hash-hop, and GPQA show a consistent improvement in performance as the training horizon increases, demonstrating that our method imparts transferable skills such as state-tracking and the ability to reason over long sequences. For example, performance on LongBench-v2 increases from 35.00% (untrained) to 37.90% after training up to a 5-subproblem horizon.

The robustness and generality of our method were demonstrated by applying it to two additional language models: Qwen 2.5 7B Instruct and Llama 3.2 3B Instruct. The training parameters for all models are detailed in Table 5.

For the Qwen 2.5 7B Instruct model, we constructed chained problems from a more challenging source, the MATH dataset. We connected subproblems with integer-valued answers by applying simple operations (e.g., addition or subtraction) to generate the numerical input for the next problem. The training showed a strong, consistent performance lift, with mean accuracy on multi-step problems rising from 45.50% to 50.65% (Table 7). This improvement transferred to out-of-domain benchmarks, validating the method’s ability to generalize beyond the specific training domain.

Generalization to Long Context Benchmarks				
Model / setting	LongBench-v2	Hash-hop	GPQA	
Instruct model	35.00	15.98	25.00	
<i>Standard RLVR on GSM8K</i>				
GSM8K RLVR	35.30	14.76	26.56	
<i>Curriculum RL on Composed GSM8K Problems</i>				
Len-2 GSM8K	36.20	16.17	25.22	
Len-3 GSM8K	37.10	17.62	26.12	
Len-4 GSM8K	36.20	18.98	26.34	
Len-5 GSM8K	37.90	18.73	27.23	
	(+8.3%)	(+17.4%)	(+8.9%)	

Table 6: Performance on long context benchmarks improves significantly with GSM8K RL curriculum training stages. Training on increasing complexity of GSM8K leads to strong out-of-domain generalization.

Model / setting	Accuracy on MATH Problems					Accuracy on Harder Problems	
	Len-1	Len-2	Len-3	Len-4	Mean	Symbolic P2	LongBench v2
Instruct model	74.00	52.60	29.40	26.00	45.50	61.36	33.60
<i>Standard RLVR on MATH</i>							
MATH RLVR	76.20	53.80	32.00	29.00	47.75	64.96	34.50
<i>Curriculum RL on Composed MATH Problems</i>							
Len-2 MATH	77.00	56.20	34.40	27.66	48.82	65.60	34.50
Len-3 MATH	76.20	56.00	35.40	28.86	49.12	65.32	34.50
Len-4 MATH	76.80	56.60	37.80	31.40	50.65	64.88	35.30
	(+4.1%)	(+7.6%)	(+28.6%)	(+20.8%)	(+11.3%)	(+6.9%)	(+5.1%)

Table 7: Long Horizon MATH Training on **Qwen 2.5 7B Instruct**. Curriculum stages lead to significant improvements in in-domain performance and generalization metrics. Len-1 refers to MATH-500 dataset.

For the Llama 3.2 3B Instruct model, we used the same chained GSM8K problems as our primary experiments. The results for this model are presented in Table 8. The successful application of our method to a different model family demonstrates its effectiveness across diverse architectural designs and confirms that our curriculum learning framework is a robust and generalizable method for improving long-horizon reasoning.

Model / setting	Accuracy on GSM8K Problems					Accuracy on Harder Problems	
	Len-1	Len-2	Len-3	Len-4	Mean	Symbolic P1	AIME Mean
Instruct model	78.00	11.83	4.42	1.34	23.90	54.84	2.09
<i>Curriculum RL on Composed GSM8K Problems</i>							
Len-1 GSM8K	79.00	13.28	7.14	2.14	25.39	55.16	2.87
Len-2 GSM8K	80.20	35.06	15.99	6.43	34.42	57.52	2.92
Len-3 GSM8K	80.60	35.27	17.35	6.70	34.98	57.75	3.18
	(+3.3%)	(+198.1%)	(+292.5%)	(+400.0%)	(+46.4%)	(+5.3%)	(+52.2%)

Table 8: Long Horizon GSM8K Training on **Llama 3.2 3B Instruct**. Curriculum stages lead to significant improvements in in-domain performance and generalization metrics.

