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ABSTRACT

Large language models excel at short-horizon reasoning tasks, but performance
drops as reasoning horizon lengths increase. Existing approaches to combat
this rely on inference-time scaffolding or costly step-level supervision, neither of
which is scalable. In this work, we introduce a scalable method to bootstrap long-
horizon reasoning capabilities using only existing, abundant short-horizon data.
Our approach synthetically composes simple problems into complex, multi-step
dependency chains of arbitrary length. We then train models on this data using
outcome-only rewards under a curriculum that automatically increases in com-
plexity, allowing RL training to be scaled much further without saturating. Empir-
ically, our method generalizes remarkably well: curriculum training on composed
6th-grade level math problems (GSM8K) boosts accuracy on unseen, Olympiad-
level benchmarks (GSM-Symbolic, MATH-500, AIME) by up to 2.65×. It also
transfers significantly to diverse out-of-distribution ReasoningGym domains and
long-context benchmarks, indicating broader generalization. Importantly, our
long-horizon improvements are significantly higher than baselines even at high
pass@k, showing that models can learn entirely new reasoning paths under RL.
Theoretically, we show that curriculum-based RL with outcome rewards could
achieve an exponential improvement in sample complexity over full-horizon train-
ing, comparable to the gains from dense supervision, while providing strong train-
ing signal without additional human-annotations. h1 therefore introduces an effi-
cient path towards scaling RL for longer horizons using existing data.

1 INTRODUCTION

Large language models (LLMs) have improved remarkably in many domains, but they often strug-
gle with long-horizon reasoning (LHR). This involves carrying out a correct, multi-step reasoning
process that involves decomposing goals into intermediate steps and executing them successfully in
a chain of thought (CoT). Such tasks require reasoning over a sequence of dependent steps where
errors can compound across the horizon (Li et al., 2024; Malek et al., 2025; Zhou et al., 2025a;
Sinha et al., 2025). For many tasks of interest, such as performing research-level mathematics, de-
bugging complex code, and assisting with scientific discovery, an LLM must be able to correctly
solve intermediate problems, carry forward results, and determine what state is important to track
and use. Broadly, any hard tasks that are of importance require solving several difficult steps, which
motivates the development of training methods directly aimed at improving capabilities on such long
sequences of problems.

Reinforcement learning (RL) has shown substantial benefits when it comes to improving the reason-
ing capabilities of LLMs (OpenAI-o1 et al., 2025; DeepSeek-AI et al., 2025). However, RL depends
heavily on the availability of verifiable data and is therefore limited in terms of the complexity of
the training data and long-horizon reasoning paths afforded by this data. Moreover, the lack of
increasing problem complexity and diversity in RL datasets for LLMs leads to rapidly saturating
improvements after a limited number of training steps (Cui et al., 2025; Wu et al., 2025). Obtaining
long-horizon training data is expensive and sample inefficient to directly train on (as we discuss in
Section 4 and Appendix B). Improving performance on such tasks often requires step-level supervi-
sion that is costly, domain specific, and unavailable for most reasoning tasks. Existing approaches
(Zhang et al., 2025; Liu et al., 2025b) do not adequately address the problem of improving long-
horizon reliability when only short-horizon data is abundant (as is the case in real-world scenarios).
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This raises a natural question: Can we improve long-horizon reasoning capabilities by scaling
reinforcement learning using only existing short-horizon or single-step training data?

Figure 1: Our approach improves long horizon reasoning by composing existing short-horizon prob-
lems into a curriculum for scaling RL training. We observe significant OOD improvements.

In this work, we show that the answer is yes. We introduce a method for chained problem construc-
tion, which composes short-horizon problems (e.g. GSM8K problems (Cobbe et al., 2021)) into
arbitrarily long chains of dependent reasoning steps. This provides scalable synthetic long-horizon
data, with explicit control over the horizon length and complexity without the need for new annota-
tions. We then train language models on this data using reinforcement learning with outcome-only
rewards, coupled with a curriculum over horizons. Obtaining useful data that is of just the right
complexity for models to learn from has always been a major bottleneck (Wu et al., 2025). We
show how existing tasks can be grouped adaptively into increasingly harder problems that provide
useful training signal and prevent RL improvements from quickly saturating (Cui et al., 2025). Our
approach requires neither step-level labels nor auxiliary models (as in PRMs), and avoids inference-
time search, instead directly training the model to internalize long-horizon reasoning structures.

Our results in Sections 4 and 5 show that not only does this synthetic curriculum generalize to other
in-domain multi-hop problems, but also transfers to harder benchmarks such as MATH-500 and
AIME that implicitly require LHR. Importantly, we show that long-horizon reasoning depends on
more than just improving single step accuracy, and provide a breakdown of the capabilities needed
for improved performance in Section 3. We evaluate our long-horizon trained models versus other
strong baselines up to pass@128 and show that while improvements obtained from RLVR on stan-
dard data is bounded by the base model’s capabilities (Yue et al., 2025), our method performs sig-
nificantly better. This reflects genuinely new skills learnt via curriculum based training on com-
positional tasks, and we provide an in depth empirical exploration in Section 4 along with robust
theoretical results in Appendix B. In Section 6, we further analyze compute–data tradeoffs, showing
how scaling compute can substitute for scarce long-horizon data in real-world scenarios.

Our main contributions are:

1. A general method for constructing long-horizon reasoning data by chaining existing short-
horizon problems with no additional human-annotations.

2. A reinforcement learning framework with curriculum training and outcome-only rewards
that significantly improves horizon generalization and teaches new reasoning paths not
elicited otherwise even at very high pass@k.

3. Empirical evidence of transfer to significantly harder benchmarks (MATH-500, AIME,
GSM Symbolic, LongBench-v2, Hash-hop) while training on compositional GSM8K data.
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4. Generalization to out-of-distribution multi-hop reasoning domains from ReasoningGym.

5. Theoretical analysis of sample complexity of curriculum learning, showing that it could
achieve an exponential improvement over full-horizon training, similar to dense rewards.

2 RELATED WORK

LLM Reasoning and RL. Initial reasoning literature (Zelikman et al., 2022) bootstrapped perfor-
mance using model generated reasoning traces. More recently, (OpenAI-o1 et al., 2025; DeepSeek-
AI et al., 2025) demonstrated substantial improvements in reasoning capabilities via RL training.
These advances have enabled effective scaling of inference-time compute (Snell et al., 2024; Brown
et al., 2024; Muennighoff et al., 2025). However, as reasoning chains grow longer, models exhibit
several limitations, often struggling with simple multi-step problems (Malek et al., 2025; Shojaee
et al., 2025; Song et al., 2025). Moreover, RL-based approaches face their own challenges: diversity
degradation during training (Song et al., 2025), questions about whether models truly acquire new
capabilities versus better sampling existing ones (Yue et al., 2025), and maintaining stability over
long horizons (Xiang et al., 2025). Recent efforts toward addressing these challenges include Setlur
et al. (2025), which improves in-context exploration via an RL curricula with steps such as verifi-
cation and refinement and work on adaptive difficulty scheduling for efficient training (Shi et al.,
2025; Parashar et al., 2025; Liu et al., 2025b). Xi et al. (2024) collect a dataset that requires step-
level demonstrations and RL post-train on this fixed dataset by following a curriculum. In contrast,
our work systematically composes existing short-horizon problems into chains of increasing length,
producing new data to scale an RL curriculum to train models to internalize long-horizon reasoning
capabilities that they otherwise lack. This enables reliable multi-step problem solving and improve-
ments on significantly harder (unseen) settings, providing a foundation for training long-horizon
agents (Zhou et al., 2025b; Kwa et al., 2025) that can track complex state and execute dependent
reasoning steps over extended sequences.

Additionally, a detailed discussion of our work and its novelty in the context of length generalization
and long-context models is provided in Appendix Section A.

3 METHOD

Long-horizon reasoning refers to the capability of carrying out a coherent, multi-step reasoning
process and executing steps reliably in a CoT to solve long horizon tasks.

What counts as a long-horizon task? We use two notions. Explicit-horizon tasks have a known
number of dependent sub-problems h because we construct them by chaining atomic problems (used
for training and in-domain evaluation). Implicit-horizon tasks require multiple dependent reasoning
steps but do not come with an explicit decomposition (e.g., MATH-500, AIME); they have a latent
horizon h⋆ that is not annotated. Our training targets explicit horizons for clean analysis, and shows
a strong transfer to implicit-horizon benchmarks.

Our goal is to bootstrap long-horizon reasoning (LHR) using only existing short-horizon data. We
(i) compose atomic problems into longer chains of problems with dependent steps to synthesize
LHR data, (ii) scale RL training with outcome-only GRPO following a curriclum learning approach,
and (iii) evaluate both in-domain (explicit chains) and on harder out-of-domain tasks that implicitly
require many reasoning steps. Here, we describe what we mean by a long-horizon tasks, formalize
our data construction process, and provide details about our RL training objective.

