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ABSTRACT

Large language models excel at short-horizon reasoning tasks, but performance
drops as reasoning horizon lengths increase. Existing approaches to combat
this rely on inference-time scaffolding or costly step-level supervision, neither of
which is scalable. In this work, we introduce a scalable method to bootstrap long-
horizon reasoning capabilities using only existing, abundant short-horizon data.
Our approach synthetically composes simple problems into complex, multi-step
dependency chains of arbitrary length. We then train models on this data using
outcome-only rewards under a curriculum that automatically increases in com-
plexity, allowing RL training to be scaled much further without saturating. Empir-
ically, our method generalizes remarkably well: curriculum training on composed
6th-grade level math problems (GSMS8K) boosts accuracy on unseen, Olympiad-
level benchmarks (GSM-Symbolic, MATH-500, AIME) by up to 2.65x.

Importantly, our
long-horizon improvements are significantly higher than baselines even at high
pass @k, showing that models can learn entirely new reasoning paths under RL.
Theoretically, we show that curriculum-based RL with outcome rewards

an exponential improvement in sample complexity over full-horizon train-
ing, comparable to the gains from dense supervision, while providing strong train-
ing signal without additional annotations. il therefore introduces an effi-
cient path towards scaling RL for longer horizons using existing data.

1 INTRODUCTION

Large language models (LLMs) have improved remarkably in many domains, but they often strug-
gle with long-horizon reasoning (LHR). This involves carrying out a correct, multi-step reasoning
process that involves decomposing goals into intermediate steps and executing them successfully in
a chain of thought (CoT). Such tasks require reasoning over a sequence of dependent steps where
errors can compound across the horizon (L1 et al., [2024; Malek et al., [2025; [Zhou et al.l 2025a;
Sinha et al.| [2025). For many tasks of interest, such as performing research-level mathematics, de-
bugging complex code, and assisting with scientific discovery, an LLM must be able to correctly
solve intermediate problems, carry forward results, and determine what state is important to track
and use. Broadly, any hard tasks that are of importance require solving several difficult steps, which
motivates the development of training methods directly aimed at improving capabilities on such long
sequences of problems.

Reinforcement learning (RL) has shown substantial benefits when it comes to improving the reason-
ing capabilities of LLMs (OpenAl-ol et al.| |2025; DeepSeek-Al et al.,2025). However, RL depends
heavily on the availability of verifiable data and is therefore limited in terms of the complexity of
the training data and long-horizon reasoning paths afforded by this data. Moreover, the lack of
increasing problem complexity and diversity in RL datasets for LLMs leads to rapidly saturating
improvements after a limited number of training steps (Cui et al.| [2025; Wu et al.,[2025)). Obtaining
long-horizon training data is expensive and sample inefficient to directly train on (as we discuss in
Section ] and Appendix [B). Improving performance on such tasks often requires step-level supervi-
sion that is costly, domain specific, and unavailable for most reasoning tasks. Existing approaches
(Zhang et al., 2025} [Liu et al.l 2025b) do not adequately address the problem of improving long-
horizon reliability when only short-horizon data is abundant (as is the case in real-world scenarios).
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This raises a natural question: Can we improve long-horizon reasoning capabilities by scaling
reinforcement learning using only existing short-horizon or single-step training data?
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Figure 1: Our approach improves long horizon reasoning by composing existing short-horizon prob-
lems into a curriculum for scaling RL training. We observe significant OOD improvements.

In this work, we show that the answer is yes. We introduce a method for chained problem construc-
tion, which composes short-horizon problems (e.g. GSMS8K problems (Cobbe et all, 2021)) into
arbitrarily long chains of dependent reasoning steps. This provides scalable synthetic long-horizon
data, with explicit control over the horizon length and complexity without the need for new annota-
tions. We then train language models on this data using reinforcement learning with outcome-only
rewards, coupled with a curriculum over horizons. Obtaining useful data that is of just the right
complexity for models to learn from has always been a major bottleneck 2025). We
show how existing tasks can be grouped adaptively into increasingly harder problems that provide
useful training signal and prevent RL improvements from quickly saturating 2025). Our
approach requires neither step-level labels nor auxiliary models (as in PRMs), and avoids inference-
time search, instead directly training the model to internalize long-horizon reasoning structures.

Our results in Sections 4] and 5] show that not only does this synthetic curriculum generalize to other
in-domain multi-hop problems, but also transfers to harder benchmarks such as MATH-500 and
AIME that implicitly require LHR. Importantly, we show that long-horizon reasoning depends on
more than just improving single step accuracy, and provide a breakdown of the capabilities needed
for improved performance in Section[3] We evaluate our long-horizon trained models versus other
strong baselines up to pass@ /28 and show that while improvements obtained from RLVR on stan-
dard data is bounded by the base model’s capabilities 2025), our method performs sig-
nificantly better. This reflects genuinely new skills learnt via curriculum based training on com-
positional tasks, and we provide an in depth empirical exploration in Section 4] along with robust
theoretical results in Appendix [B] In Section[6] we further analyze compute—data tradeoffs, showing
how scaling compute can substitute for scarce long-horizon data in real-world scenarios.

Our main contributions are:

1. A general method for constructing long-horizon reasoning data by chaining existing short-
horizon problems with no additional annotations.

2. A reinforcement learning framework with curriculum training and outcome-only rewards
that significantly improves horizon generalization and teaches new reasoning paths not
elicited otherwise even at very high pass@k.

3. Empirical evidence of transfer to significantly harder benchmarks (MATH-500, AIME,
GSM Symbolic, LongBench-v2, Hash-hop) while training on compositional GSM8K data.
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5. Theoretical analysis of sample complexity of curriculum learning, showing that it
an exponential improvement over full-horizon training, similar to dense rewards.

2 RELATED WORK

LLM Reasoning and RL. Initial reasoning literature (Zelikman et al.,2022) bootstrapped perfor-
mance using model generated reasoning traces. More recently, (OpenAl-ol et al.l 2025} DeepSeek-
Al et al.| [2025) demonstrated substantial improvements in reasoning capabilities via RL training.
These advances have enabled effective scaling of inference-time compute (Snell et al., [ 2024; [Brown
et al., [2024; [Muennighoff et al., 2025). However, as reasoning chains grow longer, models exhibit
several limitations, often struggling with simple multi-step problems (Malek et al., 2025} |Shojaee
et al., 2025} [Song et al., 2025). Moreover, RL-based approaches face their own challenges: diversity
degradation during training (Song et al.| [2025)), questions about whether models truly acquire new
capabilities versus better sampling existing ones (Yue et al., 2025), and maintaining stability over
long horizons (Xiang et al.,2025)). Recent efforts toward addressing these challenges include |Setlur
et al.| (2025)), which improves in-context exploration via an RL curricula with steps such as verifi-
cation and refinement and work on adaptive difficulty scheduling for efficient training (Shi et al.,
2025} [Parashar et al., 2025} |L1u et al., [2025b).

systematically composes existing short-horizon problems into chains of increasing length,
producing new data to scale an RL curriculum to train models to internalize long-horizon reasoning
capabilities that they otherwise lack. This enables reliable multi-step problem solving and improve-
ments on significantly harder (unseen) settings, providing a foundation for training long-horizon
agents (Zhou et al., 2025b; [Kwa et al.| [2025)) that can track complex state and execute dependent
reasoning steps over extended sequences.

Additionally, a detailed discussion of our work and its novelty in the context of length generalization
and long-context models is provided in Appendix Section [A]

3 METHOD

Long-horizon reasoning refers to the capability of carrying out a coherent, multi-step reasoning
process and executing steps reliably in a CoT to solve long horizon tasks.

What counts as a long-horizon task? We use two notions. Explicit-horizon tasks have a known
number of dependent sub-problems / because we construct them by chaining atomic problems (used
for training and in-domain evaluation). Implicit-horizon tasks require multiple dependent reasoning
steps but do not come with an explicit decomposition (e.g., MATH-500, AIME); they have a latent
horizon h* that is not annotated. Our training targets explicit horizons for clean analysis, and shows
a strong transfer to implicit-horizon benchmarks.