1350
1351**E QUALITATIVE EXAMPLE**1352
1353

LHR Trained Qwen-2.5-3B on Explicit-Horizon Problems

1354

Long-Horizon Question

1355

Solve the following math problem step by step:

1356

Step 1: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

1359

Step 2: Take your final answer from Step 1 and substitute it for W in the following problem: Ella earned \$W for 3 hours of dog walking. If she continues to walk dogs at the same rate, how much would she earn after 12 hours?

1360

Write out the updated version of the problem with the number from Step 1 in place of W.

1361

Step 3: Solve the updated problem from Step 2 step by step.

1362

Step 4: Take your final answer from Step 3 and substitute it for U in the following problem: Peter purchased U popsicles at \$0.25 each. He also purchased 4 ice cream bars at \$0.50 each. How much did he pay in total in dollars?

1363

Write out the updated version of the problem with the number from Step 3 in place of U.

1364

Step 5: Solve the updated problem from Step 4 step by step.

1365

Step 6: Take your final answer from Step 5 and substitute it for Y in the following problem: Fred was preparing for a party to be held in four days. So, he made Y gallons of root beer on the first day and put them in the refrigerator cooler. But later that evening, his children discovered the delicious nectar and robbed the cooler, drinking 4 of those gallons of root beer. On the second day, his wife Barbie also discovered the root beer and accidentally spilled 7 gallons. On the third day, Fred's friend Ronnie visited Fred's house and helped himself to the root beer, further reducing the amount remaining by 5 gallons. On the fourth day, 3 people showed up for the party. If Fred and the others shared the remaining root beer equally, how much was available for each to drink during the party?

1366

Write out the updated version of the problem with the number from Step 5 in place of Y.

1367

Step 7: Solve the updated problem from Step 6 step by step.

1368

Step 8: Take your final answer from Step 7 and substitute it for Z in the following problem: Craig has 2 twenty dollar bills. He buys six squirt guns for \$2 each. He also buys Z packs of water balloons for \$3 each. How much money does he have left?

1369

Write out the updated version of the problem with the number from Step 7 in place of Z.

1370

Step 9: Solve the updated problem from Step 8 step by step. In the end, provide only the final numerical answer.

1371

Ground truth answer: 25

1372

Untrained model response

<reasoning>

1373

Janet's ducks lay 16 eggs per day. She eats 3 eggs for breakfast and uses 4 eggs to make muffins. The remaining eggs are sold at the farmers' market. The number of eggs sold is calculated as follows:

1374

$$16 - 3 - 4 = 9$$

1375

Since she sells each egg for \$2, her daily earnings at the farmers' market are:

1376

$$9 \times 2 = 18$$

1377

So, Janet makes \$18 every day at the farmers' market. This value is substituted for W in the next problem.

1378

Ella earned \$18 for 3 hours of dog walking. If she continues to walk dogs at the same rate, her hourly rate is:

1379

$$\frac{18}{3} = 6$$

1380

Ella's hourly rate is \$6. This value is substituted for W in the updated problem.

1381

1382

1383

1384

1385

1404

1405

1406

1407

1408

1409

1410

1411

Ella earns \$6 per hour. If she continues to walk dogs at the same rate, how much would she earn after 12 hours?

$$6 \times 12 = 72$$

So, Ella would earn \$72 after 12 hours. This value is substituted for U in the next problem.

Peter purchased \$72 at \$0.25 each. He also purchased 4 ice cream bars at \$0.50 each. The total cost is calculated as follows:

$$72 \times 0.25 + 4 \times 0.50 = 18 + 2 = 20$$

So, Peter paid \$20 in total. This value is substituted for U in the next problem.

Peter paid \$20. If he purchased 20 packs of root beer, how much was available for each to drink during the party?

$$\frac{20}{4} = 5$$

So, 5 gallons of root beer were available for each to drink during the party. This value is substituted for Y in the next problem.

Fred made 5 gallons of root beer. On the second day, his wife spilled 7 gallons, on the third day, his friend Ronnie helped himself to 5 gallons, and on the fourth day, 3 people showed up for the party. The remaining root beer is calculated as follows:

$$5 - 7 - 5 - 3 = -10$$

Since the remaining amount is negative, it means Fred ran out of root beer and did not have any left for the party. This value is substituted for Y in the next problem.

Fred did not have any root beer left. If he purchased 0 gallons of root beer, how much money does he have left after buying 2 twenty dollar bills?

$$2 \times 20 = 40$$

So, Fred spent \$40 on the 2 twenty dollar bills. This value is substituted for Y in the next problem.