Atomic tasks and serial composition. We begin with atomic tasks fj : short, self-contained prob-
lems (e.g., single GSM8K questions) with verifiable answers that the base model solves with non-
trivial accuracy. Each task takes an input xj and produces an answer yj .

To form long-horizon examples, we chain h atomic tasks so later sub-problems depend on earlier
results. A lightweight adapter ϕj maps yj to the next input:

yj = fj(xj), xj+1 = ϕj(yj), j = 1, . . . , h− 1,

3
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yielding the final answer
yh = fh(ϕh(· · ·ϕ1(f1(x1)))).

Adapters may be identity or simple deterministic transforms (e.g., scaling, unit conversion). Each
chain of length h is rendered as a single prompt listing the h sub-problems in order. The model
is instructed to solve them sequentially but is supervised only on the final answer yh (outcome-
only RL). We apply basic well-posedness checks (type/range consistency, unit compatibility, de-
duplication).

Example explicit-horizon chain

1. Weng earns $12 an hour for babysitting. Yesterday, she babysat for 50 minutes. How
much did she earn? (#1)

2. Betty is saving money for a new wallet which costs ${10 × #1}. Betty has only half of
the money she needs. Her parents give her $15, and her grandparents give her twice as much
as her parents. How much more money does Betty need to buy the wallet? (#2)

3. James writes a {#2}-page letter to 2 different friends twice a week. How many pages
does he write a year? (#3)

This construction exposes models to dependency chains that require carrying, transforming, and
reusing intermediate values, while keeping supervision outcome-only. We vary chain length h to
implement the stagewise curriculum described later in this section. In Appendix A.1, we analyze
our composition method through computational graphs to explain its effectiveness during training.

Why horizons are hard: beyond multiplicative errors. In explicit-horizon tasks, let h be
the number of dependent sub-problems whose intermediate values are reused downstream. An
independent-errors view gives P (final correct) = ph, suggesting that raising atomic step accuracy
p suffices. This is overly optimistic because it ignores context management: as transcripts grow,
models can lose or corrupt intermediate values even when each step is easy. We model long-horizon
accuracy via atomic reliability p and context management σj (the chance the required information is
correctly retrieved at step j). Writing sj for the probability that the reasoning state remains correct
after step j, we have

sj = p σj sj−1, s0 = 1,

so if σj decays with horizon length, accuracy can collapse even when p ≈ 1.

This explains the weakness of naive outcome-only training at horizon h: when σj ≪ 1, few roll-
outs earn reward, gradients have low signal-to-noise ratio, and samples scale exponentially in h.
Curriculum training mitigates this by starting with short chains where sj is large, yielding high-
SNR updates; early stages raise p, while later stages reinforce write/read behaviours that stabilise
σj . Empirically (Section 4), performance depends on capabilities beyond p, and our approach im-
proves both p and σj , delivering large gains on explicit-horizon tasks and generalising to harder
implicit-horizon tasks (Section 5); Appendix Section B develops the theoretical implications.

Algorithm 1 h1: Stagewise curriculum RL over explicit-horizons

Require: Pretrained model M0; atomic task bank A; adapters {ϕj}; max horizon Hmax; per-stage counts
Mh, Sh

1: for h = 1 to Hmax do ▷ stagewise curriculum over explicit horizons
2: Dh ← ∅
3: for m = 1 to Mh do ▷ construct horizon-h chains
4: sample (f1:h, x1) from A; y1 ← f1(x1)
5: for j = 1 to h− 1 do
6: xj+1 ← ϕj(yj); yj+1 ← fj+1(xj+1)

7: p← FORMATPROMPT((fj , xj)
h
j=1) ▷ format prompt from the task sequence

8: Dh ← Dh ∪ {(p1:h, yh)}
9: Mh ← TRAINWITHDRGRPO(Mh−1, Dh, Sh)

4
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Figure 2: Curriculum RL training on compositional data offers significant in-domain long horizon
reasoning gains (up to 2.9×). This prevents RL training from saturating and uses no new data.

Scaling RL with a curriculum over horizons. Let Dh be the dataset of synthesized chains of
explicit horizon h. Our curriculum is stagewise:

for h = 1, 2, . . . ,Hmax : run DrGRPO (Liu et al., 2025c) on Dh for Sh optimization steps.
We initialize from πθ0 and carry the parameters forward between stages. Algorithm 1 describes
the entire training process. By focusing optimization on a single horizon per stage, the model first
acquires reliable short-horizon primitives (increasing p1), then learns to reuse and repair them under
longer dependency (increasing pj and rj for j > 1). We contrast the curriculum with three baseline
horizon-sampling policies:

1. Only-L1: q(ℓ) = I[ℓ = 1]. If direct problem-solving were sufficient, this would match
curriculum; empirically it does not.

2. Uniform-Mix: q(ℓ) ∝ I[1 ≤ ℓ ≤ Hmax], i.e., randomly pick from the LHR dataset.

3. Only-Long: q(ℓ) = I[ℓ = Hmax], i.e., train solely on the hardest chains. This suffers from
extreme sparsity and unstable gradients.

Generally, RL with verifiable rewards (RLVR) requires the creation of a clean labeled dataset. What
models can learn from is potentially limited by the complexity expressed in these problems. We see
this bound due to a fixed RL dataset both empirically (Section 3) and theoretically (Appendix B),
which leads to performance quickly saturating during training. Our goal with a synthetic curriculum
is to optimally utilize limited existing data for scaling RL. At each stage, tasks can be composed to
be right at the edge of what a model can solve, making RLVR more scalable (see Tables 1 and 2).

Training and evaluations. We use the Qwen-2.5-3B Instruct model (Qwen et al., 2025) for our
core experiments. Improving an Instruct model with RL is generally considered more difficult (Wang
et al., 2025) and gains signify performance improvements beyond just instruction tuning (which
cannot be directly inferred for improvements on base models (Shao et al., 2025)). Therefore, we aim
to show all improvements on Instruct models for the purpose of robustness. Our explicit-horizon
training and evaluations are done on composed GSM8K questions (Cobbe et al., 2021), and our
implicit-horizon evaluations are on AIME 2024, AIME 2025, MMLU Pro Math (Wang et al., 2024),
GSM Symbolic (Mirzadeh et al., 2025), and MATH-500 (Hendrycks et al., 2021).

4 IN-DOMAIN RESULTS AND THE IMPORTANCE OF CURRICULUM

We evaluate our curriculum-based RL training method using explicit-horizon GSM8K problems
and demonstrate that (1) curriculum learning is essential for long-horizon reasoning, (2) LHR per-
formance depends on capabilities beyond single step accuracy, and (3) our method teaches gen-
uinely new capabilities that are otherwise absent in the model. We use Qwen-2.5-3B Instruct
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Accuracy on GSM8K Problems of Horizon L-n
Model / setting L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8
Instruct model 82.79 35.06 20.07 6.70 3.57 0.00 0.79 0.00

Equal compute training baselines

Only-L1 86.80 37.14 21.43 6.70 3.87 0.25 0.00 0.00
Uniform-Mix 82.80 12.66 2.04 0.54 0.00 0.00 0.00 0.00
Only-Long 82.71 43.36 20.41 3.22 1.49 0.25 0.25 0.00

Increased Inference Compute Baseline

Tree of Thought 83.30 39.40 13.30 2.00 0.00 0.00 0.00 0.00

Curriculum training (trained up to Len-n)

RLVR 83.20 39.42 18.37 2.95 2.08 0.25 0.79 0.00
Len-2 85.92 56.22 28.57 12.06 6.25 1.26 0.79 0.49
Len-3 84.91 56.22 37.76 15.55 8.63 3.27 3.17 0.25
Len-4 85.48 57.05 40.14 18.23 9.23 3.53 3.17 1.72

Len-5 (H1) 85.97
(+3.8%)

58.51
(+66.9%)

36.39
(+81.3%)

18.77
(+180.1%)

9.82
(+175.1%)

3.53
(++)

3.17
(+301.3%)

2.22
(++)

Table 1: GSM8K accuracy by horizon length. Curriculum based RL training significantly improves
in-domain performance compared to the Instruct model and all other equal compute baselines. We
also provide a Tree-of-Thought (Yao et al., 2023) baseline using Qwen-2.5-3B-Instruct.

for our experiments, with GRPO over a curriculum of chained GSM8K problems with horizons
h ∈ {1, 2, 3, 4, 5}. Each stage trains for 200 steps with 200 samples per horizon. We compute
the following baselines: Only-L1 (standard RL on h=1), Only-Long (h=5), and Uniform-Mix
(uniform over h ∈ [1, 5]). Compute matched baselines are trained using up to the same number of
training tokens seen under our method, and the best checkpoints are chosen based on val-set accu-
racy. The data comes from the same training distribution (where Only-L1 refers to simply training
on horizon 1 problems, Only-Long refers to training only on composed horizon 5 problems, and
Uniform-Mix refers to training on the same problems as our method but shuffled uniformly without
a curriculum). In Appendix D, we provide results on Qwen-2.5-7B Instruct using composed MATH
and Llama-3.2-3B Instruct using composed GSM8K data, both showing improvements.