Our goal is to bootstrap long-horizon reasoning (LHR) using only existing short-horizon data. We
(i) compose atomic problems into longer chains of problems with dependent steps to synthesize
LHR data, (ii) scale RL training with outcome-only GRPO following a curriclum learning approach,
and (iii) evaluate both in-domain (explicit chains) and on harder out-of-domain tasks that implicitly
require many reasoning steps. Here, we describe what we mean by a long-horizon tasks, formalize
our data construction process, and provide details about our RL training objective.

Atomic tasks and serial composition. We begin with atomic tasks f;: short, self-contained prob-
lems (e.g., single GSM8K questions) with verifiable answers that the base model solves with non-
trivial accuracy. Each task takes an input x; and produces an answer y;.

To form long-horizon examples, we chain £ atomic tasks so later sub-problems depend on earlier
results. A lightweight adapter ¢; maps y; to the next input:

y; = fi(x;), Tiv1 = ¢5(y;), j=1,...,h—1,
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yielding the final answer

Yn = fu(@n(--- ¢1(f1(1)))).

Adapters may be identity or simple deterministic transforms (e.g., scaling, unit conversion). Each
chain of length A is rendered as a single prompt listing the h sub-problems in order. The model
is instructed to solve them sequentially but is supervised only on the final answer y; (outcome-
only RL). We apply basic well-posedness checks (type/range consistency, unit compatibility, de-
duplication).

Example explicit-horizon chain

1. Weng earns $12 an hour for babysitting. Yesterday, she babysat for 50 minutes. How
much did she earn? (#1)

2. Betty is saving money for a new wallet which costs ${10 x #1}. Betty has only half of
the money she needs. Her parents give her $15, and her grandparents give her twice as much
as her parents. How much more money does Betty need to buy the wallet? (#2)

3. James writes a {#2}-page letter to 2 different friends twice a week. How many pages
does he write a year? (#3)

This construction exposes models to dependency chains that require carrying, transforming, and
reusing intermediate values, while keeping supervision outcome-only. We vary chain length h to
implement the stagewise curriculum described later in this section. In Appendix we analyze
our composition method through computational graphs to explain its effectiveness during training.

Why horizons are hard: beyond multiplicative errors. In explicit-horizon tasks, let h be
the number of dependent sub-problems whose intermediate values are reused downstream. An
independent-errors view gives P(final correct) = p, suggesting that raising atomic step accuracy
p suffices. This is overly optimistic because it ignores context management: as transcripts grow,
models can lose or corrupt intermediate values even when each step is easy. We model long-horizon
accuracy via atomic reliability p and context management o; (the chance the required information is
correctly retrieved at step 7). Writing s; for the probability that the reasoning state remains correct
after step j, we have

$j =P0jsj-1,  s0=1,
so if o; decays with horizon length, accuracy can collapse even when p ~ 1.

This explains the weakness of naive outcome-only training at horizon h: when o; < 1, few roll-
outs earn reward, gradients have low signal-to-noise ratio, and samples scale exponentially in h.
Curriculum training mitigates this by starting with short chains where s; is large, yielding high-
SNR updates; early stages raise p, while later stages reinforce write/read behaviours that stabilise
;. Empirically (Section [)), performance depends on capabilities beyond p, and our approach im-
proves both p and o, delivering large gains on explicit-horizon tasks and generalising to harder
implicit-horizon tasks (Section[3)); Appendix Section [B]develops the theoretical implications.

Algorithm 1 h1: Stagewise curriculum RL over explicit-horizons

Require: Pretrained model Mp; atomic task bank .A; adapters {¢;}; max horizon Hmax; per-stage counts

My, Sh
1: for h = 1 to Hmax do > stagewise curriculum over explicit horizons
2 Dh — @
3 for m = 1to M}, do > construct horizon-h chains
4 sample (f1.n, 1) from A; 31+ fi(z1)
5: forj=1toh —1do
6: zi1 4 &5(Y5)s Yirr < fiva(@in)
7 p < FORMATPROMPT((f;,2;)"_) > format prompt from the task sequence
8 Dy < Dn U{(pr:n,yn)}
9 M}, < TRAINWITHDRGRPO(M},_1, Dy, Sh)
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Curriculum RL on Compositional Data Significantly Improves In-domain Long-Horizon Reasoning
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Figure 2: Curriculum RL training on compositional data offers significant in-domain long horizon
reasoning gains (up to 2.9 X). This prevents RL training from saturating and uses no new data.

Scaling RL with a curriculum over horizons. Let D;, be the dataset of synthesized chains of
explicit horizon h. Our curriculum is stagewise:

forh=1,2,..., Hpax : run DrGRPO (Liu et al.,[2025c) on Dy, for .S}, optimization steps.

We initialize from 7, and carry the parameters forward between stages. Algorithm |I| describes
the entire training process. By focusing optimization on a single horizon per stage, the model first
acquires reliable short-horizon primitives (increasing p;), then learns to reuse and repair them under
longer dependency (increasing p; and r; for j > 1). We contrast the curriculum with three baseline
horizon-sampling policies:

1. Only-L1: ¢(¢) = I[¢ = 1]. If direct problem-solving were sufficient, this would match
curriculum; empirically it does not.

2. Uniform-Mix: ¢(¢) < I[1 < £ < H.«], i-e., randomly pick from the LHR dataset.

3. Only-Long: ¢(¢) = [[¢{ = Hp,.yx], i.e., train solely on the hardest chains. This suffers from
extreme sparsity and unstable gradients.

Generally, RL with verifiable rewards (RLVR) requires the creation of a clean labeled dataset. What
models can learn from is potentially limited by the complexity expressed in these problems. We see
this bound due to a fixed RL dataset both empirically (Section 3) and theoretically (Appendix [B)),
which leads to performance quickly saturating during training. Our goal with a synthetic curriculum
is to optimally utilize limited existing data for scaling RL. At each stage, tasks can be composed to
be right at the edge of what a model can solve, making RLVR more scalable (see Tables[T]and 2).

Training and evaluations. We use the Qwen-2.5-3B Instruct model (Qwen et al., [2025) for our
core experiments. Improving an Instruct model with RL is generally considered more difficult (Wang
et all [2025) and gains signify performance improvements beyond just instruction tuning (which
cannot be directly inferred for improvements on base models (Shao et al.,2025)). Therefore, we aim
to show all improvements on Instruct models for the purpose of robustness. Our explicit-horizon
training and evaluations are done on composed GSMS8K questions (Cobbe et al., [2021), and our
implicit-horizon evaluations are on AIME 2024, AIME 2025, MMLU Pro Math (Wang et al.| [2024)),
GSM Symbolic (Mirzadeh et al,2025)), and MATH-500 (Hendrycks et al., [2021).

4 IN-DOMAIN RESULTS AND THE IMPORTANCE OF CURRICULUM

We evaluate our curriculum-based RL training method using explicit-horizon GSM8K problems
and demonstrate that (1) curriculum learning is essential for long-horizon reasoning, (2) LHR per-
formance depends on capabilities beyond single step accuracy, and (3) our method teaches gen-
uinely new capabilities that are otherwise absent in the model. We use Qwen-2.5-3B Instruct
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Accuracy on GSM8K Problems of Horizon L-n
Model / setting L-1 L-2 L-3 L-4 L-5 L-6 L-7 L-8
Instruct model 82.79  35.06  20.07 6.70 3.57  0.00 0.79 0.00

Equal compute training baselines

Only-L1 86.80 37.14  21.43 6.70 3.87  0.25 0.00 0.00
Uniform-Mix 82.80  12.66 2.04 0.54 0.00  0.00 0.00 0.00
Only-Long 82.71 4336 2041 3.22 1.49  0.25 0.25 0.00

Increased Inference Compute Baseline
Tree of Thought 83.30 39.40  13.30 2.00 0.00  0.00 0.00 0.00

Curriculum training (trained up to Len-n)

RLVR 83.20 39.42  18.37 2.95 2.08 0.25 0.79 0.00
Len-2 85.92  56.22  28.57 12.06 6.25 1.26 0.79 0.49
Len-3 84.91  56.22  37.76 15.55 8.63 3.27 3.17 0.25
Len-4 85.48  57.05  40.14 18.23 9.23 3.53 3.17 1.72
Len-5 (H1) 8597 58,51  36.39 18.77 9.?2 3.53 3.17 2.22
(+3.8%) (+66.9%) (+81.3%) (+180.1%) (+175.1%) (++) (+301.3%) (++)

Table 1: GSMS8K accuracy by horizon length. Curriculum based RL training significantly improves
in-domain performance compared to the Instruct model and all other equal compute baselines.

for our experiments, with GRPO over a curriculum of chained GSM8K problems with horizons
h € {1,2,3,4,5}. Each stage trains for 200 steps with 200 samples per horizon. We compute
the following baselines: Only-L1 (standard RL on ~=1), Only-Long (h=5), and Uniform-Mix
(uniform over h € [1, 5]).