Craig has \$40. He buys 6 squirt guns for \$2 each and 3 packs of water balloons for \$3 each. The total cost is calculated as follows:

$$6 \times 2 + 3 \times 3 = 12 + 9 = 21$$

So, Craig spent \$21 on the squirt guns and water balloons. The amount of money he has left is:

$$40 - 21 = 19$$

So, Craig has \$19 left. This value is substituted for Z in the next problem.

Craig has \$19 left. If he buys Z packs of water balloons for \$3 each, how much money does he have left?

$$19 - 3 \times 3 = 19 - 9 = 10$$

So, Craig has \$10 left. This value is substituted for Z in the next problem.

Craig has \$10 left. If he buys 10 packs of water balloons for \$3 each, how much money does he have left?

$$10 - 10 \times 3 = 10 - 30 = -20$$

Since the remaining amount is negative, it means Craig does not have enough money to buy 10 packs of water balloons. The final numerical answer is -20.

</reasoning>

<answer>

1458

1459

1460

-20

</answer>

1461

1462

Analysis (Errors in the untrained model's response)

1463

State-tracking errors

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

Problem-logic errors

1479

1480

1481

1482

1483

1484

1485

1486

1487

LHR model response

<reasoning>

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1. First, we need to calculate how many eggs Janet sells each day.

- Janet's ducks lay 16 eggs per day.
- She eats 3 eggs for breakfast.
- She bakes muffins with 4 eggs.

So, the number of eggs she sells each day is:

$$16 - 3 - 4 = 9 \text{ eggs}$$

Janet sells the eggs at \$2 per egg. Therefore, the amount she makes every day at the farmers' market is:

$$9 \times 2 = \$18$$

2. Substitute the final answer from Step 1 (18) into the problem:

Ella earned \$18 for 3 hours of dog walking. If she continues to walk dogs at the same rate, how much would she earn after 12 hours?

3. Ella's rate of earning is \$18 for 3 hours. Therefore, her hourly rate is:

$$\frac{18}{3} = \$6 \text{ per hour}$$

To find out how much she would earn after 12 hours, we calculate:

$$6 \times 12 = \$72$$

4. Substitute the final answer from Step 3 (72) into the problem:

Peter purchased 72 popsicles at \$0.25 each. He also purchased 4 ice cream bars at \$0.50 each. How much did he pay in total in dollars?

5. The cost of the popsicles is:

$$72 \times 0.25 = \$18$$

The cost of the ice cream bars is:

$$4 \times 0.50 = \$2$$

The total cost is:

$$18 + 2 = \$20$$

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

6. Substitute the final answer from Step 5 (20) into the problem:

Fred was preparing for a party to be held in four days. So, he made 20 gallons of root beer on the first day and put them in the refrigerator cooler. But later that evening, his children discovered the delicious nectar and robbed the cooler, drinking 4 of those gallons of root beer. On the second day, his wife Barbie also discovered the root beer and accidentally spilled 7 gallons. On the third day, Fred's friend Ronnie visited Fred's house and helped himself to the root beer, further reducing the amount remaining by 5 gallons. On the fourth day, 3 people showed up for the party. If Fred and the others shared the remaining root beer equally, how much was available for each to drink during the party?

7. The amount of root beer remaining after each event is:

$$20 - 4 - 7 - 5 = 4 \text{ gallons}$$

Fred and 3 others (including himself) share the remaining 4 gallons equally. Therefore, each person gets:

$$\frac{4}{4} = 1 \text{ gallon}$$

8. Substitute the final answer from Step 7 (1) into the problem:

Craig has 2 twenty dollar bills. He buys six squirt guns for \$2 each. He also buys Z packs of water balloons for \$3 each. How much money does he have left?

9. The cost of the squirt guns is:

$$6 \times 2 = \$12$$

The cost of the water balloons is:

$$Z \times 3$$

The total cost is:

$$12 + 3Z$$

Craig has $2 * 20 = \$40$. After spending, the remaining money is:

$$40 - (12 + 3Z)$$

Substitute the final answer from Step 7 (1) for Z:

$$40 - (12 + 3 \times 1) = 40 - 15 = \$25$$

Final numerical answer: 25

</reasoning>

<answer>

25

</answer>