In-domain results. In Table 1, our in-domain results on composed LHR GSM8K problems from
the test set show that the curriculum-based approach yields substantial monotonic improvements
in accuracy as the training horizon increases. At h=2 the instruct model achieves 35.06%, which
increases to only 39.42% with RL on standard GSM8K problems but jumps to 56.22% when training
up to a horizon of 2 and 58.51% when trained up to a horizon of 5. Similarly, at h=3 the instruct
model achieves 20.07%, which lifts to 37.76% with a curriculum up to h=3. For longer horizons
(harder problems), the effect of curriculum is even more visible, increasing accuracy by about 3× at
h=4 (6.70% → 18.77%) and h=5 (3.57% → 9.82%). We present these improvements in Figure 2.

In Table 1, the Only-L1 baseline improves h=1 but shows no improvements on longer horizons.
Similarly, Uniform-Mix even at an equal training compute baseline shows no improvements. Only-
Long also leads to no long-horizon improvements due to the lack of useful training signal at longer
lengths discussed in Section 3. Furthermore, Cui et al. (2025) show that the entropy of a policy
undergoing RL training collapses quickly, which causes improvements from RL to saturate quickly.
While this is true for our baselines, our curriculum training repeatedly introduces new levels of diffi-
culty (exploration), which allows scaling RL for up to 5x more steps to keep improving capabilities.
We leave a deeper investigation into the scaling properties of our method to future work.

Curriculum RL bootstraps long-horizon reasoning

Training up to horizon h extends usable learning signal on h+1 and shifts probability mass
into the long-sequence tail monotonically. For e.g. training to h=3 lifts h=4 from 6.70%

6
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Figure 3: Our curriculum based RL training using composed synthetic data outperforms RLVR on
standard data from the same set even at pass@128, teaching new capabilities that did not previ-
ously exist in the base model. LHR requires going beyond improving single-step performance.

to 15.55%; training to h=4 lifts h=5 from 3.57% to 9.23%. This provides enough training
signal for the next stage, allowing curriculum learning to be extremely effective. We examine
this theoretically in Appendix B.

Why single-step accuracy is not enough. In Section 3, we claim that LHR depends on more
than just single step accuracy. Prior to RL training, single-step accuracy of the model is 82.79%.
If errors were independent, we would expect 68.54% at h=2 and 56.75% at h=3 by multiplicative
compounding, yet we observe 35.06% and 20.07% (Table 1). Even after RL training (Only-L1) for
200 steps, (despite a slight increase at h=1) performance drops to 39.42% at h=2 and 18.37% at
h=3 rather than 69.28% and 57.67% expected under the independent error assumption.

Learning new capabilities with RL. We now discuss the second part of our claim in Section 3.
LHR depends on additional capabilities such as state tracking and repair that can be improved using
RL training over a curriculum. (Yue et al., 2025) show an important result that RLVR on LLMs only
improves the sample efficiency of reasoning capabilities already present in the base model, and no
new capabilities are learnt. They show that at a high pass@k (such as 128), capabilities of these RL
trained models originate from and are bounded by the base model (with the pass@k performance
quickly converging). Therefore, only when an RL model is not bounded by the base model at high
pass@k can one empirically show new capabilities are learnt.

Our explicit-horizon training and testing setting allows us to isolate out these capability improve-
ments that go beyond the base model with only RL. Importantly, proving one of the central claims
in our paper, we evaluate our final model on unseen longer horizons (h = 6, 7, and 8) up to a very
high sampling budget (pass@128). Our results in Figure 3 show that while RL on standard GSM8K
is bounded by instruct model capabilities (and converges very quickly), our long horizon trained
models perform significantly better even at high k = 128. This shows our method unlocks new, cor-
rect reasoning paths that were previously inaccessible to the model, providing genuinely new LHR
capabilities. This is a significant finding compared to common RLVR training paradigms studied in
(Yue et al., 2025), showing that our RL method can indeed teach new reasoning skills when training.

LHR Training can teach new capabilities

We demonstrate for the first time that Curriculum RL can teach new capabilities that go
significantly beyond the base model even at pass@128. Our curriculum based training on
compositional synthetic data is therefore crucial.

In this section, we show significant improvements on explicit-horizon in-domain tasks and that our
model learns new reasoning capabilities with our curriculum based training. Our explicit-horizon
GSM8K setting, while very useful in allowing us to isolate these capabilities and understand the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ins
tru

ct

Stan
da

rd
 R

L (
L=

1)

Curri
cu

lum (L
=5

)
0

10

20

30

40

50

60

A
cc

ur
ac

y 
(%

) 43.08%
47.60%

52.00%
+1.2×

Reasoning Math: GSM­Symbolic P2

Ins
tru

ct

Stan
da

rd
 R

L (
L=

1)

Curri
cu

lum (L
=5

)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

3.96%

6.88%

10.52%

+2.7×

Olympiad Math: AIME 2024

Untr
ain

ed

Stan
da

rd
 R

L (
L=

1)

Curri
cu

lum (L
=5

)
0

10

20

30

40
34.90% 35.30%

37.90%

+1.1×
Long­Context: LongBench­v2

Untr
ain

ed

Stan
da

rd
 R

L (
L=

1)

Curri
cu

lum (L
=5

)
0

5

10

15

20

25

15.98%
14.76%

18.73%

+1.2×

Ultra­Long­Context: Hash­hop

Curriculum RL on Easy Composed Data Generalizes to Harder Domains
Models trained only on composed GSM8K problems show strong performance on unseen benchmarks

Figure 4: Long-horizon training on GSM8K generalizes to significantly harder tasks. Performance
on AIME 2024 improves by 2.65× and ultra-long-context capabilities improve by 1.2×.

differences in all training methods, is still relatively artificial. In Section 5, we therefore test our
GSM8K trained LHR models on significantly harder (unseen) problems.

5 GENERALIZATION TO HARDER BENCHMARKS

Having established that our curriculum-based training imparts new, in-domain capabilities, we now
investigate whether these learned skills generalize to challenging, out-of-domain benchmarks that
implicitly require long-horizon reasoning. Our results (Figure 4) demonstrate that the skills acquired
from solving synthetically chained problems transfer remarkably well to harder problems.

Transfer to Olympiad level math. In Table 2, we evaluate our GSM8K long horizon trained
models on MATH-500, GSM-Symbolic P1, GSM-Symbolic P2, MMLU Pro Math, and AIME.
These tasks can be categorized as implicit-horizon and benefit significantly from LHR training on
much easier explicit-horizon tasks. For instance, performance on GSM-Symbolic P1 goes from
67.06 → 73.28, P2: 43.08 → 52.00), and strikingly AIME 2024 from 3.96 → 10.52, a 2.65×
increase. These improvements show a transfer of the capabilities targeted in Section 4.

Generalization to Significantly Harder Math Problems
Model/setting MATH-500 Symbolic P1 Symbolic P2 MMLU-Pro AIME 2025 AIME 2024
Instruct model 64.20 67.06 43.08 58.47 1.77 3.96

Standard RLVR on GSM8K

GSM8K RLVR 66.20 71.40 47.60 60.62 2.71 6.88

Equal compute training baselines

Only-L1 48.40 71.32 42.24 59.84 3.12 5.31
Uniform-Mix 64.40 64.48 39.16 60.22 2.50 5.28
Only-Long 65.60 72.18 47.52 60.71 1.72 6.46

Curriculum RL on Composed GSM8K Problems

Len-2 GSM8K 67.00 72.86 50.80 59.73 1.25 4.69
Len-3 GSM8K 66.80 70.70 49.48 61.21 1.67 3.85
Len-4 GSM8K 68.40 72.22 51.92 60.91 2.60 7.60

Len-5 GSM8K 69.20
(+7.8%)

73.28
(+9.3%)

52.00
(+20.7%)

61.21
(+4.7%)

3.02
(+70.6%)

10.52
(+165.7%)

Table 2: Performance on harder math benchmarks improves significantly with GSM8K RL curricu-
lum training stages. Bootstrapping simple existing data can be used for scaling RL. AIME avg@32.

LHR training allows us to bootstrap capabilities from significantly easier tasks to gains on much
harder ones without using any extra labels or supervision. We see a scaling trend, where continued
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RL training on longer explicit-horizons leads to improvements on harder implicit-horizon tasks.
Bootstrapping composed LHR data can allow more RL compute to be spend on the same dataset.

Generalization to Olympiad Level Problems

Training on composed 6th grade problems with our RL curriculum generalizes to signifi-
cantly harder benchmarks. Notably, we achieve a 2.65× improvement on AIME 2024.