In Appendix [D| we provide results on Qwen-2.5-7B Instruct using composed MATH
and Llama-3.2-3B Instruct using composed GSMS8K data, both showing improvements.

In-domain results. In Table[T] our in-domain results on composed LHR GSM8K problems from
the test set show that the curriculum-based approach yields substantial monotonic improvements
in accuracy as the training horizon increases. At h=2 the instruct model achieves 35.06%, which
increases to only 39.42% with RL on standard GSMS8K problems but jumps to 56.22% when training
up to a horizon of 2 and 58.51% when trained up to a horizon of 5. Similarly, at h=3 the instruct
model achieves 20.07%, which lifts to 37.76% with a curriculum up to h=3. For longer horizons
(harder problems), the effect of curriculum is even more visible, increasing accuracy by about 3 x at
h=4 (6.70% — 18.77%) and h=>5 (3.57% — 9.82%). We present these improvements in Figure[2]

In Table [I} the Only-L1 baseline improves h=1 but shows no improvements on longer horizons.
Similarly, Uniform-Mix even at an equal training compute baseline shows no improvements. Only-
Long also leads to no long-horizon improvements due to the lack of useful training signal at longer
lengths discussed in Section [3] Furthermore, |Cui et al|(2025) show that the entropy of a policy
undergoing RL training collapses quickly, which causes improvements from RL to saturate quickly.
While this is true for our baselines, our curriculum training repeatedly introduces new levels of diffi-
culty (exploration), which allows scaling RL for up to 5x more steps to keep improving capabilities.
We leave a deeper investigation into the scaling properties of our method to future work.

Curriculum RL bootstraps long-horizon reasoning

Training up to horizon h extends usable learning signal on h + 1 and shifts probability mass
into the long-sequence tail monotonically. For e.g. training to h=3 lifts h=4 from 6.70%
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Long Horizon Trained Models Show Significant Improvements Even At High Pass@k
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Figure 3: Our curriculum based RL training using composed synthetic data outperforms RLVR on
standard data from the same set even at pass@128, teaching new capabilities that did not previ-
ously exist in the base model. LHR requires going beyond improving single-step performance.

to 15.55%; training to h=4 lifts h=>5 from 3.57% to 9.23%. This provides enough training
signal for the next stage, allowing curriculum learning to be extremely effective. We examine
this theoretically in Appendix

Why single-step accuracy is not enough. In Section 3] we claim that LHR depends on more
than just single step accuracy. Prior to RL training, single-step accuracy of the model is 82.79%.
If errors were independent, we would expect 68.54% at h=2 and 56.75% at h=3 by multiplicative
compounding, yet we observe 35.06% and 20.07% (Table[l)). Even after RL training (Only-L1) for
200 steps, (despite a slight increase at h=1) performance drops to 39.42% at h=2 and 18.37% at
h=3 rather than 69.28% and 57.67% expected under the independent error assumption.

Learning new capabilities with RL. We now discuss the second part of our claim in Section
LHR depends on additional capabilities such as state tracking and repair that can be improved using
RL training over a curriculum. (Yue et al.|[2025) show an important result that RLVR on LLMs only
improves the sample efficiency of reasoning capabilities already present in the base model, and no
new capabilities are learnt. They show that at a high pass@k (such as 128), capabilities of these RL
trained models originate from and are bounded by the base model (with the pass@k performance
quickly converging). Therefore, only when an RL model is not bounded by the base model at high
pass@k can one empirically show new capabilities are learnt.

Our explicit-horizon training and testing setting allows us to isolate out these capability improve-
ments that go beyond the base model with only RL. Importantly, proving one of the central claims
in our paper, we evaluate our final model on unseen longer horizons (b = 6, 7, and 8) up to a very
high sampling budget (pass@128). Our results in Figure[3|show that while RL on standard GSM8K
is bounded by instruct model capabilities (and converges very quickly), our long horizon trained
models perform significantly better even at high k£ = 128. This shows our method unlocks new, cor-
rect reasoning paths that were previously inaccessible to the model, providing genuinely new LHR
capabilities. This is a significant finding compared to common RLVR training paradigms studied in
(Yue et al.,|2025), showing that our RL method can indeed teach new reasoning skills when training.

LHR Training can teach new capabilities

We demonstrate for the first time that Curriculum RL can teach new capabilities that go
significantly beyond the base model even at pass@128. Our curriculum based training on
compositional synthetic data is therefore crucial.

In this section, we show significant improvements on explicit-horizon in-domain tasks and that our
model learns new reasoning capabilities with our curriculum based training. Our explicit-horizon
GSMEK setting, while very useful in allowing us to isolate these capabilities and understand the
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Curriculum RL on Easy Composed Data Generalizes to Harder Domains
Models trained only on composed GSM8K problems show strong performance on unseen benchmarks
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Figure 4: Long-horizon training on GSM8K generalizes to significantly harder tasks. Performance
on AIME 2024 improves by 2.65 X and ultra-long-context capabilities improve by 1.2 Xx.

differences in all training methods, is still relatively artificial. In Section [5] we therefore test our
GSMBSK trained LHR models on significantly harder (unseen) problems.

5 GENERALIZATION TO HARDER BENCHMARKS

Having established that our curriculum-based training imparts new, in-domain capabilities, we now
investigate whether these learned skills generalize to challenging, out-of-domain benchmarks that
implicitly require long-horizon reasoning. Our results (Figure[d) demonstrate that the skills acquired
from solving synthetically chained problems transfer remarkably well to harder problems.

Transfer to Olympiad level math. In Table 2] we evaluate our GSMS8K long horizon trained
models on MATH-500, GSM-Symbolic P1, GSM-Symbolic P2, MMLU Pro Math, and AIME.
These tasks can be categorized as implicit-horizon and benefit significantly from LHR training on
much easier explicit-horizon tasks. For instance, performance on GSM-Symbolic P1 goes from
67.06 — 73.28, P2: 43.08 — 52.00), and strikingly AIME 2024 from 3.96 — 10.52, a 2.65x
increase. These improvements show a transfer of the capabilities targeted in Section 4]

Generalization to Significantly Harder Math Problems
Model/setting MATH-500 Symbolic P1 Symbolic P2 MMLU-Pro AIME 2025 AIME 2024

Instruct model 64.20 67.06 43.08 58.47 1.77 3.96

Standard RLVR on GSM8K

GSMSK RLVR 66.20 71.40 47.60 60.62 2.71 6.88

Equal compute training baselines

Only-L1 48.40 71.32 42.24 59.84 3.12 5.31

Uniform-Mix 64.40 64.48 39.16 60.22 2.50 5.28

Only-Long 65.60 72.18 47.52 60.71 1.72 6.46

Curriculum RL on Composed GSM8K Problems

Len-2 GSMSK 67.00 72.86 50.80 59.73 1.25 4.69

Len-3 GSMSK 66.80 70.70 49.48 61.21 1.67 3.85

Len-4 GSMSK 68.40 72.22 51.92 60.91 2.60 7.60
69.20 73.28 52.00 61.21 3.02 10.52

Len-s GSMSK (+7.8%) (+9.3%) (+20.7%) (+4.7%) (+70.6%) (+165.7%)

Table 2: Performance on harder math benchmarks improves significantly with GSM8K RL curricu-
lum training stages. Bootstrapping simple existing data can be used for scaling RL. AIME avg@32.

LHR training allows us to bootstrap capabilities from significantly easier tasks to gains on much
harder ones without using any extra labels or supervision. We see a scaling trend, where continued
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RL training on longer explicit-horizons leads to improvements on harder implicit-horizon tasks.
Bootstrapping composed LHR data can allow more RL compute to be spend on the same dataset.

Generalization to Olympiad Level Problems

Training on composed 6th grade problems with our RL curriculum generalizes to signifi-
cantly harder benchmarks. Notably, we achieve a 2.65 X improvement on AIME 2024.

Transfer to long-context benchmarks. We now evaluate our GSM8K LHR models on OOD
long-context benchmarks to see if the state tracking capabilities (0;) from Section [3|improve. We
test two main long-context benchmarks: LongBench-v2 (Bai et al.| [2025) and Hash-hop (Magic,
2024). LongBench-v2 measures understanding and reasoning over QA documents, long-dialogue,
repositories, etc. (with 8k—2M words). Hash-hop tests ultra-long-context storage, retrieval, and
multi-hop variable tracing by making models follow shuffled chains of random hash — hash pairs.
Table [6] summarizes our results, with a 35.00% — 37.90% improvement on LongBench-v2 and a
15.98% — 18.73% improvement on Hash-hop, both completely unrelated to GSM8K.

Table 3:

Analysis. This transfer patterns aligns with our pass@k capability improvement results from Sec-
tion 4| and our theoretical framing. Tasks requiring sequential dependent reasoning, such as AIME
or GSM-Symbolic problems, benefit from improved long-horizon reasoning capabilities that were
learned on much simpler composed tasks. Crucially, improvements in aspects such as state-tracking
(o) are also observable from our long-context evals. Our results indicate that a curriculum of simple
explicit-horizon tasks can bootstrap advanced reasoning, providing a scalable path where composing
problems at the edge of what can be solved would push capabilities further without new annotations.

6 DESIGNING A COST EFFICIENT CURRICULUM

In most real-world scenarios, there is an abundance of short-horizon data, and long-horizon data is
expensive to obtain (Kwa et al.l [2025). In this section, we ask whether long-horizon performance
can be obtained from training data distributions that are “cheaper” than a uniform one. Namely,
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Certain Low Cost Data Distributions Can Achieve Similar Performance If Training Compute Increases
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Figure 5: Left: Sample count distributions for four settings. Middle: Comparing accuracy at each
stage across sample count settings. Under mild skew towards shorter samples like Setting 1 and 2,
the model can perform as well as the uniform sample baseline. Right: Comparing the training com-
pute across settings. The settings skewed towards shorter samples have more training cost in terms
of training tokens seen. Overall, low-cost data distributions can achieve near-optimal performance.

whether we can train on more short data and less long data and still achieve the same performance.
We also evaluate how much this changes the training compute required.

Our experiments follow the same curriculum RL method described in Sections [4 and 3] During
training, we train up to saturation for each stage, spending as much training compute as needed
until there are no further improvements in accuracy. We track the total number of tokens seen by
the model. We create three different curricula with the same total number of samples, and different
proportions of short- and long-horizon data (Figure [5]left).

The results in Figure[5] (middle and right) show that high long-horizon performance can be achieved
even in data-constrained scenarios with training data distributions skewed towards shorter examples,
but the trade-off is that we need to spend more training compute overall. However, as seen in the
case of Setting 3 (Figure[3] left), a reasonable amount of long horizon data is still needed, otherwise
optimal performance may be unreachable. Therefore, to further study this trade-off, we simplify
our experimental setup to the SFT setting on a simpler task (multiplication), and scale up the search
space for comprehensive evaluations. In Appendix [C| we provide results that show, for a target
accuracy, a similar trade-off exists between (1) training cost and (2) training compute budget.

7 DISCUSSION

In this paper, we introduced a novel framework for improving long-horizon reasoning in large lan-
guage models. Our method leverages existing short-horizon data by constructing new, multi-step
problems through a chaining process. This approach allows us to scale reinforcement learning train-
ing, yielding substantial performance gains on multi-step reasoning tasks. An important result of
our work is that the skills learned through this curriculum transfer to new challenging reasoning and
long-context tasks. Furthermore, our results show that the model learns genuinely new reasoning
capabilities, rather than just refining existing ones. We demonstrate that comparable performance
can be achieved even when there is abundant short-horizon data but limited long-horizon data, thus
providing a scalable and data-efficient path for improving frontier models.

While the goal of our paper was to introduce an early method for improving long-horizon reasoning,
we see two promising directions for extensions. One is incorporating new sources of atomic skills
beyond GSMS8K. The other is creating new chaining methods that expands the serial dependency
structure in our current method. We believe these two paths would offer useful extensions to the
method we introduce in this paper and further improve long-horizon reasoning.

10
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A ADDITIONAL RELATED WORK.

Length Generalization. Length generalization is concerned with extrapolating to longer sequence
lengths than those seen during training (Dubois et al.| [2019; [Hupkes et al., |2020; [Newman et al.,
2020; |Anil et al.|, [2022)). Length generalization settings mostly focus on small scale tasks (Sabbaghi
et al.}2024;|Zhou et al.,2024) but do not address RL training of reasoning models. A close example
(Lee et al.| [2025) uses curriculum construction and SFT to train small transformers on progressively
harder algorithmic tasks. In this work, we not only show progressive length generalization gains
through curriculum based RL, but also cross-task generalization on much harder tasks.

Long Context Models. Another related thread is extending LLM context length to handle very
large inputs. Recent models feature context windows of tens or hundreds of thousands of tokens
(Liu et al} [2025a) and benchmarks like LongBench-v2 (Bai et al.| [2025) evaluate performance on
extremely long inputs such as documents and code. Frontier models with state-of-the-art context
windows still suffer performance degradation when required to infer against distant pieces of infor-
mation or a series of dependent tasks (Li et al.,[2024; [Malek et al.,[2025; Zhou et al.| 2025a). These
works show that simply having larger context windows does not guarantee that models can perform
deep, dependent reasoning over several steps. Our work aims to address this gap by focusing on
training for improved long-horizon output generation rather than just long input handling.

A.1 COMPOSITION AND COMPUTATIONAL GRAPHS.

Synthetic LHR data construction. Let D; = {(z, y = f.(z))} be solved atomic problems (e.g.,
GSMS8K). We build horizon-h examples (p1.5, yr) in two interchangeable ways:

1. Transformation chaining. Given (x;,y;), define x; 11 = ¢,(y;) via a typed, determinis-
tic transformation (e.g., unit conversion, affine reparameterization, substitution into a tem-
plate). This yields 1 —y; — - - - =y, with y;, computed exactly by composition.

2. Recompute chaining. Draw an independent atomic instance Z ;1 and re-compute its key
parameters as functions of y; (e.g., replace a placeholder with y;), producing x;; =
¥;(Zj11,y;) while preserving the solver f,,, .

We render the chain as a single prompt
Pi:n = Ray (21) || Ray (2) || -+ || Ray, (1),

instructing the model to solve the h dependent sub-problems sequentially and return the final answer
Yn

We can analyze our method from the perspective of computational graphs (Zhou et al.l [2025al).
Each verifiable problem, such as in GSM8k dataset, forms a single-sink directional acyclic graph
where each node represents an operator consuming the value from previous nodes and producing
the value for the next node(s) or as an output of the graph as shown in Figure [§ for an example
GSMB8k problem. The height of the graph then can represent the number of steps that must be
crafted and accurately carried out while the width of the graph represents the state that must be
maintained at each step and accurately manipulated. This framing enables us to visualize various
possible compositions of a given set of problems. The sequential composition presented in this paper
forms a simple composition technique that enables models to learn through a curriculum crafting and
evaluating of larger and larger number of the steps that a problem may require.