Transfer to long-context benchmarks. We now evaluate our GSM8K LHR models on OOD
long-context benchmarks to see if the state tracking capabilities (σj) from Section 3 improve. We
test two main long-context benchmarks: LongBench-v2 (Bai et al., 2025) and Hash-hop (Magic,
2024). LongBench-v2 measures understanding and reasoning over QA documents, long-dialogue,
repositories, etc. (with 8k–2M words). Hash-hop tests ultra-long-context storage, retrieval, and
multi-hop variable tracing by making models follow shuffled chains of random hash → hash pairs.
Table 6 summarizes our results, with a 35.00% → 37.90% improvement on LongBench-v2 and a
15.98% → 18.73% improvement on Hash-hop, both completely unrelated to GSM8K.

Transfer to non-mathematical reasoning benchmarks. We also test our long-horizon trained
models on ReasoningGym (Stojanovski et al., 2025) domains to evaluate whether the horizon-
dependent reliability improvements generalize to non-mathematical but verifiable reasoning tasks.
ReasoningGym consists of a diverse set of reasoning environments that allow us to evaluate cross-
domain transfer and skill generalization. Specifically, we test across logic (propositional logic),
graphs (largest island), algorithmic problems (sentence reordering and matrix manipulation), arith-
metic (decimal arithmetic), and geometry. These problems require working memory, graph traversal,
multi-step rule following, and correct final answers. On ReasoningGym, long-horizon training on
composed GSM8K significantly outperforms both the Instruct model and RLVR trained on nor-
mal GSM8K. h1 generalizes from 22.90% → 47.10% on propositional logic, 15.00% → 22.50%
on graph problems (largest island), 9.60% → 18.80% on algorithmic sentence reordering, and
2.70% → 4.20% on algorithmic matrix manipulation. Performance on geometry drops from
3.70% → 2.60% and on games (game of life) from 76.20% → 74.90%. Overall, skills learnt
from long-horizon training generalize well to out-of-distribution reasoning problems. See Table 3.

Generalization to ReasoningGym domains Long-Context Benchmarks

Model / setting Propositional
logic

Graphs
(largest island)

Algorithmic
(sentence reorder)

Algorithmic
(matrix)

LongBench-
v2

Hash-
hop

Instruct 22.90 15.00 9.60 2.70 35.00 15.98
Standard RLVR 12.40 17.00 9.80 3.90 35.30 14.76
Long-horizon RL 47.10 22.50 18.80 4.20 37.90 18.73

Table 3: Long-horizon training on composed GSM8K problems generalizes remarkably well to
OOD ReasoningGym domains and Long-Context Benchmarks, outperforming length-1 (standard)
RLVR and the Instruct model. We use default ReasoningGym configurations for our evaluations.

Analysis. This transfer patterns aligns with our pass@k capability improvement results from Sec-
tion 4 and our theoretical framing. Tasks requiring sequential dependent reasoning, such as AIME
or GSM-Symbolic problems, benefit from improved long-horizon reasoning capabilities that were
learned on much simpler composed tasks. Crucially, improvements in aspects such as state-tracking
(σj) are also observable from our long-context evals. Our results indicate that a curriculum of simple
explicit-horizon tasks can bootstrap advanced reasoning, providing a scalable path where composing
problems at the edge of what can be solved would push capabilities further without new annotations.

6 DESIGNING A COST EFFICIENT CURRICULUM

In most real-world scenarios, there is an abundance of short-horizon data, and long-horizon data is
expensive to obtain (Kwa et al., 2025). In this section, we ask whether long-horizon performance
can be obtained from training data distributions that are “cheaper” than a uniform one. Namely,
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Figure 5: Left: Sample count distributions for four settings. Middle: Comparing accuracy at each
stage across sample count settings. Under mild skew towards shorter samples like Setting 1 and 2,
the model can perform as well as the uniform sample baseline. Right: Comparing the training com-
pute across settings. The settings skewed towards shorter samples have more training cost in terms
of training tokens seen. Overall, low-cost data distributions can achieve near-optimal performance.

whether we can train on more short data and less long data and still achieve the same performance.
We also evaluate how much this changes the training compute required.

Our experiments follow the same curriculum RL method described in Sections 4 and 3. During
training, we train up to saturation for each stage, spending as much training compute as needed
until there are no further improvements in accuracy. We track the total number of tokens seen by
the model. We create three different curricula with the same total number of samples, and different
proportions of short- and long-horizon data (Figure 5 left).

The results in Figure 5 (middle and right) show that high long-horizon performance can be achieved
even in data-constrained scenarios with training data distributions skewed towards shorter examples,
but the trade-off is that we need to spend more training compute overall. However, as seen in the
case of Setting 3 (Figure 5, left), a reasonable amount of long horizon data is still needed, otherwise
optimal performance may be unreachable. Therefore, to further study this trade-off, we simplify
our experimental setup to the SFT setting on a simpler task (multiplication), and scale up the search
space for comprehensive evaluations. In Appendix C we provide results that show, for a target
accuracy, a similar trade-off exists between (1) training cost and (2) training compute budget.

7 DISCUSSION

In this paper, we introduced a novel framework for improving long-horizon reasoning in large lan-
guage models. Our method leverages existing short-horizon data by constructing new, multi-step
problems through a chaining process. This approach allows us to scale reinforcement learning train-
ing, yielding substantial performance gains on multi-step reasoning tasks. An important result of
our work is that the skills learned through this curriculum transfer to new challenging reasoning and
long-context tasks. Furthermore, our results show that the model learns genuinely new reasoning
capabilities, rather than just refining existing ones. We demonstrate that comparable performance
can be achieved even when there is abundant short-horizon data but limited long-horizon data, thus
providing a scalable and data-efficient path for improving frontier models.

While the goal of our paper was to introduce an early method for improving long-horizon reasoning,
we see two promising directions for extensions. One is incorporating new sources of atomic skills
beyond GSM8K. The other is creating new chaining methods that expands the serial dependency
structure in our current method. We believe these two paths would offer useful extensions to the
method we introduce in this paper and further improve long-horizon reasoning.
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A ADDITIONAL RELATED WORK.

Length Generalization. Length generalization is concerned with extrapolating to longer sequence
lengths than those seen during training (Dubois et al., 2019; Hupkes et al., 2020; Newman et al.,
2020; Anil et al., 2022). Length generalization settings mostly focus on small scale tasks (Sabbaghi
et al., 2024; Zhou et al., 2024) but do not address RL training of reasoning models. A close example
(Lee et al., 2025) uses curriculum construction and SFT to train small transformers on progressively
harder algorithmic tasks. In this work, we not only show progressive length generalization gains
through curriculum based RL, but also cross-task generalization on much harder tasks.

Long Context Models. Another related thread is extending LLM context length to handle very
large inputs. Recent models feature context windows of tens or hundreds of thousands of tokens
(Liu et al., 2025a) and benchmarks like LongBench-v2 (Bai et al., 2025) evaluate performance on
extremely long inputs such as documents and code. Frontier models with state-of-the-art context
windows still suffer performance degradation when required to infer against distant pieces of infor-
mation or a series of dependent tasks (Li et al., 2024; Malek et al., 2025; Zhou et al., 2025a). These
works show that simply having larger context windows does not guarantee that models can perform
deep, dependent reasoning over several steps. Our work aims to address this gap by focusing on
training for improved long-horizon output generation rather than just long input handling.

A.1 COMPOSITION AND COMPUTATIONAL GRAPHS.

Synthetic LHR data construction. Let D1 = {(x, y = fa(x))} be solved atomic problems (e.g.,
GSM8K). We build horizon-h examples (p1:h, yh) in two interchangeable ways:

1. Transformation chaining. Given (xj , yj), define xj+1 = ϕj(yj) via a typed, determinis-
tic transformation (e.g., unit conversion, affine reparameterization, substitution into a tem-
plate). This yields x1 7→y1 7→· · · 7→yh with yh computed exactly by composition.

2. Recompute chaining. Draw an independent atomic instance x̃j+1 and re-compute its key
parameters as functions of yj (e.g., replace a placeholder with yj), producing xj+1 =
ψj(x̃j+1, yj) while preserving the solver faj+1 .

We render the chain as a single prompt

p1:h = Ra1
(x1) ∥Ra2

(x2) ∥ · · · ∥Rah
(xh),

instructing the model to solve the h dependent sub-problems sequentially and return the final answer
yh.1

We can analyze our method from the perspective of computational graphs (Zhou et al., 2025a).
Each verifiable problem, such as in GSM8k dataset, forms a single-sink directional acyclic graph
where each node represents an operator consuming the value from previous nodes and producing
the value for the next node(s) or as an output of the graph as shown in Figure 6 for an example
GSM8k problem. The height of the graph then can represent the number of steps that must be
crafted and accurately carried out while the width of the graph represents the state that must be
maintained at each step and accurately manipulated. This framing enables us to visualize various
possible compositions of a given set of problems. The sequential composition presented in this paper
forms a simple composition technique that enables models to learn through a curriculum crafting and
evaluating of larger and larger number of the steps that a problem may require.