We generated the computational graphs for all of the problems in GSM8k and AIME24 datasets
to examine the patterns of computation and compositions for these problems. While the graphs for
these two datasets are not equivalent as they use different operators, they give some insights into why
our method is able to show generalization across different datasets. For GSM8k problems, we found
the computational graphs have average width and height of 4.1 and 4.0 respectively, while AIME
graphs have average width and height of 6.6 and 7.1 respectively. We then compare the statistics
for the graphs of AIME problems solved before and after our procedure as shown in table 4} We
observe that our procedure enables models to learn creating and evaluating longer computational
graphs through sequential composition and curriculum learning.

"We apply standard well-posedness filters: type checks, numeric range clipping, and de-duplication.
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Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A
large pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that
day?

Legend

W Inputs

B Ops (Mul/Add)
Thick box: Output

Tnput Input Input Input
name = name =
name = 1 1i name = 11 514
v e arge_slices._per emall count small_slices._per
. value = 16 - value = §
value =2 (pizzas) value =2 (pizzas)

(slices/pizza) (slices/pizza)

2x16=3’7 2><8=16/

large_total small_total

Op: Mul (units: Op: Mul (units:
slices) slices)

total_slices
Op: Add (units:
slices)

32+ 16 = 48

Figure 6: Question and computational graph for a GSM8K problem (final answer: 48).

Table 4: AIME24 solved problems comparison. N+E denotes Nodes + Edges.

N+E  Width Height

Baseline: Instruct-model solved problems 47.25 8 6.75
Ours: Additional newly solved problems 543 4.7 10.3

B THEORETICAL ANALYSIS

B.1 SETUP AND NOTATION

We study our simplified model of skill acquisition described in Section [3]to analyze the benefits of
curriculum learning for LHR. We consider a finite-horizon episodic problem with maximum horizon
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H, where the probability of being correct up to depth i is
Si = qu’ q4; = p(ao)aj(ej) € (Oa 1)) 50:17
j=1

with depth-j parameters 6;. p € (0,1] represents homogeneous atomic task reliability, while
o; € [0,1] represents heterogeneous context length dependent reliability (we assume o1 = 1).
At initialization, we assume ¢; € [d,1 — 0] for some constant § > 0.

We use unbiased advantage-based policy gradient with a leave-one-out (LOO) baseline. For depth
i, we draw N i.i.d. trajectories {y,})_, with terminal reward R;(y,) € {0, 1} and advantage

1
Ag = Rilyg) — N_1 ZRi(yh)-
h#g
For a block k& < i the (blockwise) score and estimator are

B X _
Ziy = Teor(yy)Vor log mh(yg) = or(yg) 2EWe) — e
ax(1 —qr)

1 N
gk = N Z Ag Zk7g>
g=1

where I;,_; is the reach indicator for step k& and By ~ Bernoulli(gy) is the step-k success. We
abbreviate

[
§ 1= Skg-1, (= (g, T:= Tk+1:i = H q;-

Jj=k+1
B.2 SIGNAL-TO-NOISE RATIO
Define the SNR at horizon 7 with respect to 0y, (k < i) as
|Egx?
SNR;(0k) = =—————115 -
) = &g — Egel?
To calculate this, we determine the mean and variance of gy.
Mean. Forall £ <1,
Si
Elgr] = gr = . Vowar = sT Vo qr. (D
Variance identity (LOO). Let y:= E[R;] = s¢T. The LOO variance decomposition gives
_ 1 N -2
Var(gr) = N E[(Rz - ,u)2Z,CZ,;'—] — an gkg]—cra ay = m 2

Upstream k < i. Conditioning on I;_; = 1 and decoupling the tail as C' ~ Bernoulli(7")
independent of By, a direct enumeration yields

T
E[(R; — 1)? | Z|I] = s -9 [(1 —q) —25Tq +2sTq* + 52Tq2} IVqll?, (3)
_ _ 2 ] T
= ]EHgk—Eng = Nm[(l—q)—23Tq+28Tq2—|—32Tq2] IVqll* — an s*T?||Vq|?.
4)
In particular, as T" | 0,
_ 2 sT [|[Vql]? sT?
Bl ol = ST+ o(SDvel?) - avezwdr. o
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Frontier k =i. HereT' =1and R; = I,_1B;:

1 _ Sq 2 32q2
E[(R: - 1ZiP) = s |12 4 S ] g2, ©
q 1—g¢q
s 1 — sq)? s2¢2
= Blg-Eal = 5 S S Vel - an?val o)
q 1—g¢q

Define
F(s,q,T) := (1 —q) — 2sTq+ 2sTq* + s*Tq*> = (1 — q)(1 — 2sTq) + s°Tq>.

‘We obtain the exact formula

_ NsTq(l—q) 1
SNR:(0k) = F(s,q,T) 1_ N=2 sTq(l—q)" ®
N—-1 F(s,q,T)

In the upstream regime with a small tail 7" < 1 (the typical long-horizon situation),
SNRi(0h) = NsTq- (1+0(%;)) x (1+0(sT)) = ©,4(NsTq) = O(Ns). (9
At the frontier & = ¢ one recovers the familiar form SNR,;(0;) = O, _, (N s;—1 ¢;(1 — ¢;)).
Therefore, when training at horizon ¢, the SNR for 6, (with k& < 7) scales in one of two ways:
Upstream (k < 1) : SNR;(0r) = O(N s;), (10)
Frontier (k = Z) : SNR,(GZ) = @(N Si—1 qz(]- — Ch)) (ll)
B.3 PER-UPDATE IMPROVEMENT AND BATCH SIZE

Under the assumption that s;(#) is L-smooth, taking an update 02,' = 0 + ngr (holding all 0,
fixed) results in expected improvement

Elsi(07) —si(0)] > n (;)2 IIVekaHQ( -5 <1+W<ek)))

This follows from standard analysis of SGD on smooth functions (Duchi, 2018). It is maximised
whenn = 1/(L(1 4+ 1/SNR;(0x))), giving

alVogel? 1
oty _ o] > SimllVeugkl®
E[si(67) —s:(6)] 2 27 L 1+ 1/SNR;(0r) (12)
—_———
::A(.Ok)‘

We call Agolg the noiseless improvement. To achieve a constant 5 € (0, 1) fraction of the noiseless
gain requires

13)
We now instantiate equation [8l-equation[I3]to compare training regimes in Appendix

B.4 REGIMES AND CONSEQUENCES

Single-step only (train only at ¢ = 1). When training only at ¢« = 1, the required batch size
and per-update noiseless improvement clearly do not depend on H. This method can only raise
the atomic reliability p (as 01 = 1), so even as p — 1 long-horizon success remains bounded by

Hf:z 0. However, given some target success probability ¢ € (0, 1), increasing p does increase the

horizon h at which s;, > ¢, with h = (lnc —1In H;L:2 oj) /Inp given ¢ < H?:Q 0.
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Direct full horizon (train only at : = H). If we train directly at horizon H, equation |10] gives
for all 0.0 SNRy(0r) = O(N sg). Under the assumption that at initialization ¢; € [0, 1 — 0],
sy = ©(e~ ). We therefore have that

N =6(e"), Agﬁ?,)k =0 (e[ Vomarl) -

The required batch size to achieve a constant fraction of the noiseless improvement is exponential,
while the noiseless improvement decays exponentially, making training directly at large H effec-
tively impossible. In fact, direct training at horizon H is worse than single-step training, as the
signal is too small to effectively raise p (SNRy (6p) = O(N H e~ ).

Curriculum over depths. Given a target success probability sy > ¢ € (0,1), we can ensure
that curriculum training achieves this by only progressing the horizon ¢ when ¢; > 1 — ¢, such that
(1 —€)" > ¢, and therefore € ~ (—Inc)/H. If we assume that the earlier stages have been learned
$0 8;_1 > (1 — €)'~ > ¢, then equation|11|gives us that

1
N=6 (6> =oH), A =0(|Vwal?).

N depends on € as g; — 1 — ¢, giving us a batch size that scales linearly with H. The noiseless
improvement is independent of H and 4, and so under mild conditions on ||V, q;||?, such that it
shrinks at most polynomially in H as ¢; — 1 — €, we achieve overall polynomial sample complexity
for curriculum training.

Uniform mixture over lengths. Sample I ~ Unif{1:H} and run the depth-I estimator; for a
fixed block ¢, the per-iteration SNR obtained for its update averages to

H—i b
N
E/[SNR;] = @<H Si—1i ; Ti+1:i+t> ; Top = zl:[ ¢ (To:a—1:=1).

Frontier phase. We say horizon 1 is at the frontier when earlier skills are sufficiently reliable while
deeper ones are not yet learnt, namely

H—1
$;—1 > ¢ for some fixed ¢ € (0,1) and Z Tit1.04¢ = O(1).
t=0

During this frontier phase,
N
E][SNRZ] = @(H Si—1 qz) .

Whenever we sample a batch with I = ¢, we obtain the same noiseless improvement and batch size
scaling as curriculum training, with

1
v-o(t)—eum. A= (Tl

Whenever we sample I # i, we see negligible change as samples with A < ¢ cannot improve g;, and
samples with & > i have per-iteration gain that scales with s3 .

. N
E;[A), periter] = @(H 53, ||V9iQh|2> .

Therefore, it takes ~ H times longer to train with uniform sampling than with curriculum, due to
only a fraction 1/H of the updates being “useful” at each frontier ¢ € {1,--- , H}.
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B.5 DENSE REWARDS (REWARD-TO-GO WITH STATE-VALUE BASELINE)

We replace the terminal-only objective at depth ¢ with dense stepwise rewards ry := 1{I;_1B; = 1}
and train with reward-to-go at horizon :. Fix a block £ < 4. Define

o

71—

=> II Bi»  Ski = E[Ski] = ZTkJrl kot ds Sl(fz) = E[27,] =) (2d+1) Ths1:k4d;
t=k j=k+1 0

[
Il

with Ty, 1= sza qeand T,.,—1 := 1. Let s := s;_1 and q := q. The per-sample score is

B —q
Zy = Ip_1 ) Vo) qrs

q(1—q
and we use the state-value (per-sample, action-independent) baseline

b =ER| -1, = Ii-19%k,,

so each summand is X := (R — b)Z;, and g, = + Zé\[:l X, withi.i.d. terms.

Mean (signal). Since (R —b) = I},_1%,;(By — q) and Zy, = Ij,_q f 5)) Vg,

E[gy] = E[X] =E [Jk_lz,m (Br —0)”

q(l—q)} Vq = s5k: Vo k-

Variance decomposition and exact MSE. Because we use a per-sample baseline, there is no LOO
cross-term and

Var(gy) = - Var(X) = - (E[(R - 01 Z)] - |E[(R ~ ) Z]IP).

A one-step Bernoulli calculation yields

1—-3q(1—gq
E[(R=)%1 2] = 552 q(l(_q)) IVowarll®,  IE(R-B)ZI® = 5*SE il Voo el

Hence the exact mean-squared error (MSE) is

_ 2 s (1—3q(1—
E||ge — Egi||” = v (q(lq(_q)q) Sl(c2z) - 35131> 1V g qre| |2 (14)

SNR  Using ||Eg,[|> = s*S} ;[ Vq||* and equation
NsS,%Z

1—3q(1—q) (2) :
q(L11 qq S SSEJ

SNR; (0) = (15)

Since 1 — 3¢(1 — q) € [1/4, 1], we obtain the MSE bounds

) (2)

S S i
~552.) IVal® < Elige —Egull® < = - —E— || Vg2,

s S
1 N q(1-q)

il Crri

and therefore (whenever the positive term dominates the 35’,%7 , subtraction, e.g. away from extremely
large s)

Sk

SNR; (k) =© | Nsq(l—q)- Ee)

ki
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Tail regularity and equivalence with curriculum. If the tail reliabilities are bounded away from
the boundary, g1, . ..,¢ € [§,1 — 6] for some 6 € (0, 1], then

S ,222 = O(S;;) (constants depend only on 4),
yielding

SNR;(6x) = O(N sp_1 (1 — q1)).

This removes the tail-reach penalty T}.; that appears with terminal-only rewards and exactly
matches the curriculum-frontier scaling at stage ¢ (where curriculum also yields O(N s;_1¢;(1 —
gi))). Consequently, the batch size needed to attain a S-fraction of the noiseless improvement in
equation [12]is the same order as under curriculum:

o 1 B
N = G(Silq'i<1_qi) 1—/3>7

and with the standard curriculum gate ¢; > 1 — e and s,_1 > ¢ (so € ~ (—In¢)/H), this is

Ni = (s 128)-

C DECREASING SAMPLE COMPLEXITY FOR LONGER TRAINING DATA

In Section[6] we train with the following sample count settings skewed towards shorter samples.

* Baseline: L1 100, L2 100, L3 100, L4 100
* Setting 1: L1 150, L2 115, L3 85, L4 50
 Setting 2: L1 175, L2 100, L3 75, L4 50

 Setting 3: L1 200, L2 125, L3 50, L4 25

And we concluded that we can recover the baseline performance with a skewed trianing distribution,
as long as well spend more compute. However, this is a small search space.

To support section [6]better, we scale up the search space by simplifying our experimental setting. In
particular, we consider training a 135M-parameter model on integer multiplication problems through
SFT. We generate the multiplication problems by sampling two operands, and writing out the chain
of computations. We define length as the sum of number of digits of both operands, analogous to the
number of chained GSM problems in our primary setting. Then we can separate the training dataset
into bins grouped by distinct lengths. We vary the length distribution of training dataset by varying
the samples in each length bins. Finally we associate a cost to each data length, which represents
the cost of generating the data. This metric mirrors the real-world concern that longer data is harder
to collect. For multiplication, the cost of each length is equal to the length.
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C.1 TRADE-OFF BETWEEN DATA COST AND COMPUTE

avg cost=5 avg_cost = 6.06

Probability
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o o o

o
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o o
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’ i

01 2 3 4 5 6 7 01 2 3 4 5 6 7
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Figure 7: Right: We parameterize different training distribution using a single cost scalar. Left:
Sweeping different choices of training budget and distribution costs

Using the multiplication task, we study the trade-off between (1) skewedness towards shorter lengths
in the training distribution and (2) total training budget. Figure [7] sweeps over many choices of
budget and cost. A first observation is that for the same target accuracy, a training run can either
have a lower cost data distribution and use more budget, or vise versa. Figure[7]also shows other
relationships. For example, the rate of learning seems to slowly decrease as we increase cost. We
believe this is because as we shift more weight to longer examples, the multiplication becomes
harder to learn overall.

C.2 SEARCHING FOR THE MINIMUM COST DISTRIBUTION UNDER THE SAME BUDGET

By principally testing different data mixtures we show that longer horizon training requires less
samples. Here, we create 3 length bins, which evenly divides the data length in the dataset. We
keep the training budget the same, and vary the data mixture of the length bins to find the mixture
distribution with the least average cost but still keeps high performance after training. We visualize
this search procedure in Figure [8] which shows a distinct feasible region for the 3-bin probability
distribution where training runs are successful.

D ADDITIONAL EXPERIMENTAL DETAILS.

We trained the Qwen 2.5 3B Instruct model using the hyperparameters outlined in Table 5] The
training was conducted for 200 optimization steps for each problem length in our curriculum, where
each step processed a single sample, for a total of 200 samples per horizon. We utilized the Group-
Relative Policy Optimization (GRPO) training objective. For each problem length, we evaluated
the model every 50 steps and selected the best checkpoint based on validation performance. This
checkpoint was then used as the initialization for training on the subsequent, longer-horizon problem
length.