We generated the computational graphs for all of the problems in GSM8k and AIME24 datasets
to examine the patterns of computation and compositions for these problems. While the graphs for
these two datasets are not equivalent as they use different operators, they give some insights into why
our method is able to show generalization across different datasets. For GSM8k problems, we found
the computational graphs have average width and height of 4.1 and 4.0 respectively, while AIME
graphs have average width and height of 6.6 and 7.1 respectively. We then compare the statistics
for the graphs of AIME problems solved before and after our procedure as shown in table 4. We
observe that our procedure enables models to learn creating and evaluating longer computational
graphs through sequential composition and curriculum learning.

1We apply standard well-posedness filters: type checks, numeric range clipping, and de-duplication.
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Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A
large pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that
day?

Input
name =
large count
value = 2 (pizzas)

Input
name =
large slices per
value = 16
(slices/pizza)

Input
name =
small count
value = 2 (pizzas)

Input
name =
small slices per
value = 8
(slices/pizza)

large total
Op: Mul (units:
slices)

small total
Op: Mul (units:
slices)

total slices
Op: Add (units:
slices)

2 × 16 = 32 2 × 8 = 16

32 + 16 = 48

Legend
Inputs
Ops (Mul/Add)

Thick box: Output

Figure 6: Question and computational graph for a GSM8K problem (final answer: 48).

Table 4: AIME24 solved problems comparison. N+E denotes Nodes + Edges.

N+E Width Height

Baseline: Instruct-model solved problems 47.25 8 6.75
Ours: Additional newly solved problems 54.3 4.7 10.3

B THEORETICAL ANALYSIS

Intuitively, under our long-horizon skill model in Section 3, attempting to train directly on long-
horizon data with outcome rewards results in vanishing gradient signal, as very few rollouts achieve
any reward. Curriculum training overcomes this by initially training at short horizons, where this
signal is stronger. Raising the success rate in achieving a reward at horizon j also raises the success
rate for horizons > j, and so when we come to train at j + 1, the signal is no longer vanishing. In
the analysis below, we prove that this is the case in our simplified long-horizon skills model, and
demonstrate an exponential decrease (with respect to the horizon lengthH) in the sample complexity
for curriculum training vs direct outcome reward-only horizonH training, along with an equivalence
between curriculum training and training at horizon H with dense, per-step rewards.

B.1 SETUP AND NOTATION

We study our simplified model of skill acquisition described in Section 3 to analyze the benefits of
curriculum learning for LHR. We consider a finite-horizon episodic problem with maximum horizon
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H , where the probability of being correct up to depth i is

si =

i∏
j=1

qj , qj = p(θ0)σj(θj) ∈ (0, 1), s0 = 1,

with depth-j parameters θj . p ∈ (0, 1] represents homogeneous atomic task reliability, while
σj ∈ [0, 1] represents heterogeneous context length dependent reliability (we assume σ1 = 1).
At initialization, we assume qj ∈ [δ, 1− δ] for some constant δ > 0.

Note that our model does not allow for the possibility of self-correction or error cancellation, and so
can be viewed as a simplified analysis of the worst-case average sample complexity for all training
regimes. Incorporating these factors into our model would reduce sample complexity in all scenar-
ios, but is likely to leave the exponential separation intact.

We use unbiased advantage-based policy gradient with a leave-one-out (LOO) baseline. For depth
i, we draw N i.i.d. trajectories {yg}Ng=1 with terminal reward Ri(yg) ∈ {0, 1} and advantage

Ag = Ri(yg)−
1

N − 1

∑
h̸=g

Ri(yh).

For a block k ≤ i the (blockwise) score and estimator are

Zk,g = Ik−1(yg)∇θk log πk(yg) = Ik−1(yg)
Bk(yg)− qk
qk(1− qk)

∇θ(k)qk,

ḡk =
1

N

N∑
g=1

Ag Zk,g,

where Ik−1 is the reach indicator for step k and Bk ∼ Bernoulli(qk) is the step-k success. We
abbreviate

s := sk−1, q := qk, T := Tk+1:i :=

i∏
j=k+1

qj .

B.2 SIGNAL-TO-NOISE RATIO

Define the SNR at horizon i with respect to θk (k ≤ i) as

SNRi(θk) =
∥Eḡk∥2

E∥ḡk − Eḡk∥2
.

To calculate this, we determine the mean and variance of ḡk.

Mean. For all k ≤ i,

E[ḡk] = gk =
si
qk

∇θ(k)qk = s T ∇θ(k)qk. (1)

Variance identity (LOO). Let µ := E[Ri] = s q T . The LOO variance decomposition gives

Var(ḡk) =
1

N
E
[
(Ri − µ)2ZkZ

⊤
k

]
− αN gkg

⊤
k , αN =

N − 2

N(N − 1)
. (2)

Upstream k < i. Conditioning on Ik−1 = 1 and decoupling the tail as C̃ ∼ Bernoulli(T )
independent of Bk, a direct enumeration yields

E
[
(Ri − µ)2 ∥Zk∥2

]
= s

T

q(1− q)

[
(1− q)− 2sTq + 2sTq2 + s2Tq2

]
∥∇q∥2, (3)

⇒ E
∥∥ḡk − Eḡk

∥∥2 =
s

N

T

q(1− q)

[
(1− q)− 2sTq + 2sTq2 + s2Tq2

]
∥∇q∥2 − αN s2T 2 ∥∇q∥2.

(4)
In particular, as T ↓ 0,

E
∥∥ḡk − Eḡk

∥∥2 =
s T

N

∥∇q∥2

q
+ O

(
s T 2

N
∥∇q∥2

)
− αNs

2T 2∥∇q∥2. (5)
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Frontier k = i. Here T ≡ 1 and Ri = Ii−1Bi:

E
[
(Ri − µ)2 ∥Zi∥2

]
= s

[
(1− sq)2

q
+
s2q2

1− q

]
∥∇q∥2, (6)

⇒ E
∥∥ḡi − Eḡi

∥∥2 =
s

N

[
(1− sq)2

q
+
s2q2

1− q

]
∥∇q∥2 − αNs

2∥∇q∥2. (7)

Define

F (s, q, T ) := (1− q)− 2sTq + 2sTq2 + s2Tq2 = (1− q)(1− 2sTq) + s2Tq2.

We obtain the exact formula

SNRi(θk) =
N sT q(1− q)

F (s, q, T )
· 1

1− N−2
N−1 · sT q(1−q)

F (s,q,T )

. (8)

In the upstream regime with a small tail T ≪ 1 (the typical long-horizon situation),

SNRi(θk) = N sT q ·
(
1 +O

(
T

1−q

))
×
(
1 +O(sT )

)
= Θs,T

(
N sT q

)
= Θ(N si). (9)

At the frontier k = i one recovers the familiar form SNRi(θi) = Θsi−1(N si−1 qi(1− qi)).

Therefore, when training at horizon i, the SNR for θk (with k ≤ i) scales in one of two ways:

Upstream (k < i) : SNRi(θk) = Θ(N si), (10)

Frontier (k = i) : SNRi(θi) = Θ
(
N si−1 qi(1− qi)

)
. (11)

B.3 PER-UPDATE IMPROVEMENT AND BATCH SIZE

Under the assumption that si(θ) is L-smooth, taking an update θ+k = θk + ηḡk (holding all θj ̸=k

fixed) results in expected improvement

E
[
si(θ

+)− si(θ)
]
≥ η

(
si
qk

)2

∥∇θkqk∥2
(
1− Lη

2

(
1 + 1

SNRi(θk)

))
.

This follows from standard analysis of SGD on smooth functions (Duchi, 2018). It is maximised
when η = 1/(L(1 + 1/SNRi(θk))), giving

E
[
si(θ

+)− si(θ)
]
≥

s2i−1∥∇θkgk∥2

2 q2k L︸ ︷︷ ︸
:=∆

(0)
i,k

· 1

1 + 1/SNRi(θk)
. (12)

We call ∆(0)
i,k the noiseless improvement. To achieve a constant β ∈ (0, 1) fraction of the noiseless

gain requires

SNRi(θk) ≥ β

1− β
. (13)

We now instantiate equation 8–equation 13 to compare training regimes in Appendix B.4.