The maximum completion length was dynamically adjusted based on the number of sub-problems
to accommodate the increasing reasoning horizon. Specifically, we used a maximum completion
length of 768 for 1-subproblem tasks, 1024 for 2-subproblem tasks, 1280 for 3-subproblem tasks,
and 1536 for both 4- and 5-subproblem tasks. Dynamically increasing the completion length was an
important factor to achieve good performance, as it allowed the model enough token space to solve
the problem while also constraining it to the minimum length required to complete the task.
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Evolution of Length Distribution (p) — sampled runs

Training outcomes on 3 length bin simplex
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Figure 8: Left: Training trails with 3 length bin data distribution, plotted over the probability sim-
plex. The blue gradient is the “cost” of the distribution, as defined in[C.1} Each dot on the simplex
is a training run with the specific data distribution. We start from the uniform distribution (middle
point) and send 8 rays to the cheaper half of the simplex boundary (we did not explore the more
expensive half). Then we bisect each rays to find the feasibility boundary along this ray. Overall,
there is a convex feasible region that forms close to the simplex boundaries, and we are able to find
data distributions much cheaper.Right: Examples of different 3-bin training distributions during the
search.

Parameter Qwen 2.5 3B Qwen 2.5 7B Llama 3.2 3B
Instruct Instruct Instruct

Training Steps per Horizon 200 200 200

Samples per Horizon 200 200 200

Number of Generations per Prompt 16 16 16

Learning Rate 5x 1076 2x 1076 5x 1076

Learning Rate Scheduler Cosine Cosine Cosine

Warmup Steps 30 30 20

Max Gradient Norm 0.1 0.1 0.1

Loss Type Dr. GRPO Dr. GRPO Dr. GRPO

Table 5: Hyperparameters used for the curriculum-based RL training stages across different models.

We implemented GRPO training using the Verifiers library(Brown| 2025).

System prompt for RL training

Respond in the following format, with only the numerical answer between the <answer>
tags:
<reasoning>

</reasoning>
<answer>

</answer>

\

Example of chained GSM8K problem

Step 1: Solve the following math problem step by step:
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Ralph watches TV for 4 hours a day from Monday to Friday, and 6 hours a day on Saturday
and Sunday. How many hours does Ralph spend watching TV in one week?

Step 2: Take your final answer from Step 1 and substitute it for Z in the following
problem:

Sonny received Z boxes of cookies from his friend yesterday. He gave 12 to his brother, 9
to his sister, and he gave 7 to his cousin. How many boxes of cookies were left for him?

Werite out the updated version of the problem with the number from Step 1 in place of
Z.

Step 3: Solve the updated problem from Step 2 step by step.

Step 4: Take your final answer from Step 3 and substitute it for U in the following
problem:

In a restaurant, the chef prepared 17 meals to sell for lunch. During lunch, he sold 12 meals.
After lunch, the chef prepared another U meals for dinner. How many meals does the chef

have for dinner, assuming he can use the remaining lunch meals as well?

Write out the updated version of the problem with the number from Step 3 in place of
U.

Step 5: Solve the updated problem from Step 4 step by step. In the end, provide only
the final numerical answer.

Answer: 9

The same hyperparameters were applied to our baselines in Table[I] For these baselines, we trained
up to an equal amount of compute as our main experiments and selected the best checkpoint from
each run based on validation performance.

To evaluate our model’s generalization capabilities, we performed a series of zero-shot evaluations
(sampling temperature 0.1) on a variety of benchmarks, including AIME 2024, AIME 2025, MMLU
Pro Math (Wang et al.| [2024), GSM Symbolic (Mirzadeh et al., 2025), MATH-500 (Hendrycks
et al.,[2021), LongBench-v2(Bai et al.||2025)), Hash-hop(Magic|2024), and GPQA(Rein et al.|[2024)
(Tables 2] [6). For the Hash-hop benchmark, we computed the average accuracy across multiple
settings, including context lengths of 10k, 20k, and 30k characters, and 1, 2, 3, and 4 hops.

Besides harder math benchmarks, our curriculum-based training generalizes to benchmarks that re-
quire long-context and complex reasoning, even though our models were only trained on composed
mathematical problems. The results on LongBench-v2, Hash-hop, and GPQA show a consistent im-
provement in performance as the training horizon increases, demonstrating that our method imparts
transferable skills such as state-tracking and the ability to reason over long sequences. For example,
performance on LongBench-v2 increases from 35.00% (untrained) to 37.90% after training up to a
5-subproblem horizon.

The robustness and generality of our method were demonstrated by applying it to two additional
language models: Qwen 2.5 7B Instruct and Llama 3.2 3B Instruct. The training parameters for all
models are detailed in Table

For the Qwen 2.5 7B Instruct model, we constructed chained problems from a more challenging
source, the MATH dataset. We connected subproblems with integer-valued answers by applying
simple operations (e.g., addition or subtraction) to generate the numerical input for the next prob-
lem. The training showed a strong, consistent performance lift, with mean accuracy on multi-step
problems rising from 45.50% to 50.65% (Table[7). This improvement transferred to out-of-domain
benchmarks, validating the method’s ability to generalize beyond the specific training domain.
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Generalization to Long Context Benchmarks

Model / setting LongBench-v2 Hash-hop GPQA
Instruct model 35.00 15.98 25.00
Standard RLVR on GSM8K

GSMSK RLVR 35.30 14.76 26.56
Curriculum RL on Composed GSMS8K Problems

Len-2 GSMSK 36.20 16.17 25.22
Len-3 GSMSK 37.10 17.62 26.12
Len-4 GSMSK 36.20 18.98 26.34
Len-5 GSMSK 37.90 18.73 27.23

(+8.3%)

(+17.4%)

(+8.9%)

Table 6: Performance on long context benchmarks improves significantly with GSM8K RL curricu-
lum training stages. Training on increasing complexity of GSMS8K leads to strong out-of-domain

generalization.

Accuracy on MATH Problems

Accuracy on Harder Problems

Model / setting Len-1 Len-2 Len-3 Len-4 Mean Symbolic P2 LongBench v2

Instruct model 74.00 52.60 29.40 26.00 45.50 61.36 33.60

Standard RLVR on MATH

MATH RLVR  76.20 53.80 32.00 29.00 47.75 64.96 34.50

Curriculum RL on Composed MATH Problems

Len-2 MATH  77.00 56.20 34.40 27.66 48.82 65.60 34.50

Len-3MATH 76.20 56.00 35.40 28.86 49.12 65.32 34.50
76.80 56.60 37.80 31.40 50.65 64.88 35.30

Len-4 MATH

(+4.1%)  (+7.6%)  (+28.6%)  (+20.8%)

(+11.3%)

(+6.9%)

(+5.1%)

Table 7: Long Horizon MATH Training on Qwen 2.5 7B Instruct. Curriculum stages lead to
significant improvements in in-domain performance and generalization metrics. Len-1 refers to

MATH-500 dataset.

For the Llama 3.2 3B Instruct model, we used the same chained GSM8K problems as our primary
experiments. The results for this model are presented in Table [8] The successful application of
our method to a different model family demonstrates its effectiveness across diverse architectural
designs and confirms that our curriculum learning framework is a robust and generalizable method

for improving long-horizon reasoning.

Accuracy on GSMS8K Problems

Accuracy on Harder Problems

Model / setting Len-1 Len-2 Len-3 Len-4 Mean SymbolicP1 AIME Mean

Instruct model 78.00 11.83 4.42  1.34  23.90 54.84 2.09

Curriculum RL on Composed GSMSK Problems

Len-1 GSM8K 79.00 13.28 7.14 214 25.39 55.16 2.87

Len-2 GSM8K 80.20 35.06 15.99 6.43 34.42 57.52 2.92
80.60 35.27 1735 6.70 34.98 57.75 3.18

Len-3 GSMSK

(+33%)  (+198.1%)  (+292.5%)  (+400.0%)

(+46.4%)

(+5.3%)

(+52.2%)

Table 8: Long Horizon GSM8K Training on Llama 3.2 3B Instruct. Curriculum stages lead to

significant improvements in in-domain performance and generalization metrics.
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LHR Trained Qwen-2.5-3B on Explicit-Horizon Problems

Long-Horizon Question

Solve the following math problem step by step:

Step 1: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?