B.4 REGIMES AND CONSEQUENCES

Single-step only (train only at i = 1). When training only at i = 1, the required batch size
and per-update noiseless improvement clearly do not depend on H . This method can only raise
the atomic reliability p (as σ1 = 1), so even as p → 1 long-horizon success remains bounded by∏H

j=2 σj . However, given some target success probability c ∈ (0, 1), increasing p does increase the

horizon h at which sh ≥ c, with h =
(
ln c− ln

∏h
j=2 σj

)
/ ln p given c ≤

∏h
j=2 σj .
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Direct full horizon (train only at i = H). If we train directly at horizon H , equation 10 gives
for all θk ̸=0 SNRH(θk) = Θ(N sH). Under the assumption that at initialization qj ∈ [δ, 1 − δ],
sH = Θ(e−H). We therefore have that

N = Θ(eH), ∆
(0)
H,k = Θ

(
e−2H∥∇θ(k)qk∥2

)
.

The required batch size to achieve a constant fraction of the noiseless improvement is exponential,
while the noiseless improvement decays exponentially, making training directly at large H effec-
tively impossible. In fact, direct training at horizon H is worse than single-step training, as the
signal is too small to effectively raise p

(
SNRH(θ0) = Θ(N H e−H)

)
.

Curriculum over depths. Given a target success probability sH ≥ c ∈ (0, 1), we can ensure
that curriculum training achieves this by only progressing the horizon i when qi ≥ 1 − ϵ, such that
(1− ϵ)H ≥ c, and therefore ϵ ∼ (− ln c)/H . If we assume that the earlier stages have been learned
so si−1 ≥ (1− ϵ)i−1 ≥ c, then equation 11 gives us that

N = Θ

(
1

ϵ

)
= Θ(H), ∆

(0)
i,i = Θ

(
∥∇θ(i)qi∥2

)
.

N depends on ϵ as qi → 1 − ϵ, giving us a batch size that scales linearly with H . The noiseless
improvement is independent of H and i, and so under mild conditions on ∥∇θ(i)qi∥2, such that it
shrinks at most polynomially in H as qi → 1− ϵ, we achieve overall polynomial sample complexity
for curriculum training.

Uniform mixture over lengths. Sample I ∼ Unif{1:H} and run the depth-I estimator; for a
fixed block i, the per-iteration SNR obtained for its update averages to

EI [SNRi] = Θ

(
N

H
si−1 qi

H−i∑
t=0

Ti+1:i+t

)
, Ta:b :=

b∏
ℓ=a

qℓ (Ta:a−1 := 1).

Frontier phase. We say horizon i is at the frontier when earlier skills are sufficiently reliable while
deeper ones are not yet learnt, namely

si−1 ≥ c for some fixed c ∈ (0, 1) and
H−i∑
t=0

Ti+1:i+t = Θ(1).

During this frontier phase,

EI [SNRi] = Θ

(
N

H
si−1 qi

)
.

Whenever we sample a batch with I = i, we obtain the same noiseless improvement and batch size
scaling as curriculum training, with

N = Θ

(
1

ϵ

)
= Θ(H), ∆

(0)
i,i = Θ

(
∥∇θ(i)qi∥2

)
.

Whenever we sample I ̸= i, we see negligible change as samples with h < i cannot improve qi, and
samples with h > i have per-iteration gain that scales with s3h−1.

EI [∆h per iter] = Θ

(
N

H
s3h−1 ∥∇θiqh∥2

)
.

Therefore, it takes ∼ H times longer to train with uniform sampling than with curriculum, due to
only a fraction 1/H of the updates being “useful” at each frontier i ∈ {1, · · · ,H}.
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B.5 DENSE REWARDS (REWARD-TO-GO WITH STATE-VALUE BASELINE)

We replace the terminal-only objective at depth iwith dense stepwise rewards rt := 1{It−1Bt = 1}
and train with reward-to-go at horizon i. Fix a block k ≤ i. Define

Σk,i :=

i∑
t=k

t∏
j=k+1

Bj , Sk,i := E[Σk,i] =

i−k∑
d=0

Tk+1:k+d, S
(2)
k,i := E[Σ2

k,i] =

i−k∑
d=0

(2d+1)Tk+1:k+d,

with Ta:b :=
∏b

ℓ=a qℓ and Ta:a−1 := 1. Let s := sk−1 and q := qk. The per-sample score is

Zk = Ik−1
Bk − q

q(1− q)
∇θ(k)qk,

and we use the state-value (per-sample, action-independent) baseline

b = E[R | Ik−1,Σk,i] = Ik−1 qΣk,i,

so each summand is X := (R− b)Zk and ḡk = 1
N

∑N
g=1Xg with i.i.d. terms.

Mean (signal). Since (R− b) = Ik−1Σk,i(Bk − q) and Zk = Ik−1
(Bk−q)
q(1−q) ∇q,

E[ḡk] = E[X] = E
[
Ik−1Σk,i

(Bk − q)2

q(1− q)

]
∇q = s Sk,i ∇θ(k)qk.

Variance decomposition and exact MSE. Because we use a per-sample baseline, there is no LOO
cross-term and

Var(ḡk) =
1

N
Var(X) =

1

N

(
E
[
(R− b)2∥Zk∥2

]
− ∥E[(R− b)Zk]∥2

)
.

A one-step Bernoulli calculation yields

E
[
(R−b)2∥Zk∥2

]
= s S

(2)
k,i

1− 3q(1− q)

q(1− q)
∥∇θ(k)qk∥2, ∥E[(R−b)Zk]∥2 = s2S2

k,i∥∇θ(k)qk∥2.

Hence the exact mean-squared error (MSE) is

E
∥∥ḡk − Eḡk

∥∥2 =
s

N

(
1− 3q(1− q)

q(1− q)
S
(2)
k,i − s S2

k,i

)
∥∇θ(k)qk∥2. (14)

SNR Using ∥Eḡk∥2 = s2S2
k,i∥∇q∥2 and equation 14,

SNRi(θk) =
N sS2

k,i

1−3q(1−q)
q(1−q) S

(2)
k,i − s S2

k,i

. (15)

Since 1− 3q(1− q) ∈ [1/4, 1], we obtain the MSE bounds

s

N

( S
(2)
k,i

4 q(1− q)
− sS2

k,i

)
∥∇q∥2 ≤ E∥ḡk − Eḡk∥2 ≤ s

N
·

S
(2)
k,i

q(1− q)
∥∇q∥2,

and therefore (whenever the positive term dominates the sS2
k,i subtraction, e.g. away from extremely

large s)

SNRi(θk) = Θ

(
N s q(1− q) ·

S2
k,i

S
(2)
k,i

)
.
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Tail regularity and equivalence with curriculum. If the tail reliabilities are bounded away from
the boundary, qk+1, . . . , qi ∈ [δ, 1− δ] for some δ ∈ (0, 12 ], then

S
(2)
k,i = Θ

(
S2
k,i

)
(constants depend only on δ),

yielding

SNRi(θk) = Θ
(
N sk−1 qk(1− qk)

)
.

This removes the tail-reach penalty Tk+1:i that appears with terminal-only rewards and exactly
matches the curriculum-frontier scaling at stage i (where curriculum also yields Θ(N si−1qi(1 −
qi))). Consequently, the batch size needed to attain a β-fraction of the noiseless improvement in
equation 12 is the same order as under curriculum:

Ni = Θ

(
1

si−1 qi(1− qi)
· β

1− β

)
,

and with the standard curriculum gate qi ≥ 1 − ϵ and si−1 ≥ c (so ϵ ∼ (− ln c)/H), this is
Ni = Θ

(
H

c(− ln c) ·
β

1−β

)
.

C DECREASING SAMPLE COMPLEXITY FOR LONGER TRAINING DATA

In Section 6, we train with the following sample count settings skewed towards shorter samples.

• Baseline: L1 100, L2 100, L3 100, L4 100

• Setting 1: L1 150, L2 115, L3 85, L4 50

• Setting 2: L1 175, L2 100, L3 75, L4 50

• Setting 3: L1 200, L2 125, L3 50, L4 25

And we concluded that we can recover the baseline performance with a skewed trianing distribution,
as long as well spend more compute. However, this is a small search space.

To support section 6 better, we scale up the search space by simplifying our experimental setting. In
particular, we consider training a 135M-parameter model on integer multiplication problems through
SFT. We generate the multiplication problems by sampling two operands, and writing out the chain
of computations. We define length as the sum of number of digits of both operands, analogous to the
number of chained GSM problems in our primary setting. Then we can separate the training dataset
into bins grouped by distinct lengths. We vary the length distribution of training dataset by varying
the samples in each length bins. Finally we associate a cost to each data length, which represents
the cost of generating the data. This metric mirrors the real-world concern that longer data is harder
to collect. For multiplication, the cost of each length is equal to the length.
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C.1 TRADE-OFF BETWEEN DATA COST AND COMPUTE

Figure 7: Right: We parameterize different training distribution using a single cost scalar. Left:
Sweeping different choices of training budget and distribution costs

Using the multiplication task, we study the trade-off between (1) skewedness towards shorter lengths
in the training distribution and (2) total training budget. Figure 7 sweeps over many choices of
budget and cost. A first observation is that for the same target accuracy, a training run can either
have a lower cost data distribution and use more budget, or vise versa. Figure 7 also shows other
relationships. For example, the rate of learning seems to slowly decrease as we increase cost. We
believe this is because as we shift more weight to longer examples, the multiplication becomes
harder to learn overall.

C.2 SEARCHING FOR THE MINIMUM COST DISTRIBUTION UNDER THE SAME BUDGET

By principally testing different data mixtures we show that longer horizon training requires less
samples. Here, we create 3 length bins, which evenly divides the data length in the dataset. We
keep the training budget the same, and vary the data mixture of the length bins to find the mixture
distribution with the least average cost but still keeps high performance after training. We visualize
this search procedure in Figure 8, which shows a distinct feasible region for the 3-bin probability
distribution where training runs are successful.

D ADDITIONAL EXPERIMENTAL DETAILS.

We trained the Qwen 2.5 3B Instruct model using the hyperparameters outlined in Table 5. The
training was conducted for 200 optimization steps for each problem length in our curriculum, where
each step processed a single sample, for a total of 200 samples per horizon. We utilized the Group-
Relative Policy Optimization (GRPO) training objective. For each problem length, we evaluated
the model every 50 steps and selected the best checkpoint based on validation performance. This
checkpoint was then used as the initialization for training on the subsequent, longer-horizon problem
length.

The maximum completion length was dynamically adjusted based on the number of sub-problems
to accommodate the increasing reasoning horizon. Specifically, we used a maximum completion
length of 768 for 1-subproblem tasks, 1024 for 2-subproblem tasks, 1280 for 3-subproblem tasks,
and 1536 for both 4- and 5-subproblem tasks. Dynamically increasing the completion length was an
important factor to achieve good performance, as it allowed the model enough token space to solve
the problem while also constraining it to the minimum length required to complete the task.
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Figure 8: Left: Training trails with 3 length bin data distribution, plotted over the probability sim-
plex. The blue gradient is the ”cost” of the distribution, as defined in C.1. Each dot on the simplex
is a training run with the specific data distribution. We start from the uniform distribution (middle
point) and send 8 rays to the cheaper half of the simplex boundary (we did not explore the more
expensive half). Then we bisect each rays to find the feasibility boundary along this ray. Overall,
there is a convex feasible region that forms close to the simplex boundaries, and we are able to find
data distributions much cheaper.Right: Examples of different 3-bin training distributions during the
search.

Parameter Qwen 2.5 3B
Instruct

Qwen 2.5 7B
Instruct

Llama 3.2 3B
Instruct

Training Steps per Horizon 200 200 200
Samples per Horizon 200 200 200
Number of Generations per Prompt 16 16 16
Learning Rate 5× 10−6 2× 10−6 5× 10−6

Learning Rate Scheduler Cosine Cosine Cosine
Warmup Steps 30 30 20
Max Gradient Norm 0.1 0.1 0.1
Loss Type Dr. GRPO Dr. GRPO Dr. GRPO

Table 5: Hyperparameters used for the curriculum-based RL training stages across different models.

We implemented GRPO training using the Verifiers library(Brown, 2025).

System prompt for RL training

Respond in the following format, with only the numerical answer between the <answer>
tags:
<reasoning>
. . .
</reasoning>
<answer>
. . .
</answer>

Example of chained GSM8K problem

Step 1: Solve the following math problem step by step:
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Ralph watches TV for 4 hours a day from Monday to Friday, and 6 hours a day on Saturday
and Sunday. How many hours does Ralph spend watching TV in one week?

Step 2: Take your final answer from Step 1 and substitute it for Z in the following
problem:

Sonny received Z boxes of cookies from his friend yesterday. He gave 12 to his brother, 9
to his sister, and he gave 7 to his cousin. How many boxes of cookies were left for him?

Write out the updated version of the problem with the number from Step 1 in place of
Z.

Step 3: Solve the updated problem from Step 2 step by step.

Step 4: Take your final answer from Step 3 and substitute it for U in the following
problem:

In a restaurant, the chef prepared 17 meals to sell for lunch. During lunch, he sold 12 meals.
After lunch, the chef prepared another U meals for dinner. How many meals does the chef
have for dinner, assuming he can use the remaining lunch meals as well?

Write out the updated version of the problem with the number from Step 3 in place of
U.

Step 5: Solve the updated problem from Step 4 step by step. In the end, provide only
the final numerical answer.

——

Answer: 9

The same hyperparameters were applied to our baselines in Table 1. For these baselines, we trained
up to an equal amount of compute as our main experiments and selected the best checkpoint from
each run based on validation performance.

To evaluate our model’s generalization capabilities, we performed a series of zero-shot evaluations
(sampling temperature 0.1) on a variety of benchmarks, including AIME 2024, AIME 2025, MMLU
Pro Math (Wang et al., 2024), GSM Symbolic (Mirzadeh et al., 2025), MATH-500 (Hendrycks
et al., 2021), LongBench-v2(Bai et al., 2025), Hash-hop(Magic, 2024), and GPQA(Rein et al., 2024)
(Tables 2, 6). For the Hash-hop benchmark, we computed the average accuracy across multiple
settings, including context lengths of 10k, 20k, and 30k characters, and 1, 2, 3, and 4 hops.

Besides harder math benchmarks, our curriculum-based training generalizes to benchmarks that re-
quire long-context and complex reasoning, even though our models were only trained on composed
mathematical problems. The results on LongBench-v2, Hash-hop, and GPQA show a consistent im-
provement in performance as the training horizon increases, demonstrating that our method imparts
transferable skills such as state-tracking and the ability to reason over long sequences. For example,
performance on LongBench-v2 increases from 35.00% (untrained) to 37.90% after training up to a
5-subproblem horizon.

The robustness and generality of our method were demonstrated by applying it to two additional
language models: Qwen 2.5 7B Instruct and Llama 3.2 3B Instruct. The training parameters for all
models are detailed in Table 5.

For the Qwen 2.5 7B Instruct model, we constructed chained problems from a more challenging
source, the MATH dataset. We connected subproblems with integer-valued answers by applying
simple operations (e.g., addition or subtraction) to generate the numerical input for the next prob-
lem. The training showed a strong, consistent performance lift, with mean accuracy on multi-step
problems rising from 45.50% to 50.65% (Table 7). This improvement transferred to out-of-domain
benchmarks, validating the method’s ability to generalize beyond the specific training domain.
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Generalization to Long Context Benchmarks
Model / setting LongBench-v2 Hash-hop GPQA
Instruct model 35.00 15.98 25.00

Standard RLVR on GSM8K

GSM8K RLVR 35.30 14.76 26.56

Curriculum RL on Composed GSM8K Problems

Len-2 GSM8K 36.20 16.17 25.22
Len-3 GSM8K 37.10 17.62 26.12
Len-4 GSM8K 36.20 18.98 26.34

Len-5 GSM8K 37.90
(+8.3%)

18.73
(+17.4%)

27.23
(+8.9%)

Table 6: Performance on long context benchmarks improves significantly with GSM8K RL curricu-
lum training stages. Training on increasing complexity of GSM8K leads to strong out-of-domain
generalization.

Accuracy on MATH Problems Accuracy on Harder Problems
Model / setting Len-1 Len-2 Len-3 Len-4 Mean Symbolic P2 LongBench v2
Instruct model 74.00 52.60 29.40 26.00 45.50 61.36 33.60

Standard RLVR on MATH

MATH RLVR 76.20 53.80 32.00 29.00 47.75 64.96 34.50

Curriculum RL on Composed MATH Problems

Len-2 MATH 77.00 56.20 34.40 27.66 48.82 65.60 34.50
Len-3 MATH 76.20 56.00 35.40 28.86 49.12 65.32 34.50

Len-4 MATH 76.80
(+4.1%)

56.60
(+7.6%)

37.80
(+28.6%)

31.40
(+20.8%)

50.65
(+11.3%)

64.88
(+6.9%)

35.30
(+5.1%)

Table 7: Long Horizon MATH Training on Qwen 2.5 7B Instruct. Curriculum stages lead to
significant improvements in in-domain performance and generalization metrics. Len-1 refers to
MATH-500 dataset.

For the Llama 3.2 3B Instruct model, we used the same chained GSM8K problems as our primary
experiments. The results for this model are presented in Table 8. The successful application of
our method to a different model family demonstrates its effectiveness across diverse architectural
designs and confirms that our curriculum learning framework is a robust and generalizable method
for improving long-horizon reasoning.