Step 2: Take your final answer from Step 1 and substitute it for W in the following problem:
Ella earned $W for 3 hours of dog walking. If she continues to walk dogs at the same rate,
how much would she earn after 12 hours?

Write out the updated version of the problem with the number from Step 1 in place of W.
Step 3: Solve the updated problem from Step 2 step by step.

Step 4: Take your final answer from Step 3 and substitute it for U in the following problem:
Peter purchased U popsicles at $0.25 each. He also purchased 4 ice cream bars at $0.50
each. How much did he pay in total in dollars?

Write out the updated version of the problem with the number from Step 3 in place of U.
Step 5: Solve the updated problem from Step 4 step by step.

Step 6: Take your final answer from Step 5 and substitute it for Y in the following problem:
Fred was preparing for a party to be held in four days. So, he made Y gallons of root beer
on the first day and put them in the refrigerator cooler. But later that evening, his children
discovered the delicious nectar and robbed the cooler, drinking 4 of those gallons of root
beer. On the second day, his wife Barbie also discovered the root beer and accidentally
spilled 7 gallons. On the third day, Fred’s friend Ronnie visited Fred’s house and helped
himself to the root beer, further reducing the amount remaining by 5 gallons. On the fourth
day, 3 people showed up for the party. If Fred and the others shared the remaining root beer
equally, how much was available for each to drink during the party?

Write out the updated version of the problem with the number from Step 5 in place of Y.
Step 7: Solve the updated problem from Step 6 step by step.

Step 8: Take your final answer from Step 7 and substitute it for Z in the following problem:
Craig has 2 twenty dollar bills. He buys six squirt guns for $2 each. He also buys Z packs
of water balloons for $3 each. How much money does he have left?

Write out the updated version of the problem with the number from Step 7 in place of Z.
Step 9: Solve the updated problem from Step 8 step by step. In the end, provide only the
final numerical answer.

Ground truth answer: 25

Untrained model response
<reasoning>
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast and uses 4 eggs to make
muffins. The remaining eggs are sold at the farmers’ market. The number of eggs sold is
calculated as follows:

16-3-4=9
Since she sells each egg for $2, her daily earnings at the farmers’ market are:

9x2=18

So, Janet makes $18 every day at the farmers’ market. This value is substituted for W in the
next problem.

Ella earned $18 for 3 hours of dog walking. If she continues to walk dogs at the same rate,

her hourly rate is:
18 6
==

Ella’s hourly rate is $6. This value is substituted for W in the updated problem.
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Ella earns $6 per hour. If she continues to walk dogs at the same rate, how much would she
earn after 12 hours?
6x12 =72

So, Ella would earn $72 after 12 hours. This value is substituted for U in the next problem.

Peter purchased $72 at $0.25 each. He also purchased 4 ice cream bars at $0.50 each. The
total cost is calculated as follows:

72 x0.25+4x0.50=18+2 =20

So, Peter paid $20 in total. This value is substituted for U in the next problem.

Peter paid $20. If he purchased 20 packs of root beer, how much was available for each to
drink during the party?
20
N
So, 5 gallons of root beer were available for each to drink during the party. This value is
substituted for Y in the next problem.

5

Fred made 5 gallons of root beer. On the second day, his wife spilled 7 gallons, on the third
day, his friend Ronnie helped himself to 5 gallons, and on the fourth day, 3 people showed
up for the party. The remaining root beer is calculated as follows:

5—7-5-3=-10

Since the remaining amount is negative, it means Fred ran out of root beer and did not have
any left for the party. This value is substituted for Y in the next problem.

Fred did not have any root beer left. If he purchased 0 gallons of root beer, how much money
does he have left after buying 2 twenty dollar bills?

2 x 20 =40

So, Fred spent $40 on the 2 twenty dollar bills. This value is substituted for Y in the next
problem.

Craig has $40. He buys 6 squirt guns for $2 each and 3 packs of water balloons for $3 each.
The total cost is calculated as follows:

6x24+3x3=124+9=21

So, Craig spent $21 on the squirt guns and water balloons. The amount of money he has left
is:
40—-21=19

So, Craig has $19 left. This value is substituted for Z in the next problem.

Craig has $19 left. If he buys Z packs of water balloons for $3 each, how much money does
he have left?
19-3x3=19-9=10

So, Craig has $10 left. This value is substituted for Z in the next problem.

Craig has $10 left. If he buys 10 packs of water balloons for $3 each, how much money does
he have left?
10-10x 3 =10—-30 = —20

Since the remaining amount is negative, it means Craig does not have enough money to buy
10 packs of water balloons. The final numerical answer is -20.

</reasoning>

<answer>
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-20
</answer>

Analysis (Errors in the untrained model’s response)
State-tracking errors

1. Step 6—7 (after “Peter paid $20”): Took shortcut 20/4 = 5 and then reused
Y = 5 as the starting gallons for Fred (“Fred made 5 gallons...”). Correct carry-
over for Step 6is Y = 20.

2. Step 8—9 (Craig stage): From “Craig has $19 left.” it set Z = 19 but computed
19 — 3 x 3 instead of 19 — 3Z. Next line used Z = 10, showing inconsistent
substitution.

Problem-logic errors

1. Step 6 / start of Step 7: Treated $20 as gallons and skipped events, doing 20/4
instead of 20 —4 — 7 —5 =4 then4/4 = 1.

2. Step 7: Subtracted people as gallons, computing 5 — 7 — 5 — 3 instead of dividing
the remaining gallons among 4 people.

LHR model response
<reasoning>

1. First, we need to calculate how many eggs Janet sells each day.
- Janet’s ducks lay 16 eggs per day.
- She eats 3 eggs for breakfast.
- She bakes muffins with 4 eggs.
So, the number of eggs she sells each day is:

16 —3 —4 =9 eggs

Janet sells the eggs at $2 per egg. Therefore, the amount she makes every day at
the farmers’ market is:
9x2=29818

2. Substitute the final answer from Step 1 (18) into the problem:
Ella earned $18 for 3 hours of dog walking. If she continues to walk dogs at the
same rate, how much would she earn after 12 hours?

3. Ella’s rate of earning is $18 for 3 hours. Therefore, her hourly rate is:

18
3 = $6 per hour

To find out how much she would earn after 12 hours, we calculate:

6 x 12 =872

4. Substitute the final answer from Step 3 (72) into the problem:
Peter purchased 72 popsicles at $0.25 each. He also purchased 4 ice cream bars at
$0.50 each. How much did he pay in total in dollars?

5. The cost of the popsicles is:
72 x 0.25 = $18
The cost of the ice cream bars is:
4 % 0.50 = $2

The total cost is:
18 +2 = $20
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25

6. Substitute the final answer from Step 5 (20) into the problem:

Fred was preparing for a party to be held in four days. So, he made 20 gallons
of root beer on the first day and put them in the refrigerator cooler. But later that
evening, his children discovered the delicious nectar and robbed the cooler, drink-
ing 4 of those gallons of root beer. On the second day, his wife Barbie also discov-
ered the root beer and accidentally spilled 7 gallons. On the third day, Fred’s friend
Ronnie visited Fred’s house and helped himself to the root beer, further reducing
the amount remaining by 5 gallons. On the fourth day, 3 people showed up for the
party. If Fred and the others shared the remaining root beer equally, how much was
available for each to drink during the party?

. The amount of root beer remaining after each event is:

20 —4 —7—5 =4 gallons

Fred and 3 others (including himself) share the remaining 4 gallons equally. There-
fore, each person gets:

4
— =1gall
1 gallon

. Substitute the final answer from Step 7 (1) into the problem:

Craig has 2 twenty dollar bills. He buys six squirt guns for $2 each. He also buys
Z packs of water balloons for $3 each. How much money does he have left?

. The cost of the squirt guns is:

6 x2=9%12
The cost of the water balloons is:
Z %3
The total cost is:
12+ 37
Craig has 2 * 20 = $40. After spending, the remaining money is:
40 — (124 32)

Substitute the final answer from Step 7 (1) for Z:
40— (1243 x 1) =40 — 15 = $25

Final numerical answer: 25

</reasoning>
<answer>

</answer>
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