Accuracy on GSM8K Problems Accuracy on Harder Problems
Model / setting Len-1 Len-2 Len-3 Len-4 Mean Symbolic P1 AIME Mean
Instruct model 78.00 11.83 4.42 1.34 23.90 54.84 2.09

Curriculum RL on Composed GSM8K Problems

Len-1 GSM8K 79.00 13.28 7.14 2.14 25.39 55.16 2.87
Len-2 GSM8K 80.20 35.06 15.99 6.43 34.42 57.52 2.92

Len-3 GSM8K 80.60
(+3.3%)

35.27
(+198.1%)

17.35
(+292.5%)

6.70
(+400.0%)

34.98
(+46.4%)

57.75
(+5.3%)

3.18
(+52.2%)

Table 8: Long Horizon GSM8K Training on Llama 3.2 3B Instruct. Curriculum stages lead to
significant improvements in in-domain performance and generalization metrics.
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E QUALITATIVE EXAMPLE

LHR Trained Qwen-2.5-3B on Explicit-Horizon Problems

Long-Horizon Question
Solve the following math problem step by step:
Step 1: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?
Step 2: Take your final answer from Step 1 and substitute it for W in the following problem:
Ella earned $W for 3 hours of dog walking. If she continues to walk dogs at the same rate,
how much would she earn after 12 hours?
Write out the updated version of the problem with the number from Step 1 in place of W.
Step 3: Solve the updated problem from Step 2 step by step.
Step 4: Take your final answer from Step 3 and substitute it for U in the following problem:
Peter purchased U popsicles at $0.25 each. He also purchased 4 ice cream bars at $0.50
each. How much did he pay in total in dollars?
Write out the updated version of the problem with the number from Step 3 in place of U.
Step 5: Solve the updated problem from Step 4 step by step.
Step 6: Take your final answer from Step 5 and substitute it for Y in the following problem:
Fred was preparing for a party to be held in four days. So, he made Y gallons of root beer
on the first day and put them in the refrigerator cooler. But later that evening, his children
discovered the delicious nectar and robbed the cooler, drinking 4 of those gallons of root
beer. On the second day, his wife Barbie also discovered the root beer and accidentally
spilled 7 gallons. On the third day, Fred’s friend Ronnie visited Fred’s house and helped
himself to the root beer, further reducing the amount remaining by 5 gallons. On the fourth
day, 3 people showed up for the party. If Fred and the others shared the remaining root beer
equally, how much was available for each to drink during the party?
Write out the updated version of the problem with the number from Step 5 in place of Y.
Step 7: Solve the updated problem from Step 6 step by step.
Step 8: Take your final answer from Step 7 and substitute it for Z in the following problem:
Craig has 2 twenty dollar bills. He buys six squirt guns for $2 each. He also buys Z packs
of water balloons for $3 each. How much money does he have left?
Write out the updated version of the problem with the number from Step 7 in place of Z.
Step 9: Solve the updated problem from Step 8 step by step. In the end, provide only the
final numerical answer.

Ground truth answer: 25

Untrained model response
<reasoning>
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast and uses 4 eggs to make
muffins. The remaining eggs are sold at the farmers’ market. The number of eggs sold is
calculated as follows:

16− 3− 4 = 9

Since she sells each egg for $2, her daily earnings at the farmers’ market are:

9× 2 = 18

So, Janet makes $18 every day at the farmers’ market. This value is substituted for W in the
next problem.

Ella earned $18 for 3 hours of dog walking. If she continues to walk dogs at the same rate,
her hourly rate is:

18

3
= 6

Ella’s hourly rate is $6. This value is substituted for W in the updated problem.
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Ella earns $6 per hour. If she continues to walk dogs at the same rate, how much would she
earn after 12 hours?

6× 12 = 72

So, Ella would earn $72 after 12 hours. This value is substituted for U in the next problem.

Peter purchased $72 at $0.25 each. He also purchased 4 ice cream bars at $0.50 each. The
total cost is calculated as follows:

72× 0.25 + 4× 0.50 = 18 + 2 = 20

So, Peter paid $20 in total. This value is substituted for U in the next problem.

Peter paid $20. If he purchased 20 packs of root beer, how much was available for each to
drink during the party?

20

4
= 5

So, 5 gallons of root beer were available for each to drink during the party. This value is
substituted for Y in the next problem.

Fred made 5 gallons of root beer. On the second day, his wife spilled 7 gallons, on the third
day, his friend Ronnie helped himself to 5 gallons, and on the fourth day, 3 people showed
up for the party. The remaining root beer is calculated as follows:

5− 7− 5− 3 = −10

Since the remaining amount is negative, it means Fred ran out of root beer and did not have
any left for the party. This value is substituted for Y in the next problem.

Fred did not have any root beer left. If he purchased 0 gallons of root beer, how much money
does he have left after buying 2 twenty dollar bills?

2× 20 = 40

So, Fred spent $40 on the 2 twenty dollar bills. This value is substituted for Y in the next
problem.

Craig has $40. He buys 6 squirt guns for $2 each and 3 packs of water balloons for $3 each.
The total cost is calculated as follows:

6× 2 + 3× 3 = 12 + 9 = 21

So, Craig spent $21 on the squirt guns and water balloons. The amount of money he has left
is:

40− 21 = 19

So, Craig has $19 left. This value is substituted for Z in the next problem.

Craig has $19 left. If he buys Z packs of water balloons for $3 each, how much money does
he have left?

19− 3× 3 = 19− 9 = 10

So, Craig has $10 left. This value is substituted for Z in the next problem.

Craig has $10 left. If he buys 10 packs of water balloons for $3 each, how much money does
he have left?

10− 10× 3 = 10− 30 = −20

Since the remaining amount is negative, it means Craig does not have enough money to buy
10 packs of water balloons. The final numerical answer is -20.
</reasoning>
<answer>

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

-20
</answer>

Analysis (Errors in the untrained model’s response)
State-tracking errors

1. Step 6→7 (after “Peter paid $20”): Took shortcut 20/4 = 5 and then reused
Y = 5 as the starting gallons for Fred (“Fred made 5 gallons. . . ”). Correct carry-
over for Step 6 is Y = 20.

2. Step 8→9 (Craig stage): From “Craig has $19 left.” it set Z = 19 but computed
19 − 3 × 3 instead of 19 − 3Z. Next line used Z = 10, showing inconsistent
substitution.

Problem-logic errors
1. Step 6 / start of Step 7: Treated $20 as gallons and skipped events, doing 20/4

instead of 20− 4− 7− 5 = 4 then 4/4 = 1.
2. Step 7: Subtracted people as gallons, computing 5− 7− 5− 3 instead of dividing

the remaining gallons among 4 people.

LHR model response
<reasoning>

1. First, we need to calculate how many eggs Janet sells each day.
- Janet’s ducks lay 16 eggs per day.
- She eats 3 eggs for breakfast.
- She bakes muffins with 4 eggs.
So, the number of eggs she sells each day is:

16− 3− 4 = 9 eggs

Janet sells the eggs at $2 per egg. Therefore, the amount she makes every day at
the farmers’ market is:

9× 2 = $18

2. Substitute the final answer from Step 1 (18) into the problem:
Ella earned $18 for 3 hours of dog walking. If she continues to walk dogs at the
same rate, how much would she earn after 12 hours?

3. Ella’s rate of earning is $18 for 3 hours. Therefore, her hourly rate is:

18

3
= $6 per hour

To find out how much she would earn after 12 hours, we calculate:

6× 12 = $72

4. Substitute the final answer from Step 3 (72) into the problem:
Peter purchased 72 popsicles at $0.25 each. He also purchased 4 ice cream bars at
$0.50 each. How much did he pay in total in dollars?

5. The cost of the popsicles is:

72× 0.25 = $18

The cost of the ice cream bars is:

4× 0.50 = $2

The total cost is:
18 + 2 = $20
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6. Substitute the final answer from Step 5 (20) into the problem:
Fred was preparing for a party to be held in four days. So, he made 20 gallons
of root beer on the first day and put them in the refrigerator cooler. But later that
evening, his children discovered the delicious nectar and robbed the cooler, drink-
ing 4 of those gallons of root beer. On the second day, his wife Barbie also discov-
ered the root beer and accidentally spilled 7 gallons. On the third day, Fred’s friend
Ronnie visited Fred’s house and helped himself to the root beer, further reducing
the amount remaining by 5 gallons. On the fourth day, 3 people showed up for the
party. If Fred and the others shared the remaining root beer equally, how much was
available for each to drink during the party?

7. The amount of root beer remaining after each event is:

20− 4− 7− 5 = 4 gallons

Fred and 3 others (including himself) share the remaining 4 gallons equally. There-
fore, each person gets:

4

4
= 1 gallon

8. Substitute the final answer from Step 7 (1) into the problem:
Craig has 2 twenty dollar bills. He buys six squirt guns for $2 each. He also buys
Z packs of water balloons for $3 each. How much money does he have left?

9. The cost of the squirt guns is:
6× 2 = $12

The cost of the water balloons is:
Z × 3

The total cost is:
12 + 3Z

Craig has 2 * 20 = $40. After spending, the remaining money is:

40− (12 + 3Z)

Substitute the final answer from Step 7 (1) for Z:

40− (12 + 3× 1) = 40− 15 = $25

Final numerical answer: 25
</reasoning>
<answer>
25
</answer>
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